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Abstract
In the age of Big Data, the widespread use of location-awareness technologies has made it possible to
collect spatio-temporal interaction data for analyzing flow patterns in both physical space and cyberspace.
This research attempts to explore and interpret patterns embedded in the network of phone-call interac-
tion and the network of phone-users’ movements, by considering the geographical context of mobile
phone cells. We adopt an agglomerative clustering algorithm based on a Newman-Girvan modularity
metric and propose an alternative modularity function incorporating a gravity model to discover the clus-
tering structures of spatial-interaction communities using a mobile phone dataset from one week in a city
in China. The results verify the distance decay effect and spatial continuity that control the process of par-
titioning phone-call interaction, which indicates that people tend to communicate within a spatial-
proximity community. Furthermore, we discover that a high correlation exists between phone-users’
movements in physical space and phone-call interaction in cyberspace. Our approach presents a combined
qualitative-quantitative framework to identify clusters and interaction patterns, and explains how geo-
graphical context influences communities of callers and receivers. The findings of this empirical study are
valuable for urban structure studies as well as for the detection of communities in spatial networks.

1 Introduction

In geographic information science and regional geography there is a tradition of research on
spatial interaction processes between different sub-regions, based on population immigration,
commuting travel activities, and disease diffusion (Clarke 1996, Giuliano and Small 1993,
Goodchild and Janelle 1984, Guo 2007, Jang and Yao 2011, Roy and Thill 2003, Tobler
1976, 1988). For regional studies, the functional region is defined by regional geographers
based on interaction between its distinctive land-use zones (Johnston et al. 1981). Representa-
tive forms of interaction between different zones include human movement, commodity flow,
resource allocation, and information communication. For the past several decades, studies of
spatial interaction processes have mainly been based on census datasets (Jang and Yao 2011,
Rae 2009).

In the age of Big Data, the widespread use of location-awareness devices (LAD), such as
mobile phones and GPS-enabled devices, has made it possible to collect large-scale individual
trajectories for analyzing human activity patterns and spatial interactions in both physical
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space and cyberspace. Mobile communications have shifted social ties from “linking people-
in-places to linking people wherever they are and from place-to-place to person-to-person”
(Kwan 2007). It is valuable for researchers and policy makers to understand how regional
functions interact with human movements and telecommunication flows derived from these
new information sources, and to understand in turn how these information and communica-
tion technologies (ICT) influence urban space (Batty and Miller 2000, Foss and Couclelis
2009, Ren and Kwan 2007, Shaw and Yu 2009, Torrens 2008, Yu and Shaw 2008, Yuan
et al. 2012). The effect of ICT on human movements includes three types: substitution,
stimulation, and modification (Mokhtarian and Meenakshisundaram 1999). Townsend
(2000) has argued that the use of mobile phones leads the intensification of urban activity
and productivity. Some researchers have employed mobile phone data for regionalization
(Ratti et al. 2010), for discovering various types of social divides (Walsh and Pozdnoukhov
2011), and for finding linguistic separation (Expert et al. 2011). Other studies have demon-
strated that mobile subscribers’ movements are determined by geographical and socio-
economic factors (Kang et al. 2010, 2012b, Leskovec and Lang 2008, Onnela and Arbesman
2011). Recently, more attention has been placed on deriving temporal characteristics of
feature types from location-based services (Ye et al. 2011) and on extracting land-use from
spatio-temporal trajectories (Liu et al. 2012b). Nevertheless there are still some important
questions that deserve attention: for example, what is the relationship between interaction in
the physical world and that in cyberspace, how to exploit and analyze patterns of spatial
interaction, and how to design efficient economical and administrative boundaries based on
spatial interaction?

Many analyses of spatial interaction datasets have been based on predefined areal units.
Tobler (1976), for example, has analyzed state-to-state college attendance, and Rae (2009) has
analyzed flows of immigrants. Other researchers have developed various techniques and
models to find patterns in spatial interaction data (Adrienko and Adrienko 2011, Fischer et al.
1993, Roy and Thill 2003, Young 2002). In addition, researchers have taken the spatial inter-
action network as a graph in which areal zones are transformed into nodes while interaction
flows embedded in space are represented by weighted edges. A number of graph partitioning
methods found in the literature of complex networks and computer science have been applied
to research on community detection or pattern discovery. Tobler’s First Law (TFL) of geogra-
phy says that near things are more related than distant things (Tobler 1970). Based on this
proposition, it can be inferred that the strength of spatial interaction between communities is
subject to geographic constraints which can be discovered through the use of the community-
detection algorithms of social network analysis. However, popular methods for social network
analysis rarely consider the relationship between physical space and cyberspace, although
some research has taken spatial effects into account (Eagle et al. 2009, Expert et al. 2011, Guo
2009, Guo and Wang 2011, Guo et al. 2012, Onnela and Arbesman 2011). Goodchild et al.
(2000) mention that we should demand an explicit accounting for spatial interaction and
spatial dependence in empirical models of social networks. Spatialized social network analysis
(SSNA) facilitates the understanding of social behaviors that relate to the structure of the
network as well as to relative location-context in physical space. For example, Radil et al.
(2012) use SSNA to investigate the network structure and geographical context of gang vio-
lence. Thiemann et al. (2010) analyze a human travel network generated by the circulation of
banknotes, and find the effective boundaries partially overlap with existing administrative
borders and also physical barriers like rivers and mountains. Barthélemy (2011) thoroughly
explains the related work of understanding how the spatial constraints affect the structure and
properties of these spatial networks.
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In general, the spatial effects on networks include: (1) spatial constraints on the connectiv-
ity patterns of nodes embedded in geographical locations; (2) physical networks like roads and
railways, which are affected by spatial topology; and (3) restrictions on long-distance links due
to economic costs.

In this study, we attempt to explore the community patterns hidden in the geographically
embedded telecommunication network of phone-call interaction and the network of phone-
users’ movements. We adopt a hierarchical agglomerative clustering algorithm based on a
Newman-Girvan modularity metric and an alternative modularity function incorporating a
gravity model to study the dynamics of spatial interaction communities. Thus, the goal of this
article is to discover communities from the networks of spatial interactions revealed by phone-
call records and to use geographical context to explain these patterns. To this end, we geo-
reference the detected spatial communities in Google Earth, further analyze some spatial
communities of interest, and discover previously unknown spatially coherent regions and iso-
lated enclaves. The empirical studies show how geographical context influences patterns of
spatial interaction. To the best of our knowledge, this is the first effort to connect and compare
the community patterns embedded in a phone-call dataset in cyberspace with phone-users’
movements in the physical world.

The remainder of the article is organized as follows. In Section 2, we introduce the mobile
phone datasets of the study area and preprocessing procedures for extracting networks of
spatial interaction flow, as well as dynamic spatial structures of phone-call activities. In Section
3, we describe the method of community detection, and specifically the graph-partitioning
algorithms. In Section 4, we analyze the resulting urban communities and compare patterns of
call interaction and movement interaction. In Section 5, we summarize the main conclusions
and discuss further work.

2 Data Description and Processing

2.1 Mobile Phone Data

There are mainly two types of mobile-phone datasets: individual call detail records (CDR) and
aggregated call-volume data. On the one hand, a set of anonymized CDR which contains call
information of phone user, receiver, base-station locations, date, time, duration, etc. (Table 1)
is maintained by mobile network operators. Every time a call is made, each phone is geo-
referenced to a nearby mobile base station that has a unique longitude/latitude position, which
can be used to estimate the location of the phone user and further quantify human mobility
(González et al. 2008, Kang et al. 2010, 2012b, Song et al. 2010). On the other hand, the
aggregated data represents the total call volume of each mobile base station in different time
intervals, such as hourly, daily, or weekly. This type of call volume data has been collected to

Table 1 Data format of mobile-phone call-detail records

User Receiver Date
Start
Time

End
Time

Duration
(seconds)

Base
Station Long Lat

serveNub1 oppNub1 2007-07-23 09:25:10 09:28:20 190 A 127.495 50.243
serveNub1 oppNub2 2007-07-23 12:15:32 12:15:52 20 B 127.502 50.241
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understand the spatio-temporal structures of urban activities, population distribution and
traffic flow (Gao et al. 2013, Kang et al. 2012a, Ratti et al. 2006).

In this research, the dataset is the first type listed above, and includes a week of over
74,000,000 phone call records (as shown in Table 2) of nearly 1,000,000 mobile subscribers in
Harbin, a large city in northeastern China. The coverage area of each mobile base station can
be approximated as a Thiessen polygon for call activity analysis and termed a “cell”. In this
Thiessen partition, all phone calls within a given polygon are closer to the corresponding
mobile base station than to any other station. Generally, urban core areas have a higher
density of mobile cells where the average distance between mobile base stations is approxi-
mately one kilometer (the value of average separation depends on the size of the sampling
area). The average distance between base stations in the whole study area is 7.95 km. Each
geo-referenced phone call which connects the locations of two mobile phone users could be
represented as an origin-destination (OD) pair in geographical space or as a link in a network
of telecommunication interaction (TeleFlow). Also, we can get corresponding positioning
movements (MoveFlow) of each mobile subscriber by connecting his or her series of geo-
referenced call records. Therefore, based on the phone-call activities, two types of spatial inter-
action processes could be extracted (see Figure 1).

2.2 Interaction Data Representation

Let G_TeleFlow (V, E) be a weighted-undirected network graph of phone call flows where
Thiessen polygons of mobile base stations are transformed into nodes (V) while interactions
among stations are represented by weighted edges (E). Let Wijt represent the total call flow
between cell i and cell j during time interval t (hourly, daily, weekly). Similarly, let G_Move-
Flow (V, E) be a weighted undirected network graph of human movements and let Mijt repre-
sent the total movement flow between cell i and cell j during time interval t, including
movement flows both from i to j and from j to i. Note that we can also get the weighted
directed network graph of call activity interactions by adding the direction of flow. But in this
research we only focus on the strength of spatial interaction between two zones without direc-
tion. Figure 2 shows the two networks of interaction embedded in geographical space. It is dif-
ficult to clearly interpret the patterns directly from these networks since edges intersect and
overlap. Thus grouping or graph-partitioning tools need to be employed to discover spatial-
interaction communities.

2.3 Distance Decay of Spatial Interactions

Inspired by previous literature about human mobility patterns following scaling laws
(Brockmann et al. 2006), we examine the distance distributions of network of call interactions
G_TeleFlow (V, E) and network of movements G_MobileFlow (V, E) to determine if both dis-
tributions showed the characteristics of distance decay. We find that nearly 90% of all interac-

Table 2 Volumes of records on different days of a week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

11,190,182 10,895,508 10,922,212 10,706,807 11,019,933 9,829,428 9,443,295
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tions occur across distances less than 20 km (Figure 3a). We fit a power law which has the
scale-free characteristics that can be better interpreted for different spatially embedded interac-
tion networks with varying sizes:

P d∝ −β (1)

where P denotes the probability of having an occurrence of spatial interaction at the distance d
between two localities, and b is the decay parameter (Taylor 1971). The results show that the

Figure 1 Spatial distribution of mobile base stations and an illustration of the two types of interac-
tion flows extracted from mobile phone CDR

Figure 2 (a) Visualizing the graph of phone-call interaction; and (b) Visualizing the movements of
phone users in physical space. Each dot represents a node of a Thiessen polygon while a link
implies an interaction between two polygons representing the coverage of mobile base stations.
Note that small volumes of flow are not visualized
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spatial interaction of call flows has a smaller decay parameter (b = 1.45) than movement flow
(b = 1.60), which means the friction effect of distance is relatively weaker in cyberspace than in
physical space. But the goodness of fit clearly deteriorates beyond distances of approximately
15 km (Figure 3). We speculate that this may result from an edge effect which constrains long-
distance interactions beyond the urban boundary of Harbin.

Figure 3 Statistical analysis of spatial interactions showing distance-decay effects: (a) Cumulative
probability function (CDF) of distance distributions in two interaction networks: 89.47% of phone-
call interactions and 90.98% of movements occur across distances less than 20 km; (b) Network of
calls G_TeleFlow: the power-law fit features a decay parameter b = 1.45 on log-log plot; and (c)
Network of movements G_MoveFlow: the power-law fit features a decay parameter b = 1.60 on a log-
log plot. Note that raw data were aggregated and binned in 1 km intervals for linear least squares
fitting, and we only fitted the interactions occurring across distances less than 30 km
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This result merits comparison to previous research which found different friction effects of
distance. For example, González et al. (2008) fit an exponent of 1.75 for human mobility, Liu
et al. (2012a) fit an exponent of 1.2 for taxi trips, Xiao et al. (2013) fit an exponent of 0.4 for
air-passenger flow, and Liu et al. (2014) fit an exponent of 0.2 for the frequency of
co-occurrences on web pages.

2.4 Population Distribution Data

In order to better understand the characteristics of intra-urban human mobility and spatial
interactions, we examine the population distribution in the study area extracted from the
LandScan™ 2008 global population dataset developed by Oak Ridge National Laboratory.
Note that the data quality depends on the estimation uncertainty of LandScan in the study
area, because so far it is the finest spatial resolution (30 arc-seconds or approximately 1 km)
data available and represents an estimation of average population over 24 hours. It uses a
novel algorithm integrating GIS and remote sensing imagery techniques with socio-economic
census data including population, places of work, journey to work, and other mobility factors
(Dobson et al. 2000). The population distribution data of the study area was extracted into
Esri Grid format (Figure 4). We converted the population data into the same unit of mobile
cells using the procedure mentioned by Kang et al. (2012a).

3 Methods

3.1 Community Detection Algorithm

In the study of complex networks, a community is defined as a subset (group) of a network;
the nodes of the network can be grouped into sets of nodes so that each community is densely
connected internally. The identification of such densely connected groups is called community
detection. Finding communities within an arbitrary network can be a difficult task. The

Figure 4 Spatial distribution of LandScan population density in the study area
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number of communities, if any, within the network is typically unknown and the communities
are often of unequal size or density. Despite these difficulties, however, several methods for
community finding have been developed and employed with varying levels of success. Popular
community detection methods can be classified into two groups: graph partitioning and hierar-
chical clustering. Graph partitioning divides a network graph into a set of non-overlapping
groups, while hierarchical clustering seeks to build a hierarchy of clusters of nodes, such that
for each cluster there are more internal than external connections. The hierarchical clustering
method includes two types: hierarchical agglomerative and hierarchical divisive algorithms,
according to whether a provisional cluster’s edges are added or removed.

Newman and Girvan (2004) propose a modularity metric to evaluate the quality of a par-
ticular division of a network into communities. Modularity compares a proposed division to a
null model in which connections between nodes are random. It is defined as the sum of differ-
ences between the fraction of edges falling within communities and the expected value of the
same quantity under the random null model.

Q realflow estflowijk ijk

ij Ck

= −( )
∈
∑∑ (2)

where k is the number of partition communities, realflowijk gives the actual fraction of interac-
tions between nodes i and j within the same community C, and estflowijk represents the
expected values under the random null model or other theoretical models. If the fraction of
edges within communities is no better than the null model, the modularity Q=0, while Q=1
indicates the most robust community structure. In practice, modularity values of different real
world networks with varying sizes fall into the range 0.3 to 0.7 (Newman 2006).

One of the most widely used techniques for community detection is the Newman modu-
larity maximization method (Newman 2004). In practice, in view of the time complexity of
this algorithm and its feasibility in real-world applications, several alternative algorithms have
been developed to support large-scale real networks and to achieve good modularity of com-
munity detection. One such algorithm is a fast greedy hierarchical agglomeration (Clauset
et al. 2004) whose time complexity on a graph with n vertices and m edges is O(mdlogn),
where d is the depth of the dendrogram describing the community structure. As introduced in
Section 2.2, G_TeleFlow (V, E) is the weighted undirected graph of phone-call interaction and
G_MoveFlow (V, E) is the weighted undirected graph of human movements. We apply this fast
hierarchical agglomerative clustering algorithm based on the modularity metric to these two
graphs to find whether natural boundaries exist within mobile-cell regions (spatial communi-
ties). Note that the algorithm does not consider geographic locations in building clusters. For
more detailed steps and the data structures used for computation, please refer to Clauset et al.
(2004).

3.2 Incorporating Gravity Model

As noted earlier, spatial networks are affected by spatial constraints. In order to detect hidden
socio-economic, structural or cultural connections, therefore, it would be desirable to first take
out the effects of spatial distance, by comparing observed interactions to a null model that
includes expected spatial effects. Gravity models are an obvious and natural choice for such a
null model, since they represent the patterns of spatial interaction that urban structures usually
follow (Expert et al. 2011, Fotheringham 1981, 2011).

Several previous studies have employed the method of spatial partitioning to detect com-
munity structure and visualize such cluster-to-cluster spatial interaction graphs (Guo 2009,
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Guo and Liu 2010). Here we propose a community detection algorithm based on a modified
modularity function that incorporates a gravity model. Going back to Equation (2), we calcu-
late estflowijk values as estimations of interaction flow in a community Ck according to the
classic gravity model (Liu et al. 2013, Lukermann and Porter 1960, Tobler 1976):

estflow
PP
d

i j Cij
i j

ij
k= ∈( )β , (3)

where Pi represents the population in the cell i and comes from the same community with cell
j, and can be calculated based on LandScan population; dij is the spatial distance between the
cells; and the distance-decay parameter b can be obtained by fitting a gravity model
(Fotheringham 1981, Kang et al. 2013, O’Kelly et al. 1995).

Note that the absolute value of difference between the actual flow and estimated flow is
tiny for small-area cells in urban core regions, but the change rate of difference is higher than
that for large-area cells. We consider the alternative fraction format of gravity-modularity for
detecting communities:

Q
realflow
estflow

g
ijk

ijkij Ck

=
∈
∑∑ (4)

A bottom-up fast greedy approach is adopted and the algorithm is searching for a par-
tition that maximizes Qg as follows: Step 1 – Each cell starts in its own independent cluster
of community and the value of modularity among all pairs of cells for all communities can
be calculated; Step 2 – Find a pair of cells which have the maximum value of realflowijk

/estflowijk and merge them into a community; and Step 3 – Recalculate the population and
estimated flow for the new merged community of cells and then repeat Step1 to calculate Qg

until all cells come into one big community so multilevel-community structures can be
found. By definition, Qg favors spatial communities made of cells which are more connected
than expected for that distance. Compared to the random null model, Qg is expected to
uncover communities driven by non-spatial factors. We conduct various controlled experi-
ments based on Q and Qg to discover spatial structures of interaction communities over
time.

4 Experiment Results

4.1 Discovering Spatial Interaction Communities of Call Flow

At the beginning, we aggregate the total volume of phone-call interaction for each pair of cells
on the network G_TeleFlow over different hours of a day and then apply the algorithm of
maximizing modularity Q to partition these graphs of a week-long dataset. Table 3 shows the
statistical results of the community detection and the relatively stable partitions on both week-
days and weekends, considering the number of communities, size and modularity values. A
peak of call interaction among cells happened on Thursday (56,070 edges). From the sequence
of maps of spatial community structures of G_TeleFlow in Figure 5 we can see the spatially
coherent communities clearly in a whole-week cycle. Most cells of outer suburbs have been
aggregated into the same community in both weekdays and weekends (filled color with
yellow, green, blue and violet); whereas some urban core cells have been merged into different
communities on varying days. Keep in mind that such natural-boundary characteristics of
spatially coherent regions can be found even without taking into account the geographical
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adjacency in the algorithm. In other words, it demonstrates that the physical space has dis-
tance decay effect on call activities in cyberspace. Previous studies also show that natural
boundaries can be shaped in multiple spatial scales because of physical barriers or social
divides (Ratti et al. 2010, Walsh and Pozdnoukhov 2011). What inspired us most are how
these divisions shape and what geographical context is behind them. More detailed explana-
tions are provided below.

The emergence of these isolated enclave polygons reflect strong call interactions between
cells that come from the same community. In order to further understand the geographical
context of cells, we geo-reference these polygons of spatial communities in Google Earth,
and visually interpret some examples of interest based on some labels, landmarks and other
semantic descriptions about these locations. Figure 6 shows more detailed information about
four enclave regions of spatial communities. Firstly, cell A locates in the overpass intersec-
tion of the ring and airport expressways which is near a large residential suburb area of this
city, and a high volume of call interaction make it merged to the northern spatial commu-
nity (yellow) of official cells. Secondly, cell B has been merged into the same distant commu-
nity on Monday, Thursday and Friday although there is a physical division of a river
flowing between them, whereas it aggregates into a nearby spatial adjacent community on
weekends. Cell B corresponds to the governmental buildings which has strong connections
with the eastern cells (green) of the Central Business District (CBD) on weekdays. Official or
business call-contacts strengthen two spatially separated cells, and thus partition them into
the same community. However, the call flow between them becomes weak on weekends, so
that cell B becomes isolated. In addition, we have checked the call direction on raw datasets
and find that most of the cells in the CBD have larger numbers of outflow than inflow calls
from the governmental cluster. Thirdly, cell C has a strong link to the southern cells (red)
during the week and they are assigned to the same community. With visual exploratory
analysis and looking up these place labels on websites, we find that it locates near the
railway station which covers a wood processing plant, food brewery wholesale market and a
residential village. There may be business/industry communications that make these cells
aggregated into the same community. Fourthly, cell-group D has been merged into the same
community (orange) with the spatially separated western region. D covers a famous local
farm and implies a business connection with the city community. In order to identify
whether physical movements also exist between these spatially separated cells, we will refer
to the partition results of the network of movements.

Table 3 Community detection results of phone-call interaction (G_TeleFlow)

Day Nodes Edges
Community
Number

Size
Min

Size
Max

Size
Avg Modularity

Monday 609 41,960 10 27 120 61 0.528
Tuesday 608 40,902 10 26 129 61 0.533
Wednesday 609 40,649 10 29 121 61 0.538
Thursday 609 56,070 8 27 134 76 0.405
Friday 608 54,091 8 27 132 76 0.422
Saturday 605 48,673 8 28 134 75 0.438
Sunday 607 46,506 8 30 131 75 0.446
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Figure 5 Community structures of phone-call networks throughout a week. Different colors repre-
sent different community groups on each day, and the gray cells (Null) show that they are not
assigned to any community

Discovering Spatial Interaction Communities from Mobile Phone Data 473

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, 17(3)



Figure 6 Examples of the differentiated geographical context of isolated regions in spatial commu-
nities which have strong call interactions with cells in the same community. Note that the cell-
polygons are distorted in Google Earth because of different map projections: (a) geographic
locations of these cells; (b) cell A; (c) cell B; (d) cell C; and (e) cell-group D
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4.2 Discovering Spatial Interaction Communities of Movement Flow

Similarly, we partition the network of phone-users’ movements G_MoveFlow. The results
show similar community structures on weekdays considering the number of communities, size
and modularity values (Table 4). However, the number of movement flows on Sunday
increases greatly when residents have higher probabilities of travel. Figure 7 presents the struc-
tures of spatial interaction communities based on movements over the whole week. We find
that spatial-adjacent cells have higher probabilities to be merged into the same community.
Nevertheless, these isolated communities may uncover differentiated geographical contexts
which affect patterns of human movements.

In general, the partition structures of movement interaction are similar to that of call
interaction. We attempt to examine the statistical correlation coefficients between them
(Table 5). There are high correlations existing between movements in physical space and their
phone call activities in cyberspace (maximum R2 = 0.865). However, a high correlation does
not mean a causal relationship between them (Yuan et al. 2012). We need further exploratory
analysis of individual interactions to find potential causal relations, for example, Calabrese
et al. (2011) have found that close to 70% of mobile users who call each other frequently

Figure 6 Continued
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shared the same location at least once during the period examined and made phone calls
before the face-to-face meetings.

The following part will mainly compare those cells (labeled in Figure 6) mentioned in the
previous discussion on the network of call interaction. Firstly, cell A is merged into the same
spatially separated community both on the network of call interaction (G_TeleFlow) and on
the network of movements (G_MoveFlow). It locates near the airport expressway and its com-
munity is shaped by strong phone call connections and also movements. Secondly, cell B with
the governmental office buildings has strong call connections with the CBD but lacks physical
movement flow. Thus, it has not been merged into the same community on the G_MoveFlow.
Thirdly, cell C, associated with southern cells, is merged into the same community on both net-
works; this may result from the spatial allocations of markets and stores (Church 2002).
Finally, cell-group D has not been merged into the same community again on G_MoveFlow.
The accessibility of transportation or land-use types may explain such division but this needs
further detailed data analysis (Liu and Zhu 2004, Miller and Wu 2000).

4.3 Community Detection Results Based on Gravity-modularity

According to the gravity-model, the intensity of interaction between two cells depends on two
factors: (1) the attraction between them, usually proportional to their masses; and (2) the dis-
tance effect. The detection of communities only based on the strength of call interaction
or movements (Section 4.1 and 4.2) reflects the combined effects of the two factors, and there-
fore the partition results appear as spatially coherent regions. By introducing the gravity-model
for estimating flow on the network of G_TeleFlow, we can take out the distance effect in
partitioning the network. Figure 8 shows a controlled community-detection experiment
based on the gravity-modularity function (Equation 4), illustrating that the more aggregated
communities found in the urban core region are not spatially coherent compared with the
results in Section 4.1. This finding offers insight into the reaction of non-space factors, but we
need more detailed social and geographical backgrounds to explain the result at length.

5 Conclusions

Mobile phone datasets serve as a novel and high spatio-temporal resolution source for under-
standing the dynamic spatial interaction processes in urban space. By partitioning both the

Table 4 Community detection results of movement flow (G_MoveFlow)

Day Nodes Edges
Community
Number

Size
Min

Size
Max

Size
Avg Modularity

Monday 610 66,915 8 27 143 76 0.538
Tuesday 610 66,219 8 29 143 76 0.538
Wednesday 610 66,258 10 20 144 61 0.539
Thursday 610 66,276 9 27 143 68 0.534
Friday 610 66,980 9 9 143 68 0.536
Saturday 608 65,530 9 22 115 68 0.537
Sunday 610 93,272 8 20 118 76 0.413
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Figure 7 Community structures of movement-flow networks deriving from mobile phone users
throughout a week

Discovering Spatial Interaction Communities from Mobile Phone Data 477

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, 17(3)



network of call interaction and the network of movements, we verify the distance decay effect
on the detection of geographically embedded communities. The results indicate that people
tend to communicate within a spatial-proximity community. This yields insight into how the
structure of social interactions might be interpreted in differentiated spaces and places. Our
approach presents a combined qualitative-quantitative framework to identify clusters and
interaction patterns in spatially embedded networks, and explains how geographical context
influences such patterns as revealed by distinct land use features of mobile cells, as well as tem-
poral characteristics of interactions (e.g. office cells-central business district). The findings of
this empirical study can be utilized by researchers and urban managers to explore the dynamic
spatial interaction patterns between different regions of the city over time and may help to
guide transportation planning and other potential applications, e.g. infrastructure construction
projects.

Furthermore, we would like to regard this research as a beginning of detecting the spatial
interaction communities based on mobile phone datasets. Further research is required to
understand the causal relations and semantics of these communities if more detailed land-use
or socio-economic data are available. For example, high resolution land-use types could help
towards an understanding of the overall geography of these spatial communities; detailed
travel-to-work survey and social background information of phone users may better explain
human behaviors with ICT in urban areas. In addition, we would like to conduct experiments
based on directed weighted-networks with finer temporal resolution (e.g. hourly) for future
work. Last but not least, we still need to evaluate the findings in various regions and different
spatio-temporal scales.

Table 5 Correlation coefficients between call interaction and movement flow in all pairs of cells

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

R2 0.857 0.852 0.852 0.848 0.852 0.857 0.865

Figure 8 One example of community detection based on gravity-modularity

478 S Gao, Y Liu, Y Wang and X Ma

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, 17(3)



References

Adrienko N and Adrienko G 2011 Spatial generalisation and aggregation of massive movement data. IEEE
Transactions on Visualization and Computer Graphics 17: 205–19

Batty M and Miller H J 2000 Representing and visualizing physical, virtual and hybrid information spaces. In
Janelle D and Hodge D (eds) Information, Places, and Cyberspace: Issues in Accessibility. Berlin, Springer-
Verlag: 133–46

Barthélemy M 2011 Spatial networks. Physics Reports 499: 1–101
Brockmann D, Hufnagel L, and Geisel T 2006 The scaling laws of human travel. Nature 439: 462–65
Calabrese F, Smoreda Z, Blondel V D, and Ratti C 2011 Interplay between telecommunications and face-to-face

interactions: A study using mobile phone data. PLoS One 6: e20814
Church R L 2002 Geographical information systems and location science. Computers and Operations Research

29: 541–62
Clarke K 1996 On epidemiology and geographic information systems: A review and discussion of future direc-

tions. Emerging Infectious Diseases 2: 85–92
Clauset A, Newman M, and Moore C 2004 Finding community structure in very large networks. Physical

Review E 70: 1–6
Dobson J, Bright E, and Coleman P 2000 LandScan: A global population database for estimating populations at

risk. Photogrammetric Engineering and Remote Sensing 66: 849–57
Eagle N, Pentland A S, and Lazer D 2009 Inferring friendship network structure by using mobile phone data.

Proceedings of the National Academy of Sciences, USA 106: 15274–78
Expert P, Evans T S, Blondel V D, and Lambiotte R 2011 Uncovering space-independent communities in spatial

networks. Proceedings of the National Academy of Sciences, USA 108: 7663–68
Fischer M, Essletzbichler J, Gassler H, and Trichtl G 1993 Telephone communication patterns in Austria: A

comparison of the IPFP-based graph-theoretic and the intramax approaches. Geographical Analysis 25:
224–33

Foss S and Couclelis H 2009 Throwing space back in: A tale of Indian fishermen, ICT and travel behavior.
Journal of Transport Geography 17: 134–40

Fotheringham A S 1981 Spatial structure and distance-decay parameters. Annals of the Association of American
Geographers 71: 425–36

Fotheringham A S 2011 A new set of spatial-interaction models: The theory of competing destinations. Environ-
ment and Planning A 15: 15–36

Gao S, Wang Y, Gao Y, and Liu Y 2013 Understanding urban traffic-flow characteristics: A rethinking of
betweenness centrality. Environment and Planning B 40: 135–53

Giuliano G and Small K A 1993 Is the journey to work explained by urban structure? Urban Studies 30: 1485–
1500

González M C, Hidalgo C A, and Barabasi A L 2008 Understanding individual human mobility patterns.
Nature 453: 779–82

Goodchild M F and Janelle D G 1984 The city around the clock: Space-time patterns of urban ecological struc-
ture. Environment and Planning A 16: 807–20

Goodchild M F, Anselin L, Appelbaum R P, and Harthorn B H 2000 Toward spatially integrated social science.
International Regional Science Review 23: 139–59

Guo D 2007 Visual analytics of spatial interaction patterns for pandemic decision support. International Journal
of Geographical Information Science 21: 859–77

Guo D 2009 Flow mapping and multivariate visualization of large spatial interaction data. IEEE Transactions
on Visualization and Computer Graphics 15: 1041–48

Guo D and Liu S 2010 A graph-based approach to vehicle trajectory analysis. Journal of Location Based Serv-
ices 4: 183–99

Guo D and Wang H 2011 Automatic region building for spatial analysis. Transactions in GIS 15: 29–45
Guo D, Liao K, and Jin H 2012 Partitioning geographically embedded complex networks. In Proceedings of the

Seventh International conference on Geographic Information Science, Columbus, Ohio: 1–4
Jang W and Yao X 2011 Interpolating spatial interaction data. Transactions in GIS 15: 541–55
Johnston R, Gregory D, and Smith D 1981 The Dictionary of Human Geography. Oxford, Blackwell
Kang C, Gao S, Lin X, Xiao Y, Yuan Y, Liu Y, and Ma X 2010 Analyzing and geo-visualizing individual human

mobility patterns using mobile call records. In Proceedings of the Eighteenth International Conference on
Geoinformatics, Beijing, China: 1–7

Kang C, Liu Y, Ma X, and Wu L 2012a Towards estimating urban population distributions from mobile call
data. Journal of Urban Technology 19: 3–21

Discovering Spatial Interaction Communities from Mobile Phone Data 479

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, 17(3)



Kang C, Ma X, Tong D, and Liu Y 2012b Intra-urban human mobility patterns: An urban morphology perspec-
tive. Physica A 391: 1702–17

Kang C, Zhang Y, Ma X, and Liu Y 2013 Inferring properties and revealing geographical impacts of intercity
mobile communication network of China using a subnet data set. International Journal of Geographical
Information Science 27: 431–48

Kwan M P 2007 Mobile communications, social networks, and urban travel: Hypertext as a new metaphor for
conceptualizing spatial interaction. Professional Geographer 59: 434–46

Leskovec J and Lang K 2008 Statistical properties of community structure in large social and information net-
works. In Proceedings of the Seventeenth International Conference on the World Wide Web, Beijing,
China: 695–704

Liu S and Zhu X 2004 An integrated GIS approach to accessibility analysis. Transactions in GIS 8: 45–62
Liu Y, Kang C, Gao S, Xiao Y, and Tian Y 2012a Understanding intra-urban trip patterns from taxi trajectory

data. Journal of Geographical Systems 14: 463–83
Liu Y, Wang F, Xiao Y, and Gao S 2012b Urban land uses and traffic “source-sink areas”: Evidence from GPS-

enabled taxi data in Shanghai. Landscape and Urban Planning 106: 73–87
Liu Y, Wang F, Kang C, Gao Y, and Lu Y 2014 Analyzing relatedness by toponym co-occurrences on web

pages. Transactions in GIS 18: in press
Lukermann F and Porter P 1960 Gravity and potential models in economic geography. Annals of the Associa-

tion of American Geographers 50: 493–504
Miller H and Wu Y 2000 GIS software for measuring space-time accessibility in transportation planning and

analysis. Geoinformatica 4: 141–59
Mokhtarian P and Meenakshisundaram R 1999 Beyond tele-substitution: Disaggregate longitudinal structural

equations modeling of communication impacts. Transportation Research Part C: Emerging Technologies 7:
33–52

Newman M E J 2004 Fast algorithm for detecting community structure in networks. Physical Review E 69:
066133

Newman M E J and Girvan M 2004 Finding and evaluating community structure in networks. Physical Review
E 69: 026113

Newman M E J 2006 Modularity and community structure in networks. Proceedings of the National Academy
of Sciences, USA 103: 8577–82

O’Kelly M E, Song W, and Shen G 1995 New estimates of gravitational attraction by linear programming. Geo-
graphical Analysis 27: 271–85

Onnela J and Arbesman S 2011 Geographic constraints on social network groups. PLoS One 6: e16939
Radil S M, Flint C, and Tita G E 2012 Using social network analysis to investigate geographies of gang rivalry,

territoriality, and violence in Los Angeles. Annals of the Association of American Geographers 100: 307–
426

Rae A 2009 From spatial interaction data to spatial interaction information. Computers, Environment and
Urban Systems 33: 161–78

Ratti C, Williams S, and Frenchman D 2006 Mobile landscapes: Using location data from cell phones for urban
analysis. Environment and Planning B 33: 727–49

Ratti C, Sobolevsky S, Calabrese F, Andris C, Reades J, Martino M, Claxton R, and Strogatz S H 2010 Redraw-
ing the map of Great Britain from a network of human interactions. PLoS One 5: e14248

Ren F and Kwan M P 2007 Geovisualization of human hybrid activity-travel patterns. Transactions in GIS 11:
721–44

Roy J R and Thill J C 2003 Spatial interaction modelling. Papers in Regional Science 83: 339–61
Shaw S and Yu H 2009 A GIS-based time-geographic approach of studying individual activities and interactions

in a hybrid physical–virtual space. Journal of Transport Geography 17: 141–49
Song C, Qu Z, Blumm N, and Barabási A L 2010 Limits of predictability in human mobility. Science 327:

1018–21
Taylor P J 1971 Distance transformation and distance decay functions. Geographical Analysis 3: 221–38
Thiemann C, Theis F, Grady D, Brune R, and Brockmann D 2010 The structure of borders in a small world.

PLoS One 5: e15422
Torrens P M 2008 Wi-Fi geographies. Annals of the Association of American Geographers 98: 59–84
Tobler W 1970 A computer movie simulating urban growth in the Detroit region. Economic Geography 46:

234–40
Tobler W 1976 Spatial interaction patterns. Journal of Environmental Systems 6: 271–301
Tobler W 1988 The quadratic transportation problem as a model of spatial interaction patterns. In Coffey W J

(ed) Geographical Systems and Systems of Geography: Essays in Honor of William Warntz. London,
Methuen: 75–88

480 S Gao, Y Liu, Y Wang and X Ma

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, 17(3)



Townsend A M 2000 Life in the real-time city: Mobile telephones and urban metabolism. Journal of Urban
Technology 7: 85–104

Walsh F and Pozdnoukhov A 2011 Spatial structure and dynamics of urban communities. In Proceedings of the
2011 Workshop on Pervasive Urban Applications (PURBA), San Francisco, California: 1–8

Xiao Y, Wang F, Liu Y, and Wang J 2013 Reconstructing gravitational attraction of major cities in China from
air passenger flow data 2001–2008: A particle swarm optimization approach. Professional Geographer 65:
265–82

Ye M, Janowicz K, and Mülligann C 2011 What you are is when you are: The temporal dimension of feature
types in location-based social networks. In Proceedings of the Nineteenth ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, Chicago, Illinois: 102–11

Young D 2002 A new space-time computer simulation method for human migration. American Anthropologist
104: 138–58

Yu H and Shaw S 2008 Exploring potential human activities in physical and virtual spaces: A spatio-temporal
GIS approach. International Journal of Geographical Information Science 22: 409–30

Yuan Y, Raubal M, and Liu Y 2012 Correlating mobile phone usage and travel behavior: A case study of
Harbin, China. Computers, Environment and Urban Systems 36: 118–30

Discovering Spatial Interaction Communities from Mobile Phone Data 481

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, 17(3)


