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Invertibility of current density from near-field electromagnetic data
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~Received 16 June 2003; accepted 29 July 2003!

The problem of determining a current density confined to a volume from measurements of the
magnetic and electric fields it produces exterior to that volume is known to have nonunique
solutions. Despite the nonuniqueness of the inversion we show that one may nevertheless uniquely
determine certain moments of the vector spherical harmonic expansion of the current. It is
demonstrated that the determination of these moments allows for the unique inversion of a current
density confined to a spherical shell. Although unique the inversion may be ill conditioned and
require a regularization of the inversion as demonstrated in an example numerical inversion.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1611262#
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I. INTRODUCTION

The electromagnetic inverse problem consists of the
termination or estimation of the current source underly
the electric and magnetic fields measured outside the sou
However, as was shown by Helmholtz in 1853,1 a current
distribution inside a conductor cannot in general be de
mined uniquely from knowledge of the electromagnetic fie
exterior to the conductor. There exist current distributio
which give rise to no magnetic field outside, no electric fie
outside or neither.2,3 However, if certain constraints ar
known to apply to a current distribution, one can perform
inversion uniquely~see-planar case!.4

In neuroscience applications one is usually intereste
obtaining information about the primary current sourceJp

due to direct neuronal activity and defined in the followi
decomposition of the total current:J5Jp1sE. One is then
faced with the problem of inverting for bothJp andE simul-
taneously given external field data. This task is further co
plicated by the difficulty of performing detailed measur
ments of tissue conductivitys~x!.5–7 In the case of an infinite
homogeneous conductivity the ohmic currents,s~x!E, make
no contributions to the external magnetic field, which c
then be expressed in terms of the primary current alone
course, the essential non-uniqueness of the inver
remains8 requiring additional constraints or assumptions
a unique inversion.8,9

The purpose of this article is twofold:~1! to give a com-
plete characterization of those quantities related to the
rent density which can be determined by a linear invers
and ~2! to present a numerical algorithm for the unique
version on a spherical shell.

We state the idealized near-field electromagnetic inve
problem as follows: Given the magnetic fieldB(r ,t) and the
electric fieldE(r ,t), known everywhere on a spherical she

a!Author to whom correspondence should be addressed; electronic
sheltraw@unm.edu
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and due to the current sourceJ(r ,t) contained in the interior
of the shell, invert the field data to obtain the current dens
or some of its properties. Initially we do not invoke the i
finite homogeneous conductor assumption and we seek
stead inversion for the more general problem of total~pri-
mary plus ohmic! current. We take this approach since the
is considerable dispute over the applicability of the infin
homogeneous conductor and spherically symmetric cond
tor assumptions to most situations of practical intere5

However we do contrast our results to the infinite homo
neous conductor model since it is a useful idealization.5–7

The article is organized as follows: In Sec. II we give
consistent presentation of the near-field approximation
pertains to an inversion for the total current density. Sect
III investigates the uniquely determined properties of a c
rent density for the inverse magnetometry problem. Sec
IV shows in what manner electrical potential data may add
the inversion problem. Section V then makes connect
with the infinite homogeneous conductor case. Section
applies the results of the preceding sections to the uni
inversion of a current on a spherical shell. Although uniq
the inversion is still not well-posed in the Hadamard sen
since, as will be shown, the inversion can be ill-condition
leading to ‘‘high frequency’’ noise amplification. Regulariza
tion may be needed to make the inversion well-behaved
Sec. VII we formulate a simulated experiment to illustra
the competing effects of increased magnetic field sampl
noise amplification, and regularization. Conclusions app
in Sec. VIII.

II. A CONSISTENT NEAR-FIELD APPROXIMATION

Although Plonsey3 has treated with success the qua
static problem for primary currents by neglecting certa
time derivatives in the Maxwell equations, such an appro
mation leads to inconsistency if applied to the total curr
situation. Namely the neglect of the displacement curr
(1/c)(]ē/]t) implies that“"j̄50. But since the charge distri
il:
7 © 2003 American Institute of Physics
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bution q̄ is initially zero the equation“"j̄50 implies, through
the equation of continuity, that it will remain zero as will th
electric potential. Clearly an approach focused on the t
current must account for the near-field electric potent
which are measured routinely in the low-frequency elect
encephalography experiment.

In this section we derive a consistent near field appro
mation to form the basis of the inverse problem for the to
current. The microscopic Maxwell equations are written a

“"b~x,t !50 “"e~x,t !54pq~x,t !,

“Ãb~x,t !2
1

c

]

]t
e~x,t !5

4p

c
j ~x,t !, ~1!

“Ãe~x,t !1
1

c

]

]t
b~x,t !50.

It will be assumed that there exists no initial charge distrib
tion despite the fact that charge separation does exist acr
resting polarized neuron. To do so assumes a spatial sca
interest which we take to be a volumeV inclusive of many
neurons~possibly a cubic millimeter! over which the average
charge is zero. Such an average denoted byf̄ (x,t) for a mi-
croscopic quantityf (x,t) is defined by f̄ (x,t)51/V*Vf (x
1x8,t)d3x8. Since this averaging process is linear we m
then write the macroscopic equations at this scale of inte
to simply be

“"b̄~x,v!50 “"ē~x,v!54pq̄~x,v!,

“Ãb̄~x,v!1 iv/cē~x,v!5
4p

c
j̄ ~x,v!, ~2!

“Ãē~x,v!2
iv

c
b̄~x,v!50,

where we have also transformed into frequency space to
efit from the change of time derivatives to algebraic qua
ties. In the remainder of this paper we will drop the expli
frequency dependence of vector and scalar fields.

In terms of the vector potentialā~x! and scalar potentia
f̄(x) the Maxwell equations may be written in the Loren
gauge as

¹2ā~x!1
v2

c2
ā~x!52

4p

c
j̄ ~x!, ~3!

¹2f̄~x!1
v2

c2
f̄~x!5

i4p

v
“"j̄ ~x!, ~4!

where the potentials are defined by

b̄~x!5“Ãā~x!,
~5!

iv

c
ā~x!2ē~x!5¹f̄~x!

and the Lorentz gauge is given by

“"ā~x!5
iv

c
f̄~x!. ~6!
Downloaded 29 Nov 2004 to 129.24.209.236. Redistribution subject to AI
al
s
-

i-
l

-
s a
of

y
st

n-
i-
t

The frequencies involved in neuronal activity~typically
'100 Hz!8 are small compared to the reciprocal of the tim
needed for the signal to propagate from the source to
sensor. This leads to a near-field expansion with respec
the small dimensionless parametere5RVc /c, the ratio of a
characteristic distanceR between the source positions an
the positions of the field measurements~approximately 25
cm! to the distance that would be propagated by the elec
magnetic field in vacuum during a characteristic period. H
Vc is the characteristic frequency of the current density.
accomplish this Eqs.~3!–~4! are written in terms of the di-
mensionless independent variablesr5x/R, w5v/Vc , and
the dimensionless dependent variablesJ5 j̄ /Jc , A
5cā/Jc4pR2, F5cf̄/Jc4pR2, E5cē/Jc4pR, and B
5cb̄/Jc4pR as

¹2A~r !1e2w2A~r !52J~r !, ~7!

e¹2F~r !1e3w2F~r !5
i

w
“"J~r !, ~8!

where Jc is a characteristic current magnitude. The defi
tions of the potentials Eq.~5! and Lorentz gauge Eq.~6!
become

B~r !5“ÃA~r ! i ewA~r !2E~r !5¹F~r !, ~9!

“"A~r !5 i ewF~r !. ~10!

We obtain a near-field approximation by expanding the m
netic, electric, and current fields in terms of the smalln
parametere as follows:

A~r ;e!5(
n

enAn~r ! F~r ;e!5(
n

enFn~r !, ~11!

J~r ;e!5(
n

enJn~r !. ~12!

Substitution of Eq.~12! into Eqs.~7!–~10! yields, upon col-
lecting the zeroth order contributions, the following set
equations:

¹2A052J0 E052¹F0 , ~13!

“"J050 B05“ÃA0 , ~14!

“"A050. ~15!

Similarly, the first order contributions yield the additional s
of equations

¹2A152J1 ¹2F05
i

w
“"J1 , ~16!

B15“ÃA1 iwA02E15¹F1 , ~17!

¹•A15 iwF0 . ~18!

The solutions of the potential equations given in Eq
~13! and ~16! are, respectively,

An~r !5
1

4p E Jn~r 8!

ur2r 8u
d3r 8, ~19!
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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F0~r !52
i

4pw E “8"J1~r 8!

ur2r 8u
d3r 8, ~20!

wheren50, 1. The expansion of the current density in t
smallness parametere shows the dependence of the curre
on the characteristic distanceR. That dependence is implici
in the confinement of the current within a volume of radi
R.

III. MAGNETIC FIELD DATA AND INVERSION

In this section we investigate the determinable quanti
of the inverse magnetometry problem. Since the meas
ments are performed on a spherical shell it is natural to
pand the magnetic field~and vector potential! in terms of
vector spherical harmonics~VSH!. The resulting expression
will allow a precise characterization of the properties of t
current density which the idealized magnetometry exp
ment may determine. External to the current containing
gion we may write Eq.~19! with n50 as10

A0~r !5(
l jm

S E
V

r 8 l

2l 11
J0~r 8!"Y jm*

l ~V8!d3r 8D Y jm
l ~V!

r ~ l 11!
,

~21!

where l 5 j , j 11,j 21 ~with the exception thatl 51 for j
50), andm52 j ,2 j 11,...,j 21,j . We will, as in the above
equation, use the variableV to denote the ordered pair o
angular variables~u,f!. By writing the zeroth order curren
in the VSH expansionJ0(r )5( l jmajm

l (r )Y jm
l (V) Eq. ~21!

becomes

A0~r !5(
l jm

S mjm
ll

2l 11D Y jm
l ~V!

r l 11
, ~22!

where we have defined mjm
lk 5*0

1r kajm
l (r )r 2dr. Now since

“"J0(r )50 it can easily be shown~see Appendix A! that
mjm

j 21,j 2150. Using this property and taking the curl of E
~22! gives the magnetic field on the unit shell surface

B0~V!52 i(
jm

S j

2 j 11D 1/2

mjm
j j Y jm

j 11~V!. ~23!

Since we are interested in determining the momentsmjm
j j

we can simply write Eq.~23! in terms of the radial compo
nent ofB0"er5B0r only to obtain

B0r~V!5 i(
jm

j 1/2~ j 11!1/2

2 j 11
mjm

j j Yjm~V! ~24!

and, transforming back to the time domain, we arrive at
result of this section

mjm
j j ~ t !52 i

2 j 11

j 1/2~ j 11!1/2
B0r

jm~ t !,

~25!
mjm

j 21,j 21~ t !50,

where we have definedB0r
jm5* B0r(V)Yjm* (V)dV. In Eq.

~25! the j 50 term poses no special problem sinceY00
0 (V)

50.
From Eq. ~23! we can conclude that thel 5 j 11,j 21

components of the current are always silent in this low
Downloaded 29 Nov 2004 to 129.24.209.236. Redistribution subject to AI
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order near-field approximation since they do not contrib
to the magnetic field. Furthermore, any current with vani
ing momentsmjm

j j is as well a silent current. From Eq.~25!
we may conclude that the measurement of the magnetic
can only give information about thel 5 j component of the
current density while the“"J050 constraint yields a restric
tion upon thel 5 j 21 component of the current density. N
information about thel 5 j 11 component of the current den
sity is obtained from the field measurement without ad
tional constraints being placed upon the current.

IV. ELECTRIC FIELD DATA AND INVERSION

Electric potential measurements give information ab
the small but, as we will see, not necessarily negligibleJ1 .
The zeroth order solution for the electric potential given
Eq. ~20! can be written as10

F0~r !52
i

w (
jm

E ¹8•J1~r 8!

2 j 11

3
r 8 j

r j 11
Yjm* ~V8!Yjm~V!d3r 8. ~26!

Substituting the VSH expansion,J15( l jma jm
l (r )Y jm

l (V),
into Eq. ~26! and simplifying we obtain

F0~r !5
i

w (
jm

m jm
j 21,j 21Yjm~V!, ~27!

where we have usedn"J150 on the surface of the uni
sphere and we have definedm jm

lk 5*0
1r ka jm

l (r )r 2dr. Defining
F jm5*F0(r )Yjm* (V)dV, where the integral is taken ove
the unit sphere, Eq.~27! can be written as

m jm
j 21,j 2152 iwF jmS 2 j 11

j D 1/2

. ~28!

Also, sinceJ1 obeys Eq.~20! one can write, as forJ0 , that

m jm
j j 52 i

2 j 11

j 1/2~ j 11!1/2
B1r

jm . ~29!

Transforming into the time domain we can now write t
result of this section as

m jm
j j ~ t !52 i

2 j 11

j 1/2~ j 11!1/2
B1r

jm~ t !, ~30!

m jm
j 21,j 21~ t !5S 2 j 11

j D 1/2]F jm

]t
. ~31!

Although electric potential measurements only give
formation about the relatively smalleJ1 contribution to the
current, this information is not necessarily negligible. Such
the case for thel 5 j 21 component of the current density fo
which the zeroth order magnetic field measurements give
direct information. Although knowledge of the small fir
order current@obtained from Eq.~31!# contributes little to the
total current magnitude, it may provide localization inform
tion. In addition it should be noted that theJ1 contribution to
the current is notably different from theJ0 contribution in
that the former leads to a net charge formation~the diver-
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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gence is non zero! and therefore may give information of
special nature albeit of smaller amplitude than theJ0 term.
Note that Eq.~31! provides no significant additional infor
mation about thel 5 j component of the current density sinc
B1r is negligible comparedB0r and cannot be measured in
dependent ofB0r .

V. INFINITE HOMOGENEOUS CONDUCTOR

In this section we make connections with the infin
homogeneous conductor model. If one has knowledge of
conductivity of the medium containing the primary curre
sources one may writeJ5Jp2s¹F, whereJp is the pri-
mary current source and2s¹F is the current given by
Ohm’s law. Note that this expression uses the dimension
conductivity constants54ps̄RJc /c, wheres is the con-
ductivity averaged over a suitable spatial scale. This relat
ship is valid for all orders of the expansion in the smallne
parametere so that

J0~r !5J0p~r !2s¹F0~r !. ~32!

Strictly speaking we should include the contribution of e
fective current densities from magnetization and polarizat
effects. However, these currents make a negligible contr
tion to the total current as shown by Plonsey.3 If the conduc-
tivity s can be considered to be infinite homogeneous
form of the total current density, when combined with Eq
~13! and ~16!, yields the following connection between z
roth and first order contributions to the current density:

¹•J1~r !5
iw

s
¹•J0p~r !. ~33!

Substitution of Eqs.~32! and ~33! into Eq. ~20! then gives

A0~r !5
1

4p E J0p~r 8!

ur2r 8u
, ~34!

F0~r !52
1

4ps E “8"J0p~r 8!

ur2r 8u
d3r 8. ~35!

As noted by others3 the ohmic contribution to the curren
density does not contribute to the magnetic field in this c
of a homogeneous conducting medium. Note that Eqs.~34!
and ~35! both depend on the zeroth order primary curre
only.

A derivation similar to those presented in the preced
sections of this article results in the uniquely determin
quantities

mjm
j j ~ t !52 i

2 j 11

j 1/2~ j 11!1/2
B0r

jm~ t !, ~36!

mjm
j 21,j 21~ t !5sS 2 j 11

j D 1/2

F jm~ t !, ~37!

wheremjm
lk (t)5*0

1r kajm
l (r ,t)r 2dr and theajm

l (r ,w) are the
VSH coefficients of the zeroth order primary currentJ0p .
Therefore, in the case of the homogeneous conductor
electric and magnetic field measurements yield zeroth o
current density information in orthogonal subspaces. No
that, as in the total current case, there is no information
Downloaded 29 Nov 2004 to 129.24.209.236. Redistribution subject to AI
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tained about thel 5 j 11 components of the current densit
Also notice that, unlike the total current case, the determ
able quantitiesmjm

j 21,j 21 depend on the electric potentia
rather than its time derivative.

VI. A UNIQUELY INVERTIBLE CURRENT DENSITY

We now look at a case where the magnetic and elec
field information is enough to determine the current dens
In the following we assume that the current is restricted t
shell of radiusr 0 . Results are given for both the total curre
and the primary current of an infinite homogeneous cond
tor. Although the infinite homogeneous conductor is rar
realized as a suitable approximation to the practical proble
of interest this does serve as an important case with whic
draw distinction with the total current case.

A. Total current case

In this caseJ5J01eJ1 and we may write the coeffi-
cients of the VSH expansion of the current density as

ajm
l ~r !5r 22d~r 2r 0!bjm

l , a jm
l 5r 22d~r 2r 0!b jm

l ,
~38!

wherel 5 j , j 11,j 21 and the coefficientsbjm
j andb jm

j are to
be determined from measurement of the momentsmjm

j and
m jm

j 21,j 21. Multiplying each side of Eq.~38! by the appropri-
ate power ofr and integrating we obtain

mjm
lk ~r !5r 0

kbjm
l , m jm

lk 5r 0
kb jm

l . ~39!

One can view the solution of Eq.~39! as a simple inver-
sion of a diagonal matrix. However, the dependence onr 0

may make these diagonal matrices ill conditoned with c
dition number given byr 0

12 j c, where j c is a cutoff number
for j. As a result noise in the high spatial frequency comp
nents of the current density may be amplified. To obtain
well-conditioned inversion we apply a Tikhonov regulariz
tion ~see Appendix D! to smooth the high frequency noise
For a diagonal matrix the classical Tikhonov regularizati
takes the simple form

bjm
l 5

r 0
k

r 0
2k1l2

mjm
lk ~r !, b jm

l 5
r 0

k

r 0
2k1l2

m jm
lk , ~40!

wherel is the regularization parameter and we have setf `

50 andL5I ~see Appendix D!. A proper choice of the regu
larization parameterl balances spatial smoothing again
noise reduction.

The restriction of the current to the shell surface co
bined with “"J050 implies that J0"r50. This condition
gives the following relationship between thel 5 j 11 and l
5 j 21 components:

ajm
j 115A j

j 11
ajm

j 21, a jm
j 115A j

j 11
a jm

j 21. ~41!

Combining the definition of the known quantitiesmjm
j j ,

mjm
j 21,j 21, and m jm

j 21,j 21 with Eq. ~41! one then obtains the
current density
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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J5d~r 2r 0!(
jm

j c Fmjm
j j

r 0
j 22

r 0
2 j1l2

Y jm
J

1eAj m jm
j 21,j 21

r 0
j 23

r 0
2 j 221l2 S Y jm

j 21

Aj
1

Y jm
j 11

Aj 11
D G ~42!

or in terms of the magnetic and electric field quantities

J5d~r 2r 0!(
jm

j c F2 iB0r
jm 2 j 11

Aj 21 j

r 0
j 22

r 0
2 j1l2

Y jm
j

1eA2 j 11
]F jm

]t

r 0
j 23

r 0
2 j 221l2 S Y jm

j 11

Aj
1

Y jm
j 21

Aj 11
D G .

~43!

B. Infinite homogeneous conductor case

Now we consider the case of an infinite homogene
conductor. In this case we write the coefficients of the VS
expansion of the current density as

ajm
l ~r !5r 22d~r 2r 0!bjm

l , ~44!

where again thebjm
l are coefficients to be determined. If w

assume thatJp"r50 we may write, in a manner similar to th
total current,

J0p5d~r 2r 0!(
jm

F2 iB0r
jm 2 j 11

Aj 21 j

r 0
j 22

r 0
2 j1l2

Y jm
j

1sA2 j 11F jm

r 0
j 23

r 0
2 j 221l2 S Y jm

j 11

Aj
1

Y jm
j 21

Aj 11
D G .

~45!

Note that the conditionJp"r50 is an additional constrain
which is not implied by restriction to the shell as in the to
current case.

C. Validity of inversion

Having found the VSH expansion of the current den
ties of Secs. VI A and VI B from measurements of the ma
netic and electric fields does not guarantee that the se
given by Eq.~43! or ~45! will converge. If we insist that the
currents have finite energy, then it is appropriate to requ
that iJi2,`; for the case in Eq.~43! without electric field
contributions, e.g., this implies

iJi2
25(

jm

@B0r
jm~2 j 11!#2

r 0
2 j 14 j ~ j 11!

,`. ~46!

Clearly, this restricts the magnetic field, and the sma
we desirer 0 to be for the shell on which we perform th
inversion, the more severe the restriction. The above co
tion is of course met whenever the radius of reconstruct
r 0 , is greater than or equal to the radius of a sphere c
pletely enclosing the current,r c . But reconstruction on a
spherical shell of smaller radiusr 0,r c could be also found
for sufficiently fast decayingB0r

jm . On the other hand, fo
Downloaded 29 Nov 2004 to 129.24.209.236. Redistribution subject to AI
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regularized data such as that associated with a trunc
spherical harmonic expansion, a reconstruction is guaran
for arbitrary r 0.0.

VII. A SIMULATED INVERSION ON A SPHERICAL
SHELL

In this section a simulation to test the inversion on
spherical conducting shell is presented. In the next sec
we will use this simulation in a number of examples to te
the inversion method on the shell. We assume the cur
density to be restricted to a shell of known radiusr 0,1. We
also assume that the radial component of the magnetic fi
Br , can be sampled on a grid~to be specified below! of a
larger spherical shell of radiusr 51. We will make use of the
SPHEREPACK-3.0Fortran-77 code11,12 to perform the analysis
of a simulated magnetic field to find the valuesB0r

jm and the
subsequent synthesis of the current density.

A. The simulation

TheJ0 part of the current density given by Eq.~43! may
be reconstructed according to

J52 id~r 2r 0!(
jm

j c

B0r
jm 2 j 11

Aj 21 j

r 0
j 22

r 0
2 j1l2

Y jm
j . ~47!

In the case of the current shell it is somewhat simpler
represent the results of the inversion in terms of a sc
stream function c~u,f! such that J(r )5r 22d(r 2r 0)er

3¹Vc where

c5(
jm

B0r
jm

r 0
j

r 0
2 j1l2

2 j 11

j ~ j 11!
Yjm . ~48!

To create simulated magnetic field measurements
make use of a current density of the form

J05ef

d~r 2r 0!

r 0
2

sinuG~u!,

~49!

G~u!5 (
n50

N0 2n11

2
Pn~cosu0!Pn~cosu!,

where thePn are Legendre functions and the functionG(u)
is a truncated Legendre expansion ofd(cosu2cosu0).

The radial component of the magnetic field due to t
currents of the type given in Eq.~49! is directly calculated as

Br5(
l 51

N0

a l Pl~cosu!, ~50!

a l5
r 0

l 11

4p

l ~ l 11!

2l 11
@Pl 11~cosu0!2Pl 21~cosu0!#, ~51!

where we have takenr 51. The field due to these element
currents can be rotated by the angles (u r ,f r) ~see Appendix
C! and superimposed upon others to give a richer se
simulated fields to test the inversion algorithm and its lim
tations. In the next section of this article we will use the
simulated fields to test the inversion method on the shell

We also add noise to the simulated field to test the s
bility of the inversion and our ability to eliminate instabilit
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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through regularization. We do so by adding noise of a giv
signal-to-noise ratio~SNR! to each field point in the simu
lated measurement. The SNR is given by SNR5Smaxs,
whereSmax is the maximum signal over all field points ands
is the standard deviation of 0 deviates.13

For the purpose of error analysis we combine Eqs.~48!,
~50!, and ~51! to obtain the current stream function direct
as

c5
r 0

4p (
n51

N0

Pn~cosu!@Pn11~cosu0!2Pn21~cosu0!#,

~52!

which will be useful in the next section of this article.
As discussed by Swarztrauber,11,12 the analysis ofB0r

into spherical harmonic componentsB0r
jm requires truncations

with j <N the number of zonal harmonics included. For ea
j there are 2j 11 values form, therefore, the determinatio
of (N11)2 spherical harmonic coefficients is required. O
the other hand, the spherical transform algorithms given
SPHEREPACK-3.0require sampling on a grid that is equal
spaced in both longitudef and latitudeu. With the product
grid containingN points in theu direction and 2N points in
the f direction, this results in 2N2 data points, making the
analysis problem 1. This results in the analysis being p
formed as a least squares problem.11,14 A spectral filtering
where atu5u i only 2N sinui longitudinal points are re-
quired can be employed without effective loss
resolution.14 This reduces the number of required sample v
ues to pN2/2 for the entire sphere although the analy
problem is still 1. To employ the above algorithm, o
method requires the values on the reduced grid and prod
the values on the equispaced grid~used bySPHEREPACK-3.0!
by fast Fourier transform based interpolation.

B. An example

In this section we give an example inversion to test
ability to resolve currents on a spherical shell and explore
amount of regularization needed to control the instability d
cussed in Sec. VI. The example demonstrates the effec
variation in the following parameters: The number of latitu
and longitude sampling points,nlat and nlon ; the SNR, and
the regularization parameterl.

In Figs. 1–6 we show the graphical results of an e
ample inversion for two closely spaced current rings on
spherical shell of radiusr 050.8 which is the reconstruction
surface as well. Figure 1 is a direct plot of the current stre
function as given by Eq.~52!. The plots of Figs. 1–2 can b
compared to this direct plot for a visual check of inversi
accuracy. Tables I and II give a more precise check of
inversion error.

Figures 2 and 3 pertain to a noiseless sampling of
magnetic field. These figures illustrate the progressively b
ter resolution of the current density as sampling of the m
netic field is increased. Table I shows a precipitous reduc
in the error near a sampling such thatnlat541 and nlon

580. Although increasing the sampling of the field allow
one to compute components of the current stream functio
larger j andm values and therefore provide greater detail
the inversion this trend does not persist as one can see w
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the sampling is nearnlat549 andnlon596. Near this sam-
pling density an amplification of machine precision ‘‘noise
due to the ill-conditioned nature of the inversion, begins
compete with the reduction in error due to increased sa
pling density. Of course the precise limit imposed by t
noise to the effectively attainable resolution worsens ex
nentially with decreasing values ofr 0 , the reconstruction
radius.

Figures 4–6 illustrate the importance of regularization
any practical situation with added noise. Here we vary
regularization parameterl to illustrate the tradeoff betwee
the noise-filtering effects and the smoothing effects inher
to a Tikhonov regularization of the inversion. In Fig.
where regularization ofl50 is used, the 5% Gaussian
distributed sampling noise entirely obscures the inversion

FIG. 1. Direct plot of the current stream function withNn1535, (u r ,f r)1

5(45,0), Nn2535, (u r ,f r)25(67,0).

FIG. 2. Reconstruction withNlat525, Nlon548, S2N5 inf, er50.195.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Fig. 5 a value ofl50.03 suppresses the noise but at a h
cost to resolution. From Fig. 6 and Table II it appears t
l50.002 is a good choice of a regularization parameter
balances noise amplification reduction against smoothing
fects of the Tikhonov regularization. Table II shows that t
same sampling as that used in the noiseless case appe
give the best error but this error value is considerably hig
as compared to the noiseless case.

VIII. CONCLUSIONS

We have shown that for the idealized inverse magneto
etry problem the determinable quantities in a VSH repres
tation are moments of the expansion coefficients. Only
moment per coefficient is fixed by magnetic field measu
ments alone. This clearly exhibits the need for additio

FIG. 3. Reconstruction withNlat565, Nlon5128, S2N5`, er53.34
310210.

FIG. 4. Reconstruction withNlat565, Nlon5128, S2N520, l50, er

571.9.
Downloaded 29 Nov 2004 to 129.24.209.236. Redistribution subject to AI
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trusted and testable constraints in the inverse magnetom
problem. In general these added constraints will clearly c
tain the majority of the information needed in an uniq
inversion for the current density of the idealized inver
magnetometry problem.

We have shown in what sense electric potential data m
be incorporated to give additional information on the to
current. When inverting for the total current, magnetic fie
data gives information about zeroth order near-field con
butions to the current density, whereas electric potential d
gives information about the first order contributions. Wh
the conductivity is known, as in the case of a homogene
conductor, both the magnetic and electric data give zer
order information about the primary currents.

Finally we have shown that for a spherical shell a uniq
inversion is possible. However, the inversion has been sh

FIG. 5. Reconstruction withNlat565, Nlon5128, S2N520, l50.03, er

50.400.

FIG. 6. Reconstruction withNlat565, Nlon5128, S2N520, l50.002, er

59.6031022.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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to be ill-conditioned in general. A regularization may b
needed and this regularization must balance the filtering
amplified ‘‘high frequency’’ noise against the smoothing
spatial detail in the inversion.
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APPENDIX A: DIVERGENCE CONSTRAINT

In this Appendix we derive the restriction on the m
mentsmjm

j 21,j 2150 given by the condition“"J050. From
this condition we have10

05Aj S d

dr
2

j 21

r Dajm
j 21~r !,

~A1!

2Aj 11S d

dr
1

j 12

r Dajm
j 11~r !.

Multiplying Eq. ~A1! by r k12 and integrating by parts give

05Ak11~k2 j !E
0

1

r k21ajm
j 11~r !r 2 dr

2Aj ~k2 j 13!E
0

1

r k21ajm
j 21~r !r 2 dr. ~A2!

since there is no current on the shell of radius 1. Theref
we obtain

~k2 j !mjm
j 11,k211A j

j 11
~k1 j 11!mjm

j 21,k2150, ~A3!

TABLE I. Relative error with SNR5`.

nlat nlon Error

9 16 0.633 616 464
17 32 0.499 727 286
25 48 0.194 608 761
33 64 0.044 827 409
41 80 5.706 622 63310211

49 96 6.274 477 49310211

57 112 1.052 210 49310210

65 128 3.344 016 24310210

TABLE II. Relative error with SNR520.

nlat nlon Error

9 16 0.633 567 187
17 32 0.499 966 94
25 48 0.199 766 954
33 64 0.106 897 188
41 80 0.096 111 095
49 96 0.096 569 9241
57 112 0.096 098 5884
65 128 0.096 013 9612
Downloaded 29 Nov 2004 to 129.24.209.236. Redistribution subject to AI
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-

e,

which for k5 j becomesmjm
j 21,j 2150. It is easy to see tha

the condition“"A050 is equivalent tomjm
j 21,j 2150, so the

vanishing of the divergence ofA0 is implied by that ofJ0 as
expected.

APPENDIX B: SPHERICAL HARMONIC PROPERTIES

In this appendix we give some information on vect
spherical harmonics. The vector spherical harmonics may
generated from the scalar spherical harmonics according

Y jm
j 115A j 11

2 j 11 S 2erYjm1eu

1

j 11

]Yjm

]u

1ef

im

j 11

Yjm

sinu D ,

Y jm
j 52eu

m

Aj ~ j 11!

Yjm

sinu
2ef

i

Aj ~ j 11!

]Yjm

]u
, ~B1!

Y jm
j 215A j

2 j 11 S erYjm1eu

1

j

]Yjm

]u
1ef

im

j

Yjm

sinu D .

In addition, the following property is used in this article:

Y jm
j 5

2 i

Aj ~ j 11!
~erÃ“V!Yjm . ~B2!

The vector spherical harmonics obey the orthogonality pr
erty

E
0

pE
0

2p

Y j 8m8
* l 8 Y jm

l sinu du df5d j j 8d l l 8dmm8 ~B3!

and the following relations for the divergence operator:

¹•@ f Y jm
j 11#52A j 11

2 j 11 S d

dr
1

j 12

r D f Yjm ,

¹•@ f Y jm
j #50, ~B4!

¹•@ f Y jm
j 21#5A j

2 j 11 S d

dr
2

j 21

r D f Yjm ,

and the curl operator10

¹3@ f Y jm
j 11#5 iA j

2 j 11 S d

dr
1

j 12

r D f Y jm
j ,

¹3@ f Y jm
j #5 iA j

2 j 11 S d

dr
2

j

r D f Y jm
j 11

1 iA j 11

2 j 11 S d

dr
1

j 11

r D f Y jm
j 21, ~B5!

¹3@ f Y jm
j 21#5 iA j 11

2 j 11 S d

dr
2

j 21

r D f Y jm
j ,

where f 5 f (r ). We also give the connection between t
spherical harmonics and associated Legendre functions

Yjm~u,f!5A2 j 11

4p

~ j 2m!!

~ j 1m!!
Pj

m~cosu!expim f.

~B6!
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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APPENDIX C: ROTATION OF ELEMENTAL MAGNETIC
FIELDS

In Sec. VII we performed rotations upon elemental fie
to obtain our simulated fields. Each elemental fieldBr is a
sum of Legendre polynomials of the formBr

5( la l Pl(cosu). The rotation operatorRr5R(f r ,u r), act-
ing on a Legendre polynomialPl(cosu), yields

Rr Pl~cosu!5Pl~u r !Pl~u!12 (
m51

l
~ l 2m!!

~ l 1m!!
Pl

m~u r !

3Pl
m~u!cosm~f r2f! ~C1!

so that the rotated elemental field becomes

Br~u,f!5(
l

a l Pl~u r !Pl~u!12(
ml

a l

~ l 2m!!

~ l 1m!!
Pl

m~u r !

3Pl
m~u!cosm~f r2f!. ~C2!

The fields due to each elemental current can then be add
the sampling points for the simulated field measurement

APPENDIX D: TIKHONOV REGULARIZATION

In this Appendix we give a brief review of Tikhono
regularization as it applies to this article.15 We assume one
wants to invert the following linear equation given the datad

A f5d. ~D1!

We will also assume that the matrixA is ill conditioned.
Tikhonov regularization of Eq.~D1! obtains a well-
conditioned solution by minimizing the following functiona

f̂ l5arg min$l2iL~ f 2 f `!i21id2A fi2%, ~D2!

wherel is the regularization parameter andf ` is a default
solution. If l is large the data misfit term,id2A fi2, be-
Downloaded 29 Nov 2004 to 129.24.209.236. Redistribution subject to AI
s

at

comes negligible and the solution tends tof ` in which high
frequency behavior has been effectively smoothed, reg
less of its origin. Ifl is small the solution tends to the solu
tion of Eq.~D1!, which is presumably ill conditioned, resul
ing in noise amplification. A practical choice of th
regularization parameter balances smoothing of the solu
against reduction of the amplified high frequency noise in
data. Minimizing Eq.~D2! one obtains

~l2LtL1AtA! f 5l2LtL f `1Atd. ~D3!

For systems of equations which are relatively small~a few
hundred equations! this equation may be directly solved fo
f. For larger systems one may employ searching or itera
algorithms.
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