
Memory Erasability Amplification?

Jan Camenisch1, Robert R. Enderlein1,2, and Ueli Maurer2

1 IBM Research – Zurich, Switzerland
2 Department of Computer Science, ETH Zürich, Switzerland

Abstract. Erasable memory is an important resource for designing practical cryptographic pro-
tocols that are secure against adaptive attacks. Many practical memory devices, such as solid state
drives, hard disks, or file systems, are not perfectly erasable because a deletion operation leaves
traces of the deleted data in the system. Various methods for constructing a large erasable memory
from a small one, e.g., using encryption, have been proposed. Despite the importance of erasable
memory in cryptography, no formal model has been proposed that allows one to formally analyze
such memory constructions or cryptographic protocols relying on erasable memory.
The contribution of this paper is three-fold. First, we provide a formal model of erasable memory.
A memory device allows a user to store, retrieve, and delete data, and is characterized by a leakage
function defining the extent to which erased data is still accessible to an adversary.
Second, we investigate how the erasability of such memories can be amplified. We provide a num-
ber of constructions of memories with strong erasability guarantees from memories with weaker
guarantees. One of these constructions of perfectly erasable memories from imperfectly erasable
ones can be considered as the prototypical application of Canetti et al.’s All-or-Nothing Transform
(AoNT). Motivated by this construction, we propose some new and better AoNTs that are either
perfectly or computationally secure. These AoNTs are of possible independent interest.
Third, we show (in the constructive cryptography framework) how the construction of erasable
memory and its use in cryptographic protocols (for example to achieve adaptive security) can be
composed naturally to obtain provable security of the overall protocol.

Keywords: secure memory erasure; secure deletion; adaptive corruption; constructive cryptogra-
phy; all-or-nothing-transforms (AoNT).

? The first and second author were supported by the European Commission through the Seventh Framework
Programme under the ERC grant #321310 (PERCY). The third author was supported by the Zurich Infor-
mation Security & Privacy Center (ZISC). This is the full version of the extended abstract that appeared at
SCN 2016.

Table of Contents

Memory Erasability Amplification . 1
Jan Camenisch, Robert R. Enderlein, and Ueli Maurer

1 Introduction . 3
1.1 Contributions of this Paper . 3
1.2 Related Work . 3

2 Preliminaries . 4
2.1 Notation . 4
2.2 Constructive Cryptography . 4
2.3 Cryptographic Building Blocks . 5
2.4 All-or-Nothing Transform (AoNT) . 5

3 Modeling Imperfectly Erasable Memory . 6
3.1 Specification of the General Imperfectly Erasable Memory Resource M〈·〉 7
3.2 Instantiations of M〈Σ,ψ, ρ, κ〉 . 7

4 Constructing Better Memory Resources . 9
4.1 Admissible Converters for Constructions Using Erasable Memory 9
4.2 Memory Erasability Amplification . 10

4.2.1 Amplifying Memory Leaking Exactly d Symbols . 10
4.2.2 Amplifying Memory Leaking Symbols with Probability p 12
4.2.3 Amplifying Memory with Noisy Leakage . 13
4.2.4 Amplifying Memory with Limited Leakage Output . 13

4.3 Constructing a Large Perfectly Erasable Memory from a Small One 13
5 New Realizations of All-or-Nothing Transforms . 16

5.1 AoNT from a Protocol . 16
5.2 Perfectly Secure AoNT Based on Matrices with Ramp Minimum Distance 18
5.3 Realizing a Perfectly Secure AoNT over a Small Field by Combining AoNTs 21
5.4 Computationally Secure AoNT over a Large Field from a PRG 22

References . 24
A Known Constructions of AoNT . 25

A.1 Perfect AoNTs Based on Shamir’s Secret Sharing . 25
A.2 Perfect AoNTs from Linear Block Codes . 25
A.3 Statistical AoNTs from Universal Hash Functions . 26
A.4 Computational AoNTs . 26

1 Introduction

Persistent and erasable memory is a crucial ingredient of many practical cryptographic protocols
that are secure against adaptive adversaries. However, for storage devices such as solid state
disks, hard disks, and tapes, it is rather difficult to truly erase information written on them.
Therefore, constructions have been proposed that use a small amount of memory that is easier to
erase (or at least harder for an attacker to tap into), such as smart cards and processor registers,
to store a cryptographic key, and then to encrypt the data to be stored on the main medium
so that it no longer matters whether or not the ciphertext can be erased [12, 14, 20–22, 24, 25].
This approach is sometimes referred to as crypto paging. Surprisingly, no formal model of
erasable memory has been proposed to date, despite the importance of erasable memory for
cryptographic protocol design and the cryptographic constructions for it.

1.1 Contributions of this Paper

In this paper, we rectify this and first model erasable memory as a general resource in the
constructive cryptography framework [17,18]. Our memory resource defines how a user, an ad-
versary, and the environment can interact with the resource and to what extent stored data
can be erased. In particular, different memory resources are characterized in terms of the in-
formation about the stored data an adversary will be able to obtain when the environment
allows it access to the memory resource. As we discuss, this makes it possible to model many
different types of memory, such as hard disks, solid state drives, RAM, and smart cards. Next,
we study different constructions of erasable memory from a memory with weaker erasability
properties or, in other words, constructions that amplify erasability. These constructions also
show how memory resources can be used in protocol design and analysis. We then study the
approach of crypto paging in our setting, i.e., constructions of a large erasable memory from
a small one and a non-erasable memory. As it turns out, achieving the strongest possible type
of erasable memory with this approach requires non-committing encryption and hence is only
possible in the random oracle model (else it requires additional communication between sender
and receiver, which is not applicable here). We also show which kind of erasable memory can
be achieved with this approach in the standard model.

One of our memory constructions uses All-or-Nothing Transforms (AoNT) [5] to obtain a
perfectly erasable memory from one that leaks a constant fraction of the erased data. Motivated
by this protocol, we study AoNTs and propose several new transforms that achieve better
parameters than previously known ones, a result that may be of independent interest. For
example, we improve the standard construction of a perfectly-secure AoNT from a Linear Block
Code (LBC) by noting that an LBC with a large minimum distance does not yield an AoNT with
optimal privacy threshold. Instead, we propose the metric of ramp minimum distance and show
that LBCs optimized for this metric yield perfectly secure AoNTs with better parameters than
what can be achieved with the standard construction. We further propose a computationally
secure AoNT that operates over a large alphabet (large enough for one symbol to encode a
cryptographic key) and that is optimal: the encoded data is just one symbol longer than the
original data, and the transform is secure even if all except one of the symbols of the encoded
data are leaked. We show that such an AoNT can be realized from a pseudo-random generator
(PRG) with some specific properties.

1.2 Related Work

In most security frameworks, unlimited and perfectly erasable memory is available to protocols
as part of the framework, with the exception of protocols that are proven to be adaptively secure
in the non-erasure model, where no erasable memory is available. However, as mentioned, no
security framework explicitly models memory. Consequently, security proofs using the existing

3

frameworks treat the adversary’s access to the memory of a compromised party only informally.
The only exception to this is the work by Canetti et al. and by Lim [6,16], who model memory
as special tapes of the parties’ Turing machines and define how an adversary can access these
special tapes. This very specific modeling therefore changes the machine model underlying the
UC framework.

Hazay et al. [13] follow a different approach. They introduce the concept of adaptive security
with partial erasures, where security holds if at least one party of a given protocol can success-
fully erase. Their model requires a special protocol design and has some restrictions regarding
composition.

Both these approaches are rather limited. Indeed, if one wanted to consider different types
of memory, one would have to change the modeling framework each time and potentially have
to prove all composition theorems all over again. Moreover, these approaches do not allow for
the analysis of protocols that construct one type of memory from another type of memory, as
we do in this paper. Indeed, one cannot analyze the security of protocols such as Yee’s crypto-
paging technique [24,25] and the constructions of Di Crescenzo et al. [9]. In contrast, we model
memory as a resource (or ideal functionality) within the security framework (the constructive
cryptography framework in our case) and thus do not suffer from these limitations.

2 Preliminaries

This section defines the notation used throughout this paper, presents the constructive cryptog-
raphy model, and recalls various cryptographic building blocks and their security properties.

2.1 Notation

Let GF(q) denote the Galois field of q elements, where q is a prime power. If u is a vector or a
list, let ui or u[i] denote the ith element of u. If u = (u1, . . . , un) and v = (v1, . . . , vm) are lists,
then (u, e) denotes the list (u1, . . . , un, e) and (u, v) denotes the list (u1, . . . , un, v1, . . . , vn); we
write e ∈ u to denote (∃i : e = ui); we write v = (u, ·) to denote that (∀i ∈ {1, . . . , n} : ui = vi).
If L is a set of positive integers, let [u]L denote the subvector of u taken at all positions in L.
If S is a set, then 2S denotes the powerset of S (the set of all subsets of S). Let Ir denote the
identity matrix of size r × r, and let 0 denote the zero matrix of appropriate size.

If A is a deterministic polynomial-time algorithm, then y ← A(x) denotes the assignment
of variable y to the output of A(x). If A is a probabilistic polynomial-time (PPT) algorithm,
then y ←$ A(x) denotes the assignment of y to the output of A(x) when run with fresh random
coins on input x. For a set A, x ←$ A denotes the assignment of x to a value chosen uniformly
at random from A. For a distribution A(x), we denote the ensemble {A(x)}x∈{1η |η∈N,η>η0} by
the shorthand {A}1η .

Throughout this paper, we denote the security parameter by η ∈ N. Let 1η denote the string
consisting of η ones. Unless otherwise noted, all algorithms in this paper are PPT and take 1η

as extra (often implicit) input.

2.2 Constructive Cryptography

We present our results in the Constructive Cryptography framework [17, 18]. The framework
argues about resources and how to securely construct a resource from other resources using a
protocol that consists of a set of converters. Resources and converters are systems that have
a set of interfaces. Resources have an interface for each party considered (e.g., Alice), one for
the adversary (the Eve interface), and one for the distinguisher (the World interface). The last
is an example of what Gaži et al. [11] introduce as a free interface and allows one to model
the influence of the distinguisher (environment) on a resource, e.g., to define when a memory
becomes readable by the adversary or to model adaptive adversarial behaviour. Converters have
only two interfaces, an inner interface, which connects to a party interface of a resource, and an

4

Rπ ≈ S
Alice

interface
interface

Eve
σ

interfaceWorld Fig. 1: The constructive statement for a resource with
interfaces Alice, Eve, and World. Protocol π con-
structs S from R if there is a simulator σ such that
R with π attached to its Alice interface is indistin-
guishable from resource S with σ attached to its Eve
interface (cf. Defintion 1).

outer interface, to which a party can connect. A simulator is a converter that attaches to the
adversary interface of a resource. In this paper, we consider only resources that have a single
party interface, i.e., Alice. The security condition of Constructive Cryptography is as follows
(we do not consider the availability condition in this paper) [18].

Definition 1. A protocol (converter) π constructs resource S from resource R with respect to
simulator σ, within ε, denoted

R
π,σ,ε

S ,

if for all distinguishers D we have ∆D(πAliceR, σEveS) ≤ ε(D), where ∆D is the advantage of
D in distinguishing the two systems [18].

Distinguisher D is a system itself and has access to all external interfaces of the composition
of the resources and converters (cf. Figure 1). With πAliceR we denote the system obtained by
attaching the inner interface of π to the interface Alice of resource R, and likewise for σEve.
In this definition, ε is a function mapping distinguishers to positive real numbers. Informally,
computational security corresponds to π and σ being efficiently implementable and ε(D) being

negligible for all efficiently implementable D. Constructions are composable, i.e., if R
π1,σ1,ε1

S

and S
π2,σ2,ε2

T, then R
π2π1,σ1σ2,ε2+ε1

T.

2.3 Cryptographic Building Blocks

For our constructions, we require pseudo-random generators and exposure-resilient functions,
the definitions of which we recall here for convenience.

Definition 2. An `-pseudo-random generator (PRG), i.e., prg : {0, 1}η 7→ {0, 1}`(η), is secure
if the following two ensembles are computationally indistinguishable: {b}1η for b ←$ {0, 1}`(η)
and {prg(a)}1η for a←$ {0, 1}η [15].

Definition 3. A d-exposure-resilient function (ERF) erf : Φn 7→ Φk, also denoted (Φ, n, d, k)-
ERF, is ε-secure if for any set L ⊂ {1, . . . n} of size at most d, the following two distributions are
ε-indistinguishable: ([b]L,x0) for b←$ Φn,x0 ← erf(b) and ([b]L,x1) for b←$ Φn,x1 ←$ Φk [5].

2.4 All-or-Nothing Transform (AoNT)

An all-or-nothing transform (AoNT) [5, 23] is similar to a secret-sharing scheme that requires
all shares in order to reconstruct the secret. It consists of two algorithms, aenc and adec.

Definition 4. A d-AoNT with aenc : Φk
$7→ Φn and adec : Φn 7→ Φk, also denoted (Φ, n, d, k)-

AoNT, is ε-secure if:

(Completeness) For all messages a ∈ Φk, a = adec(aenc(a)).

(Privacy) For any set L ⊂ {1, . . . n} of size at most d and for any two messages a0,a1 ∈ Φk,
the two distributions (a0,a1, [aenc(a0)]L) and (a0,a1, [aenc(a1)]L) are ε-indistinguishable.

5

Computational security. In the context of computational security, the two functions aenc and
adec take a (usually implicit) security parameter as additional input, and the parameters Φ, n, k,
and d may depend on that security parameter. For the privacy condition, it is required that the
ensembles {(a0,a1, [aenc(1

η,a0)]L)}1η and {(a0,a1, [aenc(1
η,a1)]L)}1η be indistinguishable. In

what follows, we also denote such computationally secure AoNTs as (Φ, n, d, k)-AoNTs, where
the security parameter is implicit.

AoNT with public part. Canetti et al. [5] also consider AoNTs that have a two-part output:
a public part that needs no protection and a secret part that has the privacy property. More
formally, an (Φ, n+ ν, d, k)-AoNT has a ν-public part if in the privacy condition above the last
ν symbols of aenc(a) are output in addition to [aenc(a)]L.

Realisation of AoNTs. In Appendix A, we summarise a number of known constructions of
AoNTs. For instance, one can realise a perfect (Φ, n, d, k)-AoNT from any secret sharing scheme
over alphabet Φ that outputs m shares, has a reconstruction threshold of n, a privacy threshold
of d, and encodes messages of size k shares, by simply ignoring all shares after the first n ones.
This technique also works in the statistical and the computational case.

Given an ERF, it is easy to realise an ε-secure (Φ, n + k, d, k)-AoNT with a k-public part

from any ε-secure (Φ, n, d, k)-ERF: aenc(a)
$7→ b||(erf(b) + a), where b←$ Φn; and adec(b||x) 7→

x− erf(b) [5]. This technique also works in the computational case.

3 Modeling Imperfectly Erasable Memory

We now present our erasable memory resource. Recall that we aim to model memory that is used
for persistent storage (such as hard disks, solid state drives, RAM, and smart cards), and not
processor registers that store temporary values during computations. To this end, we define how
the resource behaves upon inputs on the user (Alice), the adversary, and the world interfaces.
It allows a user Alice to store a single data item once, retrieve it (many times), and erase it.
The adversary can get access to the data only if such access is enabled on the World interface.
That is, the data stored is not initially available to her. Then, once access has been enabled
via a weaken input on the World interface, the adversary can either read the data item stored
(if the user has not yet deleted it) or leak the data, meaning that she will obtain as answer a
function of the data once stored. This function determines the information that is still leaked
although the data has been deleted. The adversary can influence the leakage by providing an
additional input to the function (e.g., specify some bits that are leaked).

In reality, there might be many reason why an adversary gains access to the contents of a
memory. This might be because the memory device is lost, the adversary controls some malware
on the computer that uses the memory, or the adversary runs a cache-timing attack [2] on the
computer, etc. Offering a World interface, via which it is determined which access is given to the
adversary by the memory resource, models any such event. The UC and GNUC frameworks use
a similar mechanism for corrupting parties, except that they (ab)use the party interfaces to do
so. In UC, it is the adversary who corrupts and the environment is informed of the corruption
through the party interfaces. In GNUC, the environment corrupts parties and the adversary is
informed thereof.

There seem to be two natural extensions to our erasable memory resource which for simplicity
we chose not to consider. First, we assume that inputs at the World interface do not impact
the user’s ability to access the data, which might often not be the case. Although this would
be straightforward to model, it is not important for the scope of this paper. Second, the user
cannot change the stored data or store many different data items. Again, while it would not be
hard to extend the resource to allow that, we chose not to do so for simplicity. Also, this is not
a serious restriction as such requirements can be addressed by using several instances of our

6

The resource M〈Σ,ψ, ρ, κ〉:
Internal state and initial values: data = ⊥, ldat = ⊥,hist = ().
Behavior:

– Alice(store, µ ∈ Σ): if data = ⊥: data← µ; ldat←$ ψ(µ);Alice← ().
– Alice(retrieve): if “e” 6∈ hist: Alice← data.
– Alice(erase): if “e” 6∈ hist ∧ data 6= ⊥: hist← (hist, “e”);Alice← ().

– Eve(gethist): Eve← hist.
– Eve(read): if ρ(hist): Eve← data.
– Eve(leak, ξ): if κ(hist, ξ): hist← (hist, “l”||ξ); Eve← ξ(ldat).

– World(weaken, w): if (“w”||w) 6∈ hist: hist← (hist, “w”||w);World← ().

Fig. 2: The general (imperfectly) erasable memory resource M〈·〉.

memory resources.

3.1 Specification of the General Imperfectly Erasable Memory Resource M〈·〉
We now present our formal specification of the general resource for imperfectly erasable memory
M〈Σ,ψ, ρ, κ〉 that is given in Figure 2 and then discuss in the next subsection a few instantiations
of this general resource that match different types of memory. The resource maintains three
variables, data, ldat, and hist. The first one stores the data provided by the user, the second
the data that can potentially be leaked to the adversary, and the third one logs the history of
events, namely, the erasure event, the parameter of each call on the World interface, and the
input arguments of each successful leakage query. The resource is parameterized by an alphabet
Σ, a conditional probability distribution ψ, and two predicates ρ and κ. Alphabet Σ is the set
of possible values that can be stored. The conditional distribution ψ operates on the data and
determines which information could potentially leak to the adversary by outputting ldat. This
models the extent to which the resource is able to erase the data. Predicate ρ takes as input the
history of the resource and determines whether the adversary is allowed to read the memory.
Finally, predicate κ takes as input the history of the resource and the deterministic function ξ
submitted by the adversary, and determines whether the adversary obtains the leakage ξ(ldat).

Most of the commands that can be submitted to the resource and its behavior should
now be clear from Figure 2; however, a few details merit explanation. First, the data that is
potentially leaked, ldat, is determined using ψ already when the data is stored in the resource.
This is without loss of generality, but is useful here because, depending on predicate κ, the
adversary may query the resource multiple times with the leak command and the answers to
these commands need to be consistent. Second, when the adversary queries the resource with
a leak command, she can input a parameter ξ that may influence the leakage she obtains. This
models the process of an adversary reading the erased data from a memory device, e.g., an
adversary might try to read the data bit by bit, each time influencing the remaining bits in the
memory. Third, the adversary is allowed to obtain the history from the resource at any time.
This is necessary so that a simulator has enough information to properly simulate a construction.
Finally, the World interface accepts any value w for an external event, because these depend on
the particular resource that is being modeled and possibly on how it is constructed. This will
become clear later when we discuss constructions of one type of memory from other types in
Section 4.

3.2 Instantiations of M〈Σ,ψ, ρ, κ〉
We now describe special cases of the M〈Σ,ψ, ρ, κ〉 resource that correspond to memory devices
appearing in the real world. We start by describing non-erasable memory, i.e., memory that
becomes readable by the adversary once access has been enabled by the World interface. This
models what happens in a typical file system: files that are unlinked are not actually erased

7

Perfectly erasable memory Influence of the World interface

PM〈Σ〉 single world event makes memory readable by adversary
PMW〈Σ〉 multiple world events are modeled
PMWa〈Σ〉 specific version of PMW〈Σ〉 (Fig. 6)
PMWb〈Σ〉 specific version of PMW〈Σ〉 (Fig. 6)
PMWc〈Σ〉 specific version of PMW〈Σ〉 (Fig. 6)

Imperfectly erasable memory Information adversary obtains on deleted data

IM〈Σ,ψ,Ξ〉 reveals ξ(ldat) if Ξ(ξ) = 1
IMD〈Φ, n, d〉 reveals d symbols to adversary
IMDP〈Φ, s1, s2, d〉 reveals d symbols of first part, all symbols of second part
IMI〈Φ, n, d〉 each symbol revealed independently with probability p
IMN〈Φ, n, d〉 reveals through a noisy channel
IML〈Σ, v〉 reveals through a length-shrinking function
IMLP〈Φ, n, a+ k, v〉 reveals through a length-shrinking function on first part, full second part

Table 1: Different specializations of M〈Σ,ψ, ρ, κ〉 that allow one to erase data.

and can often be completely recovered with specialized tools (at least until the blocks are re-
used). We then describe perfectly erasable memory. Such a memory could be implemented by
specialized hardware, such as smart cards, but often will have only limited capacity. Large
perfectly erasable memories are often not directly available in reality. We are thus interested
in the construction of such memories from resources with lesser guarantees. Each of the latter
can be influenced through World events separately, hence we will describe both a variant of the
perfectly erasable memory that accepts a single type of World event (easier to describe) and a
variant that accepts an arbitrary number of such events. Finally we describe imperfectly erasable
memories, i.e., memories with security guarantees between the two extremes just discussed. Such
memories leak partial information if the adversary is granted access by World after an erasure.
In reality, often not all the data is actually removed during an erasure: on magnetic storage,
overwritten data can still be partially recovered with specialized equipment [12]. Similarly, often
parts of the data were copied to a different medium (swap space, backup, file system journal,
etc.) before the erasure and the copies themselves were not fully erased. One can thus easily
imagine that the adversary can deduce a constant number of bits that were stored or obtains
a noisy version of the data that was stored. For simplicity, we consider imperfectly erasable
memories which ignore the parameter of weaken (only a single World event can be modeled),
and only leak once (no adaptive leakage). We now describe these categories of memory in detail.
Table 1 provides an overview of these and further specializations that we consider in the sections
that follow.

Non-erasable Memory. To model non-erasable memory, we let ρ return true if weaken was
called irrespective of erase. (In fact, the erase command could be dropped entirely.) The
memory does not leak, hence κ always returns false and ψ is irrelevant. The only relevant
parameter is the alphabet Σ and thus we denote this resource by NM〈Σ〉.
Perfectly Erasable Memory. To model perfectly erasable memory, we let ρ return true only
if weaken was called (perhaps multiple times with specific parameters) before erase was called.3

This memory does not leak, hence κ always returns false and ψ is irrelevant. We describe two

3 In this paper, we chose to consider monotone ρ’s. We chose to model the memory resource in such a way that
it only responds on the same interface it was activated, hence it is not possible for the adversary to be notified
of an event that causes the memory to become readable. To simplify the modeling of simulators, we consider
the adversary to be eager and trying to read the memory as soon as possible and then placing the resulting
data into an “intermediate buffer,” which can then be collected through the Eve interface at a later point in
time.

8

versions of the resource: PM〈Σ〉 fixes ρ to return true if weaken appears in the history earlier
than or without erase, hence only a single World event can be modeled. PMW〈Σ, ρ〉 lets one
specify a custom ρ, allowing the modeling of many World events. Figure 6 in the next section
shows examples of ρ in the case when there are two relevant World events.

Imperfectly Erasable Memory. To model imperfectly erasable memory, we fix ρ and split
κ into two predicates: a fixed predicate that checks only the history and a freely specifiable
predicate Ξ that checks only the adversary’s choice ξ. The other parameters, Σ and ψ, can be
freely specified. We denote this resource by IM〈Σ,ψ,Ξ〉. We consider only resources allowing a
single World event. The predicate ρ returns true only if the first recorded event in the history
is a weaken command (as opposed to an erase command). The fixed predicate returns true
if the first two recorded events in the history are an erase command followed by a weaken

command (if weaken was called first, the adversary should call read and not leak), and no
leak query succeeded previously. Thus, we consider only resources allowing a single World
event. The predicate κ returns true if the fixed predicate does so and Ξ accepts ξ. In the next
section, when we discuss erasability amplification, we specialize this resource further.

4 Constructing Better Memory Resources

In this section, we consider constructions of memory resources with stronger security properties
from memory resources with weaker ones. We start by showing how to use our memory resources
in protocol constructions and then explain the issues that arise when doing so. Thereafter, we
describe several specializations of the imperfectly erasable memory resource IM〈·〉 presented in
the previous section and show how to construct memory resources with stronger properties from
ones with weaker properties. For example, we show how to construct perfectly erasable memories
from memories that leak a certain number of bits. Finally, we consider the construction of a
large perfectly erasable memory from a small one plus a large non-erasable memory.

4.1 Admissible Converters for Constructions Using Erasable Memory

As stated, one of our reasons to model memory is to be able to analyze cryptographic protocols
where the adversary at some point obtains access to the memory. This means that one needs to
restrict converters to use only our memory resources for storage. Assuming that an adversary in
a real environment may typically not be able to get access to processor registers, we still allow
a converter to store temporary values locally and use a memory resource only for persistent
storage. Let us now formalize the distinction between persistent and temporary storage and the
restrictions we put on converters.

The computation done by a converter is divided in computation phases. A phase starts when
a converter is activated outside of a computation phase. Informally, a phase ends as soon as the
converter responds to that activation or makes a request that is not guaranteed to be answered
immediately, i.e., where there is a chance that the adversary is activated before the request
completes. For example, a computation phase ends if the converter makes a request that goes
over an unreliable communication network, but does not end if the converter asks to store or
retrieve data from a memory resource.

In this paper, all our resources always respond on the same interface as the one they were
activated on. It is then easy to define the computation phase of a converter: the phase starts as
soon as the converter’s outer interface is activated, and stops as soon as the converter writes
on its outer interface. That is, activations of the inner interface do not interrupt the phase.
However, in a more general setting, resources may respond on a different interface than the one
they were activated on, and thereby activate a different party or the adversary. The definition
of the computation phase of converters must therefore be adjusted to take this into account.

9

State that is discarded at the end of a computation phase is temporary. State that must per-
sist between two or more computation phases is persistent. (Converters must keep all persistent
state in memory resources.) This distinction ensures that whenever the adversary has control,
the entire internal state of a protocol is inside memory resources, and thus subject to attack.

Discussion. Other models, notably the one by Canetti et al. and by Lim [6, 16], also make a
distinction between storage needed during computation and persistent storage. However they
do it in a way that does not cleanly separate the various layers of abstraction: they assume the
existence of a constant number of “processor registers” that are perfectly erasable and place no
restriction on the amount of time that data can remain in such a register. For example, their
models therefore do not exclude reserving a part of the CPU registers to permanently store a
cryptographic key, and use a crypto paging technique [24,25] to have as much (computationally
secure) perfectly erasable memory as required. Thus, to ensure a meaningful analysis, a similar
restriction would have to be used in their approach.

4.2 Memory Erasability Amplification

We now describe several variants of imperfectly erasable memory that are relevant in practice,
namely, memory that leaks a constant number of bits, memory that leaks bits with a certain
probability, memory that leaks a noisy version of the data, and memory that leaks the output of
a length-shrinking function of the data. We then show how to construct memories that leak less
information from each of these variants; in other words, we show how to amplify the erasability
of each variant.

4.2.1 Amplifying Memory Leaking Exactly d Symbols

On many file systems, unlinked files are not necessarily erased in their entirety immediately.
For instance, on most SSDs, deleted data persists until the flash translation layer flashes the
corresponding erase block. Furthermore, data may survive erasure if it was copied to another
medium, such as cache, swap space, or backups. An adversary could therefore potentially recover
parts of data that were believed to be erased. In full generality, the adversary may not obtain
the entire data, but still have an influence on which parts of the data she obtains in an attack,
e.g., because she can steal just one backup tape, because of the cost of the attack or time
constrains force her to choose the most juicy parts of the data, or because she could influence
the system beforehand to some degree and ensure that the parts of the data she is interested in
were backed up/swapped/cached.

To model such a scenario, we define the memory resource IMD〈Φ, n, d〉 storing n symbols of
an alphabet Φ and where the adversary can obtain exactly d symbols of her choice when the
memory leaks. This resource is a specialization of IM〈Σ,ψ,Ξ〉, where Σ = Φn, ψ is the identity
function, and Ξ accepts any function that reads at most d symbols from ldat. In a real setting,
depending on the nature of the attack, the adversary may obtain fewer than d symbols or might
not have full control over which symbols she obtains.

A memory resource in such a setting can be perfectly constructed from IMD〈Φ, n, d〉 with
the identity converter. (A memory resource where the adversary can obtain more than d sym-
bols with a small probability ε can also be constructed from IMD〈Φ, n, d〉, albeit with an error
probability equal to ε; see, e.g., Section 4.2.2.) The converter I2P shown in Figure 3 constructs
PM〈Φk〉 from IMD〈Φ, n, d〉. This converter is parametrized by an AoNT (cf. Section 2.4). In a
nutshell, I2P just applies the AoNT encoding algorithm aenc(·) to the incoming data before
storing it in IMD〈·〉, and decodes the encoded data stored in IMD〈·〉 using adec(·) before out-
putting it. The erasure command is transmitted to IMD〈·〉 directly. The privacy property of the
AoNT guarantees that if the adversary obtains d symbols of the encoded data, she obtains no
meaningful information about the original data. Thus, we obtain the following theorem.

10

Converter I2P〈Φ, k, aenc, adec〉:
Behavior:

– Outer(store, µ ∈ Φk): Inner←$ (store, aenc(µ)). Inner→ (). Outer← ().
– Outer(retrieve): Inner← (retrieve). Inner→ φ.

If φ 6= (): Outer← adec(φ). Else: Outer← ().
– Outer(erase): Inner← (erase). Inner→ (). Outer← ().

Fig. 3: Converter I2P constructing PM〈Φk〉 from IMD〈Φ, n, d〉. The converter is parametrized by
a (Φ, n, d, k)-AoNT (aenc, adec).

Simulator SI2P〈Φ, n, d, k, aenc〉:
Internal state and initial values: leaked = 0.
Behavior:

– Outer(gethist): Inner← (gethist). Inner→ λ. Outer← λ.
– Outer(read): upon error in the following, abort with Outer← ().

Inner← (read). Inner→ µ ∈ Φk. Outer←$ aenc(µ).
– Outer(leak, ξ ∈ (x 7→ [x]L with L ∈ 2{1,...,n} ∩ Nd)): upon error in the following, abort with Outer← ().

If leaked = 0: Inner← (gethist); Inner→ (“e”, “W”); leaked← 1; Outer←$ ξ(aenc(0k)).

Fig. 4: Simulator SI2P for the construction of PM〈Φk〉 from IMD〈Φ, n, d〉 using a (Φ, n, d, k)-
AoNT (aenc, adec).

Theorem 1. If (aenc, adec) is an ε-secure (Φ, n, d, k)-AoNT, then

IMD〈Φ, n, d〉 π,σ,ε PM〈Φk〉 ,

where π = I2P〈Φ, k, aenc, adec〉 (Figure 3) and σ = SI2P〈Φ, n, d, k, aenc〉 (Figure 4).

A similar theorem can be stated for the computational case.

Proof. We now prove that all distinguishers have at most advantage ε in distinguishing
I2P〈Φ, n, aenc, adec〉IMD〈Φ, n, d〉 (the “real world”) from PM〈Φk〉SI2P〈Φ, k, d, n, aenc〉 (the “ideal
world”).

Consider a system W that interacts with any distinguisher D and that behaves like the
ideal world except that, instead of outputting ξ(aenc(0k)) during a leak, W plays the AoNT
distinguishing game with ξ and 0k and the message µ that was stored in the memory, obtains
(0k, µ, ω) from that game, and outputs ω on leak. W outputs the same value as D. If D never
triggers a leak, W outputs a random bit.

It is easy to see that if the leakage output by the AoNT privacy game corresponds to the
message 0k, the behavior of W is exactly the same as the ideal world for D, and if the distribution
output by the AoNT privacy game corresponds to µ, the behavior of W is exactly the same as
the real world for D. W’s advantage in the AoNT distinguishing game is thus not less than the
distinguishing advantage of D. ut

Multi-part leakage. It is sometimes the case that the memory is segmented into multiple inde-
pendent parts, e.g., over two different file systems on different partitions of the same physical
disc, and that each part reacts differently to an attack.

We define a multi-part memory resource IMDP〈Φ, s1, s2, d〉 storing data in Φs1+s2 . The mem-
ory is divided into two parts, the first part consisting of the first s1 symbols and the second of
the other s2 symbols. The first part of the memory leaks similarly to IMD〈Φ, s1, d〉, whereas the
second one leaks the entire data. When attacking the memory, the adversary must submit the
choice of leakage for the first part before obtaining the leakage of the second part. We get the
following theorem, the proof of which is similar to the one of Theorem 1 and is omitted.

11

The simulator SE2R〈n, d, p〉:
Internal state and initial values: leaked = 0.
Behavior:

– Outer(gethist): Inner← (gethist). Inner→ λ. Outer← λ.
– Outer(read): Inner← (read). Inner→ µ. Outer← µ.
– Outer(leak): Inner← (gethist). Inner→ λ.

if leaked = 0 ∧ λ = (“e”, “W”):
leaked← 1; b← 0n; ω ← (⊥, . . . ,⊥) with |ω| = n;
for i ∈ {1, . . . , n}, set bi ← 1 with probability p;
if
∑
i bi > d, then abort with Outer← ();

ξ ← {i | bi = 1}; add additional indices to ξ until ξ ∈ (2{1,...,n} ∩ Nd);
Inner← (leak, ξ); Inner→ δ;
for all i where bi = 1, set ωi to the corresponding value in δ; Outer← ω.

Fig. 5: The simulator SE2R for the construction of IMD〈Φ, n, d〉 from IMI〈Φ, n, p〉.

Theorem 2. If (aenc, adec) is an ε-secure (Φ, s1 + s2, d, k)-AoNT with public part s2, then

IMDP〈Φ, s1, s2, d〉
π,σ,ε

PM〈Φk〉 ,

where π = I2P〈Φ, k, aenc, adec〉 (Figure 3) and σ = SI2P (Figure 4).

A similar theorem can be stated for the computational case.

Choice of alphabet. The most suitable choice of Φ depends on the application. Possible values
are GF(2) when bits can be leaked independently, e.g., because the adversary must read them
one by one from the surface of a disc; GF(2512·8) to GF(24096·8) when the smallest leakable unit
is a file system block; or even GF(2128·1024·8) to GF(28192·1024·8) when the smallest leakable unit
is an erase blocks of an SSD. In the latter two cases, it is also possible to design the system
in such a way that only parts of a block are written to before proceeding with the next one,
thereby reducing the alphabet size and limiting the amount of exposure per leaked block.

4.2.2 Amplifying Memory Leaking Symbols with Probability p

Above, we modeled an adversary who chooses which symbols leak from the imperfect memory.
In practice, the adversary may not have that much power: for example, some parts of a deleted
file might still be present in the journal, but the adversary has no control over which ones. To
model this, let us now consider an adversary who obtains each symbol of the data uniformly and
independently at random with a certain probability p during a leakage. We denote a memory
with such a behavior by IMI〈Φ, n, d〉. This resource is a specialization of IM〈Σ,ψ,Ξ〉 in which
Σ = Φn, ψ acts like an erasure channel with erasure probability (1 − p) (i.e., each symbol of
the data is transmitted correctly with probability p and otherwise is replaced with “⊥”), and
Ξ accepts only the identity function.

In constructions, one can treat IMI〈·〉 similarly to IMD〈·〉, with just a small statistical error,
as the following observation shows. Constructing PM〈Φk〉 from IMI〈Φ, n, p〉 directly without first
constructing IMD〈Φ, n, d〉 might be more efficient (better parameters, less statistical error), but
such a direct construction exceeds the scope of this paper.

Observation 1 For all (n, d) ∈ N2, p ∈ [0, 1], and fields Φ, we have that

IMI〈Φ, n, p〉 id,σ,ε
IMD〈Φ, n, d〉, where id is the identity converter, σ = SE2R (Figure 5), and

ε = (1− BinomialCDF(d;n, p)) =
∑n

i=d+1

(
n
i

)
pi · (1− p)n−i.

Proof. It has to be shown that IMI〈Φ, n, p〉 and IMD〈Φ, n, d〉 composed with SE2R〈n, d, p〉 can
be distinguished with advantage at most (1− BinomialCDF(d;n, p)).

12

It is easy to see that if the simulator does not abort, then the simulation is perfect. As
the number of bits of b set to 1 follows a binomial distribution with parameters n and p, the
probability of an abort is (1 − BinomialCDF(d;n, p)). Hence the maximal advantage of any
distinguisher is (1− BinomialCDF(d;n, p)). ut

4.2.3 Amplifying Memory with Noisy Leakage

Another possible setting is that the data is written to and erased from magnetic storage, and
the adversary, who has physical access to the storage medium, must make an educated guess
for each bit of the data [12]. One can model this as if the data was transmitted through a
noisy binary symmetric channel. We denote such a memory by IMN〈Φ, n, d〉. This resource is a
specialization of IM〈Σ,ψ,Ξ〉 in which Σ = Φn, ψ acts like a noisy |Φ|-ary channel with crossover
probability (1 − p)/|Φ| (i.e., each symbol of the data is transmitted correctly with probability
p and otherwise is replaced with a symbol drawn uniformly at random from Φ), and Ξ accepts
only the identity function.

Observation 2 For all (n, d) ∈ N2, p ∈ [0, 1], and fields Φ we have that

IMN〈Φ, n, p〉 π,σ,0 IMI〈Φ, n, p〉, where π = id is the identity converter and σ is the simulator
that replaces all erased symbols in the leakage by random symbols.

4.2.4 Amplifying Memory with Limited Leakage Output

Another possible setting is that the adversary does not obtain individual symbols of the data
but rather a function of the data. For example, with a cache-timing attack [2], she might deduce
some information about the data without recovering it completely. In general, one can consider
an adversary that obtains any length-shrinking function of the contents of the memory. We
denote such a memory by IML〈Σ, v〉. This resource is a specialization of IM〈Σ,ψ,Ξ〉 in which
ψ is the identity function and Ξ accepts only functions that have at most v different output
values.

For any non-trivial parameters, it is not possible to construct a perfectly erasable memory
from IML〈·〉, because the adversary can submit a leakage function ξ ∈ Ξ that runs the decoding
logic of the converter. The reason for this is as follows. Let v ≥ 2, |Σ′| ≥ 2, |Σ| ≥ 2, and let
π be a converter that constructs PM〈Σ′〉 from IML〈Σ, v〉. We now show that this construction
has a statistical error of at least 1

2 . The distinguisher chooses two distinct messages a0, a1 ∈ Σ′,
flips a coin b ←$ {0, 1}, and stores ab. It then makes the memory weak by setting the relevant
flags on the World interface, and submits a leakage function ξ that returns 0 iff a0 was encoded
in IML〈·〉 by using the decoding logic of π—recall that the distinguisher may depend on π. The
distinguisher then outputs 1 iff ξ outputs b. No simulator will be able to properly simulate that
scenario with probability more than 1

2 as it does not know whether the distinguisher stored a0
or a1.

However, one can obtain a meaningful construction by starting from a memory resource with
multi-part leakage. Let IMLP〈Φ, s1, s2, v〉 be analogous to IMDP〈Φ, s1, s2, d〉 defined previously,
except that the first part leaks similarly to IML〈Φs1 , v〉. Here it is crucial to note that the
function ξ submitted by the adversary can read only the first part of the memory. In particular,
given a universal hash function h : Φa × Φn 7→ Φk, one can construct the resource PM〈Φk〉
from IMLP〈Φ, n, a+ k, v〉, by using I2P with an AoNT obtained from a universal hash function
(see A.3). The construction is (2v2(k−n)/2)-secure [5,7]. This construction is essentially the one
proposed by Canetti et al. [6] and Lim [16].

4.3 Constructing a Large Perfectly Erasable Memory from a Small One

We now discuss how a small perfectly erasable memory can be used together with a large,
possibly non-erasable memory to construct a large perfectly erasable memory. The basic idea

13

(a) Resource PMWa〈Σ〉
denotes PMW〈Σ, {K, C}, ρa〉,
where ρa(hist) is true iff: hist starts
with
(K) or (C).

s

R R s

s s

s s

K C e

C

C

K

K

(b) Resource PMWb〈Σ〉
denotes PMW〈Σ, {K, C}, ρb〉,
where ρb(hist) is true iff: hist
starts with
(K, C), (K, “e”, C), or (C, K).

s

R

R

s

s s

s s

K C e

C

C

C

C

K

K

K

K

ee

R

s s

s s

s

(c) Resource PMWc〈Σ〉
denotes PMW〈Σ, {K, C}, ρc〉,
where ρc(hist) is true iff: hist starts
with
(K, C), (K, “e”, C), or (C).

s

R

R

s

s s

s s

K C e

C

C

C

C

K

K

e

Rs

s

Fig. 6: Several variants of a perfectly erasable memory resource with two World flags. The prefix
decision trees visualize whether the adversary has read access to the memory depending on the
event history hist. A branch labelled “e” represents an erasure event, and branches labelled “K”
(key) or “C” (ciphertext) represent the setting of the corresponding flags on the World interface.
An “R” node means that the memory is readable (and allows the adversary to collect the data
at any time from then on), and an “s” (secure) node means that it does not.

Converter XPM〈`, prg〉
Behavior:

– Outer(store, µ ∈ GF(2`(η))): sk ←$ GF(2η). δ ← prg(sk) + µ. Inner← (PM, store, sk).
Inner→ (). Inner← (NM, store, δ). Inner→ (). Outer← ().

– Outer(retrieve): upon error in the following, abort with Outer← ().
Inner← (PM, retrieve). Inner→ sk ∈ GF(2η).
Inner← (NM, retrieve). Inner→ δ. µ← δ − prg(sk). Outer← µ.

– Outer(erase): Inner← (PM, erase); Inner→ (). Outer← ().

Fig. 7: Converter XPM for constructing a large perfectly erasable memory PMWa〈GF(2`(η))〉
or PMWc〈GF(2`(η))〉 using a small perfectly erasable memory PM〈GF(2η)〉 and a large non-
erasable memory NM〈GF(2`(η))〉. The converter is parametrized by an `-PRG prg, and the
implicit security parameter η.

underlying this construction is that of Yee et al.’s crypto paging [24, 25]: one stores a cryp-
tographic key in the small perfectly erasable memory, encrypts the data with that key, and
stores the resulting ciphertext in the large, possibly non-erasable memory. The resulting re-
source PMWa〈GF(2`(η))〉 will allow the adversary to read the stored data if the resource is
weakened by the environment before the user erases the key. The specification of this resource
is given in Figure 6a, and the protocol XPM for the construction is provided in Figure 7.

The resource just constructed allows the adversary to read the stored data if either the small
erasable or the large non-erasable memory becomes weak before the user erases the key. Thus,
this resource is weaker than what one would expect, i.e., the adversary should only be able
to read the data if both underlying resources become weak before the user erases the key. The
corresponding resource PMWb〈GF(2`(η))〉 is depicted in Figure 6b. Unfortunately, the realization
of this resource would require a non-committing and non-interactive encryption scheme, which
can only be constructed in the random oracle model but not in the standard model.

However, it is possible to construct the somewhat better resource PMWc〈GF(2`(η))〉, shown
in Figure 6c. Here the adversary can read the stored data if the memory storing the ciphertext
becomes weak before the user calls delete. It is not hard to see that PMWc〈GF(2`(η))〉 implies
PMWa〈GF(2`(η))〉: essentially the simulator attached to the Eve interface of PMWa〈GF(2`(η))〉

14

Simulator SXPM〈`, prg, ρ〉
Internal state and initial values: ct = ⊥, sk = ⊥.
Behavior:

– Outer(PM, gethist): Inner← (gethist). Inner→ λ.
Remove any “C” from λ. Outer← λ.

– Outer(NM, gethist): Inner← (gethist). Inner→ λ.
Remove any “K” and “e” from λ. Outer← λ.

– Outer(PM, read): Inner← (gethist). Inner→ λ.
If λ does not start with (“K”) nor (“C”, “K”): abort with Outer← ().
If sk = ⊥: sk←$ GF(2η).
Outer← sk.

– Outer(NM, read): Inner← (gethist). Inner→ λ.
If “C” 6∈ λ: abort with Outer← ().
If sk = ⊥: sk←$ GF(2η).
If ct = ⊥ ∧ ρ(λ): Inner← (read); Inner→ µ; ct← µ+ prg(sk).
If ct = ⊥: ct←$ GF(2`(η)).
Outer← ct.

Fig. 8: Simulator SXPM for the proof of the construction of PMWc〈GF(2`(η))〉 from PM〈GF(2η)〉
and NM〈GF(2`(η))〉 using converter XPM〈`, prg〉 and with ρ := ρc. The same simulator with
ρ := ρa can be used in the construction of PMWa〈GF(2`(η))〉.

has to hold back the leaked data until the non-erasable memory becomes leakable.

Theorem 3. If prg is a secure `-PRG, then[
PM〈GF(2η)〉,NM〈GF(2`(η))〉

] π,σ,ε
PMWc〈GF(2`(η))〉 ,

where π = XPM〈`, prg〉 (Figure 7), σ = SXPM (Figure 8), and ε is a negligible function.

Proof. For the sake of contradiction, let us assume the existence of an effi-
cient distinguisher D that has non-negligible advantage in distinguishing between
the “real world” XPM〈`, prg〉[PM〈GF(2η)〉,NM〈GF(2`(η))〉] and the “ideal world”
PMWc〈GF(2`(η))〉SXPM〈`, prg, ρa〉. (We assume that the difference on the World inter-
face is taken care of implicitly.) We show how to construct an efficient distinguisher W with
non-negligible advantage for the PRG distinction game.

W behaves like the ideal world, except that, when asked to leak the non-erasable memory
when the “C” World flag was set after the data was erased but before the “K” World-flag was
set (in the sequel, we call this the (“e”, “C”)-event), W obtains a challenge c from the PRG
distinction game and outputs (c + µ). W then outputs the same thing as D. If D terminates
without having provoked the (“e”, “C”)-event, W outputs a random bit.

Note that W is constructed in such a way that the following applies:

– If the (“e”, “C”)-event does not happen, then the real and ideal worlds are perfectly
indistinguishable.

– If the PRG distinction game outputs c = prg(sk), then W behaves exactly like the real
world to D.

– If the PRG distinction game outputs a random c, then W behaves exactly like the ideal
world to D.

Hence WD has the same non-negligible advantage in the PRG distinction game as D has in
distinguishing the real and the ideal world. ut

As stated above, XPM also constructs PMWa〈GF(2`(η))〉 from the same resources. Further-
more, in the random oracle model, a protocol that is identical to XPM except that calls to

15

prg are replaced by calls to the random oracle, constructs PMWb〈GF(2`(η))〉 from the same
resources.

Let us discuss now our the memory resources just discussed in the light of some secure mem-
ory constructions in the literature. As mentioned, Yee et al. introduce crypto paging [24, 25]
to let a secure co-processor encrypt its virtual memory before paging it out to its host’s phys-
ical memory or hard disk. Translated to our setting, this means that the non-erasable mem-
ory is weak from the beginning. Therefore, to get meaningful guarantees, only the resource
PMWb〈GF(2`(η))〉 can be used in their setting. The other two resources would allow the adver-
sary to always read the data. Thus, to realize their system, Yee et al. require a non-committing
and non-interactive encryption scheme (and hence random oracles).

Di Crescenzo et al. [9] consider a memory resource that allows one to update the stored
data such that when the resource becomes weak the adversary can only read the data stored
last. They then provide a construction for a large such resource from a small one and a large
non-erasable memory. Again they assume that for both resources the data can be updated and
that the non-erasable one leaks all data ever stored in it. None of our resources allows such
updates but, as discussed, resources that allow this can be constructed by using several of our
resources in parallel. Thus, their security definition and construction can be indeed modeled
and analyzed with the memory resources we define. However, doing this exceeds the scope of
this paper.

5 New Realizations of All-or-Nothing Transforms

In Section 4 we saw the importance of AoNTs for constructing perfectly erasable memory from
certain types of imperfectly erasable ones. In this section, we present several novel AoNTs.
We start by showing the dual of the I2P protocol: any protocol that constructs PM〈Φk〉 from
IMD〈Φ, n, d〉 can be used to realize a (Φ, n, k, d)-AoNT. We then present a perfect AoNT with
better parameters than what is found in the literature, based on the novel concept of ramp
minimum distance of a matrix. We next show that one can combine several AoNTs to achieve
an AoNT over a small field but with a large message space and a good privacy threshold d.
Finally, we provide a computationally-secure AoNT over a large field that has a very large
privacy threshold.

5.1 AoNT from a Protocol that Constructs PM〈Φk〉 from IMD〈Φ, n, d〉
Section 4.2.1 described the protocol I2P, parametrized by an AoNT, that constructs a perfectly
erasable memory PM〈Φk〉 from an imperfectly erasable one IMD〈Φ, n, d〉. As the following the-
orem states, any protocol π (not necessarily one based on an AoNT) that constructs PM〈Φk〉
from IMD〈Φ, n, d〉 can be used to construct an AoNT using algorithm C2A, albeit one where
adec is a probabilistic algorithm and where decoding might fail with a small probability.

Theorem 4. If (π, σ, ε) are such that IMD〈Φ, n, d〉 π,σ,ε PM〈Φk〉, then the algorithm
C2A〈Φ, n, k, π〉 shown in Figure 9 is a 6ε-secure (Φ, n, d, k)-AoNT with a probabilistic adec and
where decoding may fail with probability less than 2ε.

One can make an analogous statement in the computational case.

Proof. We first consider correctness and then privacy.

Correctness. We first show that if there exists a message µ such that encoding and decoding fail
with probability at least 2ε, then the distinguisher D shown in Figure 10 distinguishes between
the “real world” πIMD〈Φ, n, d〉 and the “ideal world” PM〈Φk〉σ with advantage at least ε for
any σ, which would be a contradiction. Let Y denote the system with which D is interacting.
Let x be an integer such that (14)x < ε.

16

Algorithm C2A〈Φ, n, k, π〉
Behavior:

– aenc(µ ∈ Φk): π.Outer← (store, µ).
While true:

If π.Inner→ (store, φ ∈ Φn): return φ.
Else if anything is sent by π.Inner: π.Inner← ().
Else: abort by returning ⊥.

– adec(φ ∈ Φn): π.Outer← (retrieve).
While true:

If π.Inner→ (retrieve): π.Inner← φ.
Else if π.Outer→ µ ∈ Φk: return µ.
Else if π.Inner→ (erase): abort by returning ⊥.
Else if anything is sent by π.Inner: π.Inner← ().
Else: abort by returning ⊥.

Fig. 9: Algorithm C2A realizes a (Φ, n, d, k)-AoNT from a converter π which constructs PM〈Φk〉
from IMD〈Φ, n, d〉.

Distinguisher D〈µ, x〉
Upon error in any of the following, abort and return 1.

Do x times: Y.Alice← (retrieve); Y.Alice→ ().
Y.Alice← (store, µ). Y.Alice→ ().
Do x+ 1 times: Y.Alice← (retrieve); Y.Alice→ µb.
Y.Alice← (erase). Y.Alice→ ().
Do x times: Y.Alice← (retrieve); Y.Alice→ ().
Return 0.

Fig. 10: The distinguisher for the correctness condition of Theorem 4.

Note that σ is never activated, hence D works for all simulators.

It is clear that if D interacts with the ideal world, D always outputs 0. When interacting
with the real world, intuitively, D outputs 1 if encoding or decoding failed, i.e., with probability
2ε. However, one has to take possible “malicious behavior” of π into account: it is possible that
C2A〈Φ, n, k, π〉 fails because π issued an erase command during retrieval or because π never
stored anything in the memory, but D outputs 0 anyway.

Recall that π cannot keep state between phases. Hence if π issued an erase command during
the first retrieval in the second loop, π cannot distinguish between any of the retrieval phases
in the second and third loops. Let y denote the probability that π returns µ if faced with an
empty memory. The probability that no error happens in D if the memory was erased during
the first retrieve by π, is thus at most yx · (1− y)x < (14)x < ε. A similar argument shows that if
π never stored anything in the memory during the store command, then π cannot distinguish
any of the retrieval phases in the first and second loops. The probability that no error happens
is thus also smaller than ε. Hence the distinguishing advantage is at least 2ε− ε = ε.

Privacy. We now show that if there exists a distinguisher W for the AoNT distinguishing game
with advantage at least 6ε on a set ξ with messages µ0 and µ1, then the distinguisher D shown
in Figure 11 that distinguishes between the “real world” πIMD〈Φ, n, d〉 and the “ideal world”
PM〈Φk〉σ has a distinguishing advantage of at least ε for any σ, which would be a contradiction.
Let Y denote the system with which D is interacting. Let x be an integer such that (14)x ≤ ε.

It is clear that D never aborts in the first part if it interacts with the ideal world (recall that
up to now σ was never activated).

It is also clear that if D interacts with the real world and if something was stored in the
memory and the memory has been erased D never aborts in the second part (recall that D does

17

Distinguisher D〈µ0, µ1, ξ, x,W〉:
Upon error in the following “first part”, abort and return 1.

Do x times: Y.Alice← (retrieve); Y.Alice→ ().
b←$ {0, 1}. Y.Alice← (store, µb). Y.Alice→ ().
Do x times: Y.Alice← (retrieve); Y.Alice→ µb.
Y.Alice← (erase). Y.Alice→ ().
Do x times: Y.Alice← (retrieve); Y.Alice→ ().
Y.World← (weaken). Y.World→ ().

Upon error in the following “second part”, abort and return 0.
Y.Eve← (leak, ξ). Y.Eve→ λ ∈ Φd.

W← (µ0, µ1, λ). W→ g. If b = g: return 1. Else: return 0.

Fig. 11: The distinguisher for the privacy condition of Theorem 4.

not interact with π in the second part).
Let us calculate the probability that π did not erase the memory and that no error happened

during the first part. Recall that π does not keep state between phases. As π does not erase the
memory in any of the 2x retrieve queries following the store command, the memory behaves
identically in all queries, and thus π cannot determine which query number it is currently
servicing. Hence for a given µb, there must be a constant probability y that π returns µb in a
retrieve phase. Also, π must return µb as expected in all x queries of the second loop (probability
= yx) and return () as expected in all x queries of the third loop (probability at most (1− y)x).
The probability is thus (y · (1− y))x ≤ (14)x.

If no error occurred in D, and D interacted with the ideal world, it is clear that leakage λ is
independent of the bit b chosen, hence W cannot have any advantage in the AoNT distinction
game.

If D interacted with the real world, and if the memory contains the value that would have
been returned by C2A.aenc, W will output the correct guess with probability at least 1

2 + 3ε.
Similar to the correctness condition, it is possible that π did not store anything in the memory
during the store command: this happens with probability at most (14)x. Thus if D interacted
with the real world, and no error occurred, then the probability that W outputs the correct
guess will be at least 1

2 + 3ε− (14)x.
To conclude, the distinguishing advantage of D is at least 3ε− 2 · (14)x ≥ ε, as required. ut

5.2 Perfectly Secure AoNT Based on Matrices with Ramp Minimum Distance

This subsection shows how one can improve the standard realization of AoNTs based on linear
block codes of Canetti et al. [5] by using our novel concept of ramp minimum distance.

The standard realization. Let G be the k × n generator matrix with elements in GF(q) of
a linear block code with minimum distance d. The encoding function of the perfectly secure
(GF(q), (n+ k), d, k)-AoNT is as follows:

aenc(a ∈ GF(q)k) : b←$ GF(q)n;y ←
[
In 0
G Ik

] [
b
a

]
; return y.

Further details are given in Appendix A.2.
Let us now show how to use the concept of ramp minimum distance to construct better

AoNTs.

Definition 5. A k× n matrix G with elements in GF(q) has ramp minimum distance d if for
every r ∈ {1, . . . , k}, every r × (n− (d− r)) submatrix of G has rank r.

Note that the concept of (regular) minimum distance comes from coding theory, and requires
that all k × (n − (d − 1)) sub-matrices of G have rank k (which is equivalent to saying that

18

for every r ∈ {1, . . . , k}, all r × (n − (d − 1)) sub-matrices of G have rank r), where G is the
generator matrix of a linear block code. A matrix with minimum distance d also has a ramp
minimum distance d (the converse is obviously not true).

Here is an example of a 6× 24 matrix over GF(2) with Ramp Minimum Distance 12 found
using exhaustive search:

G =

111101101110000010111000
111111001111010101011111
011100111010001100001111
100110010110110011011010
110001100110100011000111
111110010100001001100110

 .
Now, from a generator matrix with ramp minimum distance, we can construct an AoNT

and thus obtain the following theorem.

Theorem 5. The standard realization of an AoNT (sketched above and detailed in Ap-
pendix A.2), parametrized by a k × n matrix G with elements in GF(q) with ramp (instead
of regular) minimum distance d, is a perfectly secure (GF(q), (n+ k), d, k)-AoNT.

Proof. We now show that the privacy threshold of the AoNT is at least d. For any set L of size
d, let r denote the number of elements of x output by the AoNT distinguishing game (therefore
d − r elements of b are output by the game). Let kb denote the sub-vector of b of size d − r
containing all elements of b that are output by the AoNT distinguishing game, and let ub denote
the sub-vector of size n + r − d containing the elements that are not output. Similarly, let kx
denote the sub-vector of x of size r that is output by the AoNT distinguishing game, and let
ux denote the sub-vector of size k − r containing the elements that are not output. Let P be
the permutation matrix such that

P

[
b
x

]
=

ub
kb
kx
ux

 .
Let kuG, kkG, uuG, ukG be sub-matrices of G, and let ka and ua be the sub-vectors of a such
that

In+r−d 0 0 0
0 Id−r 0 0
kuG kkG Ir 0
uuG ukG 0 Ik−r

 := PMP T and

ub
kb
ka
ua

 := P

[
b
a

]
.

We thus have
ub
kb
kx
ux

 = P

[
b
x

]
= PM

[
b
a

]
= PMP TP

[
b
a

]
=

In+r−d 0 0 0
0 Id−r 0 0
kuG kkG Ir 0
uuG ukG 0 Ik−r

ub
kb
ka
ua

 =

ub
kb

kuGub + kkGkb + ka
uuGub + ukGkb + ua

 .
As G has ramp minimum distance d, the r× (n− (d− r)) sub-matrix kuG has rank r, thus

kuGub is uniformly distributed. Therefore

[
kb
kx

]
, which is the output of the AoNT distinction

game, is uniformly distributed and independent of a. This concludes the proof. ut

19

It remains to find a matrix with a desired ramp minimum distance. One way is to chose a
random matrix, as shown by the following theorem.

Theorem 6. For all (n, k, d) ∈ N3, and all prime powers q, a k × n matrix in which all
elements were chosen independently and uniformly at random over GF(q), has ramp minimum
distance d with probability at least

1−
k∑
i=1

(
k

i

)
(q − 1)iq(Hq(

d−i
n)−1)n ,

where Hq (x) :=

{
0 if x = 0 or x = 1;
x logq(q−1)− x logq(x)− (1−x) logq(1−x) if 0<x<1.

Proof. Let HW(w), the “Hamming weight,” denote the number of non-zero entries of a vector
w. Let HBq(n, r), the “Hamming ball,” denote the set of vectors of length n in GF(q) that have
a Hamming weight of at most r.

Further, let MCq(k), the “minimal codewords,” be the set of row vectors of length k in
GF(q) whose leading non-zero entry is 1.

From the definition of the ramp minimum distance, it follows that a (GF(q), n, k)-linear
block code with generator matrix G has ramp minimum distance d if

∀w ∈ MCq(k) : wG 6∈ HBq(n, d−HW(w)) .

As the coefficients of G are chosen independently and uniformly at random, the codeword
wG is distributed uniformly. The probability that wG is in some Hamming ball of radius r
thus is

Pr [wG ∈ HBq(n, r)] =
|HBq(n, r)|

qn
=

∑r
i=0

(
n
i

)
(q − 1)i

qn
≤ qHq(

r
n)·n

qn
= q(Hq(

r
n)−1)·n .

Using the union bound (Boole’s inequality), we have

Pr [∃w ∈ MCq(k) : wG ∈ HBq(n, d−HW(w))] ≤
∑

w∈MCq(k)

Pr [wG ∈ HBq(n, d−HW(w))]

≤
∑

w∈MCq(k)

q

(
Hq

(
d−HW(w)

n

)
−1

)
·n

=
k∑
i=1

(
k

i

)
(q − 1)iq(Hq(

d−i
n)−1)·n .

The probability that G has ramp minimum distance d is therefore at least

Pr [G has ramp minimum distance d] = Pr [∀w ∈ MCq(k) : wG 6∈ HBq(n, d−HW(w))]

= 1− Pr [∃w ∈ MCq(k) : wG ∈ HBq(n, d−HW(w))]

≥ 1−
k∑
i=1

(
k

i

)
(q − 1)iq(Hq(

d−i
n)−1)·n .

ut

20

Unfortunately, we do not know any efficient method to check whether a random matrix has a
given ramp minimum distance. For practical parameters, however, it is feasible to generate and
test such matrices with small values of k and d (e.g., smaller than 20).

Better AoNTs using our realization. Given a fixed size, it is sometimes possible to find matrices
with a given ramp minimum distance, but no matrix with the same (regular) minimum distance.
Hence AoNTs based on matrices with a ramp minimum distance can achieve better parameters
than previously known realizations. We now illustrate this fact with a numerical example. Let us
determine the best message length k that a perfect AoNT with fixed parameters n = 30, d = 12,
and q = 2 can achieve with both our realization and the standard realization. Both realizations
will require a matrix with (30− k) rows and (ramp or regular, respectively) minimum distance
d = 12. First, observe that there exists a 6×24 matrix over GF(2) with ramp minimum distance
12 (i.e., the example matrix shown earlier that we have found with exhaustive search). Hence
using our realization, we can achieve k = 6. Plotkin [19] showed that a binary code with block
length 2d and distance d can have at most 4d codewords. Hence there cannot exist a 6 × 24
matrix with (regular) minimum distance d = 12 (as it would generate a code with 26 = 64
codewords, which is more than 4d = 48). The best AoNT one can hope for using the standard
realization thus has k = 5.

Statistical security. Theorem 6 stated that by choosing a random generator matrix, one can
achieve a certain ramp minimum distance with a certain probability (1 − ε). If one uses our
realization, but without checking that the matrix actually has the required ramp minimum
distance, then the resulting AoNT will be perfectly secure with probability (1− ε). (Note that
this is different from saying that the AoNT is ε-secure, as the randomness used to generate the
AoNT is not part of the distinguishing experiment.) In practice, one can make ε very small,
e.g., ε < 2−η, and, to realize an AoNT, it might be acceptable to choose a random matrix and
not check its properties.

5.3 Realizing a Perfectly Secure AoNT over a Small Field by Combining AoNTs

Designing perfectly-secure AoNTs over very small fields, e.g., GF(2), is hard. The realization
described above does not scale well to large message lengths k and large privacy thresholds d;
and realizations based on Shamir’s secret sharing scheme are always over large fields—using such
a (GF(2a), n, d, k)-AoNT unmodified over GF(2) instead would result in a (GF(2), an, d, ak)-
AoNT with a poor privacy threshold d. The leakage of any GF(2) element means that the entire
original GF(2a) element is compromised. We now show how to combine the two approaches to
realize a perfectly secure AoNT over a small field, but with large k and d.

Our realization requires two AoNTs, a “fine-grained” one and a “coarse-grained” one, op-
erating over a small field S and a large field L, respectively. We require that the number of
elements of L be a power of that of S and that ks = log(|L|)/ log(|S|) be true. We need to
interpret a string of k`ks elements from S as a string of k` elements of L, an operation we
denote by S.L. The converse operation is denoted L.S.

The encoding function of our combined AoNT then works as follows. One first applies the
coarse-grained AoNT to the whole data vector and then the fine-grained AoNT to each element
of the result:

aenc(a ∈ Sksk`) : x ←$ aenc`(S.L(a));∀j ∈ {1, . . . , n`} : b[j] ←$ aencs(L.S(x[j])); return b.

It is easy to see how the decoding function adec of the combined AoNT works and it is thus
omitted.

Theorem 7. Given a perfectly secure (S, ns, ds, ks)-AoNT (aencs, adecs) and a perfectly secure
(L, n`, d`, k`)-AoNT (aenc`, adec`) such that ks = log(|L|)/ log(|S|), the AoNT (aenc, adec) de-
scribed above is a perfectly secure (S, nsn`, (ds + 1)(d` + 1)− 1, ksk`)-AoNT.

21

Proof. We now show that the combined scheme is secure. For any set E of at most (ds +

1)(d` + 1) − 1 elements of {1, . . . , ksk`} and any two challenge messages a1,a2 ∈ Sk
sk` , let E′

be the following set: E′ contains the integer e ∈ {1, . . . , n`} if at least (ds + 1) elements of
{(e− 1)ns + 1, . . . , ens} are contained in E. Note that E′ has at most d` elements.

We now show 2n` + 2 distributions, where any two consecutive distributions are perfectly
indistinguishable. The first and the last distributions correspond to the two possible outputs of
the AoNT distinguishing game, hence proving the claim.

Distribution i ∈ {1, . . . , 2n` + 2} is [b]E , where b is calculated as follows:

x←$

{
aenc`(S.L(a1)) if i ≤ n` + 1
aenc`(S.L(a2)) otherwise.

∀j ∈ {1, . . . , n`} : x′[j]←
{

0 if j 6∈ E′ ∧ j + 1 ≤ i ≤ j + 1 + n`

x[j] otherwise.

∀j ∈ {1, . . . , n`} : b[j]←$ aencs(L.S(x′[j])) .

It is easy to see that any two consecutive distributions except (n` + 1) to (n` + 2) are
indistinguishable by the security property of the fine-grained scheme and because at most ds

elements of b affect the output. The distributions (n` + 1) and (n` + 2) are indistinguishable
because of the security property of the coarse-grained scheme and because at most d` elements
of x affect the output. ut

Numerical example. Let us suppose that we are interested in a perfect AoNT that operates over
S = GF(2) and that can store a cryptographic key of size k = 256 bits using at most n = 8192
bits (a kilobyte) of memory.

If we use a (GF(210), 819, 793, 26)-AoNT built according to Franklin and Yung [10] unmod-
ified over the field GF(2), we get a (GF(2), 8190, 793, 260)-AoNT. This AoNT has a privacy
threshold d of only 793 bits.

By combining a (GF(2), 32, 11, 8)-AoNT (which can be found by exhaustive search)
with a (GF(28), 255, 223, 32)-AoNT built according to Franklin and Yung [10], one gets a
(GF(2), 8160, 2687, 256)-AoNT. This AoNT has a much better privacy threshold d of 2687,
i.e., 2687 arbitrary bits may leak to the adversary.

5.4 Computationally Secure AoNT over a Large Field from a PRG

We now present a realization of a computationally secure AoNTs over a large field GF(2η),
where η is the security parameter. Our realization is optimal in the sense that it achieves both
an optimal message length k = n− 1 (thus an optimal rate (n− 1)/n) and an optimal privacy
threshold d = n − 1. That is, the AoNT needs just a single additional element to encode a
message and remains private even if the adversary obtains all except one arbitrary element.

Definition 6. An `-PRG where the output length is a multiple of the input length, i.e., prg :
GF(2η) 7→ GF(2η)`(η)/η, is KD-secure if for all i = 1, . . . , `(η)/η, the following ensembles are
computationally indistinguishable:

– {(x1, . . . , xi−1, x′i, xi+1, . . . , x`(η)/η)}1η , where sk ←$ GF(2η), x ← prg(sk), and x′i ←
xi + sk.

– {x}1η , where x←$ GF(2η)`(η)/η.

Note that this property is somewhat reminiscent of the KDM-CCA2 security of encryption
functions [4].

Our realization, somewhat reminiscent of the OAEP realization of Canetti et al. [5], is as follows:

22

aenc(m ∈ GF(2η)`(η)/η) : sk ←$ GF(2η);x← prg(sk); y ← x + m;

return y||
(
sk +

∑`(η)/η
i=1 yi

)
.

adec(y||z) : return y − prg(z −
∑`(η)/η

i=1 yi).

Theorem 8. Given an `-PRG that is both secure and KD-secure, the realization above yields
a secure (GF(2η), 1 + `(η)/η, `(η)/η, `(η)/η)-AoNT.

Proof. Recall that we need to prove that the output of the AoNT distinguishing game is com-
putationally indistinguishable for any set L of size exactly `(η)/η. Let i denote the index that
is missing from L. We now treat the two cases i = `(η)/η+ 1 and i ∈ {1, . . . , `(η)/η} separately.

Case i = `(η)/η + 1. For any two challenge messages m and m′, we consider the ensembles
{y}1η computed as follows:

1. sk ←$ GF(2η) and y ←m + prg(sk).
2. y ←$ GF(2η)`(η)/η.
3. sk ←$ GF(2η) and y ←m′ + prg(sk).

Ensembles 1 and 2 on the one hand, and ensembles 2 and 3 on the other hand are computation-
ally indistinguishable because the PRG is secure. Therefore ensembles 1 and 3, corresponding
to the two ensembles output by the AoNT distinction game, are also computationally indistin-
guishable.

Case i ∈ {1, . . . , `(η)/η}. For any two challenge messages m and m′, we consider the ensembles
{(y1, . . . , yi−1, yi+1, . . . , y`(η)/η, z)}1η computed as follows:

1. sk ←$ GF(2η); x← prg(sk); y ←m + x; z ← sk +
∑

j yj .
2. Idem, except that z ←$ GF(2η).
3. Idem, except that y ←$ GF(2η)`(η)/η.
4. Idem, except that y ←m′ + x.
5. Idem, except that z ← sk +

∑
j yj .

Ensembles 1 and 2 are computationally indistinguishable because the PRG is KD-secure.
Indeed, for index i, let {(x1, . . . , xi−1, e, xi+1, . . . , x`(η)/η)}1η be the ensemble output from the
PRG KD distinction game. Consider the ensemble {(y1, . . . , yi−1, yi+1, . . . , y`(η)/η, z)}1η , where
for j 6= i : yj ← xj + mj and z ←

∑
j 6=i yj + e + mi. If e is equal to xi + sk , this is exactly

ensemble 1; if e is random, this is exactly ensemble 2.
Ensembles 2 and 3 are computationally indistinguishable because the PRG is secure. In-

deed, let {e}1η be the ensemble output by the PRG security game. Consider the ensemble
{(y1, . . . , yi−1, yi+1, . . . , y`(η)/η, z)}1η , where for j 6= i : yj ← ej + mj and z ←$ GF(2η). If e is
equal to x, this is exactly ensemble 2; if e is random, this is exactly ensemble 3.

Ensembles 3 and 4 are computationally indistinguishable because the PRG is secure. In-
deed, let {e}1η be the ensemble output by the PRG security game. Consider the ensemble
{(y1, . . . , yi−1, yi+1, . . . , y`(η)/η, z)}1η , where for j 6= i : yj ← ej + m′j and z ←$ GF(2η). If e is
random, this is exactly ensemble 3; if e is equal to x, this is exactly ensemble 4.

Ensembles 4 and 5 are computationally indistinguishable because the PRG is KD-secure.
Indeed, for index i, let {(x1, . . . , xi−1, e, xi+1, . . . , x`(η)/η)}1η denote the ensemble output by
the PRG security game. Consider the ensemble {(y1, . . . , yi−1, yi+1, . . . , y`(η)/η, z)}1η , where for
j 6= i : yj ← xj +m′j and z ←

∑
j 6=i yj + e+m′i. If e is random, this is exactly ensemble 4; if e

is equal to xi + sk , this is exactly ensemble 5.
Hence ensembles 1 and 5, corresponding to the ensembles output by the AoNT distinction

game, are computationally indistinguishable. ut

23

In Appendix A.4 we observe that Canetti et al.’s computationally-secure AoNT [5] built by
combining an exposure resilient function (ERF) with a pseudo-random generator (PRG) can
have an essentially arbitrarily high message length k and message rate k/n, but cannot achieve
a very high privacy threshold d.

References

1. C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer. Generalized privacy amplification. IEEE
Transactions on Information Theory, 41(6):1915–1923, 1995.

2. D. J. Bernstein. Cache-timing attacks on AES. Manuscript, April 2005. http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf.
3. G. R. Blakley and C. Meadows. Security of ramp schemes. In CRYPTO’84, vol. 196 of LNCS, pp. 242–268.

Springer, Aug. 1984.
4. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key dependent

chosen plaintext and adaptive chosen ciphertext attacks. In EUROCRYPT 2009, vol. 5479 of LNCS, pp.
351–368. Springer, Apr. 2009.

5. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions and all-or-nothing
transforms. In EUROCRYPT 2000, vol. 1807 of LNCS, pp. 453–469. Springer, May 2000.

6. R. Canetti, D. Eiger, S. Goldwasser, and D.-Y. Lim. How to protect yourself without perfect shredding. In
ICALP 2008, Part II, vol. 5126 of LNCS, pp. 511–523. Springer, July 2008.

7. R. Canetti, D. Eiger, S. Goldwasser, and D.-Y. Lim. How to protect yourself without perfect shredding.
Cryptology ePrint Archive, Report 2008/291, 2008. http://eprint.iacr.org/2008/291.

8. H. Chen and R. Cramer. Algebraic geometric secret sharing schemes and secure multi-party computations
over small fields. In CRYPTO 2006, vol. 4117 of LNCS, pp. 521–536. Springer, Aug. 2006.

9. G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How to forget a secret. In STACS 99, vol.
1563 of LNCS, pp. 500–509. Springer, 1999.

10. M. K. Franklin and M. Yung. Communication complexity of secure computation (extended abstract). In
24th ACM STOC, pp. 699–710. ACM Press, May 1992.

11. P. Gaži, U. Maurer, and B. Tackmann. Manuscript.
12. P. Gutmann. Secure deletion of data from magnetic and solid-state memory. In Proceedings of the Sixth

USENIX Security Symposium, San Jose, CA, vol. 14, pp. 77–89,1996.
13. C. Hazay, Y. Lindell, and A. Patra. Adaptively secure computation with partial erasures. Cryptology ePrint

Archive, Report 2015/450, 2015. http://eprint.iacr.org/2015/450.
14. S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography: Introducing concurrency, removing

erasures. In EUROCRYPT 2000, vol. 1807 of LNCS, pp. 221–242. Springer, May 2000.
15. J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC Press, 2015.
16. D.-Y. Lim. The paradigm of partial erasures. PhD thesis, Massachusetts Institute of Technology, 2008.
17. U. Maurer. Constructive cryptography – a new paradigm for security definitions and proofs. In Theory of

Security and Applications (TOSCA 2011), vol. 6993 of LNCS, pp. 33–56. Springer-Verlag, April 2011.
18. U. Maurer and R. Renner. Abstract cryptography. In ICS 2011, pp. 1–21. Tsinghua University Press, Jan.

2011.
19. M. Plotkin. Binary codes with specified minimum distance. IRE Transactions on Information Theory,

6(4):445–450, 1960.
20. J. Reardon, D. A. Basin, and S. Capkun. SoK: Secure data deletion. In 2013 IEEE Symposium on Security

and Privacy, pp. 301–315. IEEE Computer Society Press, May 2013.
21. J. Reardon, S. Capkun, and D. Basin. Data node encrypted file system: Efficient secure deletion for flash

memory. In Proceedings of the 21st USENIX Conference on Security Symposium, pp. 17–17. USENIX Asso-
ciation, 2012.

22. J. Reardon, H. Ritzdorf, D. A. Basin, and S. Capkun. Secure data deletion from persistent media. In ACM
CCS 13, pp. 271–284. ACM Press, Nov. 2013.

23. R. L. Rivest. All-or-nothing encryption and the package transform. In FSE’97, vol. 1267 of LNCS, pp.
210–218. Springer, Jan. 1997.

24. B. Yee. Using secure coprocessors. PhD thesis, CMU, 1994.
25. B. Yee and J. D. Tygar. Secure coprocessors in electronic commerce applications. In Proceedings of The

First USENIX Workshop on Electronic Commerce, New York, New York, pp. 155–170. 1995.

24

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://eprint.iacr.org/2008/291
http://eprint.iacr.org/2015/450

A Known Constructions of AoNT

In this section we summarize some known constructions of AoNTs that are relevant to this
paper.

A.1 Perfect AoNTs Based on Shamir’s Secret Sharing

Blakely and Meadows’s secret sharing scheme [3] can be used to directly realize a perfect (Φ, (k+
d), d, k)-AoNT for all (k, d) ∈ N2, all fields Φ, and where (2k+ d) < |Φ|. It is based on Shamir’s
secret sharing scheme.

Franklin and Young’s ramp secret sharing scheme [10] can be used to directly realize an
AoNT with the same parameters, but the bound on the field size is now improved to (k+d) < |Φ|.
Their scheme uses polynomial interpolation over GF(|Φ|). In a nutshell, their scheme works as
follows. To encode a message: choose a polynomial of degree (k + d− 1) over GF(|Φ|). Set the
first k coefficients to be equal to the message, and the other d coefficients randomly. Evaluate
the polynomial at (k+ d) distinct non-zero locations. To decode, use Lagrange interpolation to
recover the coefficients of the polynomial.

Working in small fields. The two schemes above require the field size |Φ| to depend on the
parameters k and d. If one needs an AoNT that operates on a smaller field Σ, e.g., GF(2),
one can simply encode each element of Φ as multiple elements of Σ. Thereby one immediately
gets an ε-secure (Σ, (α · (k + d)), d, αk)-AoNT from an ε-secure (Φ, (k + d), d, k)-AoNT, where
α = log(|Φ|)/ log(|Σ|) ∈ N. Note that the AoNT realized only achieves a privacy threshold of d
and not αd: intuitively, if parts of a symbol are leaked, one must consider the whole symbol to
be compromised.

There exist more complex secret sharing schemes that can be use to realize AoNTs with
better parameters, such as Chen and Cramer’s ramp secret sharing scheme [8] based on curves
of high genus. We do not consider their results further in this paper.

A.2 Perfect AoNTs from Linear Block Codes

Linear block codes can be used to create perfect ERFs and thus, by using the standard trans-
formation by Canetti et al. [5], can be used to create perfect AoNTs.

Let G be the k × n matrix with elements in GF(q) with minimum distance d (i.e., G is the
generator matrix of a linear block code with minimum distance d).

Let M be the following (n+ k)× (n+ k) matrix:

M :=

[
In 0
G Ik

]
.

To encode the data column-vector a ∈ GF(q)k, aenc(a) selects a random column-vector b ←
GF(q)n, and returns the vector

y ←M

[
b
a

]
=

[
b

Gb + a

]
:=

[
b
x

]
.

To reconstruct the data, adec(y) computes[
b
a

]
←M−1y =

[
b

x−Gb

]
and outputs a. Hence this AoNT is a perfect (Φ, (n+ k), d, k)-AoNT.

25

A.3 Statistical AoNTs from Universal Hash Functions

Universal hash functions can be used to create very good statistical ERFs, and hence (using
the standard transformation) very good AoNTs [1,5, 6, 16]. Given a {0, 1}ν × {0, 1}n 7→ {0, 1}k
universal hash function h, one can realize the following ({0, 1}, n + (ν + k), d, k)-AoNT with a
(ν + k)-public part:

– aenc(a) : Choose b←$ {0, 1}n and k←$ {0, 1}ν . Set x← h(k, b) +a. Return b||k||x. (Here
k and x are in the public part.)

– adec(b||k||x) 7→ x− h(k, b).

The AoNT is (2 · 2(k+d−n)/2)-secure [5, 7].

A.4 Computational AoNTs

Canetti et al. [5] showed how to stretch the output of an ERF with a PRG to obtain an
ERF with larger output size (but the privacy threshold will remain unchanged). Let erf be a
computationally secure (Φ, n, d, k)-ERF and let prg be a secure (Φ, k,m)-PRG. Then the ERF:
b 7→ prg(erf(b)) is a computationally secure (Φ, n, d,m)-ERF. From that, one can realize a
computationally secure AoNT.

26

	Memory Erasability Amplification
	Introduction
	Contributions of this Paper
	Related Work

	Preliminaries
	Notation
	Constructive Cryptography
	Cryptographic Building Blocks
	All-or-Nothing Transform (AoNT)

	Modeling Imperfectly Erasable Memory
	Specification of the General Imperfectly Erasable Memory Resource M"426830A "526930B
	Instantiations of M"426830A ,,, "526930B

	Constructing Better Memory Resources
	Admissible Converters for Constructions Using Erasable Memory
	Memory Erasability Amplification
	Amplifying Memory Leaking Exactly d Symbols
	Amplifying Memory Leaking Symbols with Probability p
	Amplifying Memory with Noisy Leakage
	Amplifying Memory with Limited Leakage Output

	Constructing a Large Perfectly Erasable Memory from a Small One

	New Realizations of All-or-Nothing Transforms
	AoNT from a Protocol
	Perfectly Secure AoNT Based on Matrices with Ramp Minimum Distance
	Realizing a Perfectly Secure AoNT over a Small Field by Combining AoNTs
	Computationally Secure AoNT over a Large Field from a PRG

	References
	Known Constructions of AoNT
	Perfect AoNTs Based on Shamir's Secret Sharing
	Perfect AoNTs from Linear Block Codes
	Statistical AoNTs from Universal Hash Functions
	Computational AoNTs

