
Revisiting Lexical Signatures to (Re-)Discover
Web Pages

Martin Klein and Michael L. Nelson

Old Dominion University, Department of Computer Science
Norfolk VA 23529

{mklein,mln}@cs.odu.edu

Abstract. A lexical signature (LS) is a small set of terms derived from
a document that capture the “aboutness” of that document. A LS gen-
erated from a web page can be used to discover that page at a different
URL as well as to find relevant pages in the Internet. From a set of ran-
domly selected URLs we took all their copies from the Internet Archive
between 1996 and 2007 and generated their LSs. We conducted an over-
lap analysis of terms in all LSs and found only small overlaps in the
early years (1996−2000) but increasing numbers in the more recent past
(from 2003 on). We measured the performance of all LSs in dependence
of the number of terms they consist of. We found that LSs created more
recently perform better than early LSs created between 1996 and 2000.
All LSs created from year 2000 on show a similar pattern in their perfor-
mance curve. Our results show that 5-, 6- and 7-term LSs perform best
with returning the URLs of interest in the top ten of the result set. In
about 50% of all cases these URLs are returned as the number one result
and in 30% of all times we considered the URLs as not discoved.

1 Introduction

With the dynamic character of the Internet we are often confronted with the
issue of missing web pages. We consider the ubiquity of “404” and “page not
found” responses to be a detriment to the web browsing experience and one not
adequately addressed by the Web community at large. Changes in the URL or
simply discontinued domain registrations can be the reason for these negative
responses but we claim that information on the web is rarely completely lost, it
is just missing. In whole or in part, content is often just moving from one URL
to another. As recent research has shown (2, 10, 15), we can generate lexical
signatures (LSs) from potentially missing documents and feed them back into
what we call the Web Infrastructure (WI) for (re-)locating these documents.
The WI, explored in detail in (4, 9), includes search engines (Google, Yahoo!,
MSN Live), non-profit archives (Internet Archive, European Archive) as well as
large-scale academic projects (CiteSeer, NSDL). All together the WI forms the
basis for this kind of “in vivo” digital preservation.

The question now arises how LSs evolve over time and how that affects their
performance in (re-)discovering web pages. Figure 1 displays the scenario that
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Fig. 1. Flowchart Diagram

motivated this research. In step 1 the browser requests a web page and receives a
404 error. In step 2 it queries the Internet Archive (IA) for a copy of the missing
page. Since the LS is not available when the page is first noticed missing, we
need to “go back in time” in the IA and query for a copy in order to generate
it. Step 3 represents the process of generating a LS from the archived resource
in the IA At last, in step 4, we use the LS to issue a query to one or more
Internet search engines and receive the (new/correct) URL of the page that was
considered missing.

With this research we conduct a baseline test where we assume web pages to
be missing and use their copies from the IA to generate LSs. We submit our LSs
to Google and investigate their performance by analyzing the rank of the URL
of interest as a factor of the “age” of the LS. Another crucial part of this study
is the composition of LSs. We distinguish between number of terms and show
our experiment results with 2- to 10-term LSs. We also conducted an overlap
analysis of all LSs to further investigate their evolution over time.

2 Background

A lexical signature (LS) is a small set of terms derived from a document that
capture the “aboutness” of that document. It can be thought of as an extremely
“lightweight” metadata description of a document as it ideally represents the
most significant terms of its textual content. Table 1 shows three examples of
LSs, the URLs they were generated from and the rank returned by Google (in
01/2008) along with the approximate total results. The first URL and its LS is
taken from Robert Wilensky’s website and is about his web page on a natural
language processing project. We do not know when Wilensky generated that LS
but issuing it to Google returns only that URL. If our intention is to (re-)locate
the missing page only this would obviously be a very good LS. We generated the
second LS in Table 1 in January 2008 and Google returned the URL as the top
result along with more than 170, 000 other potentially relevant results. Thus we
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Table 1. Lexical Signatures generated from URLs

Rank/Total Results URL/Lexical Signature Terms

1/1 http://www.cs.berkeley.edu/˜wilensky/NLP.html
texttiling wilensky disambiguation subtopic iago

1/174,000 http://www.loc.gov
library collections congress thomas american

na/11 http://www.dli2.nsf.gov
nsdl multiagency imls testbeds extramural

still consider it a good LS since the URL is returned as the top result and the
other results can be used to discover relevant pages. But with that many results
it is hard to filter out the most relevant pages which makes the performance of
the LS not optimal. The third LS is taken from Wilensky’s and Phelps article
in D-Lib Magazine from July 2000 (11). Querying Google with the LS returns
11 documents, none of which is the DLI2 homepage. The URL is indexed by
Google so it should have been returned if the document was indexed with these
terms but the LS is clearly dated and fails to discover the desired page.

Phelps and Wilensky (12) first proposed the use of LSs for finding content that
had moved from one URL to another. Phelps and Wilensky defined a “robust
hyperlink”, as a URL with an LS appended as an argument such as:

http://www.cs.berkeley.edu/~wilensky/NLP.html?lexical-signature=
texttiling+wilensky+disambiguation+subtopic+iago

where the LS is everything after the “?” in the URL. They conjectured that
if the above URL would return a 404 error, the browser would look at the LS
appended to the URL and submit it to a search engine to find a similar or
relocated copy. Their claim was “robust hyperlinks cost just 5 words each” and
their preliminary tests confirmed this. The LS length of 5 terms however was
chosen somewhat arbitrarily.

Although Phelps and Wilensky’s early results were promising, there were two
significant limitations that prevented LSs from being widely deployed. First, they
assumed web browsers would be modified to exploit LSs. Second, they required
that LSs be computed a priori. It would be up to the content creator to create
and maintain the LSs. Park et al. (10) expanded on their work, studying the
performance of 9 different LS generation algorithms (and retaining the 5-term
precedent). The performance of the algorithms depended on the intention of
the search. Algorithms weighted for Term Frequency (TF; “how often does this
word appear in this document?”) were better at finding related pages, but the
exact page would not always be in the top N results. Algorithms weighted for
Inverse Document Frequency (IDF; “in how many documents does this word
appear?”) were better at finding the exact page but were susceptible to small
changes in the document (e.g., when a misspelling is fixed). Park et al. measured
the performance of LSs depending on the results returned from querying search
engines and the ranking of the URL of interest in the result set. They do not
compute a performance score but distinguish between four performance classes:
1) the URL of interest is the only result returned 2) the URL is not the only
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one returned but it is top ranked 3) the URL is not top ranked but within the
top ten and 4) the URL is not returned in the top ten.

Harrison et al. (2) developed a system called Opal which uses LSs to find
missing web pages using the WI. Part of their framework is the Opal server
catching 404 errors and redirecting the user to the same page at its new URL or
to a different page with related content.

Wan and Yang (15) explore the “WordRank” based LSs. This LS generation
method takes the semantic relatedness between terms in a LS into account and
chooses “the most representative and salient” terms for a LS. The authors also
examined 5-term LSs only and found (similar to Park et al. (10)) that DF-based
LSs are good for uniquely identifying web pages and hybrid LSs (variations of
TF-IDF) perform well for retrieving the desired web pages. They claim however
that WordRank- based LSs perform best for discovering highly relevant web
pages in case the desired page can not be located.

Staddon et al. (13) introduce a LS-based method for web-based inference
control. Following the TF-IDF method, they extract salient keywords (can be
considered a LS) from private data that is intended for publication on the In-
ternet and issue search queries for related documents. From these results they
extract keywords not present in the original set of keywords which enables them
to predict the likelihood of inferences. These inferences can be used to flag anony-
mous documents whose author may be re-identified or documents that are at
risk to be (unintentionally) linked to sensitive topics.

Henzinger et al. (3) provide related web pages to TV news broadcasts using
a 2-term summary (which again can be thought of as a LS). This summary is
extracted from closed captions and various algorithms are used to compute the
scores determining the most relevant terms. The terms are used to query a news
search engine where the results must contain all of the query terms. The authors
found that one-term queries return results that are too vague and three-term
queries too often return zero results.

3 Experiment Design

The main objective of this experiment is to investigate the evolution of LSs over
time, their term overlap and the performance of LSs in discovering their source
URL. Ideally we would use snapshots of the entire web where one snapshot was
taken every month over the last 15 years, generate LSs for all websites in every
single snapshot and analyze their evolution. The dimensions of this scenario
clearly exceeds those of our project and thus our snapshots contain only a few
hundred web sites from which we derive LSs.

It is not the focus of this paper to compare the performance of LSs generated
by different mathematical equations and various hybrid models (as it is done in
(10)). We use the well known and understood TF-IDF based model to generate
all our LSs for all web sites.

Finding a representative sample of websites is not trivial (14). For simplicity
we randomly sampled 300 websites from dmoz.org as our initial set of URLs.
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Fig. 2. Observations of all URLs from the Internet Archive from 1996 to 2007

From this pool we chose only URLs from the .com, .org, .net and .edu domain,
assuming that these rather frequent domains would have a great amount of
copies in the Internet Archive. The second filter we applied works similar to
that of Park et al. (10). It dismisses a) all non English language websites and b)
all websites with less than 50 words of textual content (HTML code excluded).
This is critical because we need a good body of text to create a reasonable
Lexical Signature which also is of course language specific. Our final set consists
of 98 URLs (78 .com, 13 .org, 5 .net and 2 .edu).

The Internet Archive provides copies of websites from 1996 to the present.
In September 2007 we downloaded all available copies of our URLs from the
IA and call one copy an observation. Figure 2 shows all observations of our 98
URLs in a 12 year time span, starting in January 1996 until September 2007.
The date of observation is represented on the x-axis in a monthly granularity
where the mark for each year is plotted between June and July of each year.
The URLs were ordered alphabetically and are numbered along the y-axis. We
can see that only a few URLs actually have observations in 1996 and 1997, the
earliest observation in fact was made in December of 1996 (3 URLs). The IA
holds only a few observations of our sample URLs in the early years through
2000. The graph becomes more dense however from 2001 on. We also observe a
6-month period in 2005 where the number of observations decrease dramatically.
We do not have an explanation for this gap but we are sharing our results with
the IA in order to find the cause. Figure 2 shows an interesting fact: at any given
point in time at least one of the URLs does not have an observation or, in other
words, at no point in time do we have observations for all our sample URLs.

Generating LSs for websites following the TF-IDF scheme is not trivial. Com-
puting IDF values requires knowledge about: 1) the size of the entire corpus (the
Internet) in terms of number of documents and 2) the number of documents the
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term appears in. A related study (6) investigates different techniques for creating
IDF values for web pages.

TFij =
fij

mi
, IDFj = log2

(
N

nj

)
+ 1 (1)

Equation 1 shows how we computed TF and IDF values. TFij is the term fre-
quency of term j in document i normalized ver the maximum frequency of any
term in i (mi). IDFj is the IDF value of term j with the total number of docu-
ments (in the corpus) N and the number of documents j occurs in nj .

In our experiment we have copies of websites from 1996 through 2007 and want
to compute their LSs. This leaves us with only one option which is to generate a
“local universe” that consists of term frequencies from all downloaded websites
for a particular year. Therefore we isolated the actual textual content of all
websites from HTML code (including JavaScript) and created a data base of
term frequencies for all terms that occur in any website of a certain year. This
results in 12 term frequency data bases (1996-2007) where each of these can be
considered a “local universe”. For each and every single URL we aggregate all
terms per year and generate LSs for each of those years. For example the URL
http://www.perfect10wines.com has observations in the IA in 2005, 2006 and
2007 and so we generate LSs for all three years for this URL. The top ten terms
of each LS along with their TF-IDF score for this URL are shown in Table 2. This
example shows a core of 8 terms that occur in all three years but the ranking
of the terms varies. The dynamics within the LSs, meaning the rise and fall of
words can be seen with terms such as chardonnay (ranked 6 in 2005 and 9 in
2007) and paso (9 in 2005 and 3 in 2007). The example of Table 2 also shows
that we did not apply stemming algorithms (wine and wines) nor eliminate stop
words from the list of terms. It is left for future work to investigate the impact
of stemming and stop word deletion on the LS performance.

In order to be able to compare LSs in overlap over time and their performance
we generate LSs that differ in the number of terms they contain in decreasing
TF-IDF order. Phelps and Wilensky as well as Park et al. chose 5-term LSs
assuming 5 would be good number regarding precision and recall when feeding
the LS back to Internet search engines. We chose a range from 2 terms up to 10
terms and for comparison reasons we also create 15-term LSs.

Table 2. 10-term LSs generated for http://www.perfect10wines.com

2005 2006 2007
Term Score Term Score Term Score

1 wines 8.56 wines 6.52 wines 5.25
2 perfect 5.00 wine 4.80 wine 4.50
3 wine 3.03 perfect 4.70 paso 4.50
4 10 2.60 10 3.45 perfect 4.10
5 monterey 2.24 paso 3.01 robles 3.75
6 chardonnay 2.24 robles 2.89 10 3.40
7 merlot 2.20 monterey 2.79 monterey 2.25
8 robles 1.99 chardonnay 2.79 cabernet 2.25
9 paso 1.99 ripe 1.86 chardonnay 2.25
10 blonde 1.38 vanilla 1.86 sauvignon 2.25
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4 Experiment Results

4.1 Overlap Analysis of LSs

We distinguish between two different overlap measures per URL:

1. rooted - the overlap between the LS of the year of the first observation in
the IA and all LSs of the consecutive years that URLs has been observed

2. sliding - the overlap between two LSs of consecutive years starting with the
first year and ending with the last.

For example if an URL has copies in the IA in all years from 1996 through
2001 we would have rooted overlap values for the LSs of 1996 and 1997, 1996
and 1998, 1996 and 1999, 1996 and 2000 and finally 1996 and 2001. For the
sliding overlap we have data for 1996 and 1997, 1997 and 1998, 1998 and 1999
etc. The term overlap is the number of terms two LSs have in common e.g.,
if two 10-term LSs have 4 terms in common its overlap would be 4/10 = 0.4.
Tables 3 and 4 show the mean overlap values of all URLs where Table 3 holds
the overlap values of what was introduced as rooted overlap and Table 4 holds
values for the sliding overlap. In both tables the columns represent the year of
the first observation in the IA e.g., all values for all URLs with observations
starting in 1996 can be found in the column headed by 1996. The mean overlap
of all URLs starting in 1996 between the starting year and let’s say 2001 can be
thus be found in the first column and fifth row (the 2001-row) of Table 3. The
overlap between 2003 and 2004 of all URLs with observations starting in 1999
can consequently be found in the fourth column (the 1999-column) and eight
row (the 2003 − 2004-row) of Table 4. Due to space restrictions we only show
the overlap values for 5-term LSs. We observe generally low overlap scores for
the rooted overlap (Table 3). Values are usually highest in the first years after
the LS was created and then drop over time. We rarely see values peaking after
this initial phase which means terms once gone (not part of the LS anymore)
usually do not return. This indicates that LSs decay over time and become stale
within only a few years after creation. Due to the year by year comparison it
is not surprising that the sliding overlap values (shown in Table 4) are higher

Table 3. Normalized Overlap of 5-Term Lexical Signatures - Rooted Overlap

compare Year of First Observation
to 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1997 0.33
1998 0.13 0.33
1999 0.13 0.20 0.56
2000 0.13 0.33 0.49 0.51
2001 0.20 0.27 0.31 0.46 0.58
2002 0.13 0.33 0.33 0.32 0.48 0.64
2003 0.13 0.13 0.40 0.40 0.47 0.54 0.66
2004 0.13 0.13 0.36 0.35 0.40 0.53 0.60 0.66
2005 0.13 0.07 0.38 0.37 0.37 0.42 0.50 0.63 0.58
2006 0.13 0.20 0.31 0.35 0.38 0.48 0.51 0.46 0.62 0.80
2007 0.20 0.20 0.27 0.29 0.37 0.44 0.50 0.37 0.52 0.60 0.90



378 M. Klein and M.L. Nelson

Table 4. Normalized Overlap of 5-Term Lexical Signatures - Sliding Overlap

Year of First Observation
comparison 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1996-1997 0.33
1997-1998 0.40 0.33
1998-1999 0.73 0.27 0.56
1999-2000 0.53 0.40 0.49 0.51
2000-2001 0.47 0.87 0.56 0.62 0.58
2001-2002 0.53 0.73 0.51 0.52 0.63 0.64
2002-2003 0.60 0.73 0.67 0.55 0.67 0.64 0.66
2003-2004 0.93 0.80 0.76 0.69 0.80 0.83 0.73 0.66
2004-2005 0.87 0.80 0.73 0.66 0.82 0.68 0.83 0.74 0.58
2005-2006 0.93 0.47 0.71 0.72 0.77 0.72 0.84 0.51 0.76 0.80
2006-2007 0.87 0.53 0.80 0.68 0.83 0.76 0.81 0.49 0.68 0.80 0.90

than the rooted overlap values. Values often increase over time and it happens
quite frequently that they peak in the more recent past. It almost seems that
LSs enter a “steady state” from a certain time on. We need to point out that all
values are mean values over all URLs and normalized by the maximum possible
overlap. Especially for the early years due to the sparse set of observations this
may be statistically unstable.

4.2 Submitting LSs to Google

We used all LSs to form queries which we issued to the Google search API
between November 2007 and January 2008 and parsed the result set to identify
the rank of the corresponding URLs. Search results provided by the search engine
APIs do not always match the results provided by the web interfaces ((8)) but
we are using the Google API for all queries and thus are not forced to handle
possible inconsistencies. Since the Google API has a limit of 1000 queries per
day, we only ask for the top 100 results. We distinguish between 3 cases for each
URL analyzing the result set: (1) the URL is returned as the top ranked result
or (2) the URLs is ranked somewhere between 1 and 100 or (3) the URL was
not returned which means in our case is ranked somewhere beyond rank 100. We
consider a URL for case 3 as undiscovered because as studies ((5, 7)) have shown,
the vast majority of Internet users do not even click on search results beyond
rank 10. We chose this classification for simplifying reasons, but are aware that
there indeed is a difference between search results ranked 101..10, 000 but in our
study we do not distinguish between these ranks. Table 5 shows the distribution
of URL ranking vs. the number of terms in the LS. It displays the relative amount
of URLs returned with rank 1, ranked between 2 and 10, between 11 and 99 and
beyond 100. The last row holds the mean values of all ranks. We observe a binary
pattern for all n-term LSs where the great majority of all URLs return either
ranked 1 or beyond 100. While the performance of 2-term LSs is rather poor,
4-term LSs seem to perform slightly better than 3-term LSs. 5-, 6- and 7-term
LSs return a similar amount of URLs in the top ten with 7-term LSs returning
the most top ranked results and 5-term LSs return more results ranked 2-10 and
show the best mean rank. The performance of 8-, 9- and 10-term LSs is equally
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Table 5. Rank vs LS Length

Number of Terms
Rank 2 3 4 5 6 7 8 9 10 15

1 24.3 40.2 43.9 47.0 51.2 54.9 49.8 47.0 46.1 39.8
2-10 14.9 15.0 15.7 19.4 11.4 9.4 7.7 6.6 4.0 0.8

11-100 13.2 15.0 11.4 3.4 3.4 1.5 2.2 0.9 0.9 0.6
≥101 47.6 29.8 29.0 30.2 34.1 34.2 40.4 45.5 49.0 58.9
Mean 53.1 36.5 33.8 32.7 36.0 35.5 42.9 46.4 49.8 59.5

bad and worse for 15-term LSs. These results indicate that 5-, 6- and 7-term LSs
all perform well. A 5-term LS seems to be the first choice when the focus is on
discovering the URL somewhere in the top ten and a low mean rank. A 7-term
LSs should be preferred when the focus is on finding as many URLs as possible
top ranked.

LS Score Evaluation. Park et al. classified the URLs returned in four cate-
gories in order to evaluate the performance of LSs. We subsume their four cate-
gories with two continuous performance evaluation scores: fair and optimistic.
Let O be the total number of observations, R(o) the returned rank of one par-
ticular observation and Rmax the maximum rank before an URL is considered
undiscovered. In our experiments Rmax = 100 and R(o) ≤ Rmax. It is important
to point out that Sfair(o) = 0 and Sopt(o) = 0 ∀ o where R(o) > Rmax and
Sfair(o) = 1 and Sopt(o) = 1 ∀ o where R(o) = 1. The equations for Sfair and
Sopt are given in equations 2 and 3.

Sfair(o) =
(Rmax + 1 − R(o))

Rmax
, Sfair =

O∑
o=1

Sfair(o)

O
(2)

Sopt(o) =
1

R(o)
, Sopt =

O∑
o=1

Sopt(o)

O
(3)

The fair score gives credit to all URLs equally with a linear spacing between the
ranks (interval measurement). For the optimistic score in contrast the distance
between ranks is not equal (ordinal measurement). It comes with a huge penalty
for observations in the lower ranks. For example a top ranked observation would
have a score of 1 compared to another with rank 2 which would have a score
of only 1

2 . On the other hand the optimistic score comes with a rather minor
penalty between the higher ranks e.g. an observation ranked 79 with score 1

79
compared to a score of 1

80 for an observation ranked 80. This score optimistically
expects the observations to be in the top ranks and is “disappointed” when its
not, resulting in a heavy penalty. Figure 3 shows the mean values for the fair
and optimistic score over all years. Here we distinguish between LSs containing
2 − 10 and for comparison 15 terms. It also shows lines for both scores for the
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year 2000 only as an representative example of all the years. The fair score is
generally higher than the optimistic score which is surely due to the penalty
between ranks implicit in the optimistic score. The high score of 5- to 7-term
LSs becomes obvious and also that an increased number of terms does not gain
anything, it even hurts the performance. Figure 4(b) displays the fair score of
selected LSs over time and Figure 4(a) the optimistic score. Each data point
represents the mean score of all URLs of a certain year (indicated by the values
on the x-axis). We see the score of 5- and 7-term LSs constantly increasing
reaching up to roughly 0.7 in 2007 and the low score for 2- and 10-term LSs.
The optimistic score (shown in Figure 4(a)) for 2- and 10-term LSs is again low
and 7-term LSs perform due to returning more top ranked URLs better than
5-term LSs. The fact that 5-term LSs have returned more URLs ranked in the
top ten does not have a great impact on this type of score. The ups and downs
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visible in the early years are most likely due to the limited number of URLs
and observations in the IA at that time. From year 2000 on we do believe to
see a pattern since the lines evolve much more steadily. This may be because of
an increase of observations in the IA from 2000 on (see Figure 2) in terms of
more URLs observed and more copies made per day/month. Another interesting
observation is the line for 2-term LSs. Regardless of its low score it shows an
almost flat line from year 2000 on for both scores. A possible explanation is that
2-term LSs are in fact good for finding related pages (as shown in (3)). That
means 2-term LSs constantly return relevant results with the URL of interest
rarely top ranked but usually somewhere in the result set. Our intuition is that
it provides good recall but poor precision explaining the low score.

5 Future Work and Conclusions

We plan to expand the scope of this exploratory research. This includes using
more members of the WI for generating LSs (e.g., search more than IA in step
2 of Figure 1) and for searching for new and related versions of the document
(step 4 of Figure 1).

We generated our signatures following the TF-IDF scheme and computed
IDF values from “local universes” with term frequencies for each year in which
our URLs were observed. In the future we can for one apply different (hybrid)
models for the LS generation like introduced in (10) and for two validate the
IDF values against other sources for term frequencies or grab the values from
the search engine web interface like it is done in (2). A comparison study of such
techniques is done in (6). We did not apply stemming algorithms nor stop word
filters to the terms while generating the LSs. The impact on the LS performance
could be investigated too. All these points refer to step 3 in Figure 1.

Finally a detailed analysis of the term dynamics in LSs may be conceived to
be a real asset to this research. Special cases such as the treatment of a term with
great significance for a certain time frame only (“one hit wonders”) or dramatic
changes in the overall context of a page (due to change of domain ownership,
highjacked domains etc.) could be of interest when evaluating LSs over time.

The paper provides the results of our preliminary study of the performance
of LSs over time. We create LSs of websites from the last 12 years, analyze their
overlap with a rooted and a sliding measure, query them against an Internet
search engine and evaluate the ranking of their returned URLs. Our results
show that LSs decay over time. In fact the term overlap for the rooted measure
decreases quickly after creation of the LS and the values for the sliding measure
seem to stabilize from year 2003 on. This result indicates that LSs should not
be created a priori since the content of a web page (and consequently its LS)
changes dramatically over time. Now, where we have the environment to create
browser extensions and plugins (like (1)) and can generate LSs from the WI as
needed we can address the shortcomings in Phelps and Wilensky’s work.

Regarding the number of terms we found that 2-term LSs perform rather
poorly and 3- and 4-term LSs are not sufficient with slightly above 40% top
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ranked URLs. 5-, 6- and 7-term LSs perform best with 50% and more top ranked
URLs and only about 30% undiscovered URLs. Which of these three to chose
depends on the particular intention since 7 terms return the most top ranked
results but 5 terms have the best mean rank. More than 7 terms have been shown
to worsen the performance values. 15-term LSs e.g., show only in 40% the URLs
top ranked and did not discover the URL in almost 60% of all cases.
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