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B-Spline Curves 
We have seen how Bezier curves offer well-behaved control within a convex hull for any degree 
(number of control points) we choose.  And from a computational point of view, it is a relatively 
simple matter to extend a Bezier curve by adding more control points because the computation of 
the new blending functions is straightforward. 
 
However, we cannot easily control the curve locally.  That is, any change to an individual control 
point will cause changes in the curve along its full length.  In addition, we cannot create a local 
cusp in the curve, that is, we cannot create a sharp corner unless we create it at the beginning or 
end of a curve where it joins another curve.  Finally, it is not possible to keep the degree of the 
Bezier curve fixed while adding additional points; any additional points will automatically 
increase the degree of the curve. 
 
The so-called b-spline curve addresses each of these problems with the Bezier curve.  It provides 
the most powerful and useful approach to curve design available today.  However, the down side 
is that the b-spline curve is somewhat more complicated to compute compared to the Bezier 
curve, but as we shall see the two kinds of curves are closely related.  In fact a b-spline curve 
degenerates into a Bezier curve when the order of the b-spline curve is exactly equal to the 
number of control points. 

Mathematical Definition 
For the Bezier curve defined over n+1 points the description in terms of a blending function is: 
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There are several key differences in the formulation of a b-spline curve.  In the first place, since 
the curve can be defined over an arbitrarily large number of points without increasing the degree, 
we will replace the parametric variable, u, with a new variable, t, where t can range from 

min maxt t t≤ ≤ .  We will associate values of 0 1 2, , , mt t t t t= …  with the m+1 control points that will 
define the curve. The ti are called knots and the knots [ ]it  are called a knot vector or knot 
sequence.  The only other restriction on t is that the values of ti must be monotonically 
increasing.  It simplifies the development to assume t takes on unit spacing, 0,1,2, etc and this is 
referred to as uniform knot spacing. The b-spline is defined for [ ]0 , mt t t∈  as: 
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where Ni,k(t) is the new blending function which now involves a new parameter, k, which will be 
defined below.  Ni,k(t) can be calculated from the “Cox-DeBoor” recursion relation: 
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for k=2,3,…K and for all needed values of i.  Note that this recursive definition for the b-spline 
blending function is very similar to what was developed earlier for the recursive definition of the 
Bezier blending function.  The curve parameter, t, is not restricted to a unit range as u was before 
for the Bezier curve.  The knots, ti, are specific values of t that are associated with each of the 
control points, ip" .  As can be seen from the recursion equation above, the degree of the resulting 
polynomial (e.g., the degree of Ni,k(t)) is equal to k-1 so k is referred to as the “order” of the 
curve.  An initial definition for Ni,k(t) is needed to start the recursive calculation and this is: 

1
,1

1
( )

0
i i

i

t t t
N t

elsewhere
+ ≤ ≤=

 

The blending function, Ni,k(t), is also referred to as the “basis” function, hence the name, b-spline 
curve (where b stands for basis).  It defines a polynomial behavior over a range of t values..  The 
recursive definition of Ni,k in terms of Ni,k-1 and so on until we get to Ni,1 is hard to do by hand, 
but it is a relatively simple matter for software implementation using modern programming 
languages. 

Graphical Interpretation 
Rather than the above mathematical definition, the b-spline curve is perhaps most clearly defined 
by describing its development first for a low order form and then extending this to higher order.  
For simplicity, we will begin with the description of a second order form that involves first 
degree (linear) basis functions.  As a result, this order curve be a piecewise linear curve (e.g., a 
polyline).  Consider the general problem of a piecewise linear interpolation of a set of points, 

npp "#"0 as shown below (note that the values of t do not need to increase uniformly): 
 
 
 
 
 
 
 
 
 
The interpolating linear curve can be written most easily in terms of a new variable, u, that varies 
from 0 to 1 over each segment so that we can write: 
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etc. 
Here, we are using u as a simple dimensionless variable (0<u<1) for each segment while the 
values of t range from 0 to tn or in this case from t=ti-2 to t=ti+2 for the portion of the curve shown 
in the figure above.  Note also that the function, ( )ip u" is indexed to the control point, ip" , that 
defines the start of that particular segment. 
 
It is somewhat easier to show just the curve in parametric space, e.g., the curve’s x or y or z 
component versus t.  For example, the x component of the curve (we can call it ixp"  or rather just 
x for shorthand notation) would look like the following figure in parametric space: 
 
 
 
 
 
 
 
 
 
 
 
 
where for the segments from t=ti-1 to t=ti+2 we can write: 
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Each straight line segment is thus the sum of descending and a rising dashed lines.  But there is 
another more interesting way of looking at this segment of the curve (also called a bay).  Rather 
than look at just the two (rising and falling) linear curves that make up the i-th segment, consider 
instead the two segments of the curve defined by one of the control points.  For example, 
consider the i-th point, xi, and combine the two segments that it defines as: 
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This defines a “hat” function as shown below which is a simple linear “basis” function for this 
curve: 
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We can then re-write the above expression for xi(u) or xi(t) in the new form: 
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where the basis functions, Bi(t), are defined above, and we must be careful in selecting the range 
of values of t to use for this segment (or bay).  We can generalize this kind of representation for 
the full curve over all the control points as: 
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where the Bi(t) are called the basis functions (and are linear for this example). 

Higher Order Basis Functions 
The above formulation will describe any piecewise linear curve (e.g., a polyline) but it will not 
define a smoother curve.  However, we can readily generalize the process of defining the curve 
in terms of a basis function.  In this case we must create a basis function that is higher than 
second order, e.g., third or fourth order or higher.  For example, if we can create a third order 
(second degree or quadratic) basis function, then we can represent a curve as a superposition of 
quadratic basis functions so the resulting curve will be everywhere quadratic.  Perhaps more 
revealing, we could also reduce the order of the basis function developed above from second to 
first order.  The resulting first order or zero degree basis functions will have only a single 
parameter which is a constant.  These points are much better illustrated in the following figure 
which shows the range of polynomial basis functions starting with first order or zero degree. 
 
 
 
 
 
 
 
 
 
 
 
Let’s consider the second order basis function shown above and that we developed earlier.  It 
consists of two linear segments and each of these segments can be described by two constants 
(e.g., the slope and intercept or more conventionally, x=c0+c1 t).  The two segments together 
require definition of 4 constants.  However, we cannot specify all of them in an arbitrary fashion 
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because the first curve must start with an amplitude, x=0, and the second curve must end with 
x=0.  The other ends must meet at the common middle point.  Together, these constitute 3 
constraints for the 4 constants leaving one constant free to specify.  We can specify this constant 
in order to achieve whatever overall amplitude we wish for the mid-point of the basis function.  
This way, the total degrees of freedom (constants) for the basis function is exactly matched by 
the total number of constraints.  This is shown below graphically, and the process is extended for 
higher degree quadratic and cubic basis functions. 
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What we are really doing in the above illustration is requiring that each segment of the basis 
function be a polynomial of specified degree and then requiring that we have the highest possible 
degree of continuity between segments.  For a linear function, we can have only positional 
continuity or what is called C0 continuity.  For a quadratic we can require positional and slope 
continuity or C1 continuity.  For a cubic we can require C2 continuity or position, slope and 
curvature continuity.  In each case, the next higher degree of continuity adds another constraint 
on the curve.  As you can see, in each case the number of constants less the number of continuity 
constraints is exactly 1 which leaves us the freedom of fixing the overall amplitude of the basis 
function as needed. 

Example: Cubic Basis Functions 
As an example, we will illustrate the computation of the cubic or 4th order basis function.  For 
this case we will have 4 segments defined over 5 control points with C2 continuity at each point 
and the amplitude to be determined.  We will use unit parameterization, [0,1]u ∈ .  We will also 
use a simple notation to define the cubic polynomial for each segment of the basis function as 
follows.  Note that we are using a negative subscript for the segment definition simply to avoid 
confusion with the appearance of the constants, bi, on the right-hand side. 
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This yields a total of 16 constants and as shown below, there are a total of 15 continuity 
constraints: 
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Position Slope Curvature 
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The 16th constraint is the specification of amplitude.  It turns out to be most useful not to specify 
the amplitude at the mid-point of the basis function but rather to enforce the following constraint: 

)0()0()0()0(1 3210 −−−− +++= bbbb  

In other words, we are specifying that the sum of the individual components of the basis function 
all sum up to unity at u=0 for each segment.  As we will see later, it turns out that this also holds 
for any value of u and this is a particularly useful normalization that leads to the convex hull 
property discussed previously for the Bezier curve. 
 
Using these results, we can readily solve for the 16 coefficients and write: 
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These can be recognized as a kind of blending function for the b-spline curve and we can use our 
previous matrix notation to represent them in an even more compact (and elegant) form: 
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where we can identify u as the familiar polynomial matrix and M%  as an interpolation matrix in 
much the same way as was developed previously for the parametric cubic polynomial and Bezier 
curves. 
 
If we consider the i-th bay, the figure below illustrates the superposition of the 4 basis functions 
over this bay: 
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and the resulting curve over the bay can be written as: 
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where we have accounted for the unusual negative index notation.  As you can see, the rightmost 
part of the leftmost basis function is used, as is the leftmost part of the rightmost basis function.  
This “inversion” of the order of the basis functions is incorporated in our notation where the 
terms, b-i(u), are summed in reverse order.  The same result can also be obtained simply by 
reversing the column order in the interpolating matrix, M% , above to yield: 
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Basis Function of Arbitrary Order 
It can be shown that this type of basis function development can be generalized to any order (or 
degree) simply by applying the recursive Cox-DeBoor formula for Ni,k(t) introduced at the 
outset.  When we write this in matrix notation, the b-spline basis functions for a curve of order k 
(degree=k-1) can be written for unit parameterization as: 
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where MS is k by k dimension and BS is k by 1 dimension. It also can be shown that the terms in 
M can be calculated as: 
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Note that the dimension of MS is k by k where k is the order of the basis functions, and BS is a 
vector of k control points starting with the i-th point.  These expressions form a convenient basis 
from which to prepare simple Matlab programs to illustrate the behavior of these remarkable 
curves for any specified order or degree.  The only complicated portion is in the development of 
the interpolation matrix from the above formula but this requires a straightforward summation 
and needs to be done only once for the entire curve.  The next section illustrates how to use these 
basis functions to define a curve. 
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Convex Hull Property 
We have already noted the convex hull property of Bezier curves, but we showed this entirely 
from a geometric point of view using the deCasteljau formulation of the curve.  The property is 
actually a result of the particular choice of basis function (Bernstein polynomial) and this is also 
true for the b-spline basis function as well.  We will show this for the b-spline curves using a 
more formal mathematical argument. 
 
A convex hull for points, ip" , is the smallest convex polygon defined with points at the vertices 
that encloses ALL the points.  This is illustrated in the figure below where it should be noted that 
not all points are used to define vertices of the enclosing convex polygon.   
 
 
 
 
 
 
 
 
 
 
 
Mathematically, the convex hull is defined by requiring that any new point, Q
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We can show that this must define a convex hull by the following argument.  For a convex hull a 
line connecting any two points in the hull cannot cross outside the hull.  That is, the line must lie 
entirely within the hull.  Assume two arbitrary points, 1 2Q and Q
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 within the convex hull.  Using 

the above expression for a new point, Q
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, it follows that we can express these points as: 
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We can then define a straight line between them as: 
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where α is the parametric coordinate and [0,1]α ∈ .  In other words, we can define any point, Q
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where wi is defined as the bracketed expression above.  Thus, ( )Q α
"

 satisfies the first 
requirement to be within the convex hull.  From the definitions of the two arbitrary points, it also 
follows that 1 0iw ≥  and 2 0iw ≥ , and the last condition: 
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is also met.  Thus the line, ( )Q α
"

, and any point, Q
"

, on it, must also lie within the convex hull!  It 
should be clear from this argument that the principal requirement for a convex hull is that the 
weighting function used must everywhere sum up to unity.  This can readily be verified for the b-
spline basis functions by simply adding up the blending functions for any value of u to see that 
all of the terms involving the parameter, u, cancel out leaving unity as the final result.  Another 
way to show this is to note that each of the rows of the interpolation matrix, M%  (or M) adds up 
to zero, except for the last row, which adds to unity..   

Uniform Periodic B-Spline Curves 
Now that we have defined suitable b-spline basis functions, we will use them to describe a curve 
as defined by specified control points and knot values for t.  As noted in the initial development 
for a cubic basis function (k=4), the curve can be written as: 
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where we can illustrate this graphically below: 
 

 
For the case shown above over a range of t values from t0 to t15 we can see the following: 

Control points:  0…m    (m+1) 
Basis functions:   m+1   (using k+1=5 knots each) 
Total knots:   m+1+(k+1)-1 = m+k+1 = m+5 
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However, close inspection of the above figure reveals that the curve is not fully defined at both 
ends because there are fewer basis functions defined over the first 3 bays and the last 3 bays.  In 
fact the curve is “fully” defined only over the following region: 

Defined knots: (m+5)-3-3 = m-1 
Defined bays: (m-1)-1 = m-2 
Parameter t: t3 ≤ t ≤ tm+1 

 
As a result of this behavior the uniform periodic b-spline curve does not start at the first control 
point nor does it end at the last control point.  As we will see in the next section, this behavior 
can be overcome and the curves can be forced to pass through a given control point by repeating 
the control point one or more times in the BS vector. 

Remarks: 
1. All basis segments are defined for 0 1u≤ ≤  and each function is an offset version of the 

previous. 
2. The normalization condition, )0()0()0()0(1 3210 −−−− +++= bbbb , plus the symmetry of Bk 

means that at each knot the basis functions sum to unity.  By summing the full expressions 
for the b-k(u) directly, you can see that the basis functions ALWAYS sum to unity for any 
value u.  As noted above, this results in the important convex hull property. 

3. When the order (degree+1) of the basis function is exactly the same as the number of distinct 
control points, the b-spline degenerates into a conventional Bezier curve.  We will discuss 
this further in the material below. 

4. By generalizing on Remark #2 we can show that the convex hull property also applies to a 
full b-spline curve but it only applies for each successive group of k control points.  This 
gives rise to an interesting graphical visualization of convex hull as discussed below. 

5. Any control point will control the behavior of a single basis function but this function will 
affect only the behavior in a limited number of nearby bays (4 for a cubic).  This is how the 
b-spline provides the desirable local control property. 

Graphical Illustrations 
The power and capabilities of the b-spline curve can best be illustrated by examining how to 
actually create a curve and control it.  We will consider a cubic b-spline because it usually offers 
the best combination of flexibility and computational simplicity (and it has been developed in 
our above treatment).  For the cubic b-spline, the basis functions can be easily expressed in 
matrix form using the previous result: 

[ ]3 2 1
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3 6 3 0
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1 4 1 0

T
i S S i i i ip u u u u p p p p+ + +
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where the B matrix contains the relevant control points for the portion of the curve under 
consideration.  Note also that the columns of the MS matrix are obtained by reversing the order 
from the M%  matrix developed for the cubic basis functions in the previous sections.   
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Basic Curve Segment 
For a single portion of the curve, we need consider only the 4 control points needed to define this 
segment (bay).  As noted earlier, since the number of control points is exactly equal to the b-
spline order, the resulting curve will behave generally like a Bezier curve.  In particular it will 
exhibit the convex hull property and stay within the convex hull formed by the 4 control points.  
The figure below illustrates this. 
 
 
 
 
 
 
 
 
 
One of the most striking results is that the curve does not actually start at the first point or stop at 
the last point like the Bezier curve does.  This can be illustrated by evaluating the above 
expression for the cubic b-spline at u=0 or u=1 as follows (we will consider the u=0 end): 
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Thus, the uniform periodic b-spline truly approximates the control points (rather than 
interpolating them as the conventional cubic spline curve does)..  While this may appear to be a 
problem, it actually allows the curve to be “designed” more freely.  

Segment with Repeated Control Point at Start 
If it is necessary for the curve to start at a point closer to the first control point, then one can 
repeat the first control point in the BS matrix as follows: 
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where we have set 1 0p p=
" " .  From this result it is clear that we have not quite achieved the 

desired result because the curve now starts at a point 1/6 th of the distance from 0p"  to 1p" as 
shown in the figure below.   
 
It can also be shown by taking the derivative of the curve that the starting tangent is: 
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[ ] [ ]1 1
0 0 0 2 3 1 06 2

1 3 3 1
3 6 3 0

(0) 0 0 1 0 ( )
3 0 3 0

1 4 1 0

Tp p p p p p p

− − 
 − ′ = = −
 −
 
 

" " " " " " "  

which shows that the curve now starts out tangent to the chord from the first to the second points 
as shown in the above figure. 
 
 
 
 
 
 
 
 
 
 

Segment with Control Point Repeated Twice at Start 
In order to get the curve to start at the first point we will have to repeat the first control point 
again: 

[ ] [ ] 030006
1

0

0141
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1331
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=  

Now the curve starts at 0p" as we want.  The end of the curve is at: 

[ ] [ ]1 1 1
0 0 0 0 3 0 36 6 6

1 3 3 1
3 6 3 0

(1) 1 1 0 1 (1 )
3 0 3 0

1 4 1 0

Tp p p p p p p

− − 
 − = = − +
 −
 
 

" " " " " " "  

which is the point 1/6 of the way along the chord as shown in the figure below. 
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This result shows that while the curve will start out at the first point, it follows a straight line 
initially.  If the next segment of the curve is defined by points 1,2,3 and a new point 4 as shown 
above, it will start at the end of the first straight segment and continue out into the convex hull 
formed by points 1…4 (as shown in the previous example for a single repeated starting control 
point).  The result is that a b-spline curve starting with 3 coincident control points will start with 
a short straight segment (equal in length to 1/6 of the first chord).  This may be objectionable but 
can be overcome by several means as will be discussed later.  

Curve with Multiple Control Points 
To extend the curve to include more control points, it is only necessary to draw additional curves 
by taking in succession sets of 4 control points in the BS matrix until the last point in the 
sequence is reached.  This is illustrated graphically in the figure below. 
 
 
 
 
 
 
 
 
 
 
Again, note that the curve will not start at the first point nor will it end at the last unless we 
repeat these control points 3 times in the BS vector as we start and end the curve (but as noted 
this will produce a short straight segment at the start).  More importantly, however, the figure 
above shows that the curve also obeys the convex hull property for each of its defining sections.  
That is, the curve must, in successive segments, always remain within the convex hulls formed 
by taking successive sets of 4 control points.  These convex hulls are highlighted by dashed 4-
sided polygons formed from successive sets of 4 control points in the above figure. 
 
An interesting feature of the uniform periodic b-spline curve is the ability to form cusps and 
tangencies at intermediate points along the curve.  This can be done simply by repeating a 
control point as needed.  For example, to create a cusp at a particular control point, it is only 
necessary to repeat that control point 3 times.  As the convex hulls illustrate below, this forces 
the curve through the control point and allows the possibility of a change in tangent. 
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Continuing with this reasoning, it should be obvious that we can also force the curve to define a 
straight line (or a straight portion within a curve) simply be forcing all of the control points to be 
colinear.  Of course, reducing the degree to 1 will accomplish the same thing! 

Phantom Control Points 
Instead of simply repeating control points to force the curve to start at a given point, it is also 
possible to define new control points before the designated “starting” point.  Normally, these 
control points are not shown in a graphical representation and so they are often referred to as 
“phantom” control points.  To illustrate this approach, consider what happens if we create a 
phantom control point, 1p−

" , which will appear just before the rest of the control points.  The first 
segment of the b-spline will thus start at: 

[ ] [ ]1
0 1 0 1 26

1 3 3 1
3 6 3 0

(0) 0 0 0 1
3 0 3 0

1 4 1 0

Tp p p p p−

− − 
 − =
 −
 
 

" " " " "  

At this point, the location of 1p−
"  has not been specified.  We can require that the curve start at 

0p"  by setting the above expression equal to 0p"  and solving for the 1p−
"  that will accomplish this.  

This is left as an exercise.  Additional phantom control points can be located to force the b-spline 
to behave in other ways; use your imagination to consider the possibilities… 

Rational B-Spline Curves 
The same reasoning that led us to consider rational Bezier curves can also be applied to b-spline 
curves as well.  The easiest way to visualize this is to imagine that the b-spline curve is defined 
in 4-D homogeneous space using the four coordinates, [ ], , ,x y z h% % % , where: 

, , ,
0 0 0

( ) ( ), ( ) ( ), ( ) ( )
n n n

ix i k iy i k iz i k
i i i

x t p N t y t p N t and z t p N t
= = =

= = =∑ ∑ ∑" " " " ""  

and 

,
0

( ) ( )
n

i i k
i

h t h N t
=

=∑  

are the individual components.  In this case, the x% , y% , and z% components of the control points, 

ip% , are used to define the curve components, along with the “weights”, ih , at each point.  It is the 
additional flexibility provided by the ih  that make the rational curves so versatile.  The actual 
Cartesian components, x, y, and z, are then given by the homogeneous projection back into 3-D 
space as: 

, , ,
0 0 0

, , ,
0 0 0

( ) ( ) ( )
( ) , ( ) , ( )

( ) ( ) ( )

n n n

i i k i i k i i k
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or in vector form: 

, ,
0 0

, ,
0 0
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i i k i i k
i i

p N t h p N t
p t

h N t h N t

= =

= =

= =
∑ ∑

∑ ∑

!"
!  

When the basis functions are expressed as nonuniform or open curves as developed in the 
textbook, these rational curves are often referred to as nonuniform rational b-splines or NURBS, 
and such curves are widely used in CAD systems.  We can also express the curves in terms of the 
uniform, periodic basis functions as developed in matrix form above.  The result is: 

( )p u = S S

S S

u M B
u M H

"  

where SM  is the k by k interpolation matrix (k=curve order) for the b-spline and the geometric 
matrices, SB  and SH , contain the k control points governing a portion of the curve.  For 
example, for a cubic basis function, k=4, and: 

[ ]1 1 2 2 3 3
T

i i i i i i i ih p h p h p h p+ + + + + +=SB " " " "   and  [ ]1 2 3
T

i i i ih h h h+ + +=SH  

Note that the SB  matrix has vector components, each with the x, y and z components, while the 

SH  matrix contains only the scalar weights, ih .  As for the Bezier curve, the challenge is to 
figure out how to adjust these weights to achieve a desired curve configuration.  As for Bezier 
curves, it is possible to determine values of ih  that will allow quadratic b-splines to exactly 
represent standard conic sections, including the important case of a circle. 

Summary Comments 
These notes are provided to supplement the textbook which can at times become overwhelming 
in its mathematical detail.  The treatment of b-splines in these notes is designed to emphasize the 
commonality with the previous curves we have discussed and to provide a unifying notation.  
However, the material presented here only touches on the vast literature concerning B-splines.  
There are a number of textbooks that cover much more, and the literature is fast becoming quite 
voluminous!   
 
The following comments are provided to better clarify the limitations inherent in these notes and 
also to suggest extensions that might be explored. 
 
1. We have considered only the uniform periodic b-spline curve.  There are many other forms 

of b-splines that further illustrate its flexibility and expressiveness.  For example, the curve 
can also be defined by the selection of the knot values (ti) and their repetition in the Cox-
DeBoor recursion formula for the basis functions.  In these notes, we have considered only 
uniform knot values without repeating any values.  If knot values are repeated at the ends of 
the curve as illustrated above, the result is called an “open” b-spline (or a uniform open b-
spline if the knot increments are constant).  Such curves can also be made to start and stop at 
the end points, and they offer some attractive properties. 

2. Derivatives can also be computed for b-splines by taking derivatives of the basis functions.  
The results can also be recast in matrix form as we have done for other curves. 
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3. As we have seen, when control points are repeated at the ends for a periodic B-spline, the 
curve can be forced to pass through the end control point, but it turns out that it also includes 
a short straight segment.  This may be undesirable in some, but it can be overcome by 
creating phantom control points..   

4. Control points can be manipulated in order to force the b-spline curve to do a number of 
things such as creating the cusps we noted earlier.  The curve can also be forced to pass 
through specific points if necessary.  Another interesting situation is the possibility of adding 
additional control points without causing the curve to change its location.  This is often 
needed to allow the curve to be given more “flexibility” without immediately changing its 
shape in an unexpected manner. (In other words, the CAD operator might want to add control 
points in preparation to making new changes in the curve, but not at the expense of 
disrupting the existing situation.) 

5. Rational b-splines provide much greater expressive power and are generally preferred for 
CAD applications.  A rational b-spline is formed by creating a conventional nonrational 
curve (the kinds we have created above) in 4-dimensional homogeneous coordinates and then 
projecting the curve back into 3D space.  The resulting curves turn out to be more useful 
because they can be subjected to both affine and perspective transformations while the 
nonrational b-splines behave correctly only under affine transformations.  In addition, 
rational b-splines can more easily be used to model circles and other conics which are 
commonly used in CAD.  When combined with nonuniform parameterization to provide the 
greatest power and flexibility, these curves are often referred to as, nonuniform, rational b-
splines or NURBS for short.  Again, many textbooks provide more details on these curves. 
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