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The Geometry of 4-Manifolds 
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I. Introduction. The title of this lecture is appropriate because, while the 
results we describe lie in the field of differential topology, the methods used are 
geometrical, exploiting the "instantons" or "Yang-Mills fields" introduced by 
physicists. Before going on to a detailed survey of results and techniques we will 
first contrast these developments with the general pattern of manifold topology. 

A topological n-manifold is constructed from domains in n-dimensional Eu
clidean space, pieced together by homeomorphisms. The manifold is provided 
with a differentiable or smooth structure if these homeomorphisms are differ
entiable. The basic equivalence relation among topological manifolds is that of 
homeomorphism and among smooth manifolds is diffeomorphism (homeomor-
phism defined by smooth functions). In the 1960s and 1970s topologists devel
oped a comprehensive theory of manifolds in dimension 5 or more. This theory 
explained the relationship between the smooth and topological categories [28]; 
and for many classes of manifolds it gave a complete classification in terms 
of invariants from algebraic topology [3, 26, 33]. The coarsest of these are 
homotopy invariants, for example, the homology groups. Next most impor
tant are the Pontrayagin classes Pi(X) in HAl(X\Z) of a smooth manifold X— 
characteristic classes of the tangent bundle. Let us focus on four facts from this 
high-dimensional theory: 

(1) Simply connected smooth manifolds of dimension 5 or more are diffeomor-
phic if they are A-cobordant. 

(2) The homotopy type and Pontrayagin classes of a compact simply connected 
manifold of dimension 5 or more determine the smooth structure up to a finite 
number of possibilities. 

(3) The reductions of the Pontrayagin classes to H* (X\ Q) are topological 
invariants. 

(4) A contractible topological manifold of dimension 5 or more has a unique 
smooth structure. 

In high dimensions the ft-cobordism technique gives an effective method for-
constructing equivalences between manifolds, and the classification of smooth 
and topological manifolds differ by only a "finite amount." 
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In 1982 Freedman [16] showed that the basic constructions used in high di
mensions could be carried out with topological 4-manifolds. The sole classical 
invariant of a compact simply connected 4-manifold is the intersection form on 
2-dimensional homology. By Hirzebruch's theorem the first Pontrayagin number 
Pi(X4)[X4] is 3 times the signature b% — &2~, where b£ and b% are the dimensions 
of the positive and negative parts of this quadratic form. Freedman's theory as
serts that, up to a finite ambiguity, the topological classification of 4-manifolds 
mimics the algebraic classification of forms. 

Now among recent results for smooth 4-manifolds we have: 
(1)' There are simply connected, smooth 4-manifolds which are A-cobordant 

but nondiffeomorphic. 
(2)' There is a countably infinite family of smooth, simply connected 4-

manifolds, all mutually homeomorphic but with distinct smooth structures. 
(3)' There are rational cohomology invariants of smooth 4-manifolds which 

(unlike the Pontrayagin classes) depend essentially on the smooth structure. 
(4)' There is an uncountable family of smooth 4-manifolds, each homeomor

phic to R 4 but with mutually distinct smooth structures. 
(See §111 below for more precise statements and references.) These facts, all com
ing from Yang-Mills theory, emphasize the very different picture we are beginning 
to see in four dimensions. 

II. Techniques. 
(i) The first order Yang-Mills equations. These equations in 4-dimensional 

geometry are in some ways analogous to the Cauchy-Riemann equations in di
mension 2. In place of the functions on a Riemann surface the basic geometric 
objects we take are the connections on a bundle E over an oriented Riemannian 
4-manifold X. The structure group of E is some compact Lie group G, for exam
ple SU(2) or SO(3). In place of the splitting of the derivative of a function into 
holomorphic and antiholomorphic parts we have the splitting of the curvature 
FA of a connection A into self-dual and anti-self-dual parts: FA = F% + F^. 
These are the components in the eigenspaces of the Hodge * operator, acting 
on bundle-valued 2-forms. In place of the holomorphic functions we have the 
anti-self-dual connections (or instantons), solutions of the equation F^ = 0. Ge
ometrically this condition means that the curvature FA takes opposite values on 
any pair of orthogonal 2-planes in the tangent space of X. 

This anti-self-dual equation is a first-order partial differential equation for the 
connection A. It has a large group of symmetries: the group of automorphisms 
or "gauge transformations" of the bundle E. When this is taken into account 
(by identifying solutions which differ by a gauge transformation) the equation 
becomes elliptic. It depends only on the conformai class of the Riemannian 
metric on X. Many of its special features spring from a fundamental identity 
linking the "energy" of a solution with the topology of the bundle E. If X is 
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compact and A is anti-self-dual, then 

\FA\2diJi = c(G)-k(E), (1) 
ix 

where c(G) is a normalizing constant and k(E) is an integer—a characteristic 
number of E. For example, if G is SO(3), then k is minus the first Pontrayagin 
class of E, evaluated on X. Again, analogous identities hold for the energy of 
holomorphic maps. 

(ii) Nonlinear Fredholm theory. Differential topology in infinite-dimensional 
manifolds provides a convenient language to describe many properties of the 
Yang-Mills instantons, primarily those stemming from the implicit function the
orem in Banach spaces. This is applied to nonlinear differential operators be
tween suitable Sobolev spaces. For a fixed bundle E —• X one defines a space BE 
of all gauge equivalence classes of connections, orbits under the group of gauge 
transformations of E. An open dense subset B^ of BE is an infinite-dimensional 
manifold; its complement, the singular set of B#, represents reducible connec
tions with holonomy group a subgroup of G whose centralizer properly contains 
the center of G. 

The second stock of ideas which can be applied are those based on Sard's 
theorem and transversality. As Smale observed [30] these basic constructions of 
differential topology carry over to infinite-dimensional problems involving Fred-
holm mappings: smooth maps whose derivatives have finite-dimensional kernels 
and cokernels. As an illustration (particularly relevant to the definition of the 
invariants in §III(iv) below) consider a Fredholm map (p: E —• F between Ba
nach spaces whose index (the integer dim(ker d<p)x — dim(cokerd<p)a:, calculated 
for any x in E) is zero. Generic points y in F are regular values of <p and for 
these <p-1(y) is a discrete subset of X. If <p is a proper map, then this set is 
finite. We can attach a sign to each point, in such a way that the algebraic sum 
over the fibers yields an integer invariant, independent of y. The proof in the 
general case is not significantly different from that in finite dimensions. In the 
same way this integer—the "degree" of ip—is a deformation invariant unchanged 
by proper Fredholm homotopies. More generally, if E is replaced by a Banach 
manifold B we can associate homology classes in Ha(B\ Z) to suitable Fredholm 
maps <p, where d is the index of (p. 

The anti-self-dual equations fit into this framework. The moduli space ME 
(space of equivalence classes of the equation F% = 0) is defined by a Fredholm 
mapping whose index was calculated by Atiyah, Hitchin, and Singer [2] (applying 
the Atiyah-Singer index theorem to the linearized operator). They gave a general 
formula: 

dimME = 2aG • k(E) - dimG(l - b±(X) + b+(X))> (2) 

where üQ is an integer depending only on G (equal to 1 when G = SO (3), for 
example). This is the "virtual dimension" of M#, and typically one expects the 
part of the moduli space in B% to be a smooth manifold of this dimension. More 
precisely, Freed and Uhlenbeck prove in [15] that for nontrivial SU(2) and SO(3) 
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bundles E this is the case for typical metrics on X. In general one can achieve 
the same end by making small perturbation of the anti-self-duality equations. 
Note here that the parity of dim ME is independent of the bundle E. 

The same kinds of ideas can be applied to the reducible connections, the 
nonmanifold points in B. That is, we can describe the behavior of the moduli 
spaces there in typical situations. The important reductions are those with 
abelian structure group S1 , and these can be studied by Hodge theory. As the 
Riemannian metric on X varies, these reducible solutions to the anti-self-dual 
equations appear on subsets of codimension 63". So we can avoid them in families 
of metrics of dimension less than b2- In families of dimension b2 we encounter 
a fundamental singularity in the associated moduli spaces. For example, if X 
has a negative definite intersection form, so b2 = 0, the singularities are always 
present and, for typical metrics, are cones on complex projective spaces. 

(iii) Compactification. The Yang-Mills moduli spaces are not, in general, com
pact, but a theorem of Uhlenbeck singles out a natural compactification. This 
control "at infinity" in the space BE of connections stands in for the properness 
of the Fredholm map defining the moduli spaces, which holds only in special 
cases. 

Uhlenbeck's theorem [37] supplies information on connections given bounds 
on their energy. For anti-self-dual connections these come from the identity 
(1). Let us restrict for simplicity to SO(3) bundles E, which are determined 
topologically by characteristic classes p\(E) in HA(X\Z) = Z and w2(E) in 
H2 (X] Z/2) with w2 = pi mod 4. So if we fix w2 = U there is a family of moduli 
spaces, Mj = M3iu say, with j > 0. Then one can define a topology on 

MjUXx Mj-4 U S2(X) x Mjs U • • • 

such that the closure Mj otMj is compact. Here the Sl(X) denote the symmetric 
products of i points in X. The points in the lower "strata" Sl(X) x Mj-& 
represent "ideal connections" whose energy density \FA\2 is augmented by 6-
functions at i points in X. 

Thanks to work of Taubes [34], extended in [7], we have a good hold on the 
structure of neighborhoods of the lower strata in Mfc, that is, of the "ends" 
of the moduli spaces. By making a detailed analysis of the relevant implicit 
function theorem one describes neighborhoods of Sl(X) x Mj-n in Mj in terms 
of a connection in Mj-^, i copies of the "fundamental instanton" at points of 
X, and "glueing data" which identifies these component parts. For example, the 
link of X x Mj_4 in Mj is typically a copy of the structure group SO(3). 

Ideas of this kind, describing the behavior of differential operators "at infinity" 
in a function space, have appeared recently in a number of different geometric 
problems. In gauge theory, Taubes has used them to construct a calculus of 
variations—see Taubes's lecture at this Congress. 

(iv) The anti-self-dual equations and holomorphic geometry. Suppose the base 
space X is a 2-dimensional complex surface with a Hermitian metric. If E 
is a complex vector bundle over X (with structure group a subgroup of the 
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unitary group), any connection defines an almost complex structure on E. If 
the connection is anti-self-dual its curvature has type (1,1) and this implies that 
the structure is integrable. We get, in this way, a map from the anti-self-dual 
connections over X to the holomorphic bundles, the latter depending only on 
the complex geometry of X, 

A holomorphic bundle is, by definition, locally trivial whereas there are many 
local solutions to the anti-self-dual equations. However globally we can recon
struct the connection from its holomorphic bundle. There is nothing special here 
about the dimension of the base space. If (Y^UJ) is any compact Kahler mani
fold and E —• Y a holomorphic bundle with structure group SL(r, C) (say), any 
metric on E determines a reduction of the structure group to SU(r) and also a 
preferred SU(r) connection. We look for metrics such that the curvature F of 
this connection satisfies 

F-u) = Q (3) 

at every point of Y. This is a second-order elliptic equation for the metric on E. 
On the other hand, in algebraic (or holomorphic) geometry there is a notion of 
a stable vector bundle, introduced by algebraic geometers in moduli problems. 
We have: 

PROPOSITION. The holomorphic bundle E is stable if and only if it carries an 
irreducible solution of the differential equation (3). The solution is then unique. 

This was proved recently by Uhlenbeck and Yau [38]. The result had been 
conjectured (independently) by Hitchin and Kobayashi; in the simplest case when 
F is a complex curve, it is equivalent to a theorem of Narasimhan and Seshadri, 
and this was developed from the point of view of Yang-Mills theory by Atiyah 
and Bott [1]. For an algebraic surface Y the result was proved in [6]. 

So on compact Kahler manifolds of any dimension, this theorem of Uhlenbeck 
and Yau gives a holomorphic description of the unitary connections whose curva
ture is of type (1,1) and perpendicular to the Kahler form. The special feature of 
complex surfaces is that these are precisely the anti-self-dual connections. Thus 
for algebraic surfaces the moduli spaces ME can be described using algebraic 
geometry. They are quasi-projective complex varieties. From this point of view 
the best algebraic construction is that of Gieseker [20]. 

III. Results and applications. 
(i) Realizing intersection forms. Here we discuss results forbidding the con

struction of smooth 4-manifolds with given intersection forms. They can be seen 
alternatively as obstructions to smoothing the topological manifolds constructed 
by Freedman. Equally, they imply that it is impossible to do smooth surgery on 
homology classes in many existing manifolds. 

The first theorem of this kind asserted that nonstandard (nondiagonalizable) 
definite forms cannot be realized by smooth, simply connected 4-manifolds [5]. 
The proof used a 5-dimensional moduli space of SU(2) connections. The result 
has since been extended in two different ways. 
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On the one hand, Fintushel and Stern found a rather simple proof for negative 
definite forms which represent —2 or —3. They considered SO(3) connections, 
choosing w2 and pi to get moduli spaces of low dimensions [12]. Their proof 
dealt with manifolds with no 2-torsion in H±. In both proofs the moduli spaces 
are truncated to give manifolds with a known boundary. Boundary contribu
tions come from the links of singularities at reducible connections and from the 
lower strata in the compactified moduli space. Then one asserts that the mod
uli manifold gives a cobordism, and a fortiori homology, in B% between these 
boundaries. 

On the other hand, the proof of [5] was extended by Furuta [18] and the author 
[8] to take account of fundamental group. This required a more extensive use of 
transversality and also a detailed study of the orientation of the moduli spaces. 
The upshot is the optimal result for definite forms: 

THEOREM 1 [8]. / / a smooth, compact, oriented 4-manifold has a definite 
intersection form, then the form can be diagonalized over the integers. 

There are also results for some indefinite forms [7]. These are proved in a 
similar way, using more complicated analysis and topology. One can define a 
map 

IL:H2(X-Z)^H2(B*E;Z) (4) 

by decomposing the 4-dimensional characteristic class of the "universal" bundle 
over B% x X. For indefinite manifolds the moduli spaces typically avoid the 
reductions, so, by restricting /x, we construct cohomology classes over the moduli 
spaces. For the same reason the only boundary contributions are now those from 
the lower strata. There are further, mod 2, cohomology classes which detect the 
links of the lower strata in the homology of B^. The best result so far is 

THEOREM 2 [7]. If a smooth, compact, oriented 4-manifold has no 2-torsion 
in Hi and an even intersection form with a positive part of rank 2, then the form 

(' H ! ) • 

The method appears to run out of steam as bj grows because the relative size 
of the contributions to the ends from different lower strata changes. 

(ii) Orbifolds and the representation of homology classes. Fintushel and Stern 
began the study of Yang-Mills equations on 4-dimensional orbifolds: spaces with 
a discrete set of singularities modelled on finite quotients of R4 . These occur nat
urally as the quotients of smooth 4-manifolds by finite groups or of 5-manifolds 
by circle actions. They are rational homology manifolds, and analysis on them 
is quite similar to that on smooth manifolds—the chief modification is the ap
pearance of extra terms in the index formula (2) owing to the singularities. 
Using variants of their argument for manifolds, Fintushel and Stern obtained 
restrictions on the existence of orbifolds with certain intersection forms and sin
gularities. Their results have many applications, notably to the group 0# of 
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homology 3-spheres modulo homology cobordism. Before Fintushel and Stern's 
work it had seemed possible that this group was rather small, perhaps of order 
2. In fact we have 

THEOREM 3 [13]. The Poincaré homology sphere P has infinite order in 
B^j (i.e., no connected sum P#--#P bounds an acyclic smooth 4-manifold). 
Moreover Off/(P) is nonzero. 

(By contrast, the Poincaré sphere itself bounds an acyclic topological 4-
manifold [16].) 

Another application was to give an alternative proof of a theorem of Kuga. 
Any 2-dimensional homology class in a 4-manifold can be represented by a 
smoothly embedded surface. It is an interesting general problem to find lower 
bounds on the genus of such a representative. Kuga's theorem considers classes 
in H2(S

2 x S 2 ) , written in the standard basis as pairs (p, q) of integers. 

THEOREM 4 [23]. The class (p,q) in H2(S
2 X S2) can be represented by a 

smoothly embedded 2-sphere if and only if either p or q is 0, +1, or —1. 

(By contrast, if p and q are co-prime the class can be represented by a topo
logical^ flat embedded sphere.) 

Kuga's original proof was indirect, applying the results of §III(i). 
(Similar arguments for other manifolds have been made by Lawson [25] and 

Suciu [31].) Fintushel and Stern gave a simpler proof using orbifolds. If a 
2-sphere, embedded in a 4-manifold with nonzero self-intersection number, is 
collapsed to a point, the resulting space is an orbifold (whose singularity is a 
cone on a lens space). Later Furuta [19] gave an even more direct proof using 
other moduli spaces on these orbifolds. In another direction Lawson [24] used 
these techniques to study embedded projective planes. 

The techniques in Fintushel and Stern's first paper have recently been ex
tended by Fintushel, Lawson, and Stern. One application yields results on the 
exceptional orbits of circle actions on S5 , partially proving a conjecture of Mont
gomery and Yang [14]. 

(iii) Exotic structures on R4 . Freedman's theory asserts that direct sum de
compositions of the intersection form of a 4-manifold can be realized, by surgery, 
as topological decompositions of the manifold. The results of §111 (i) prevent 
these being made smoothly. This conflict implies that there exist "exotic R4 ' s": 
smooth manifolds homeomorphic but not diffeomorphic to Euclidean space [21]. 
The first examples were open subsets of S2 x S2 or C P 2 . The proofs of their 
exotic nature were indirect. Later Gompf found a countably infinite family of 
exotic R4 ' s in this way. 

Dramatic further progress was made by Taubes [35], carrying out a program 
suggested by Freedman. Taubes extended the fundamentals of Yang-Mills theory 
to "end-periodic" 4-manifolds. These are noncompact manifolds whose end has 
a periodic configuration Wi U W2 U • • • U Wn U • • -, where the W% are overlapping 
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copies of an open manifold W. The simplest examples are manifolds whose end 
is a tube Y3 x (0, oo) and W is Y x (0,1). Taubes showed that given conditions 

(1) on the homology of W and 
(2) on the representations 7Ti(W) —• SU(2), 

these behave like compact manifolds from the point of view of the anti-self-dual 
equations. By substituting the resulting theorems on the intersection forms of 
end-periodic manifolds into Freedman's analysis of the failure of smooth surgery 
Taubes proved: 

THEOREM 5 [22, 35]. There exists a family R3ft of smooth 4-manifolds, 
parametrized by (s,t) G R2 , each homeomorphic to R 4 but no two diffeomorphic. 

Thus there are "moduli" of smooth structures on the topological manifold R4 . 
Moreover Taubes's family does not contain all exotic R4 ' s . None of the RStt can 
be embedded in the standard R4 , but the failure of the /i-cobordism theorem 
(§III(iv)) implies that examples with this property do exist. 

In a similar spirit to this work of Taubes, the author and Sullivan have ex
tended the fundamentals of Yang-Mills theory to quasi-conformai 4-manifolds, 
whose local co-ordinates compare by quasi-conformal maps of domains in R 4 

[11]. The work is allied to that of Teleman on Lipschitz manifolds [36]. Essen
tially all the results proved for smooth 4-manifolds and diffeomorphisms, using 
the anti-self-duality equations, extend to quasi-conformal manifolds and quasi-
conformal maps. (In particular there are exotic quasi-conformal structures on 
R4 .) A fortiori the results extend to Lipschitz 4-manifolds. This is in sharp 
contrast with the theorem of Sullivan [32]: in high dimensions every topological 
4-manifold has a unique Lipschitz structure. 

(iv) New invariants. The results here are the other side of the coin displayed in 
§III(i). Many compact topological 4-manifolds cannot be smoothed: those that 
can may carry many different smooth structures. This is established by con
structing differential topological invariants from the Yang-Mills moduli spaces, 
along the lines indicated in §II(i). 

Let us restrict attention to simply connected 4-manifolds. For any bundle E 
over X the rational cohomology of B% is generated as a ring by classes c/a, where 
c is a rational characteristic class of the universal bundle on the product B%xX 
and a is a homology class in X. In particular, all the rational cohomology of 
B% lies in even dimensions. For example, if G is SO(3), then H*(B^\Q) is a 
polynomial algebra, generated by the image of the map ß in (4) and a further 
class in H4. Since the invariants we expect to see with the ideas of §II(ii) lie, 
roughly speaking, in the homology of B% we anticipate good results in cases when 
the moduli spaces are even-dimensional, and by (2) this happens exactly when 
bt(X) is odd. 

Manifolds with b2 = 1 form a rather special class here, since reducible so
lutions appear in the moduli space for a codimension 1 family of metrics. We 
consider the two-dimensional moduli space of SU (2) connections with Chern class 
1 (SO(3) connections with Pontrayagin class —4) over such a manifold X. This 
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will not always be compact, but there is a way to introduce a correction term 
for the boundary. Then one can associate to generic metrics on X a homology 
class in B% which changes only through the appearance of reducible solutions. 
In the end one obtains a differential topological invariant of X having the form 
of a map: 

TX:CX^H2(X-Z), 

where Cx is a set of "chambers" in H2(X\R) [9]. 
For algebraic surfaces X one can hope to calculate this invariant using the 

holomorphic description of anti-self-dual connections via stable bundles. Any 
rational surface has b% = 1, but there are also irrational examples, in particular, 
a family DPyq (p, q coprirne integers) constructed by Dolgachev. The difference 
in the complex geometry of the rational and irrational manifolds is reflected in 
the stable bundles and so in the moduli spaces and the invariant Y. This gives 

THEOREM 6 [9]. A Dolgachev surface DPiQ is homotopy equivalent (hence 
homeomorphic and h-cobordant) but not diffeomorphic to a connected sum C P 2 

# 9 C P 2 . 

So the /i-cobordism theorem does not extend to smooth 4-manifolds. Going 
further, Friedman and Morgan and Okonek and Van de Ven used the T-invariant 
to prove: 

THEOREM 7 [17, 27]. There are infinitely many diffeomorphism types 
among the homotopy equivalent manifolds DPiq. 

When b2 is odd and bigger then 1, many other invariants can be defined. 
For any bundle E the moduli space is of even dimension 2d(E). The classes 
fi(a), for öL in H2(X), can be represented by cochains with "small" support in 
B%- Our description of the end of the moduli space then allows the construction 
(in a stable range k(E) >• 0) of a pairing between the powers ß(a)d and the 
fundamental class of ME- Considering SO(3) connections one gets: 

THEOREM 8 [10]. LetX be a simply connected, smooth, oriented 4-manifold 
with b2(X) = 2p + 1, p > 0. Fix an orientation of a maximal positive subspace 
for the intersection form on H2. Then for any u in H2(X\Z/2) with u2 = a 
mod4 and for j > jo(p) the homology class of the SO(3) moduli space Muj 
defines a polynomial 

qUiJtX:Sd(H2(X))-+Z 

of degree d = j - 3(1 + p), independent of the metric on X. 

(Here the orientation of the positive subspace orients the moduli space ME-) 
So for roughly "half" of the possible simply connected 4-manifolds we can define 
infinitely many new invariants. At present they are very hard to calculate; their 
main application has come from the tension between two general properties of 
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the moduli spaces. On the one hand, we have for connected sums a "vanishing 
theorem" : 

THEOREM 9 [10]. / / the 4-manifold X of Theorem 8 is a connected sum 
Xi#X2 with each b2(X{) > 0, then all the invariants qu,j,x we 0. 

On the other hand, if X is a projective algebraic surface there is a preferred 
"hyperplane" class [H] in H2(X). For large values of j the moduli spaces are 
quasi-projective varieties of the "proper" dimension. Gieseker's construction 
shows that /J>(H) is the first Chern class of an ample line bundle over the moduli 
space. So ()u(iï)d, M) is positive and we deduce 

THEOREM 10 [10]. If a simply connected compact complex algebraic surface 
can be written as a connected sum, then the intersection form of one of the 
summands is negative definite. 

This immediately gives many more examples of manifolds, with the same 
classical invariants, distinguished by the new invariants quj,x-

IV. Problems. The techniques described here are a long way from becoming 
a systematic theory. One notable feature is that, while the only known proofs 
of the ten theorems in §111 use Yang-Mills instantons, there are, in most cases, 
a number of alternative proofs available (arguing with different moduli spaces, 
etc.). This suggests that there may be some more fundamental principle, relat
ing 4-manifold topology with Yang-Mills theory, of which these arguments are 
different manifestations. If we could find such a principle, it might point the way 
to attack problems which seem to lie beyond the methods discussed above. The 
most obvious general questions are: 

(1) Which even indefinite forms are the intersection forms of smooth, simply 
connected 4-manifolds? (The simplest open case is the rank 38 form 4E% © 

3(?S)0 
(2) In which homotopy types are there compact, simply connected, 4-mani

folds with distinct smooth structures? 
For (oriented) manifolds with b\ odd there are many new invariants with 

which one can hope to distinguish smooth structures, so we are led to ask: 
(3) Are there homotopy equivalent, simply connected, 4-manifolds with b% 

even having distinct smooth structures? The smooth 4-dimensional Poincaré 
conjecture is an instance of this. 

On the other hand many problems to do with our new invariants for manifolds 
with &J odd present themselves: 

(4) Are there universal relations among the invariants qkiU,x^ 
(5) Can we systematically calculate the invariants given some standard de

scription of a 4-manifold? 
Two avenues seem to be promising. First we have the holomorphic description 

of the moduli spaces when the base manifold is a complex surface. Perhaps there 
are general relations between our invariants and the usual algebro-geometric 



THE GEOMETRY OF 4-MANIFOLDS 53 

invariants of surfaces. A concrete question is: 
(6) If X is a minimal algebraic surface, are the invariants qk,u,x of Theorem 

8 all polynomials in the canonical class c\(Kx) and the intersection form of X? 
An extreme possibility is that they are given by universal polynomials in these 

two variables, with coefficients depending on fc. 
Second, a new slant on the picture in 4 dimensions may come from the work of 

Casson [4]. He defines an integer invariant for homology 3-spheres Y3 using the 
representations 7Ti(Y3) —• SU(2). The Casson invariant can be calculated from 
a Dehn surgery description of Y. Now these representations also come to the 
fore in Taubes's extension of Yang-Mills theory to noncompact (end periodic) 
4-manifolds. Recently, Taubes has shown that Casson's invariant can be put into 
the same framework of Fredholm maps over Banach manifolds described in §11 
(ii). Moreover Casson and Taubes found different proofs, as corollaries of their 
work, of 

THEOREM 11 [4, 35]. There exist topological 4-manifolds which are not 
homeomorphic, to a simplicial complex. 

These two proofs are circumstantial evidence for the existence of some link 
between Casson's invariant and the anti-self-dual equations over 4-manifolds. 
Perhaps there is a path through Casson's work which will allow our new invari
ants to be defined using more familiar methods of geometric topology. 

ACKNOWLEDGMENT. The author is very grateful to the Universidad del 
Valle, Cali, Columbia for their hospitality during the preparation of this article. 

REFERENCES 

1. M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. 
Trans. Roy. Soc. London Ser. A 308 (1982), 523-615. 

2. M. F . Atiyah, N. J. Hitchin, and I. M. Singer, Self duality in four dimensional 
Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461. 

3. W. Browder, Surgery on simply connected manifolds, Springer-Ver lag, Berlin, 1971. 
4. A. Casson (to appear). 
5. S. K. Donaldson, An application of gauge theory to 4-dimensional topology, J. 

Differential Geom. 18 (1983). 
6. , Anti-self-dual Yang-Mills connections on complex algebraic surfaces and 

stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), 1-26. 
7. , Connections, cohomology and the intersection forms of four manifolds, J. 

Differential Geom. 24 (1986), 275-341. 
8. , The orientation of Yang-Mills moduli spaces and four-manifold topology, J, 

Differential Geom. (to appear). 
9. , Irrationality and the h-cobordism conjecture, J. Differential Geom. 25 (1987). 

10. , Polynomial invariants for smooth 4-manifolds (in preparation). 
11. S. K. Donaldson and D. P. Sullivan (in preparation). 
12. R. Fintushel and R. Stern, SO(3) connections and the topology of 4-manifolds, J. 

Differential Geom. 20 (1984), 523-539. 
13 , Pseudo-free orbifolds, Ann. of Math. (2) 122 (1985), 325-364. 
14. , 0(2) actions on the ò-sphere, Invent. Math, (to appear). 
15. D. S. Freed and K. K. Uhlenbeck, Instantons and 4-manifolds, Math. Sei. Res. Inst. 

Pub., Springer-Ver lag, New York, 1984. 



54 S. K. DONALDSON 

16. M. H. Freedman, The topology of 4-dimensional manifolds, J. Differential Geom. 
17 (1982), 357-453. 

17. R. Friedman and J. W. Morgan, On the diffeomorphism types of certain algebraic 
surfaces, submitted to J. Differential Geom. 

18. M. Furuta, Perturbation of moduli spaces of self-dual connections, submitted to J. 
Fac. Sci. Univ. Tokyo Sect. I A Math. 

19. , On self-dual pseudo-connections on some orbifolds, Preprint, Univ. of Tokyo. 
20. D. Gieseker, On the moduli of vector bundles over an algebraic surface, Ann. of 

Math. (2) 106 (1977), 45-60. 
21. R. Gompf, Three exotic R 4 ' a and other anomalies, J. Differential Geom. 18 (1983), 

317-328. 
22. , An infinite set of exotic R 4 's, J. Differential Geom. 21 (1985), 283-300. 
23. K. Kuga, Representing homology classes in S2 x S2, Topology 23 (1984), 133-137. 
24. T. Lawson, Normal bundles for an embedded R P 2 in a positive definite 4-manifold, 

J. Differential Geom. 22 (1985), 215-231. 
25. , Representing homology classes in an almost definite 4-manifold, Preprint. 
26. S. P. Novikov, Homotopy equivalent smooth manifolds, Izv. Akad. Nauk. SSSR. Ser. 

Mat. 28 (1964), 365-474; English transi, in Amer. Math. Soc. Transi. (2) 48 (1965). 
27. C. Okonek and A. Van de Ven, Stable bundles and differentiable structures on 

certain elliptic surfaces, Invent. Math. 86 (1986), 357-370. 
28. L. C. Siebenmann, Structures on topological manifolds, Proc. Internat. Congr. Math. 

(Nice, 1970), Vol. 2, Gauthier-Villars, Paris, 1971, pp. 133-163. 
29. S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1964), 387-399. 
30. , An infinite dimensional version of Sard's Theorem, Amer. J. Math. 87 

(1965), 861-866. 
31. A. I. Suciu, Immersed spheres in C P 2 and S2 X S2, Preprint, Yale University. 
32. D. P. Sullivan, Hyperbolic geometry and homeomorphisms, Geometry Topology 

(Proc. Georgia Topology Conf., Athens, Ga., 1977), J. Cantrell, editor, Academic Press, New 
York, 1978, pp. 543-555. 

33. , Infinitesimal computations in topology, Inst. Hautes Études Sci. Pubi. Math. 
47 (1977), 269-332. 

34. C. H. Taubes, On the existence of self-dual connections on manifolds with indefi
nite intersection matrix, J. Differential Geom. 19 (1984), 517-560. 

35. , Gauge theory on asymptotically periodic 4-manifolds, Preprint, Harvard 
Univ., Cambridge, Mass. 

36. N. Teleman, The index of signature operators on Lipschitz manifolds, Inst. Hautes 
Études Sci. Pubi. Math. 58 (1983), 39-79. 

37. K. K. Uhlenbeck, Connections with Lp-bounds on curvature, Comm. Math. Phys. 
83 (1982), 11-30. 

38. K. K. Uhlenbeck and S. T. Yau, On the existence of Hermitian Yang-Mills connec
tions on stable bundles, Preprint, University of Chicago. 

T H E MATHEMATICAL INSTITUTE, OXFORD, ENGLAND 


