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Impedance Matching
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“RF design is all about impedance matching.” Inductors and
capacitors are handy elements at impedance matching.

Viewed as a black-box, an impedance matcher changes a
given load resistance RL to a source resistance RS . Without
loss of generality, assume RS > RL, and a power match factor
of m = RS/RL is desired. In fact any matching network that
boosts the resistance by some factor can be flipped over to do
the opposite matching.
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Why Play the Matchmaker?

Optimal Power Transfer: Maximize the power transfer from
the source (say an antenna) and the load (say an amplifier).
Most amplifiers have a capacitive input impedance and a
small resistive part.
Optimal Noise Figure: Build amplifiers that add the least
amount of noise to a signal while performing amplification.
We’l see that this depends on the source impedance, so you’ll
need to transform the source.
Minimum Reflections in Transmission Lines: Reflections cause
dispersion/inter-symbol interference (“ghost” in analog TV),
and result in a sensitive input impedance when looking in the
transmission line (changes with distance).
Optimal Efficiency: Power amplifiers obtain maximum
efficiency when we utilize the largest possible voltage swing at
the drain (collector) node, requiring us to match the load to a
value that satisfies the conditions on load power and load
swing.
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Matching Gain

Since RL = vo/io and RS = vi/ii , we can see that this
transformation can be achieved by a voltage gain, vi = kvo .
Assuming the black box is realized with passive elements
without memory, power conservation implies

iivi = iovo

thus the current must drop by the same factor, ii = k−1io ,
resulting in

Zin =
vi
ii

=
kvo
k−1io

= k2
vo
io

= k2RL

which means that k =
√
m to achieve an impedance match.

There are many ways to realize such a circuit block.
Transformers are a natural choice but in this section we’ll
explore techniques employing inductors and capacitors.
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Transmission Line Transformer
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λ/4 Note that a transmission
line has the desired
properties of
voltage/current gain if
there’s a standing wave
on the line.

For example, if the source and load are both real impedances,
then we can move from high/low impedance to low/high
impedance by adding a quarter wave line.
The voltage is maximimum at one end and minimum at the
other end, and the opposite is true for the current. So in
effect the transmission line is a voltage/current multiplier
(resonator).
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Capacitive and Inductive Dividers
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Perhaps the simplest matching networks are simple voltage
dividers. Consider the capacitive voltage divider. At RF
frequencies, if RL � X2, then we can see that the circuit will
work as advertised. Assuming that negligible current flows
into RL, the current flowing into the capacitors is given by

i =
vi

j(X1 + X2)
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Cap. Dividers (cont)

The voltage across the is therefore

vo = vC2 = jX2 × i = vi
X2

X1 + X2
= vi

1

1 + C2
C1

= kvi

which means that the load resistance is boosted by a factor of
k2

Rin ≈
(

1 +
C2

C1

)2

RL
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An L-Match
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Consider the L-Matching networks, named due to the topology
of the network. We shall see that one direction of the L-match
boosts the load impedance (in series with load) whereas the
other lowers the load impedance (in shunt with the load).
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L-Match as an RLC

Let’s focus on the first two networks shown. Here, in absence
of the source, we have a simple series RLC circuit.

Recall that in resonance, the voltage across the reactive
elements is Q times larger than the voltage on the load! In
essence, that is enough to perform the impedance
transformation.

Without doing any calculations, you can immediately guess
that the impedance seen by the source is about Q2 larger
than RL. Furthermore, since the circuit is operating in
resonance, the net impedance seen by the source is purely
real. To be sure, let’s do the math.
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Equiv. RLC
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A quick way to accomplish this feat is to begin with the series
to parallel transformation, where the load resistance in series
with the inductor is converted to an equivalent parallel load
equal to

Rp = (1 + Q2)RL

where Q = XL/RL, and X ′L = XL(1 + Q−2).
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Equiv. RLC (cont.)

The circuit is now nothing but a parallel RLC circuit and it’s
clear that at resonance the source will see only Rp, or a
boosted value of RL.

The boosting factor is indeed equal to Q2 + 1, very close to
the value we guessed from the outset.
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Norton Equiv.
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To gain further insight into the operation, consider an Norton
equivalent of the same circuit.

Now the circuit is easy to understand since it’s simply a
parallel resonant circuit. We known that at resonance the
current through the reactances is Q times larger than the
current in the load.

Since the current in the series element is controlled by the
source voltage, we can immediately see that is = QiL, thus
providing the required current gain to lower the load
resistance by a factor of Q2.
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Series Resonant Equiv.

As you may guess, the mathematics will yield a similar result.
Simply do a parallel to series transformation of the load to
obtain

Rs =
Rp

1 + Q2

X ′p =
Xp

1 + Q−2

The resulting circuit is a simple series RLC circuit. At
resonance, the source will only see the reduced series
resistance Rs .
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The Choice of Topology

The following design procedure applies to an L-match using
the generic forms. The actual choice between the forms
depends on the application. For instance some provide AC
coupling (DC isolation) which may be required in many
applications. In other applications a common DC voltage may
be needed, making the networks with DC coupling the obvious
choice.

14 / 33



L-Match Design Equations

Let Rhi = max(RS ,RL) and Rlo = min(RS ,RL). The L-matching
networks are designed as follows:

1 Calculate the boosting factor m = Rhi
Rlo

.

2 Compute the required circuit Q by (1 + Q2) = m, or
Q =

√
m − 1.

3 Pick the required reactance from the Q. If you’re boosting
the resistance, e.g. RS > RL, then Xs = Q · RL. If you’re
dropping the resistance, Xp = RL

Q .

4 Compute the effective resonating reactance. If RS > RL,
calculate X ′s = Xs(1 + Q−2) and set the shunt reactance in
order to resonate, Xp = −X ′s . If RS < RL, then calculate

X ′p =
Xp

1+Q−2 and set the series reactance in order to resonate,
Xs = −X ′p.

5 For a given frequency of operation, pick the value of L and C
to satisfy these equations.
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Insertion Loss of an L-Match

We’d like to include the losses in our passive elements into the
design of the matching network. The most detrimental effect
of the component Q is the insertion loss which reduces the
power transfer from source to load.

Let’s begin by using our intuition to derive an approximate
expression for the loss. Note that the power delivered to the
input of the matching network Pin can be divided into two
components

Pin = PL + Pdiss

where PL is the power delivered to the load and Pdiss is the
power dissipated by the non-ideal inductors and capacitors.

The insertion loss is therefore given by

IL =
PL

Pin
=

PL

PL + Pdiss
=

1

1 + Pdiss
PL
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Loss Calculation (cont.)

Recall that for the equivalent series RLC circuit in resonance,
the voltages across the reactances are Q times larger than the
voltage across RL. We can show that the reactive power is
also a factor of Q larger. For instance the energy in the
inductor is given by

Wm =
1

4
Li2s =

1

4

v2s
4R2

S

L

or

ω0 ×Wm = 1
4

v2s
4RS

ω0L

RS
= 1

2

v2s
8RS

Q = 1
2PL × Q

where PL is the power to the load at resonance

PL =
v2L

2RS
=

v2s
4 · 2 · RS

=
v2s

8RS
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Reactive Power versus Load Power

The total reactive power is thus exactly Q times larger than
the power in the load

ω0(Wm + We) = Q × PL (1)

By the definition of the component Qc factor, the power
dissipated in the non-ideal elements of net quality factor Qc is
simply

Pdiss =
PL · Q
Qc

(2)

which by using the original forms of the equation immediately
leads to the following expression for the insertion loss

IL =
1

1 + Q
Qc

(3)
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Insights from Equation

The above equation is very simple and insightful. Note that
using a higher network Q, e.g. a higher matching ratio, incurs
more insertion loss with the simple single stage matching
network. Furthermore, the absolute component Q is not
important but only the component Qc normalized to the
network Q. Thus if a low matching ratio is needed, the actual
components can be moderately lossy without incurring too
much insertion loss.

Also note that the the actual inductors and capacitors in the
circuit can be modeled with very complicated sub-circuits,
with several parasitics to model distributed and skin effect,
but in the end, at a given frequency, one can calculate the
equivalent component Qc factor and use it in the above
equation.
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Reactance Absorption
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In most situations the load and source impedances are often
complex and our discussion so far only applies to real load and
source impedances. An easy way to handle complex loads is
to simply absorb them with reactive elements.
For example, for the complex load shown, to apply an
L-matching circuit, we can begin by simply resonating out the
load reactance at the desired operating frequency. For
instance, we add an inductance Lres in shunt with the
capacitor to produce a real load.
From here the design procedure is identical. Note that we can
absorb the inductor Lres into the shunt L-matching element.
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A Π-Match
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The L-Match circuit is simple and elegant but is somewhat
constrained. In particular, we cannot freely choose the Q of
the circuit since it is fixed by the required matching factor m.
This restriction is easily solved with the Π-Matching circuit,
also named from its topology.
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Π Match

RLC1 C2

L1 L2

RS > Ri Ri < RL

The idea behind the Π match can be easily understood by
studying the cascade of two back-to-front L matches.

In this circuit the first L match will lower the load impedance
to an intermediate value Ri

Ri =
RL

1 + Q2
1

(4)

or

Q1 =

√
RL

Ri
− 1 (5)
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Π Match Step II

RL
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Since Ri < RL, the second L match needs to boost the value
of Ri up to Rs . The Q of the second L network is thus

Q2 =

√
RS

Ri
− 1 >

√
RS

RL
− 1 (6)

The reflected input and output impedance are both equal to
Ri at the center of the Π network.
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Π Series LCR
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When we combine the two L networks, we obtain a Π network
with a higher Q than possible with a single stage
transformation. In general the Q, or equivalently the
bandwidth B = ω0

Q , is a free parameter that can be chosen at
will for a given application.

Note that when the source is connected to the input, the
circuit is symmetric about the center. Now it’s rather easy to
compute the network Q by drawing a series equivalent circuit
about the center of the structure.
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Q of Π Network

If the capacitors and inductors in series are combined, the
result is a simple RLC circuit with Q given by

Q =
X1 + X2

2Ri
=

Q1 + Q2

2

It’s important to note the inclusion of the source resistance
when calculating the network Q as we are implicitly assuming
a power match. In a power amplifier, the source impedance
may be different and the above calculation should take that
into consideration.

For instance, if the PA is modeled as a high impedance current
source (Class A/B operation), then the factor of 2 disappears.
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A T-Match
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The T-matching network is the dual of the Π network.
The T network can also be decomposed into a cascade of two
back-to-front L networks. The first L transforms the
resistance up to some intermediate value Ri > RS , and the
second L transforms the resistance back down to RS . Thus
the net Q is higher than a single stage match.
The network Q can be derived in an analogous fashion and
yields the same solution

Q = 1
2

(√
Ri

RL
− 1 +

√
Ri

RS
− 1

)
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Multi-Section Low Q Matching
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We have seen that the Π and T matching networks are
essentially two stage networks which can boost the network
Q. In many applications we actually would like to achieve the
opposite effect, e.g. low network Q is desirable in broadband
applications.

Furthermore, a low Q design is less susceptible to process
variations. Also, a lower Q network lowers the loss of the
network (see IL equation).
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Lower Q Networks
To lower the Q of an L matching network, we can employ
more than one stage to change the impedance in smaller
steps. Recall that Q =

√
m − 1, and a large m factor requires

a high Q match.

If we simply change the impedance by a factor k < m, the Q
of the first L section is reduced. Likewise, a second L section
will further change the resistance to the desired RS with a
step size l < m, where l · k = m.

Reflecting all impedances to the center of the network, the
real part of the impedance looking left or right is Ri at
resonance. Thus the power dissipation is equal for both
networks. The overall Q is thus given by

Q =
ω(Ws1 + Ws2)

Pd1 + Pd2
=

ωWs1

2Pd
+

ωWs2

2Pd
=

Q1 + Q2

2

Q = 1
2

(√
Ri

RL
− 1 +

√
RS

Ri
− 1

)
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Optimally Low Q

Note the difference between the above and Eq. 26. The Ri

term appears once in the denominator and once in the
numerator since it’s an intermediate value. What’s the lowest
Q achievable? To find out, take the derivative with respect to
Ri and solve for the minimum

Ri ,opt =
√

RLRS

which results in a Q approximately lower by a square root
factor

Qopt =

√√√√
√

RS

RL
− 1 ≈ m1/4

It’s clear that the above equations apply to the opposite case
when RL > RS by simply interchanging the role of the source
and the load.
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Multi-Section L
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To even achieve a lower Q, we can keep adding sections. The
optimally low Q value is obtained when the intermediate
impedances are stepped in geometric progression

Ri1

Rlo
=

Ri2

Ri1
=

Ri3

Ri2
= · · · =

Rhi

Rin
= 1 + Q2

where Rhi = max(RS ,RL) and Rlo = min(RS ,RL). In the limit
that n→∞, we take very small “baby” steps from Rlo to Rhi

and the circuit starts to look like a tapered transmission line.
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Baby Steps

Multiplying each term in the above equation

Ri1

Rlo
· Ri2

Ri1
· Ri3

Ri2
· · · · · Rhi

Rin
=

Rhi

Rlo
= (1 + Q2)N

which results in the optimally Q factor for the overall network

Q =

√(
Rhi

Rlo

)1/N

− 1

The loss in the optimal multi-section line can be calculated as
follows. Using the same approach as before, note that the
total power dissipated in the matching network is given by

Pdiss =
NQPL

Qu

where N section are used, each with equal Q.
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IL of a Multi-Section Match

This leads to the following expression

IL =
1

1 + N Q
Qu

or

IL =
1

1 + N
Qu

√(
Rhi
Rlo

)1/N
− 1

It’s interesting to observe that this expression has an optimum
for a particular value of N. It’s easy enough to plot IL for a
few values of N to determine the optimal number of sections.
Intuitively adding sections can decrease the insertion loss since
it also lowers the network Q factor. Adding too many
sections, though, can counterbalance this benefit.
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PA Example

Suppose a power amplifier delivering 100 W of power has an
optimal load resistance of .5Ω, but needs to drive a 50Ω
antenna. Design a matching network assuming that the
component Q’s of 30 are available.

First note that a matching factor of m = 50/.5 = 100 is
needed. The table below shows the network Q and insertion
loss as a function of the number of sections N. Clearly three
sections yields the optimal solution. But since a three section
filter is more expensive, and has only marginally better
performance, a two section matching network may be
preferable.

N Q IL (dB)

1 9.95 −1.24
2 3 −0.79
3 1.91 −0.76

N Q IL (dB)

4 1.47 −0.78
5 1.23 −0.81
6 1.07 −0.85
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