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FROM CLASSICAL TO RELATIVISTIC MECHANICS:
ELECTROMAGNETIC MODELS OF THE ELECTRON

1. INTRODUCTION

“Special relativity killed the classical dream of using the energy-momentum-
velocity relations as a means of probing the dynamical origins of [the mass
of the electron]. The relations are purely kinematical” (Pais, 1982, 159).
This perceptive comment comes from a section on the pre-relativistic notion
of electromagnetic mass in ‘Subtle is the Lord . . . ’, Abraham Pais’ highly
acclaimed biography of Albert Einstein. ‘Kinematical’ in this context means
‘independent of the details of the dynamics’. In this paper we examine the
classical dream referred to by Pais from the vantage point of relativistic con-
tinuum mechanics.

There were actually two such dreams in the years surrounding the ad-
vent of special relativity. Like Einstein’s theory, both dreams originated in
the electrodynamics of moving bodies developed in the 1890s by the Dutch
physicist Hendrik Antoon Lorentz. Both took the form of concrete models
of the electron. Even these models were similar. Yet they were part of funda-
mentally different programs competing with one another in the years around
1905. One model, due to the German theoretician Max Abraham (1902a),
was part of a revolutionary effort to substitute the laws of electrodynamics
for those of Newtonian mechanics as the fundamental laws of physics. The
other model, adapted from Abraham’s by Lorentz (1904b) and fixed up by
the French mathematician Henri Poincaré (1906), was part of the attempt to
provide a general explanation for the absence of any sign of the earth’s mo-
tion through the ether, the elusive 19th-century medium thought to carry light
waves and electromagnetic fields. A choice had to be made between the ob-
jectives of Lorentz and Abraham. One could not eliminate all signs of ether
drift and reduce all physics to electrodynamics at the same time. Special
relativity was initially conflated with Lorentz’s theory because it too seemed
to focus on the undetectability of motion at the expense of electromagnetic
purity. The theories of Lorentz and Einstein agreed in all their empirical
predictions, including those for the velocity-dependence of electron mass,
even though special relativity was not wedded to any particular model of the
electron. For a while there was a third electron model, a variant on Lorentz’s
proposed independently by Alfred Bucherer (1904, 57–60; 1905) and Paul
Langevin (1905). At the time, the acknowledged arbiter between these mod-
els and the broader theories (perceived to be) attached to them was a series of
experiments by Walter Kaufmann and others on the deflection of high-speed
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electrons in β-radiation and cathode rays by electric and magnetic fields for
the purpose of determining the velocity-dependence of their mass.1

As appropriate for reveries, neither Lorentz’s nor Abraham’s dream about
the nature and structure of the electron lasted long. They started to fade a
few years after Einstein’s formulation of special relativity, even though the
visions that inspired them lingered on for quite a while. Lorentz went to
his grave in 1928 clinging to the notion of an ether hidden from view by
the Lorentz-invariant laws governing the phenomena. Abraham’s electro-
magnetic vision was pursued well into the 1920s by kindred spirits such as
Gustav Mie (1912a, 1912b, 1913). By then mainstream physics had long
moved on. The two dreams, however, did not evaporate without a trace.
They played a decisive role in the development of relativistic mechanics.2 It
is no coincidence therefore that relativistic (continuum) mechanics will be
central to our analysis in this paper. The development of the new mechan-
ics effectively began with the non-Newtonian transformation laws for force
and mass introduced by Lorentz (1895, 1899). It continued with the intro-
duction of electromagnetic momentum and electromagnetic mass by Abra-
ham (1902a, 1902b, 1903, 1904a, 1905, 1909) in the wake of the proclama-
tion of the electromagnetic view of nature by Willy Wien (1900). Einstein
(1907b), Max Planck (1906a, 1908), Hermann Minkowski (1908), Arnold
Sommerfeld (1910a, 1910b), and Gustav Herglotz (1910, 1911)—the last
three champions of the electromagnetic program3—all contributed to its fur-
ther development in a proper relativistic setting. These efforts culminated in
a seminal paper by Max Laue (1911a) and were enshrined in the first text-
book on relativity published later that year (Laue, 1911b).

There already exists a voluminous literature on the various aspects of
this story.4 We shall freely draw and build on that literature. One of us
has written extensively on the development of Lorentz’s research program in
the electrodynamics of moving bodies (Janssen, 1995, 2002b; Janssen and
Stachel, 2004).5 The canonical source for the electromagnetic view of nature
is still (McCormmach, 1970), despite its focus on Lorentz whose attitude to-
ward the electromagnetic program was ambivalent (cf. Lorentz, 1900; 1905,
93–101; 1915, secs. 178–186). His work formed its starting point and he was
sympathetic to the program, but never a strong advocate of it. (Goldberg,
1970) puts the spotlight on the program’s undisputed leader, Max Abraham.
(Pauli, 1921, Ch. 5) is a good source for the degenerative phase of the elec-
tromagnetic program in the 1910s.6 For a concise overview of the rise and
fall of the electromagnetic program, see Ch. 8 of (Kragh, 1999), aptly titled
“A Revolution that Failed.”
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Another important source for the electromagnetic program is Ch. 5 in
(Pyenson, 1985), which discusses a seminar on electron theory held in Göttin-
gen in the summer semester of 1905. Minkowski was one of four instruc-
tors of this course. The other three were Herglotz, David Hilbert, and Emil
Wiechert. Max Laue audited the seminar as a postdoc. Among the students
was Max Born, whose later work on the problem of rigid bodies in special
relativity (Born, 1909a, 1909b, 1910) was inspired by the seminar.7 The
syllabus for the seminar lists papers by Lorentz (1904a, 1904b), Abraham
(1903), Karl Schwarzschild (1903a, 1903b, 1903c), and Sommerfeld (1904a,
1904b, 1905a). This seminar gives a good indication of how active and cut-
ting edge this research area was at the time. Further evidence of this vitality
is provided by debates in the literature of the day over various points concern-
ing these electron models such as those between Wien (1904a, 1904b, 1904c,
1904d) and Abraham (1904b, 1904c),8 Bucherer (1907, 1908a, 1908b) and
Ebenezer Cunningham (1907, 1908),9 and Einstein (1907a) and Paul Ehren-
fest (1906, 1907). The roll call of researchers active in this area also included
the Italian mathematician Tullio Levi-Civita (1907, 1909).10 One may even
get the impression that in the early 1900s the journals were flooded with
papers on electron models. We wonder, for instance, whether the book by
Bucherer (1904) was not originally written as a long journal article, which
was rejected, given its similarity to earlier articles by Abraham, Lorentz,
Schwarzschild, and Sommerfeld.

The saga of the Abraham, Lorentz, and Bucherer-Langevin electron mod-
els and their changing fortunes in the laboratories of Kaufmann, Bucherer,
and others has been told admirably by Arthur I. Miller (1981, secs. 1.8–1.14,
7.4, and 12.4). Miller (1973) is also responsible for a detailed analysis of the
classic paper by Poincaré (1906) that introduced what came to be known as
“Poincaré pressure” to stabilize Lorentz’s purely electromagnetic electron.11

The model has been discussed extensively in the physics literature, by Fritz
Rohrlich and by such luminaries as Enrico Fermi, Paul Dirac, and Julian
Schwinger.12 It is also covered elegantly in volume two of the Feynman
lectures (Feynman et al., 1964, Ch. 28). (Pais, 1972) and (Rohrlich, 1973)
combine discussions of physics and history in an informative way.

Given how extensively this episode has been discussed in the historical
literature, the number of sources covering its denouement with the formu-
lation of Laue’s relativistic continuum mechanics is surprisingly low. Max
Jammer does not discuss relativistic continuum mechanics at all in his classic
monograph on the development of the concept of mass (cf. Jammer, 1997,
Chs. 11–13). Miller prominently discusses Laue’s work, both in (Miller,
1973, sec. 7.5) and in the concluding section of his book (Miller, 1981, sec.
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12.5.8), but does not give it the central place that in our opinion it deserves.
To bring out the importance of Laue’s work, we show right from the start
how the kind of spatially extended systems studied by Abraham, Lorentz,
and Poincaré can be dealt with in special relativity. We use modern notation
and modern units throughout and give self-contained derivations of almost
all results. Our treatment of these electron models follows the analysis of the
experiments of Trouton and Noble in (Janssen, 1995, 2002b, 2003), which
was inspired in part by the discussion in (Norton, 1992) of the importance
of Laue’s relativistic mechanics for the development of Gunnar Nordström’s
special-relativistic theory of gravity. The focus on the conceptual changes in
mechanics that accompanied the transition from classical to relativistic kine-
matics was inspired in part by the work of Jürgen Renn and his collaborators
on pre-classical mechanics (Damerow et al., 2004). Ultimately, our story
is part of a larger tale about shifts in such concepts as mass, energy, mo-
mentum, and stresses and the relations between them in the transition from
Newtonian mechanics and the electrodynamics of Maxwell and Lorentz to
special relativity.

2. ENERGY-MOMENTUM-MASS-VELOCITY RELATIONS

2.1. Special relativity

In special relativity, the relations between energy, momentum, mass, and
velocity of a system are encoded in the transformation properties of its four-
momentum. This quantity combines the energy U and the three components
of the ordinary momentum P:13

(4) Pµ =
(

U
c

,P
)

(where c is the velocity of light). In the system’s rest frame, with coordinates
xµ

0 = (ct0,x0,y0,z0), the four-momentum reduces to:

(5) Pµ
0 =

(
U0

c
,0,0,0

)
,

i.e., P0 = 0. The system’s rest mass is defined as m0 ≡U0/c2.
We transform Pµ

0 from the xµ
0-frame to some new xµ-frame, assuming for

the moment that Pµ
0 always transforms as a four-vector under Lorentz trans-

formations. Let the two frames be related by the Lorentz transformation xµ =
Λµ

νxν
0, where the transformation matrices Λµ

ν satisfy Λµ
ρΛν

σηρσ = ηµν, the
defining equation for Lorentz transformations, with ηµν ≡ diag(1,−1,−1,−1)
the standard diagonal Minkowski metric. Here and in the rest of the paper
summation over repeated indices is implied. We follow the convention that
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Greek indices run from 0 to 3 and Latin ones from 1 to 3. Since, in general,
the four-momentum does not transform as a four-vector, the Lorentz trans-
form of Pµ

0 will, in general, not be the four-momentum in the xµ-frame. We
therefore cautiously write the result of the transformation with an asterisk:

(6) P∗µ = Λµ
νPν

0 .

Without loss of generality we can focus on the special case in which the
motion of the xµ-frame with respect to the xµ

0-frame is with velocity v in the
x-direction. The matrix for this transformation is:

(7) Λµ
ν =

⎛
⎜⎜⎝

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

with γ ≡ 1/
√

1−β2 and β ≡ ν/c. In that case,

(8) P∗µ =
(

γ
U0

c
,γβ

U0

c
,0,0

)
= (γm0c,γm0v) .

If the four-momentum of the system does transform as a four-vector, P∗µ

in eq. 8 is equal to Pµ in eq. 4 and we can read off the following relations
between energy, momentum, mass, and velocity from these two equations:

(9) U = γU0 = γm0c2, P = γm0v.

Eqs. 9 hold for a relativistic point particle with rest mass m0. Its four-
momentum is given by

(10) Pµ = m0uµ = m0
dxµ

dτ
= γm0

dxµ

dt
.

Since uµ ≡ dxµ/dτ is the four-velocity, this is clearly a four-vector. The
relation between proper time τ, arc length s, and coordinate time t is given by
dτ = ds/c = dt/γ.14 If the particle is moving with velocity v, dxµ/dt = (c,v)
and eq. 10 becomes:

(11) Pµ = (γm0c,γm0v).

Eqs. 9 also hold for spatially extended closed systems, i.e., systems de-
scribed by an energy-momentum tensor T µν with a vanishing four-divergence,
i.e., ∂νT µν = 0 (where ∂ν stands for ∂/∂xν). The energy-momentum ten-
sor brings together the following quantities. The component T 00 gives the
energy density; T i0/c the components of the momentum density; cT 0i the
components of the energy flow density;15 and T i j the components of the mo-
mentum flow density, or, equivalently, the stresses.16 The standard definition
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of the four-momentum of a spatially extended (not necessarily closed) sys-
tem described by the (not necessarily divergence-free) energy-momentum
tensor T µν is:

(12) Pµ ≡ 1
c

Z
T µ0d3x.

Before the advent of relativity, this equation was written as a pair of separate
equations:

(13) U =
Z

ud3x, P =
Z

pd3x,

where u and p are the energy density and the momentum density, respec-
tively. Definition 12 is clearly not manifestly Lorentz invariant. The space
integrals of T µ0 in the xµ-frame are integrals in space-time over a three-
dimensional hyperplane of simultaneity in that frame. A Lorentz transfor-
mation does not change the hyperplane over which the integration is to be
carried out. A hyperplane of simultaneity in the xµ-frame is not a hyperplane
of simultaneity in any frame moving with respect to it. From these last three
observations, it follows that the Lorentz transforms of the space integrals in
eq. 12 will not be space integrals in the new frame. But then how can these
Lorentz transforms ever be the four-momentum in the new frame? The an-
swer to this question is that if the system is closed (i.e., if ∂νT µν = 0), it does
not matter over which hyperplane the integration is done. The integrals of
the relevant components of T µν over any hyperplane extending to infinity
will all give the same values. So for closed systems a Lorentz transforma-
tion does map the four-momentum in one frame to a quantity that is equal to
the four-momentum in the new frame even though these two quantities are
defined as integrals over different hyperplanes.17

The standard definition of four-momentum can be replaced by a mani-
festly Lorentz-invariant one. First note that the space integrals of T µ0 in the
xµ-frame can be written in a manifestly covariant form as18

(14) Pµ =
1
c

Z
δ
(
ηρσxρnσ)T µνnνd4x,

where δ(x) is the Dirac delta function, defined through
R

f (x)δ(x− a)dx =
f (a), and nµ is a unit vector in the time direction in the xµ-frame. In that
frame nµ has components (1,0,0,0). The delta function picks out hyper-
planes of simultaneity in the xµ-frame. The standard definition 12 of four-
momentum can, of course, be written in the form of eq. 14 in any frame, but
that requires a different choice of nµ in each one. This is just a different way
of saying what we said before: under the standard definition 12, the result
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of transforming Pµ in the xµ-frame to some new frame will not be the four-
momentum in the new frame unless the system is closed. If, however, we
take the unit vector nµ in eq. 14 to be some fixed timelike vector—typically
the unit vector in the time direction in the system’s rest frame19—and take
eq. 14 with that fixed vector nµ as our new definition of four-momentum, the
problem disappears.

Eq. 14 with a fixed timelike unit vector nµ provides an alternative mani-
festly Lorentz-invariant definition of four-momentum. Under this new defi-
nition—which was proposed by, among others, Fermi (1922)20 and Fritz
Rohrlich (1960, 1965)21—the four-momentum of a spatially extended sys-
tem transforms as a four-vector under Lorentz transformations no matter
whether the system is open or closed. The definitions 12 and 14 are equiv-
alent to one another for closed systems, but only coincide for open systems
in the frame of reference in which nµ has components (1,0,0,0). In this pa-
per, we shall use the admittedly less elegant definition 12, simply because
either it or its decomposition into eqs. 13 were the definitions used in the pe-
riod of interest. Part of the problem encountered by our protagonists simply
disappears by switching to the alternative definition 14. With this definition
energy and momentum always obey the familiar relativistic transformation
rules, regardless of whether we are dealing with closed systems or with their
open components. As one would expect, however, a mere change of defini-
tion does not take care of the main problem that troubled the likes of Lorentz,
Poincaré, and Abraham. That is the problem of the stability of a spatially ex-
tended electromagnetic electron.

2.2. Pre-relativistic theory

The analogues of relations 9 between energy, mass, momentum, and veloc-
ity in Newtonian mechanics are the basic formulae for kinetic energy and
momentum:

(15) Ukin =
1
2

mv2, p = mv

In the years before the advent of special relativity, electrodynamics was
a hybrid theory in which Galilean-invariant Newtonian mechanics was sup-
posed to govern matter while Maxwell’s equations, which are inherently
Lorentz invariant, governed the electromagnetic fields. This hybrid theory
already harbored the relativistic energy-momentum-velocity relations.

Initially, the starting point of physicists working in this area had unques-
tionably been Newton’s second law, F = ma, force equals mass times accel-
eration. Electrodynamics merely supplied the Lorentz force for the left-hand
side of this equation. Eventually, however, some of the leading practitioners
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were leaning toward the view that matter does not have any Newtonian mass
at all and that its inertia is just a manifestation of the interaction of electric
charge distributions with their self-fields. Lorentz was reluctantly driven to
this conclusion because, as we shall see in secs. 3 and 4, it would help explain
the absence of any signs of ether drift. Abraham enthusiastically embraced
it because it opened up the prospect of a purely electromagnetic basis for
all of physics. With F = ma reduced to F = 0, Newton’s second law only
nominally retained its lofty position as the fundamental equation of motion.
All real work was done by electrodynamics. Writing F = 0 as dPtot/dt = 0,
one can read it as expressing momentum conservation. Momentum does not
need to be mechanical. Abraham introduced the concept of electromagnetic
momentum.22 Lorentz was happy to leave Newtonian royalty its ceremonial
role. Abraham, of a more regicidal temperament, sought to replace F = ma
by a new purely electrodynamic equation that would explain why Newton’s
law had appeared to be the rule of the land for so long.

Despite their different motivations, Lorentz and Abraham agreed that the
effective equation of motion for an electron in some external field is23

(16) Fext + Fself = 0,

with Fext the Lorentz force coming from the external field and Fself the
Lorentz force coming from the self-field of the electron. The key experi-
ments to which eq. 16 was applied were the experiments of Kaufmann and
others on the deflection of fast electrons by electric and magnetic fields. Both
Lorentz and Abraham conceived of the electron as a spherical surface charge
distribution. They disagreed about whether the electron’s shape would de-
pend on its velocity with respect to the ether, more specifically about whether
it would be subject to a microscopic version of the Lorentz-FitzGerald con-
traction. Lorentz believed it would, Abraham believed it would not.

The Lorentz force that an electron moving through the ether at velocity v
experiences from its self-field can be written as minus the time derivative of
the quantity that Abraham proposed to call the electromagnetic momentum:

(17) Fself =
Z

ρ(E + v×B)d3x = −dPEM

dt
.

In this expression ρ is the density of the electron’s charge distribution, and E
and B are the electric and magnetic field produced by this charge distribution.
The electromagnetic momentum of these fields is defined as

(18) PEM ≡
Z

ε0E×Bd3x,

and doubles as the electromagnetic momentum of the electron itself. In gen-
eral there will be an extra term on the right-hand side of eq. 17. In general,
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the components of Fself are given by:

(19) Fi
self = −dPi

EM

dt
+

Z
∂ jT

i j
Maxwelld

3x,

where

(20) T i j
Maxwell ≡ ε0

(
EiE j − 1

2
δi jE2

)
+ µ−1

0

(
BiB j − 1

2
δi jB2

)

is the Maxwell stress tensor (the Kronecker delta δi j is defined as follows:
δi j = 1 for i = j and 0 otherwise). Gauss’s theorem tells us that this additional
term vanishes as long as T i j

Maxwell drops off faster than 1/r2 as x goes to
infinity. Simple derivations of these results can be found in many sources, old
and new.24 With the help of eq. 17 the electromagnetic equation of motion
16 can be written in the form of the Newtonian equation F = dp/dt with
Abraham’s electromagnetic momentum replacing ordinary momentum:

(21) Fext =
dPEM

dt
.

Like Newton’s second law, which can be written either as F = ma or as
F = dp/dt, this new law can, under special circumstances, be written as
the product of mass and acceleration. Assume that the momentum is in the
direction of motion,25 i.e., that PEM = (PEM/v)v. We then have

(22)
dPEM

dt
=

dPEM

dt
v
v

+ PEM
d
dt

(v
v

)
.

The first term on the right-hand side can be written as

(23)
dPEM

dt
v
v

=
dPEM

dv
dv
dt

v
v

=
dPEM

dv
a//,

where a// is the longitudinal acceleration, i.e., the acceleration in the direc-
tion of motion. The second term can be written as

(24) PEM
d
dt

(v
v

)
=

PEM

v
a⊥,

where a⊥ is the transverse acceleration, i.e., the acceleration perpendicular
to the direction of motion. The factors multiplying these two components of
the acceleration are called the longitudinal (electromagnetic) mass, m//, and
the transverse (electromagnetic) mass, m⊥, respectively. This terminology
is due to Abraham (1903, 150–151). Eq. 22 can thus be written as

(25)
dPEM

dt
= m//a// + m⊥a⊥,
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with26

(26) m// =
dPEM

dv
, m⊥ =

PEM

v
.

The effective equation of motion 21 becomes:

(27) Fext = m//a// + m⊥a⊥.

We shall see that, for v = 0 (in which case the electron models of Abraham
and Lorentz coincide), m// = m⊥ = m0, and that, for v �= 0, m// and m⊥
differ from m0 only by terms of order v2/c2. For velocities v � c, eq. 27
thus reduces to:

(28) Fext ≈ m0(a// + a⊥) = m0a.

Proponents of the electromagnetic view of nature took eq. 21 to be the funda-
mental equation of motion and derived Newton’s law from it by identifying
the ordinary Newtonian mass with the electromagnetic mass m0 of the rele-
vant system at rest in the ether.

Eq. 26 defines the longitudinal mass m// of the electron in terms of its
electromagnetic momentum. It can also be defined in terms of the electron’s
electromagnetic energy. Consider the work done as an electron is moving
in the x-direction in the absence of an external field. The work expended
goes into the internal energy of the electron, dU = −dW . According to eq.
16, the work is done by Fself.27 The internal energy is identified with the
electromagnetic energy UEM:

(29) dUEM = −dW = −Fself ·dx.

Using eqs. 17 and 25, we can write this as

(30) dUEM =
dPEM

dt
·dx = m//a// ·dx = m//

dv
dt

dx = m//vdv.

It follows that28

(31) m// =
1
v

dUEM

dv
.

As we shall see in sec. 4, given the standard definitions 13 of electromagnetic
energy and momentum, the neglect of non-electromagnetic stabilizing forces
in the derivation of eqs. 26 and 31 leads to an ambiguity in the expression
for the longitudinal mass of Lorentz’s electron.

If the combination of the energy U (divided by c), and the momentum
P for any system, electromagnetic or otherwise, transforms as a four-vector
under Lorentz transformations, then m// calculated from eq. 26 (with P sub-
stituted for PEM) is equal to m// calculated from eq. 31 (with U substituted
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for UEM).29 Consider the transformation from a rest frame with coordinates
xµ

0 to the xµ-frame. In that case (see eqs. 4–8):

(32) Pµ =
(

U
c

,P
)

= (γm0c,γm0v).

The energy U gives the longitudinal mass (see eq. 31)

(33) m// =
1
v

dU
dv

=
1
v

d
dv

(γm0c2) =
m0c2

v
dγ
dv

.

The momentum P gives the longitudinal mass (eq. 26):

(34) m// =
dP
dv

=
d
dv

(γm0v) = m0
d(γv)

dv
.

Noting that30

(35)
dγ
dv

= γ3 v
c2 ,

d(γv)
dv

= γ3,

we find that eqs. 33 and 34 do indeed give the same result:

(36) m// =
1
v

dU
dv

=
dP
dv

= γ3m0.

The momentum P in eq. 32 gives the transverse mass (eq. 26):

(37) m⊥ =
P
v

= γm0.

Eqs. 36 and 37 give mass-velocity relations that hold for any relativistic par-
ticle. These equations thus have much broader applicability than their ori-
gin in electrodynamics suggests. This is exactly what killed the dreams of
Abraham and Lorentz of using these relations to draw conclusions about the
nature and shape of the electron.

3. LORENTZ’S THEOREM OF CORRESPONDING STATES,
THE GENERALIZED CONTRACTION HYPOTHESIS,

AND THE VELOCITY DEPENDENCE OF ELECTRON MASS

Lorentz had already published the relativistic eqs. 36 and 37 for longitudinal
and transverse mass, up to an undetermined factor l, in 1899. To understand
how Lorentz originally arrived at these equations we need to take a look at
his general approach to problems in the electrodynamics of moving bodies.31

The basic problem that Lorentz was facing was that Maxwell’s equations are
not invariant under Galilean transformations, which relate frames in relative
motion to one another in Lorentz’s classical Newtonian space-time. Lorentz
thus labored under the impression that Maxwell’s equations only hold in
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frames at rest in the ether and not in the terrestrial lab frames in which all
our experiments are done.

Consider an ether frame with space-time coordinates (t0,x0) and a lab
frame with space-time coordinates (t,x) related to one another via the Gali-
lean transformation

t = t0, x = x0 − vt0, y = y0, z = z0,

E = E0, B = B0, ρ = ρ0.
(38)

The second line of this equation expresses that the electric field, the magnetic
field, and the charge density remain the same even though after the transfor-
mation they are thought of as functions of (t,x) rather than as functions of
(t0,x0).

The equations for the fields produced by a charge distribution static in
the lab frame as functions of the space-time coordinates (t,x) are obtained
by writing down Maxwell’s equations for the relevant quantities in the lab
frame, adding the current µ0ρv32 and replacing time derivatives by the oper-
ator ∂/∂t − v∂/∂x.33 We thus arrive at:

(39)

divE = ρ/ε0, curlB = µ0ρv+
1
c2

(
∂E
∂t

− v
∂E
∂x

)
,

divB = 0, curlE = −∂B
∂t

+ v
∂B
∂x

.

Lorentz now replaced the space-time coordinates (t,x), the fields E and B,
and the charge density ρ by auxiliary variables defined as:

(40)

x′ = l diag(γ,1,1)x, t ′ = l

(
t
γ
− γ
( v

c2

)
x

)
,

ρ′ =
ρ

γl3 ,

E′ =
1
l2 diag(1,γ,γ)(E + v×B),

B′ =
1
l2 diag(1,γ,γ)

(
B− 1

c2 v×E
)

,

where l is an undetermined factor that is assumed to be equal to one to first
order in v/c. Since the auxiliary time variable depends on position, it is
called local time. Lorentz showed that the auxiliary fields E′ and B′ and the
auxiliary charge density ρ′ written as functions of the auxiliary space-time
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coordinates (t ′,x′) satisfy Maxwell’s equations:

(41)

div′ E′ = ρ′/ε0, curl′ B′ =
1
c2

∂E′

∂t ′
,

div′B′ = 0, curl′E′ = −∂B′

∂t ′
.

When the factor l is set equal to one, what Lorentz showed, at least for
static charge densities,34 is that Maxwell’s equations are invariant under what
Poincaré (1906, 495) proposed to call textitLorentz transformations. For
l = 1, the transformation formulae in eq. 40 for the fields E and B and for
a static charge density ρ look exactly the same as in special relativity. The
transformation formulae for the space-time coordinates do not. Bear in mind,
however, that Lorentz did the transformation in two steps, given by eqs. 38
and 40, respectively. Schematically, we have:

(42) (t0,x0,E0,B0,ρ0) → (t,x,E,B,ρ) → (t ′,x′,E′,B′,ρ′)l=1.

Combining these two steps, we recover the familiar Lorentz transformation
formulae. For the fields and the charge density, this is just a matter of replac-
ing (E,B,ρ) in eq. 40 by (E0,B0,ρ0) and setting l = 1. For the space-time
coordinates, it takes only a minimal amount of algebra:

(43)

x′ = γx = γ(x0 − vt0), y′ = y = y0, z′ = z = z0,

t ′ =
t
γ
− γ

v
c2 x =

t0
γ
− γ

v
c2 (x0 − vt0) = γ

(
t0 − v

c2 x0

)
,

where in the second line we used that 1/γ+ γ(v2/c2) = γ(1/γ2 + β2) = γ.
The inverse of the transformation (t0,x0,E0,B0) → (t ′,x′,E′,B′) for l =

1 is found by interchanging (t0,x0,E0,B0) and (t ′,x′,E′,B′) and changing v
to −v. Doing the inversion for l �= 1 also requires changing l to l−1. The
inverse of the transformation (E0,B0) → (E′,B′) for l �= 1, for instance, is
given by

(44)

E0 = E = l2diag(1,γ,γ)(E′ −v×B′),

B0 = B = l2diag(1,γ,γ)
(

B′ +
1
c2 v×E′

)
.

The transformation is symmetric only for l = 1. Unlike Lorentz before 1905,
Poincaré and Einstein both looked upon the primed quantities as the quanti-
ties measured by the observer in the lab frame. In special relativity, the ether
frame is just another inertial frame on a par with the lab frame. The situation
for observers in these two frames will be fully symmetric only if l = 1. This
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was essentially the argument for both Poincaré and Einstein to set l = 1. As
we shall see in the next section, Lorentz also ended up setting l = 1 but on the
basis of a roundabout dynamical argument. For our purposes it is important
that we leave the factor l undetermined for the time being.

The invariance of Maxwell’s equations under the combination of trans-
formations 38 and 40 allowed Lorentz to formulate what he called the theo-
rem of corresponding states. This theorem says that for any field configura-
tion in a frame at rest in the ether there is a corresponding field configuration
in a frame moving through the ether such that the auxiliary fields E′ and B′
in the moving frame are the same functions of the auxiliary space and time
coordinates (t ′,x′) as the real fields E0 and B0 in the frame at rest of the real
space and time coordinates (t0,x0). Lorentz was particularly interested in
free field configurations (for which ρ = 0) describing patterns of light and
darkness. Most experiments in optics eventually boil down to the observa-
tion of such patterns.

To describe a pattern of light and darkness it suffices to specify where
the fields averaged over times that are long compared to the period of the
light used vanish and where these averages are large. E′ and B′ are linear
combinations of E and B (see eq. 40). They are large (small) when- and
wherever E and B are. Since patterns of light and darkness by their very
nature are effectively static, no complications arise from the x-dependence of
local time. If it is light (dark) simultaneously at two points with coordinates
x0 = a and x0 = b in some field configuration in a frame at rest in the ether,
it will be light (dark) simultaneously at the corresponding points x′ = a and
x′ = b in the corresponding state in a frame moving through the ether. In
terms of the real coordinates these are the points x = (1/l)diag(1/γ,1,1)a
and x = (1/l)diag(1/γ,1,1)b. The pattern of light and darkness in a moving
frame is thus obtained from its corresponding pattern in a frame at rest in the
ether by contracting the latter by a factor γl in the direction of motion and a
factor l in the directions perpendicular to the direction of motion. Examining
the formula for the local time in eq. 40, one likewise sees that the periods of
light waves in a moving frame are obtained by multiplying the periods of the
light waves in the corresponding state at rest in the ether by a factor γ/l.

To account for the fact that these length-contraction and time-dilation
effects in electromagnetic field configurations were never detected, Lorentz
(1899) assumed that matter interacting with the fields (e.g., the optical com-
ponents producing patterns of light and darkness) experiences these same
effects. Lorentz thereby added a far-reaching physical assumption to his
purely mathematical theorem of corresponding states. Elsewhere one of us
has dubbed this assumption the generalized contraction hypothesis (Janssen,
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1995, sec. 3.3; 2002b; Janssen and Stachel, 2004). It was through this hy-
pothesis that Lorentz decreed a number of exemptions of the Newtonian laws
that had jurisdiction over matter in his theory. The length-contraction and
time-dilation rules to which matter and field alike had to be subject to ac-
count for the absence of any signs of ether drift are examples of such ex-
emptions. The velocity dependence of mass is another (Janssen, 1995, sec.
3.3.6). This is the one that is important for our purposes.

Suppose an oscillating electron in a light source at rest in S0 satisfies
F0 = m0a0. In the corresponding state in S the corresponding electron will
then satisfy the same equation in terms of the auxiliary quantities, i.e.,

(45) F′ = m0a′,

where F′ is the same function of (t ′,x′) as F0 is of (t0,x0), and where a′ =
d2x′/dt ′2 and a0 = d2x0/dt0

2 are always the same at corresponding points
in S and S0. Lorentz assumed that motion through the ether affects all forces
on the electron the same way it affects Coulomb forces35

(46) F′ =
1
l2 diag(1,γ,γ)F.

For the relation between the acceleration a′ in terms of the auxiliary space
and time coordinates and the real acceleration a, Lorentz used the relation

(47) a′ =
1
l

diag(γ3,γ2,γ2)a.

In general, this relation is more complicated, but when the velocity dx0/dt0
with which the electron is oscillating in S0 is small, dx′/dt ′ (equal to dx0/dt0
at the corresponding point in S0) can be neglected and eq. 47 holds. A deriva-
tion of the general relation between a′ and a was given by Planck (1906a)
in the context of his derivation of the relativistic generalization of Newton’s
second law, a derivation mathematically essentially equivalent to Lorentz’s
1899 derivation of the velocity dependence of mass, except that Planck only
had to consider the special case l = 1.36

Lorentz probably arrived at eq. 47 through the following crude argument.
If an electron oscillates around a fixed point in S with a low velocity and a
small amplitude, the x-dependent term in the expression for local time can be
ignored. In that case, we only need to take into account that x′ differs from
x by ldiag(γ,1,1) and that t ′ differs from t by l/γ (see eq. 40). This gives a
quick and dirty derivation of eq. 47:

(48) a′ =
d2x′

dt ′2
=
(γ

l

)2
l diag(γ,1,1)

d2x
dt2 =

1
l

diag
(
γ3,γ2,γ2)a.
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Inserting eqs. 46 and 47 into eq. 45, we find

(49)
1
l2 diag(l,γ,γ)F =

1
l

diag
(
γ3,γ2,γ2)m0a.

This can be rewritten as

(50) F = l diag
(
γ3,γ,γ

)
m0a.

From this equation it follows that the oscillation of an electron in the moving
source can only satisfy Newton’s second law if the mass m of an electron
with velocity v with respect to the ether (remember that the velocity of the
oscillation itself was assumed to be negligible) differs from the mass m0 of
an electron at rest in the ether in precisely the following way:

(51) m// = lγ3m0, m⊥ = lγm0.

If l = 1, these are just the relativistic eqs. 36 and 37. It was Planck who
showed in the paper mentioned above that these relations also obtain in spe-
cial relativity.37 Planck’s interpretation of these relations was very differ-
ent from Lorentz’s. For Planck, as for Einstein, the velocity dependence of
mass was part of a new relativistic mechanics replacing classical Newtonian
mechanics. Lorentz wanted to retain Newtonian mechanics, even after he
accepted in 1904 that there are no Galilean-invariant Newtonian masses or
forces in nature. Consequently, he had to provide an explanation for the
peculiar velocity-dependence of electron mass he needed to account for the
absence of any detectable ether drift. In 1904, adapting Abraham’s electron
model, Lorentz provided such an explanation in the form of a specific model
of the electron that exhibited exactly the velocity dependence of eq. 51 for
l = 1.

4. ELECTROMAGNETIC ENERGY, MOMENTUM, AND MASS OF A
MOVING ELECTRON

In this section we use Lorentz’s theorem of corresponding states—or, in
modern terms, the Lorentz invariance of Maxwell’s equations—to calculate
the energy, the momentum, and the Lagrangian for the field of a moving
electron, conceived of as nothing but a surface charge distribution and its
electromagnetic field. We then compute the longitudinal and the transverse
mass of the electron.

We distinguish three different models. In all three the electron at rest
in the ether is spherical. In Abraham’s model it remains spherical when it
is set in motion; in Lorentz’s model it contracts by a factor γ in the direc-
tion of motion; and in the Bucherer-Langevin model it contracts by a factor
γ2/3 in the direction of motion but expands by a factor γ1/3 in the directions
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moving electron corresponding state
stretch dimensions of
moving system by
diag(γl, l, l)

The rigid electron
of Abraham
(l arbitrary)

sphere

(R,R,R)

ellipsoid

(γlR, lR, lR)

The contractile
electron of
Lorentz and
Poincaré
(l = 1)

ellipsoid

(R/γ,R,R)

sphere

(R,R,R)

The contractile
electron of
constant volume
of Bucherer
and Langevin
(l = γ−1/3)

ellipsoid

(
R/γ2/3,γ1/3R,γ1/3R

)

sphere

(R,R,R)

FIGURE 1. A moving electron according to the models of
Abraham, Lorentz, and Bucherer-Langevin, and the corre-
sponding states at rest in the ether.

perpendicular to the direction of motion so that its volume remains constant.
Fig. 1 shows a moving electron according to these three models along with
the corresponding states in a frame at rest in the ether. For Abraham’s rigid
electron the corresponding state is an ellipsoid; for the contractile electrons
of Lorentz and Bucherer-Langevin it is a sphere.

In the corresponding state of a moving electron (in relativistic terms: in
the electron’s rest frame) there is no magnetic field. Hence B′ = 0 and eq. 44
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gives:

(52) E = l2 (E ′
x,γE ′

y,γE ′
z

)
, B =

γl2v
c2

(
0,−E ′

z,E
′
y

)
.

4.1. Energy

The energy of the electric and magnetic field is defined as

(53) UEM =
Z (

1
2

ε0E2 +
1
2

µ−1
0 B2

)
d3x.

For the field in eq. 52 with Bx = 0, it is given by

(54) UEM =
Z

1
2

ε0E2
x d3x+

Z
1
2

ε0
(
E2

y + E2
z

)
d3x+

Z
1
2

µ−1
0

(
B2

y + B2
z

)
d3x.

Following Poincaré (1906, 523), we call these three terms A, B, and C. Using
eq. 52 and d3x = d3x′/γl3, we find

A =
l
γ

Z
1
2

ε0E ′2
xd3x′ =

l
γ

A′,

(55) B = lγ
Z

1
2

ε0

(
E ′2

y + E ′2
z

)
d3x′ = lγB′,

C =
µ−1

0 γlv2

c4

Z
1
2

(
E ′2

y + E ′2
z

)
d3x′ = lγβ2B′,

where in the last step we used c2 = 1/ε0µ0. If the corresponding state is
spherical,

(56) B′ = 2A′ =
2
3

U ′
EM.

It follows that for the models of Lorentz and Bucherer-Langevin:

(57) UEM = lγ
(

1
γ2 + 2+ 2β2

)
A′ = lγ

(
1+

1
3

β2
)

U ′
EM,

where we used that γ−2 = 1− β2 and that 3A′ = U ′
EM. Eq. 57 can also be

written as

(58) UEM = lγ
(

4
3
− 1

3

(
1−β2))U ′

EM = l

(
4γ
3
− 1

3γ

)
U ′

EM.
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4.2. Lagrangian

The Lagrangian can be computed the same way. We start from

(59) LEM =
Z

LEMd3x,

where LEM is the Lagrange density defined as (note the sign)

(60) LEM ≡ 1
2

µ−1
0 B2 − 1

2
ε0E2.

This quantity transforms as a scalar under Lorentz transformations as can be
seen from its definition in manifestly Lorentz-invariant form:38

(61) LEM ≡ 1
4

µ−1
0 FµνFµν.

It follows that LEM = l4L ′
EM with L ′

EM = −(1/2)ε0E ′2. Eq. 59 thus gives:

(62) LEM =
Z

l4L ′
EM

d3x′

γl3 = − l
γ
U ′

EM.

4.3. Momentum

The electromagnetic momentum can also be computed in this way. For the
field of the electron, the electromagnetic momentum density (see eq. 18) is:

(63) pEM = ε0

⎛
⎝EyBz −EzBy

−ExBz

ExBy

⎞
⎠= ε0γl4 v

c2

⎛
⎝γ(E ′

y
2 + E ′

z
2)

E ′
xE ′

y
E ′

xE ′
z

⎞
⎠ .

Because of symmetry (in all three models)

(64)
Z

pyEM d3x =
Z

pzEMd3x = 0.

For the x-component, we find

(65) PxEM =
1

γl3

Z
pxEM d3x′ = γl

v
c2

Z
ε0

(
E ′

y
2 + E ′

z
2
)

d3x′ = γl
v
c2 2B′

(see eq. 55). For the contractile electron (Lorentz and Bucherer-Langevin),
B′ = (2/3)U ′

EM (see eq. 56). In that case

(66) PEM =
4
3

γl

(
U ′

EM

c2

)
v.

This pre-relativistic equation will immediately strike anyone familiar with
the basic formulae of special relativity as odd. Remember that from a rela-
tivistic point of view the energy U ′

EM of the moving electron’s corresponding
state at rest in the ether is nothing but the energy U0EM of the electron in its
rest frame. Comparison of eq. 66 with l = 1 to P = γm0v (eq. 9) suggests
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that the rest mass of the electron is m0 = 4
3U0EM/c2. This seems to be in

blatant contradiction to the equation everybody knows, E = mc2. This is
the notorious “4/3 puzzle” of the energy-mass relation of the classical elec-
tron. The origin of the problem is that the system we are considering, the
self-field of the electron, is not closed and that its four-momentum conse-
quently does not transform as a four-vector, at least not under the standard
definition 12 of four-momentum. The solution to the puzzle is either to add
another piece to the system so that the composite system is closed or to adopt
the alternative Fermi-Rohrlich definition 14 (with a fixed unit vector nµ) of
the four-momentum of spatially extended systems.39 As we shall see, the
“4/3 puzzle” had already reared its ugly head before the advent of special
relativity, albeit in a different guise.

4.4. Longitudinal and transverse mass

Substituting eqs. 58 and 66 for the energy and momentum of the field of a
moving contractile electron into the expressions 26 and 31 for the electron’s
transverse and longitudinal mass, we find:

(67) m// =
dPEM

dv
=

d(γlv)
dv

4
3

U ′
EM

c2 ,

(68) m⊥ =
PEM

v
= γl

4
3

U ′
EM

c2 ,

(69) m// =
1
v

dUEM

dv
=

1
v

d
dv

(
4γl
3

− l
3γ

)
U ′

EM.

Several conclusions can be drawn from these equations. First, it turns out that
eq. 67 only gives the velocity dependence of the longitudinal mass required
by Lorentz’s generalized contraction hypothesis for l = 1. Unfortunately, for
l = 1, eq. 69 does not give the same longitudinal mass as eq. 67. One only
obtains the same result for l = γ−1/3. This is the value for the Bucherer-
Langevin constant-volume contractile electron.

It is easy to prove these claims. Using eq. 35, we can write eq. 67 as

(70) m// =
dPEM

dv
=
(

γ3l + γv
dl
dv

)
4
3

U ′
EM

c2 .

From eqs. 68 and 70 it follows that the only way to ensure that m// = lγ3m0

and m⊥ = lγm0, as required by the generalized contraction hypothesis (see
eq. 51), is to set the Newtonian mass equal to zero, to set l = 1, and to define
the mass of the electron at rest in the ether as

(71) m0 =
4
3

U ′
EM

c2
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(which, from a relativistic point of view, amounts to the odd equation E =
3
4mc2). Eqs. 70 and 68 then reduce to

(72) m// = γ3m0, m⊥ = γm0,

in accordance with eq. 51.
Lorentz (1904) had thus found a concrete model for the electron with a

mass exhibiting exactly the velocity dependence that he had found in 1899.
This could hardly be a coincidence. Lorentz concluded40 that the electron
was indeed nothing but a small spherical surface charge distribution, sub-
ject to a microscopic version of the Lorentz-FitzGerald contraction when
set in motion, and that its mass was purely electromagnetic, i.e., the result
of interaction with its self-field. This is Lorentz’s version of the classical
dream referred to by Pais in the passage we quoted in the introduction. The
mass-velocity relations for Lorentz’s electron model are just the relativistic
relations 36–37. So it is indeed no coincidence that Lorentz found these
same relations twice, first, in 1899, as a necessary condition for rendering
ether drift unobservable (see eqs. 45–51) and then, in 1904, as the mass-
velocity relations for a concrete Lorentz-invariant model of the electron. But
the explanation is not, as Lorentz thought, that his model provides an ac-
curate representation of the real electron; it is simply that the mass of any
Lorentz-invariant model of any particle—whatever its nature and whatever
its shape—will exhibit the exact same velocity dependence. This was first
shown (for static systems) by Laue (1911a) and, to use Pais’ imagery again,
it killed Lorentz’s dream.

Quite independently of Laue’s later analysis, Lorentz’s electron model
appeared to be dead on arrival. The model as it stands is inconsistent. One
way to show this is to compare expression 72 for the longitudinal mass m//

derived from the electron’s electromagnetic momentum to the expression for
m// derived from its electromagnetic energy. These two calculations, it turns
out, do not give the same result (Abraham, 1905, 188, 204).41 Setting l = 1
in eq. 69 and using eq. 35, we find

(73) m// =
1
v

4
3

dγ
dv

U ′
EM − 1

3v
d
dv

(
1
γ

)
U ′

EM = γ3 4
3

U ′
EM

c2 − 1
3v

d
dv

(
1
γ

)
U ′

EM.

The first term in the last expression is equal to m// in eq. 70 for l = 1. With-
out even working out the second term, we thus see that momentum and
energy lead to different expressions for the longitudinal mass of Lorentz’s
electron.

For the Bucherer-Langevin electron there is no ambiguity in the formula
for its longitudinal mass. Inserting l = γ−1/3 and eq. 71 into eq. 70, we
find that the electromagnetic momentum of the Bucherer-Langevin electron
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gives:

(74) m// =
dPEM

dv
=

(
γ8/3 + γv

dγ−1/3

dv

)
m0 = γ8/3

(
1− 1

3
β2
)

m0,

where in the last step we used eq. 35 in conjunction with

(75)
dγ−1/3

dv
= −1

3
γ−4/3 dγ

dv
= −1

3
γ5/3 v

c2 .

Inserting l = γ−1/3 and eq. 71 into eq. 69, we find that its electromagnetic
energy gives:

(76) m// =
1
v

dUEM

dv
=

c2

v
d
dγ

(
γ2/3 − 1

4
γ−4/3

)
dγ
dv

m0.

Some simple gamma gymnastics establishes that eq. 76 reproduces eq. 74:42

(77) m// =
1
v

dUEM

dv
= γ8/3

(
1− 1

3
β2
)

m0.

So energy and momentum of the Bucherer-Langevin electron do indeed give
the same longitudinal mass. The same is true for the Abraham electron,
although the calculation is more involved and unimportant for our purposes.

One feature that the Abraham model and the Bucherer-Langevin model
have in common and that distinguishes both models from Lorentz’s is that the
volume of the electron is constant. Hence, whatever forces are responsible
for stabilizing the electron never do any work and can safely be ignored, as
was done in the derivation of the basic equations 26 and 31 for longitudinal
mass (see eqs. 16 and 29 and notes 23 and 27). This does not mean that no
such forces are needed. In all three models, one is faced with the problem
of the electron’s stability. Abraham, however, argued that whereas Lorentz’s
contractile electron called for the explicit addition of non-electromagnetic
stabilizing forces, he, Abraham, could simply take the rigidity of his own
spherical electron as a given and proceed from there without ever running
into trouble.

In the introduction of the 1903 exposition of his electron dynamics,
Abraham (1903, 108–109) devoted two long paragraphs to the justification
of this crucial assumption. He distinguished three sets of equations for the
dynamics of the electron. We already encountered two of these, the “field
equations” determining the self-field of the electron and the “fundamental
dynamical equations” determining the motion of the electron in an external
field. Logically prior to these, however, is what Abraham called the “basic
kinematical equation,” which “limits the freedom of motion of the electron.”
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This is the assumption that the electron always retains its spherical shape.
Abraham tried to preempt the criticism he anticipated on this score:

This basic kinematical hypothesis may strike many as arbi-
trary; invoking the analogy with ordinary electrically charged
solid bodies, many would subscribe to the view that the truly
enormous field strengths at the surface of the electron—field
strengths a trillion times larger than those amenable to mea-
surement—are capable of deforming the electron; that elec-
trical and elastic forces on a spherical electron would be in
equilibrium as long as the electron is at rest; but that the mo-
tion of the electron would change the forces of the electro-
magnetic field, and thereby the shape of the equilibrium state
of the electron. This is not the view that has led to agreement
with experiment. It also seemed to me that the assumption of
a deformable electron is not allowed on fundamental grounds.
The assumption leads to the conclusion that work is done ei-
ther by or against the electromagnetic forces when a change
of shape takes place, which means that in addition to the elec-
tromagnetic energy an internal potential energy of the electron
needs to be introduced. If this were really necessary, it would
immediately make an electromagnetic foundation of the the-
ory of cathode and Becquerel rays, purely electric phenomena,
impossible: one would have to give up on an electromagnetic
foundation of mechanics right from the start. It is our goal,
however, to provide a purely electromagnetic foundation for
the dynamics of the electron. For that reason we are no more
entitled to ascribe elasticity to the electron than we are to as-
cribe material mass to it. On the contrary, our hope is to learn
to understand the elasticity of matter on the basis of the elec-
tromagnetic conception (Abraham, 1903, 108–109).

The suggestion that experimental data, presumably those of Kaufmann, sup-
ported his kinematics was wishful thinking on Abraham’s part (cf. Miller,
1981, secs. 1.9 and 1.11). In support of his more general considerations—
as an argument it is a textbook example of the genetic fallacy—Abraham
proceeded to appeal to no less an authority than Heinrich Hertz:

Hertz has convincingly shown that one is allowed to talk about
rigid connections before one has talked about forces. Our dy-
namics of the electron does not talk about forces trying to de-
form the electron at all. It only talks about “external forces,”
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which try to give [the electron] a velocity or an angular veloc-
ity, and about “internal forces”, which stem from the [self-]
field of the electron and which balance these external forces.
Even these “forces” and “torques” are only auxiliary quanti-
ties defined in terms of the fundamental kinematic and elec-
tromagnetic concepts. The same holds for terms like “work,”
“energy,” and “momentum.” The guiding principle in choos-
ing these terms, however, was to bring out clearly the analogy
between electromagnetic mechanics and the ordinary mechan-
ics of material bodies (Abraham, 1903, 109).

Abraham submitted this paper in October 1902, almost three years before
the publication of Einstein’s first paper on relativity. He can thus hardly
be faulted for basing his new electromagnetic mechanics on the old Newto-
nian kinematics. Minkowski would sneer a few years later that “approach-
ing Maxwell’s equation with the concept of a rigid electron seems to me the
same thing as going to a concert with your ears stopped up with cotton wool”
(quoted in Miller, 1981, sec. 12.4.5, 330). He made this snide comment dur-
ing the 80th Versammlung Deutscher Naturforscher und Ärzte in Cologne
in September 1908, the same conference where he gave his now famous
talk “Space and Time” (Minkowski, 1909). His veritable diatribe against
the rigid electron, which he called a “monster” and “no working hypothesis
but a working hindrance,” came during the discussion following a talk by
Bucherer (1908c), who presented data that seemed to contradict Abraham’s
predictions for the velocity dependence of electron mass and support what
was by then no longer just Lorentz’s prediction but Einstein’s as well. It was
only decades later that these data were also shown to be inconclusive (Zahn
and Spees, 1938; quoted in Miller, 1981, 331).

Minkowski’s comment suggests that we run Abraham’s argument about
the kinematics of the electron in Minkowski rather than in Newtonian space-
time. We would then take it as a given that the electron has the shape of a
sphere in its rest frame, which implies that it will have the shape of a sphere
contracted in the direction of motion in any frame in which it is moving.
This, of course, is exactly Lorentz’s model. This gives rise to a little puzzle.
The point of Abraham’s argument in the passage we just quoted was that
by adopting rigid kinematical constraints we can safely ignore stabilizing
forces. His objection to Lorentz’s model was that Lorentz did have to worry
about non-electromagnetic stabilizing forces or he would end up with two
different formulae for the longitudinal mass of his electron. How can these
two claims by Abraham be reconciled with one another? One’s initial reac-
tion might be that Abraham’s kinematical argument does not carry over to
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special relativity because the theory leaves no room for rigid bodies. That in
and of itself is certainly true, but it is not the source of the problem. We could
run the argument using some appropriate concept of an approximately rigid
body (and as long as the electron is moving uniformly there is no problem
whatsoever on this score). Abraham’s argument that kinematic constraints
can be used to obviate the need for discussion of the stability of the electron
will then go through as long as we use proper relativistic notions. From a
relativistic point of view, the analysis of Lorentz’s model in this section is
based on the standard non-covariant definition 12 of four-momentum. If we
follow Fermi, Rohrlich and others and use definition 14 (with a fixed unit
vector nµ) instead, the ambiguity in the longitudinal mass of Lorentz’s elec-
tron simply disappears. After all, under this alternative definition the combi-
nation of the energy and momentum of the electron’s self-field transforms as
a four-vector, even though it is an open system. This, in turn, guarantees—as
we saw in eqs. 32–37 at the end of sec. 2—that energy and momentum give
the same longitudinal mass. This shows that the ambiguity in the longitudi-
nal mass of Lorentz’s electron is not a consequence of the instability of the
electron, but an artifact of the definitions of energy and momentum he used.
We do not claim great originality for this insight. It is simply a matter of
translating Rohrlich’s analysis of the “4/3 puzzle” in special relativity (see
the discussion following eq. 66) to a pre-relativistic setting.

4.5. Hamiltonian, Lagrangian, and generalized momentum

Poincaré (1906, 524) brought out the inconsistency of Lorentz’s model in
a slightly different way. He raised the question whether the expressions
he found for energy, momentum, and Lagrangian for the field of the mov-
ing electron conform to the standard relations between Hamiltonian, La-
grangian, and generalized momentum. For an electron moving in the positive
x-direction, these relations are

(78) U = P ·v−L = Pv−L, P = Px =
dL
dv

.

It turns out that the first relation is satisfied by both the Lorentz and the
Bucherer-Langevin model, but that the second is satisfied only by the latter.
Using eqs. 62 and 66 for PEM and LEM, respectively, we find

(79) PEMv−LEM =
(

4
3

γlβ2 +
l
γ

)
U ′

EM = γl

(
4
3

β2 + 1−β2
)

U ′
EM,

which does indeed reduce to the expression for UEM found in eq. 57 for any
value of l.
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We now compute the conjugate momentum,

(80)
dLEM

dv
= −U ′

EM
d
dv

(
l
γ

)
= U ′

EM

{
lγ

v
c2 −

1
γ

dl
dv

}
,

where we used eq. 35 for dγ/dv. For the Lorentz model, with l = 1, this
reduces to

(81)
dLEM

dv
= γ
(

U ′
EM

c2

)
v,

which differs by the meanwhile familiar factor of 4/3 from the expression
for PEM read off from eq. 66 for l = 1. For the Bucherer-Langevin model,
l = γ−1/3 and with the help of eq. 75, we find:

(82)
dLEM

dv
=

U ′
EM

c2

{
γ2/3v+

1
3

γ2/3v

}
=

4
3

γ2/3
(

U ′
EM

c2

)
v.

This agrees exactly with eq. 66 for l = γ−1/3.
The relations 78 are automatically satisfied if (U/c,P) transforms as a

four-vector under Lorentz transformations. In that case, we have (see eq. 9):

(83) U = γU0, P = γ
U0

c2 v.

Inserting this into L = Pv−U , we find

(84) L = γU0β2 − γU0 = −γU0(1−β2) = −U0

γ
,

which, in turn, implies that

(85)
dL
dv

= −U0
d
dv

(
1
γ

)
=

U0

γ2

dγ
dv

= γ
U0

c2 v,

in accordance with eq. 83. This shows once again (cf. the discussion at the
end of sec. 4.4) that the inconsistency in Lorentz’s model can be taken care
of by switching—in relativistic terms—from the standard definition 12 of
four-momentum to the Fermi-Rohrlich definition 14 (with fixed nµ). In that
case the energy and momentum of the electron’s self-field will satisfy eqs.
83–85 even though it is an open system.

5. POINCARÉ PRESSURE

In this section we give a streamlined version of the argument with which
Poincaré (1906, 525–529) introduced what came to be known as “Poincaré
pressure” to stabilize Lorentz’s purely electromagnetic electron.43
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The Lagrangian for the electromagnetic field of a moving electron can
in all three models (Abraham, Lorentz, Bucherer-Langevin) be written as

(86) LEM =
ϕ(ϑ/γ)

γ2r

(Poincaré, 1906, 525), where the argument ϑ/γ of the as yet unknown func-
tion ϕ is the ‘ellipticity’ (our term) of the “ideal electron” (Poincaré’s term
for the corresponding state of the moving electron). The ellipticity is the ra-
tio of the radius of the “ideal electron” in the directions perpendicular to the
direction of motion (lϑr) and its radius (γlr) in the direction of motion. This
is illustrated in Fig. 2, which is the same as Fig. 1, except that it shows the
notation Poincaré used to describe the three electron models.

For the Abraham electron the ellipticity is 1/γ; for both the Lorentz and
the Bucherer-Langevin electron it is 1. By examining the Lorentz case, we
can determine ϕ(1). Inserting U0EM = e2/8πε0γr, where γr is the radius of
the electron at rest in the ether, into eq. 62 for the Lagrangian, we find:

(87) LEMLorentz = −U0EM

γ
= − e2

8πε0γ2r
,

Comparison with the general expression for LEM in eq. 86 gives:

(88) ϕ(1) = − e2

8πε0
.

Abraham (1902a, 37) found that the Lagrangian for his electron model has
the form

(89) LEMAbraham =
a
r

1−β2

β
ln

1+ β
1−β

(Poincaré, 1906, 526). Since LEM = ϕ(1)/r for β = 0 (in which case all three
electron models coincide), it must be the case that a = ϕ(1). From eqs. 86
and 89 it follows that

(90) ϕ(1/γ) = γ2rLEMAbraham =
a
β

ln
1+ β
1−β

.

The Lagrangian for the Lorentz model told us that ϕ(1) = a = −e2/8πε0.
The Lagrangian for the Abraham model allows us to determine ϕ′(1). We
start from eq. 90 and develop both the right-hand side and the argument 1/γ
of ϕ on the left-hand side to second order in β. This gives (ibid.):

(91) ϕ
(

1− 1
2

β2
)

= a

(
1+

1
3

β2
)

.
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real electron
(in motion)
dimensions: (r,ϑr,ϑr)

ideal electron (at rest)
dimensions:
(γlr, lϑr, lϑr)

The rigid electron
of Abraham
ϑ = 1
l arbitrary
r constant

sphere

(r,r,r)

ellipsoid

(γlr, lr, lr)

The contractile
electron of
Lorentz and
Poincaré
ϑ = γ
l = 1
γr = constant

ellipsoid

(r,γr,γr)

sphere

(γr,γr,γr)

The contractile
electron of
constant volume
of Bucherer
and Langevin
ϑ = γ
l = γ−1/3

γlr = γ2/3r = constant

ellipsoid

(r,γr,γr)

sphere

(γ2/3r,γ2/3r,γ2/3r)

FIGURE 2. A moving electron according to the models of
Abraham, Lorentz, and Bucherer-Langevin, and the corre-
sponding states at rest in the ether.

Now differentiate both sides:

(92) −βϕ′
(

1− 1
2

β2
)

=
2
3

aβ.

It follows that ϕ′(1) = −(2/3)a.
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As Poincaré notes, all three electron models satisfy a constraint of the
form

(93) r = bϑm,

where b is a constant and where the exponent m depends on which model we
consider. In the Abraham model ϑ = 1 and r is a constant. Hence, r = b.
In the Lorentz model, ϑ = γ and γr is a constant. It follows that ϑr = b, or
r = bϑ−1. In the Bucherer-Langevin model, ϑ = γ and γ2/3r is a constant. It
follows that ϑ2/3r = b, or r = bϑ−2/3. In other words, the values of m in the
three models are

(94)
Abraham : m = 0,
Lorentz : m = −1,

Bucherer−Langevin : m = −2/3.

Substituting r = bϑm into the general expression 86 for the Lagrangian, we
find:

(95) LEM =
ϕ(ϑ/γ)
bγ2ϑm .

Poincaré proceeds to investigate whether this Lagrangian describes a stable
physical system. To this end, he checks whether ∂LEM/∂θ vanishes. It turns
out that for m = −2/3 it does, but that for m = −1 it does not. Denote the
argument of the function ϕ with u ≡ ϑ/γ.

(96)
∂LEM

∂ϑ
=

ϕ′(u)
bγ3ϑm − mϕ(u)

bγ2ϑm+1 .

This derivative vanishes if

(97) ϕ′(u) =
γmϕ(u)

ϑ
= m

ϕ(u)
u

.

For the Lorentz and Bucherer-Langevin models u = 1, and this condition
reduces to

(98) ϕ′(1) = mϕ(1).

Inserting ϕ(1) = a and ϕ′(1) =−(2/3)a, we see that the purely electromag-
netic Lagrangian only describes a stable system for m = −2/3, which is the
value for the Bucherer-Langevin electron. The Lorentz electron calls for an
additional term in the Lagrangian.44 The total Lagrangian is then given by
the sum

(99) Ltot = LEM + Lnon−EM.
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Like LEM, Lnon−EM is a function of ϑ and r. Treating these variables as
independent, we can write the stability conditions for the total Lagrangian as

(100)
∂

∂ϑ
(LEM + Lnon−EM) = 0,

∂
∂r

(LEM + Lnon−EM) = 0.

Evaluating the partial derivatives of LEM given by eq. 86,

(101)
∂LEM

∂ϑ
=

ϕ′(u)
γ3r

,
∂LEM

∂r
= −ϕ(u)

γ2r2 ,

and inserting the results into the stability conditions, we find

(102)
∂Lnon−EM

∂ϑ
= −ϕ′(u)

γ3r
,

∂Lnon−EM

∂r
=

ϕ(u)
γ2r2 .

Poincaré (1906, 528–529) continues his analysis without picking a specific
model. We shall only do the calculation for the Lorentz model. So we no
longer need subscripts such as in eqs. 87 and 89 to distinguish between the
models of Abraham and Lorentz. For the Lorentz model m = −1, γ = ϑ,
r = b/ϑ, and u = 1. Substituting these values into eqs. 102 and using that
ϕ(1) = a and ϕ′(1) = −(2/3)a, we find:

(103)
∂Lnon−EM

∂ϑ
=

2a
3bϑ2 ,

∂Lnon−EM

∂r
=

a
b2 .

These equations are satisfied by a Lagrangian of the form

(104) Lnon−EM = Ar3ϑ2,

where A is a constant. Since r3ϑ2 is proportional to the volume V of the
moving electron, Lnon−EM can be written as

(105) Lnon−EM = PPoincaréV,

where PPoincaré is a constant. We chose the letter P because this constant
turns out be a (negative) pressure. To determine the constant A, we take the
derivative of eq. 104 with respect to ϑ and r, and eliminate r from the results,
using r = b/ϑ:

(106)
∂Lnon−EM

∂ϑ
= 2Ar3ϑ =

2Ab3

ϑ2 ,
∂Lnon−EM

∂r
= 3Ar2ϑ2 = 3Ab2.

Comparison with eqs. 103 gives:

(107) A =
a

3b4 .

Finally, we write Lnon−EM in a form that allows easy comparison with LEM =
a/γ2r (see eq. 86 with ϕ(ϑ/γ) = ϕ(1) = a). Using eq. 107 along with ϑ = γ
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and b = γr, we can rewrite eq. 104 as

(108) Lnon−EM =
a

3b4 r3ϑ2 =
1
3

a
γ2r

=
1
3

LEM = −1
3

U0EM

γ
,

where in the last step we used eq. 62 for l = 1. Using that the volume V0 of
Lorentz’s electron at rest is equal to γV , we can rewrite this as:

(109) Lnon−EM = −1
3

U0EM

V0
V.

Comparison with expression 105 gives:

(110) PPoincaré = −1
3

U0EM

V0

(Laue, 1911b, 164, eq. 171). Note that this so-called Poincaré pressure is
negative. The pressure is present only inside the electron and vanishes out-
side (Poincaré, 1906, 537).45 It can be written more explicitly with the help
of the ϑ-step-function (defined as: ϑ(x) = 0 for x < 0 and ϑ(x) = 1 for x≥ 0).
For an electron moving through the ether with velocity v in the x-direction,
the Poincaré pressure in a co-moving frame (related to a frame at rest in the
ether by a Galilean transformation) is:

(111) PPoincaré(x) = −1
3

U0EM

V0
ϑ
(

R−
√

γ2x2 + y2 + z2
)

,

where R is the radius of the electron at rest. So there is a sudden drop in
pressure at the edge of the electron, which is the only place where forces
are exerted.46 These forces serve two purposes. First, they prevent the
electron’s surface charge distribution from flying apart under the influence
of the Coulomb repulsion between its parts. Second, as the region where
PPoincaré(x) is non-vanishing always coincides with the ellipsoid-shaped re-
gion occupied by the moving electron, these forces make the electron con-
tract by a factor γ in the direction of motion.

Relations 78 between Hamiltonian, Lagrangian and generalized momen-
tum, only one of which was satisfied by Lorentz’s original purely electro-
magnetic electron model, are both satisfied once Lnon−EM is added to the
Lagrangian. Using the total Lagrangian,

(112) Ltot = LEM + Lnon−EM =
4
3

LEM = −4
3

U0EM

γ
,

to compute the total momentum, we find:

(113) Ptot =
dLtot

dv
=

4
3

dLEM

dv
=

4
3

γ
U0EM

c2 v,
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where in the last step we used eq. 81. This is just the electromagnetic mo-
mentum PEM found earlier (see eq. 66 for l = 1). With the help of these
expressions for Ltot and Ptot, we can compute the total energy:

(114) Utot = Ptotv−Ltot =
4
3

γU0EMβ2 +
4
3

U0EM

γ
=

4
3

γU0EM .

The total energy is the sum of the electromagnetic energy (see eq. 58),

(115) UEM =
4
3

γU0EM − 1
3

U0EM

γ
,

and the non-electromagnetic energy,

(116) Unon−EM =
1
3

U0EM

γ
,

which is minus the product of the Poincaré pressure (see eq. 110) and the
volume V = V0/γ of the moving electron. The total energy of the system at
rest is

(117) U0tot =
4
3

U0EM ,

and its rest mass is m0tot =U0tot/c2 accordingly. Eq. 113 can thus be rewritten
as

(118) Ptot = γ
(

U0tot

c2

)
v = γm0totv.

The troublesome factor 4/3 has disappeared.
The total energy and momentum transform as a four-vector under Lo-

rentz transformations. In the system’s rest frame its four-momentum is Pµ
0tot

=
(U0tot/c,0,0,0). In a frame moving with velocity v in the x-direction, it is

(119) Pµ
tot = Λµ

νPν
0tot

=
(

γ
U0tot

c
,γβ

U0tot

c
,0,0

)
,

in accordance with eqs. 114, 117, and 118. As we saw at the end of sec.
2, if (U/c,P) transforms as a four-vector, it is guaranteed that energy and
momentum lead to the same longitudinal mass. With Poincaré’s amendment
Lorentz’s electron model may no longer be purely electromagnetic—at least
it is fully consistent.

As we pointed out earlier, the problem that Abraham found in Lorentz’s
purely electromagnetic electron model (viz. that momentum and energy lead
to different expressions for the longitudinal mass) returns in special relativ-
ity as the infamous “4/3 puzzle” of the mass-energy relation of the classical
electron. Mathematically, these two problems are identical and the intro-
duction of Poincaré pressure thus takes care of both. In the next section,
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we shall reintroduce Poincaré pressure à la Max Laue (1911a, 1911b) in his
relativistic treatment of Lorentz’s electron model.

Before we do so, we need to deal with a serious error committed by
Poincaré (1906, 538) in his calculation of the transverse and longitudinal
mass of the stabilized Lorentz electron. As a result of this error, Poincaré
overestimated what he had accomplished in his paper.47 The calculations in
(Poincaré, 1906) that we have covered so far are all from section 6 of the
paper. This section is phrased entirely in terms of energies, momenta, and
Lagrangians. The consideration of mass is explicitly postponed (Ibid., 522).
In section 4 we showed how Poincaré restated the problem of the ambiguity
of the longitudinal mass of Lorentz’s electron in terms of the model failing to
satisfy one of the standard relations between Hamiltonian, Lagrangian, and
generalized momentum (Ibid., 524; cf. sec. 4.5). In this section we traced the
steps that Poincaré took in the remainder of section 6 to restore the validity
of these relations for Lorentz’s model (Ibid., 525–529). This is a completely
unobjectionable way to proceed, from a pre-relativistic as well as from a
relativistic point of view.48

In section 7 of his paper, Poincaré (1906, 531) finally introduces Abra-
ham’s definitions 26 of the electromagnetic longitudinal and transverse mass
of the electron. And at the end of section 8, at the very end of his discussion
of electron models and just before he turns to the problem of gravitation,
he computes the mass of the electron in Lorentz’s model, limiting himself
to what he calls—in scare quotes—the ““experimental mass,” i.e., the mass
for small velocities” (Ibid., 538). He writes down the Lagrangian 86 for the
special case of the Lorentz electron. Using that ϕ(ϑ/γ) = ϕ(1) = a (where
a = −e2/8πε0) and γr = b (with b the radius of the electron at rest in the
ether), we arrive at the expression given by Poincaré at this point,

(120) LEM =
a
b

√
1− v2/c2,

except that Poincaré uses H instead of LEM and sets c = 1. For small veloci-
ties, eq. 120 reduces to

(121) LEM ≈ a
b

(
1− 1

2
v2

c2

)
.

Poincaré concludes that for small velocities both the longitudinal and the
transverse mass of the electron is given by a/b. Since a is negative, he must
have meant −a/b. This is just a minor slip. Poincaré’s result corresponds to
U0EM/c2,49 which differs from the result that we found by the infamous factor
of 4/3 (see eqs. 117–118). How did Poincaré arrive at his result? It is hard
to see how he could have found this in any other way than the following.
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Computing the electromagnetic momentum as the generalized momentum
corresponding to the Lagrangian 121, one finds

(122) PEM =
dLEM

dv
≈−a

b
v
c2 .

Inserting this result into definitions 26 for longitudinal and transverse mass,
one arrives at:

(123) m// =
dPEM

dv
≈− a

bc2 , m⊥ =
PEM

v
≈− a

bc2 .

This is just the result reported by Poincaré (recall that he set c = 1). How-
ever, we had no business using eq. 122! As Poincaré himself had pointed out
in section 6 of his paper, in the case of the Lorentz model, the electromag-
netic momentum PEM is not equal to the generalized momentum dLEM/dv.
The relation P = dL/dv only holds for the total momentum and the total
Lagrangian. The total Lagrangian is 4/3 times the electromagnetic part. For
low velocities it reduces to (cf. eq. 121):

(124) Ltot ≈ 4
3

a
b

(
1− 1

2
v2

c2

)
.

Replacing LEM by Ltot in eqs. 122–123, we find that the low-velocity limit
of the electron mass is 4/3 times −a/b or 4/3 times U0EM/c2, in accordance
with what we found above. Unlike the minus sign of −a/b that Poincaré lost
in his calculation, the conflation of LEM and Ltot has dire consequences. If
we use Ltot it is immediately obvious that the mass of Lorentz’s electron is
not of purely electromagnetic origin, whereas if we use LEM we are led to
believe that it is. In fact, this is exactly what Poincaré claimed, both at the
end of section 8 and in the introduction of his paper. In the introduction, he
writes:

If the inertia of matter is exclusively of electromagnetic origin,
as is generally admitted since Kaufmann’s experiment, and all
forces are of electromagnetic origin (apart from this constant
pressure that I just mentioned), the postulate of relativity may
be established with perfect rigor. (Poincaré, 1906, 496)

Commenting on this passage, Miller (1973, 248) writes: “However the pres-
ence of these stresses [the Poincaré pressure] negates a purely electromag-
netic theory of the electron’s inertia.” We agree. One has to choose between
the “postulate of relativity” and mass being “exclusively of electromagnetic
origin.” Even Poincaré cannot have his cake and eat it too.50
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6. THE RELATIVISTIC TREATMENT OF THE ELECTRON MODEL
OF LORENTZ AS AMENDED BY POINCARÉ

From the point of view of Laue’s relativistic continuum mechanics, the prob-
lem with Lorentz’s fully electromagnetic electron is that it is not a closed
system. The four-divergence of the energy-momentum tensor of its electro-
magnetic field does not vanish. Computing this four-divergence tells us what
needs to be added to this energy-momentum tensor to obtain a closed sys-
tem, i.e., a system with a total energy-momentum tensor such that ∂νT µν

tot = 0.
Unsurprisingly, the part that needs to be added is just the energy-momentum
tensor for the Poincaré pressure.

The energy-momentum tensor for the electromagnetic field is given by
(Jackson, 1975, sec. 12.10)

(125) T µν
EM = µ−1

0

(
Fµ

αFαν +
1
4

ηµνFαβFαβ
)

,

where Fµν is the electromagnetic field tensor with components (ibid., 550):

(126) Fµν =

⎛
⎜⎜⎝

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎞
⎟⎟⎠ .

Inserting the components of the field tensor into eq. 125 for the energy-
momentum tensor, we recover the familiar expressions for the electromag-
netic energy density (cf. eq. 53), (c times) the electromagnetic momentum
density (cf. eq. 18), and (minus) the Maxwell stress tensor (cf. eq. 20).

T 00
EM =

1
2

ε0E2 +
1
2

µ−1
0 B2 = uEM,

(127)
(
T 01

EM,T 02
EM,T 03

EM

)
=
(
T 10

EM,T 20
EM,T 30

EM

)
= cε0E×B = cpEM,

T i j
EM = −ε0

(
EiE j − 1

2
δi jE2

)
−µ−1

0

(
BiB j − 1

2
δi jB2

)
= −T i j

Maxwell.

We calculate the four-divergence of the energy-momentum tensor for the
electromagnetic field of Lorentz’s electron in its rest frame. Lorentz invari-
ance guarantees that if the four-divergence of the total energy-momentum
tensor vanishes in the rest frame (∂0ν T µν

0tot
= 0), it will vanish in all frames

(∂νT µν
tot = 0). In the rest frame, we have

(128) T µν
0EM

=
(

u0EM 0
0 −T i j

0Maxwell

)
.
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Consider the four-divergence ∂0νT µν
0EM

of this tensor. Since the system is

static, only the spatial derivatives, ∂0 j T
µ j

0EM
, give a contribution. Since T 0 j

0EM
=

0, there will only be contributions for µ = i. Using eq. 127, we can write
these contributions as:51

(129) ∂0 j T
i j

0EM
= −∂0 j T

i j
0Maxwell

= −ρ0Ei
0,

The charge density ρ0 is the surface charge density σ = e/4πR2 (where e is
the charge of the electron and R the radius of the electron in its rest frame):

(130) ρ0 = σδ(R− r0),

where r0 ≡
√

x2
0 + y2

0 + z2
0. Inside the electron there is no electric field (it is

a miniature version of Faraday’s cage); outside the field is the same as that
of a point charge e located at the center of the electron. At r0 = R, right at
the surface of the electron, the field has a discontinuity. Its magnitude, E0,
jumps from 0 to e/4πε0R2. At this point we need to use the average of these
two values (see, e.g., Griffith, 1999, 102–103). At r0 = R the field is thus
given by

(131) Ei
0r0=R

=
e

8πε0R2

xi
0

R
=

σ
2ε0

xi
0

R
.

Substituting eqs. 131 and 130 into eq. 129, we find that the divergence of the
energy-momentum tensor of the electron’s electromagnetic field in its rest
frame is:

(132) ∂0νT µν
0EM

=

⎧⎨
⎩

µ = 0 : 0

µ = i : − σ2

2ε0

xi
0

R
δ(R− r0).

It vanishes everywhere except at the surface of the electron. To get a total
energy-momentum tensor with a four-divergence that vanishes everywhere,

(133) ∂0νT µν
0tot

= ∂0ν

(
T µν

0EM
+ T µν

0non−EM

)
= 0,

we need to add the Poincaré pressure of eq. 111, which in the electron’s rest
frame is described by the energy-momentum tensor52

(134) T µν
0non−EM

= −ηµνPPoincaréϑ(R− r0).

Using that ηi j∂ jϑ(R− r) = δ(R− r)(xi/R), we find that the four-divergence
of this energy-momentum tensor is given by:

(135) ∂0νT µν
0non−EM

=

⎧⎨
⎩

µ = 0 : 0

µ = i : −PPoincaré
xi

0

R
δ(R− r0).
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Inserting eq. 110 for the Poincaré pressure, using U0EM = e2/8πε0R, V0 =
4
3πR3, and σ = e/4πR2, we find:

(136) PPoincaré = −U0EM

3V0
= − e2

(8πε0R)(4πR3)
= − 1

2ε0

( e
4πR2

)2
= − σ2

2ε0
.

This is the expression for the Poincaré pressure given, e.g., in (Lorentz, 1915,
214), (Schwinger, 1983, 376–377, eqs. (24) and (34)), and (Rohrlich, 1997,
1056, eq. (A.4)). Substituting this expression in eq. 135 and comparing the
result with eq. 132, we see that the Poincaré pressure indeed ensures that the
four-divergence of the electron’s total energy-momentum tensor vanishes.
The reader is invited to compare this straightforward and physically clearly
motivated introduction of Poincaré pressure to (the streamlined version of)
Poincaré’s own derivation presented in sec. 5.

We now calculate the contributions of T µν
EM and T µν

non−EM to the electron’s
four-momentum. We begin with the contribution coming from the electron’s
electromagnetic field:

(137) Pµ
EM =

1
c

Z
T µ0

EMd3x.

Using that T µν = Λµ
ρΛν

σT ρσ
0 and that d3x = d3x0/γ, we can rewrite this as

(138) Pµ
EM =

1
cγ

Λµ
ρΛ0

σ

Z
T ρσ

0EM
d3x0.

Eq. 128 tells us that there will only be contributions for ρσ = 00 and ρσ = i j.
We denote these contributions as Pµ

EM(00) and Pµ
EM(i j).

For Pµ
EM(00) we have:

(139) Pµ
EM(00) =

1
cγ

Λµ
0Λ0

0

Z
T 00

0EM
d3x0.

Since Λµ
0 = (γ,γβ,0,0) (see eq. 7) and the integral over T 00

0EM
gives U0EM, this

turns into:

(140) Pµ
EM(00) =

(
γ
U0EM

c
,γ

U0EM

c2 v
)

.

This is just the Lorentz transform of Pµ
0EM

= (U0EM/c,0,0,0). It is the ad-

ditional contribution Pµ
EM(i j), coming from T i j

0EM
, that is responsible for the

fact that the four-momentum of the electron’s electromagnetic field does not
transform as a four-vector.

For Pµ
EM(i j) we have:

(141) Pµ
EM(i j) =

1
cγ

Λµ
iΛ

0
j

Z
T i j

0EM
d3x0.
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The integrand is minus the Maxwell stress tensor in the electron’s rest frame
(see eq. 127):

(142) T i j
0EM

= −ε0

⎛
⎜⎝E2

0x
− 1

2E2
0 E0xE0y E0x E0z

E0yE0x E2
0y
− 1

2E2
0 E0y E0z

E0zE0x E0zE0y E2
0z
− 1

2E2
0

⎞
⎟⎠ .

The integrals over the off-diagonal terms are all zero. The integrals over the
three diagonal terms are equal to one another and given by

(143)
Z

ε0

(
1
2

E2
0 −

1
3

E2
0

)
d3x0 =

1
3

Z
1
2

ε0E2
0d3x0 =

1
3

U0EM .

Since (1/γ)Λµ
1Λ0

1 = (γβ2,γβ,0,0) and Λµ
iΛ0

i = 0 for i = 2,3 (see eq. 7),
only the 11-component of eq. 141 is non-zero:

(144) Pµ
EM(11) =

(
1
3

γβ2U0EM

c
,

1
3

γ
U0EM

c2 v
)

.

Adding eqs. 140 and 144, we find:

(145) Pµ
EM = Pµ

EM(00)+ Pµ
EM(11) =

(
γ
(

1+
1
3

β2
)

U0EM

c
,
4
3

γ
U0EM

c2 v
)

.

This, unsurprisingly, is exactly the result we found earlier for the energy and
momentum of the electromagnetic field of Lorentz’s electron (see eqs. 57
and 66 with l = 1 and U ′

EM = U0EM).
The calculation of the contributions to the four-momentum coming from

T µν
non−EM is completely analogous to the calculation in eqs. 137–145. We start

with:

(146) Pµ
non−EM =

1
cγ

Λµ
ρΛ0

σ

Z
T ρσ

0non−EM
d3x0.

Since T µν
0non−EM

is diagonal (see eq. 134), there will only be contributions when

ρ = σ. Since Λ0
µ = (γ,γβ,0,0), the only contributions will be for ρ = σ = 0

and ρ = σ = 1. We denote these by Pµ
non−EM(00) and Pµ

non−EM(11), respec-
tively, and calculate them separately. Since T 00

0non−EM
= −PPoincaréϑ(R− r0)

(see eq. 134) and
R

ϑ(R− r0)d3x0 = V0,

(147)
Z

T 00
0non−EM

d3x0 = −PPoincaréV0 =
1
3

U0EM ,

where we used eq. 110. Hence,

(148) Pµ
non−EM(00) =

(
γ

1
3

U0EM

c
,γ

1
3

U0EM

c2 v
)

,
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which is just the Lorentz transform of Pµ
0EM

=
(

1
3U0EM/c,0,0,0

)
. Similarly,

we find:

(149) Pµ
non−EM(11) =

(
−1

3
γβ2U0EM

c
,−1

3
γ
U0EM

c2 v
)

.

Comparing eq. 149 to eq. 144, we see that Pµ
non−EM(11) is exactly the

opposite of Pµ
EM(11):

(150) Pµ
EM(11)+ Pµ

non−EM(11) = 0.

This is a direct consequence of what is known as Laue’s theorem (Miller,
1981, 352). This theorem (Laue, 1911a, 539) says that for a “complete [i.e.,
closed] static system” (vollständiges statisches System):

(151)
Z

T i j
0tot

d3x0 = 0.

For the electron we have T i j
0tot

= T i j
0EM

+ T i j
0non−EM

. From eqs. 142–143 we read
off that

(152)
Z

T i j
0EM

d3x0 =
{

i �= j : 0
i = j : 1

3U0EM .

In analogy with eq. 147, we find:

(153)
Z

T i j
0non−EM

d3x0 =
{

i �= j : 0
i = j : − 1

3U0EM .

Laue’s theorem thus holds for this system, as it should, and eq. 150 is a direct
consequence of this. Using eqs. 138 and 146, we find

(154) Pµ
EM(i j)+ Pµ

non−EM(i j) =
1
cγ

Λµ
iΛ

0
j

Z (
T i j

0EM
+ T i j

0non−EM

)
d3x0,

which by Laue’s theorem vanishes, as is confirmed explicitly by eqs. 152–
153. Since Pµ

EM(i j) = Pµ
non−EM(i j) = 0 except when i = j = 1, the sum

of the 11-components considered in eq. 150 is equal to the sum of the i j-
components.

Laue’s theorem ensures that the four-momentum of a closed static sys-
tem transforms as a four-vector. The total four-momentum of the electron is
the sum of four terms (see eqs. 140, 144, 148, and 149):

(155) Pµ
tot = Pµ

EM(00)+ Pµ
non−EM(00)+ Pµ

EM(i j)+ Pµ
non−EM(i j).

The last two terms cancel each other because of Laue’s theorem, and all that
is left is:

(156) Pµ
tot = Pµ

EM(00)+ Pµ
non−EM(00).



104 MICHEL JANSSEN AND MATTHEW MECKLENBURG

Using eqs. 140 and 148 for these two contributions we recover eq. 119 for
the total energy and momentum of the electron:

(157) Pµ
tot =

(
γ

4
3

U0EM

c
,γ

4
3

U0EM

c2 v
)

=
(

γ
U0tot

c
,γ

U0tot

c2 v
)

.

As we pointed out above (see eqs. 133–134 and note 52), we still have a
closed system if we set the 00-component of T µν

0non−EM
to zero. This does not

affect the result for Pµ
non−EM(i j), which only depends on the i j-components

of T µν
0non−EM

. Pµ
non−EM(00), however, will be zero if T 00

0non−EM
= 0 (see eq. 146).

The total four-momentum will still be a four-vector but compared to eq. 157
the system’s rest energy will be smaller by 1

3U0EM:

(158) Pµ
tot = Pµ

EM(00) =
(

γ
U0EM

c
,γ

U0EM

c2 v
)

.

To reiterate: if the stabilizing mechanism for the electron does not con-
tribute to the energy in the rest frame but only to the stresses, T 00

0non−EM
= 0

and only the first term in eq. 156 contributes to the four-momentum. In
this case, the electron’s rest mass is U0EM/c2 (see eq. 158). If the stabiliz-
ing mechanism does contribute to the energy in the electron’s rest frame,
T 00

0non−EM
�= 0 and both terms in eq. 156 contribute to the four-momentum. If

T 00
0non−EM

= 1
3 (U0EM/V0)ϑ(R− r0), as in Poincaré’s specific model (see eqs.

134 and 110), the electron’s rest mass is 4
3U0EM/c2 (see eq. 157).53

The arbitrariness of the Lorentz-Poincaré electron is much greater than
the freedom we have in choosing the 00-component of the energy-momentum
tensor for the mechanism stabilizing a spherical surface charge distribu-
tion. For starters, we can choose a (surface or volume) charge distribution
of any shape we like—a box, a doughnut, a banana, etc. As long as this
charge distribution is subject to the Lorentz-FitzGerald contraction, we can
turn it into a system with the exact same energy-momentum-mass-velocity
relations as the Lorentz-Poincaré electron by adding the appropriate non-
electromagnetic stabilizing mechanism.54 Of course, as the analysis in this
section, based on (Laue, 1911a), shows, any closed static system will have
the same energy-momentum-mass-velocity relations as the Lorentz-Poincaré
electron, no matter whether it consists of charges, electromagnetic fields,
and Poincaré pressure or of something else altogether. The only thing that
matters is that whatever the electron is made of satisfies Lorentz-invariant
laws. The restriction to static closed systems, moreover, is completely un-
necessary. Any closed system will do.55 In short, there is nothing we can
learn about the nature and structure of the electron from studying its energy-
momentum-mass-velocity relations.
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Lorentz himself emphasized this in lectures he gave at Caltech in 1922.
In a section entitled “Structure of the Electron” in the book based on these
lectures and published in 1927, he wrote:

The formula for momentum was found by a theory in which it
was supposed that in the case of the electron the momentum
is determined wholly by that of the electromagnetic field [. . . ]
This meant that the whole mass of an electron was supposed to
be of electromagnetic nature. Then, when the formula for mo-
mentum was verified by experiment, it was thought at first that
it was thereby proved that electrons have no “material mass.”
Now we can no longer say this. Indeed, the formula for mo-
mentum is a general consequence of the principle of relativity,
and a verification of that formula is a verification of the prin-
ciple and tells us nothing about the nature of mass or of the
structure of the electron. (Lorentz, 1927, 125).

By 1922 this point was widely appreciated. In his famous review article on
relativity, Pauli (1921, 82–83), for instance, wrote:

It constituted a definite progress that Lorentz’s law of the vari-
ability of mass could be derived from the theory of relativ-
ity without making any specific assumptions on the electron
shape or charge distribution. Also nothing need be assumed
about the nature of the mass: [the relativistic formula for the
velocity-dependence of mass] is valid for every kind of pon-
derable mass [. . . ] The old idea that one could distinguish
between the “constant” true mass and the “apparent” electro-
magnetic mass, by means of deflection experiments on cath-
ode rays, can therefore not be maintained.

7. FROM THE ELECTROMAGNETIC VIEW OF NATURE
TO RELATIVISTIC CONTINUUM MECHANICS

Experiment was supposed to be the final arbiter in the debate over the elec-
tron models of Abraham, Lorentz-Poincaré, and Bucherer-Langevin. Later
analysis, however, showed that the results of the experiments of Kaufmann
and others were not accurate enough to decide between the different mod-
els. They only “indicated a large qualitative increase of mass with velocity”
(Zahn and Spees, 1938).56 All parties involved took these experiments much
too seriously, especially when the data favored their own theories. Abraham
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hyped Kaufmann’s results. Lorentz was too eager to believe Bucherer’s re-
sults, while his earlier concern over Kaufmann’s appears to have been some-
what disingenuous. Einstein’s cavalier attitude toward Kaufmann’s experi-
ments stands in marked contrast to his belief in later results purporting to
prove him right.

In Abraham’s defense, it should be said that he could also be self-de-
precating about his reliance on Kaufmann’s data. At the 78th Versammlung
Deutscher Naturforscher und Ärzte in Stuttgart in 1906, he got quite a few
laughs when he joked: “When you look at the numbers you conclude from
them that the deviations from the Lorentz theory are at least twice as big as
mine, so you may say that the [rigid] sphere theory represents the reflection
of β-rays twice as well as the relativity theory [by which Abraham meant
Lorentz’s electron model in this context]” (quoted in Miller, 1981, sec. 7.4.3,
221).

In 1906 Lorentz gave a series of lectures at Columbia University in New
York, which were published in 1909. On the face of it, he seems to have
taken Kaufmann’s results quite seriously at the time. He wrote: “His [i.e.,
Kaufmann’s] new numbers agree within the limits of experimental errors
with the formulae given by Abraham, but [. . . ] are decidedly unfavourable
to the idea of a contraction such as I attempted to work out” (Lorentz, 1915,
212–213; quoted in Miller, 1981, sec. 12.4.1). Shortly before his departure
for New York, he had told Poincaré the same thing: “Unfortunately my hy-
pothesis of the flattening of electrons is in contradiction with Kaufmann’s
results, and I must abandon it. I am therefore at the end of my rope (au
bout de mon latin).”57 These passages strongly suggest that Lorentz took
Kaufmann’s results much more seriously than Einstein. Miller indeed draws
that conclusion. Lorentz expert A. J. Kox, however, has pointed out to one
of us (MJ) that Lorentz’s reaction was probably more ambivalent (see also
Hon, 1995, sec. 6). This is suggested by what Lorentz continues to say after
acknowledging the problem with Kaufmann’s data in his New York lectures:
“Yet, though it seems very likely that we shall have to relinquish this idea
altogether, it is, I think, worth while looking into it somewhat more closely”
(Lorentz, 1915, 213; our italics). Lorentz then proceeds to discuss his idea
at length.

In response to Kaufmann’s alleged refutation of special relativity Ein-
stein wrote in an oft-quoted passage:58

Abraham’s and Bucherer’s theories of the motion of the elec-
tron yield curves that are significantly closer to the observed
curve than the curve obtained from the theory of relativity.
However, the probability that their theories are correct is rather
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small, in my opinion, because their basic assumptions con-
cerning . . . the moving electron are not suggested by theoret-
ical systems that encompass larger complexes of phenomena
(Einstein, 1907b, 439).

This is a fair assessment of Bucherer’s theory. Whether it is also a fair assess-
ment of Abraham’s electromagnetic program is debatable. This will not con-
cern us here. What we want to point out is that Einstein, like Abraham and
Lorentz, took the experimental data much more seriously when they went
his way. In early 1917, Friedrich Adler, detained in Vienna awaiting trial for
his assassination of the Austrian prime minister Count Stürgkh in Novem-
ber 1916, began sending Einstein letters and manuscripts attacking special
relativity.59 He was still at it in the fall of 1918, when the exchange that is in-
teresting for our purposes took place. Einstein wrote: “for a while Bucherer
advocated a theory that comes down to a different choice for l [see eq. 40 and
Fig. 1]. But a different choice for l is out of the question now that the laws
of motion of the electron have been verified with great precision.”60 From
his prison cell in Stein an der Donau Adler replied: “Now, I would be very
interested to hear, which experiments you see as definitively decisive about
the laws of motion of the electron. For as far as my knowledge of the liter-
ature goes, I have not found any claim of a final decision.”61 Adler went on
to quote remarks from Laue, Lorentz, and the experimentalist Erich Hupka,
spanning the years 1910–1915, all saying that this was still an open issue.62

In his response Einstein cited three recent studies (published between 1914
and 1917), which, he wrote, “have so to speak conclusively shown [sicher
bewiesen] that the relativistic laws of motion of the electron apply (as op-
posed to, for instance, those of Abraham)” (Einstein’s emphasis).63 Even
considering the context in which it was made, this is a remarkably strong
statement.

Much more interesting than the agreement between theory and exper-
iment or the lack thereof were the theoretical arguments that Abraham and
Lorentz put forward in support of their models. Lorentz was right in thinking
that it was no coincidence that his contractile electron exhibited exactly the
velocity dependence he needed to account for the absence of ether drift (see
the discussion following eq. 72). He could not have known at the time that
this particular velocity dependence is a generic feature of relativistic closed
systems. As the quotation at the end of sec. 6 shows, he did recognize this
later on. Abraham was right that fast electrons call for a new mechanics. His
new electromagnetic mechanics is much closer to relativistic mechanics than
to Newtonian mechanics. Like Lorentz, he just did not realize that this new
mechanics reflected a new kinematics rather than the electromagnetic nature
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of all matter. Abraham at least came to accept that Minkowski space-time
was the natural setting for his electromagnetic program.

Proceeding along similar lines as Abraham in developing his electro-
magnetic mechanics, we can easily get from Newtonian particle mechanics
to relativistic continuum mechanics and back again. The first step is to read
F = ma as expressing momentum conservation (cf. the discussion follow-
ing eq. 15 in sec. 2.2). In continuum mechanics, the differential form of
the conservation laws is the fundamental law and the integral form is a de-
rived law. In other words, the fundamental conservation laws are expressed
in local rather than global terms. This reflects the transition from a par-
ticle ontology to a field ontology. Special relativity integrates the laws of
momentum and energy conservation. These laws, of course, are Lorentz-
invariant rather than Galilean-invariant. We thus arrive at the fundamental
law of relativistic continuum mechanics, the Lorentz-invariant differential
law of energy-momentum conservation, ∂νT µν = 0. To recap: there are four
key elements in the transition from Newtonian particle mechanics based on
F = ma to relativistic continuum mechanics based on ∂νT µν = 0. They are
(in no particular order): the transition from Galilean invariance to Lorentz
invariance, the focus on conservation laws rather than force laws, the inte-
gration of the laws of energy and momentum conservation, and the transition
from a particle ontology to a field ontology.

We now show how, once we have relativistic continuum mechanics, we
recover Newtonian particle mechanics. Consider a closed system described
by continuous (classical) fields such that the total energy-momentum tensor
T µν

tot of the system can be split into a part describing a localizable particle
(e.g., an electron à la Lorentz-Poincaré64) and a part describing its environ-
ment (e.g., an external electromagnetic field):

(159) T µν
tot = T µν

par + T µν
env.

Using our fundamental law, ∂νT µν
tot = 0, integrated over space, we find

(160) 0 =
Z

∂νT µν
tot d3x =

Z
∂νT µν

pard
3x+

Z
∂νT µν

envd3x.

As long as T µν
par drops off faster than 1/r2 as we go to infinity, Gauss’s theo-

rem tells us that

(161)
Z

∂iT
µi

pard
3x = 0.
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For ∂νT µν
env we can substitute minus the density f µ

ext of the four-force acting
on the particle. The spatial components of eq. 160 can thus be written as

(162)
d

dx0

Z
T i0

pard
3x =

Z
f i
extd

3x.

The right-hand side gives the components of Fexternal. Since

(163) Pµ
par ≡

1
c

Z
T µ0

pard
3x

and x0 = ct, the left-hand side is the time derivative of the particle’s momen-
tum. Eq. 162 is thus equivalent to

(164)
dPpar

dt
= Fext.

This equation has the same form (and the same transformation properties) as
Abraham’s electromagnetic equation of motion 21. In Abraham’s equation,
Ppar is the electromagnetic momentum of the electron, and Fext is the Lorentz
force exerted on the electron by the external fields. Under the appropriate cir-
cumstances and with the appropriate identification of the Newtonian mass m,
Abraham’s electromagnetic equation of motion reduces to Newton’s second
law, F = ma (see eq. 28). The same is true for our more general eq. 164. This
equation, however, is not tied to electrodynamics. It is completely agnostic
about the nature of both the particle and the external force. The only thing
that matters is that it describes systems in Minkowski space-time, which
obey relativistic kinematics. Ppar and Fext, like Abraham’s electromagnetic
momentum and the Lorentz force, only transform as vectors under Galilean
transformations in the limit of low velocities, where Lorentz transformations
are indistinguishable from Galilean transformations. They inherit their trans-
formation properties from ∂νT µν

par and f µ
ext, respectively, which transform as

four-vectors under Lorentz transformations.
It only makes sense to split the total energy-momentum tensor T µν

tot into a
particle part and an environment part, if the interactions holding the particle
together are much stronger than the interactions of the particle with its en-
vironment. Typically, therefore, the energy-momentum of the particle taken
by itself will very nearly be conserved, i.e.,

(165) ∂νT µν
par ≈ 0.

This means that the particle’s four-momentum will to all intents and pur-
poses transform as a four-vector under Lorentz transformations and satisfy
the relations for a strictly closed system (see eqs. 4–13):

(166) Pµ
par ≡

1
c

Z
T µ0

pard
3x ≈ (γm0c,γm0v).
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Inserting Ppar = γm0v into eq. 164, we can reduce the problem in relativis-
tic continuum mechanics that we started from in eq. 159 to a problem in
the relativistic mechanics of point particles. In the limit of small velocities,
such problems once again reduce to problems in the Newtonian mechanics
of point particles.

To the best of our knowledge, this way of recovering particle mechanics
from what might be called ‘field mechanics’ was first worked out explicitly
in the context of general rather than special relativity (Einstein, 1918; Klein,
1918).65 Relativistic continuum mechanics played a crucial role in the de-
velopment of general relativity. For one thing, the energy-momentum tensor
is the source of the gravitational field in general relativity.66 Even before
the development of general relativity, Einstein recognized the importance of
relativistic continuum mechanics. In an unpublished manuscript of 1912, he
wrote:

The general validity of the conservation laws and of the law of
the inertia of energy [. . . ] suggest that [the symmetric energy-
momentum tensor T µν and the equation f µ = −∂νT µν] are to
be ascribed a general significance, even though they were ob-
tained in a very special case [i.e., electrodynamics]. We owe
this generalization, which is the most important new advance
in the theory of relativity, to the investigations of Minkow-
ski, Abraham, Planck, and Laue (Einstein, 1987–2002, Vol. 4,
Doc. 1, [p. 63]; our emphasis).

Einstein went on to give a clear characterization of relativistic continuum
mechanics:

To every kind of material process we want to study, we have
to assign a symmetric tensor (Tµν) [. . . ] Then [ f µ = −∂νT µν]
must always be satisfied. The problem to be solved always
consists in finding out how (Tµν) is to be formed from the vari-
ables characterizing the processes under consideration. If sev-
eral processes can be isolated in the energy-momentum bal-
ance that take place in the same region, we have to assign
to each individual process its own stress-energy tensor (T (1)

µν ),
etc., and set (Tµν) equal to the sum of these individual tensors
(ibid.).

As the development of general relativity was demonstrating the importance
of continuum mechanics, developments in quantum theory—the Bohr model
and Sommerfeld’s relativistic corrections to it—rehabilitated particle me-
chanics, be it of Newtonian or relativistic stripe. As a result, relativistic
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continuum mechanics proved less important for subsequent developments in
areas of physics other than general relativity than Einstein thought in 1912
and than our analysis in this paper suggests. The key factor in this was that it
gradually became clear in the 1920s that elementary particles are point-like
and not spatially extended like the electron models discussed in this paper.
That special relativity precludes the existence of rigid bodies is just one of
the problems such models are facing.

In hindsight, Lorentz, the guarded Dutchman, comes out looking much
better than Abraham, his impetuous German counterpart. At one point, for
instance, Lorentz (1915, 215) cautioned:

In speculating on the structure of these minute particles we
must not forget that there may be many possibilities not dreamt
of at present; it may very well be that other internal forces
serve to ensure the stability of the system, and perhaps, af-
ter all, we are wholly on the wrong track when we apply to
the parts of an electron our ordinary notion of force (Lorentz,
1915, 215).

This passage is quoted approvingly by Pais (1972, 83). Even a crude oper-
ationalist argument of the young Wolfgang Pauli, which would have made
his godfather Ernst Mach proud, can look prescient in hindsight. Criticizing
the work of later proponents of the electromagnetic worldview in his review
article on relativity, Pauli concluded:

Finally, a conceptual doubt should be mentioned. The conti-
nuum theories make direct use of the ordinary concept of elec-
tric field strength, even for the fields in the interior of the elec-
tron. This field strength, however, is defined as the force acting
on a test particle, and since there are no test particles smaller
than an electron or a hydrogen nucleus the field strength at a
given point in the interior of such a particle would seem to be
unobservable by definition, and thus be fictitious and without
physical meaning (Pauli, 1921, 206).

This moved Valentin Bargmann (1960, 189)—who had accompanied Ein-
stein on his quest for a classical unified field theory, a quest very much in the
spirit of Abraham’s electromagnetic program—to write in the Pauli memo-
rial volume:

A physicist will feel both pride and humility when he reads
Pauli’s remarks today. In the light of our present knowledge
the attempts which Pauli criticizes may seem hopelessly naı̈ve,
although it was certainly sound practice to investigate what the
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profound new ideas of general relativity would contribute to
the understanding of the thorny problem of matter (Bargmann,
1960, 189).

Putting such hagiography to one side, we conclude our paper by quoting and
commenting on two oft-quoted passages that nicely illustrate some of the key
points of our paper. The first is a brief exchange between Planck and Som-
merfeld following a lecture by the former at the Naturforscherversammlung
in Stuttgart on September 19, 1906.67 Planck talked about “[t]he Kaufmann
measurements of the deflectability of β-rays and their relevance for the dy-
namics of electrons.” Abraham, Bucherer,68 Kaufmann, and Sommerfeld all
took part in the discussion afterwards. It was Planck who got to the heart of
the matter:

Abraham is right when he says that the essential advantage of
the sphere theory would be that it be a purely electrical theory.
If this were feasible, it would be very beautiful indeed, but
for the time being it is just a postulate. At the basis of the
Lorentz-Einstein theory lies another postulate, namely that no
absolute translation can be detected. These two postulates, it
seems to me, cannot be combined, and what it comes down
to is which postulate one prefers. My sympathies actually lie
with the Lorentzian postulate (Planck, 1906b, 761).

Whereupon Sommerfeld, pushing forty, quipped: “I suspect that the gentle-
men under forty will prefer the electrodynamical postulate, while those over
forty will prefer the mechanical-relativistic postulate” (Ibid.). The reaction
of the assembled physicists to Sommerfeld’s quick retort has also been pre-
served in the transcript of this session: “hilarity” (Heiterkeit). This exchange
between Planck and Sommerfeld is perhaps the clearest statement in the con-
temporary literature of the dilemma that lies behind the choice between the
electron models of Abraham and Lorentz. Physicists had to decide what they
thought was more important, full relativity of uniform motion or the reduc-
tion of mechanics to electrodynamics. We find it very telling that in 1906
a leader in the field such as Sommerfeld considered the former the conser-
vative and the latter the progressive option. Unlike Abraham, Lorentz, and
Planck, however, Sommerfeld did not fully appreciate what was at stake.

First of all, his preference for the “electrodynamical postulate” was main-
ly because Lorentz’s contractile electron was incompatible with superlumi-
nal velocities.69 This can be inferred from a comment on Lorentz’s elec-
tron model in (Sommerfeld, 1904c). In this paper—translated into Dutch
by Peter Debye, Sommerfeld’s student at the time (Eckert and Märker, 2000,
148), and communicated to the Amsterdam Academy of Sciences by Lorentz
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himself—Sommerfeld summarized and simplified his trilogy on electron
theory in the proceedings of the Göttingen Academy (Sommerfeld, 1904a,
1904b, 1905a). He wrote:

As is well-known, Lorentz, for very important reasons, has re-
cently formulated the hypothesis that the shape of the electron
is variable, i.e., that for every velocity the electron takes on
the shape of a so-called “Heaviside ellipsoid.” For velocities
greater than that of light this hypothesis cannot be used; one
can hardly speak of a “Heaviside hyperboloid” as the shape of
the electron (Sommerfeld, 1904c, 433).

Sommerfeld’s objections to Lorentz’s program were thus not nearly as prin-
cipled as Abraham’s (cf. the passages from Abraham, 1903, quoted in sec.
4.4).

Moreover, from letters he wrote to Wien and Lorentz in November and
December of 1906 (letters 102 and 103 in Eckert and Märker, 2000) it ap-
pears that Sommerfeld only became familiar with Einstein’s work after the
meeting in Stuttgart. On December 12, 1906, he wrote to Lorentz:

Meanwhile I have also studied Einstein. It is remarkable to see
how he arrives at the exact same results as you do (also with
respect to his relative time) despite his very different episte-
mological point of departure. However, his deformed time,
like your deformed electron, does not really sit well with me
(Eckert and Märker, 2000, 258).

This passage suggests that Sommerfeld had not read (Einstein, 1905) before
the 1906 Naturforscherversammlung. So Sommerfeld may not even have re-
alized at the time that there was at least one gentleman well under forty, albeit
one not in attendance in Stuttgart, who preferred the “mechanical-relativistic
postulate,” nor that the mechanics involved need not be Newtonian. By the
time of the next Naturforscherversammlung, the following year in Dresden,
Sommerfeld (1907), still only 39, had jumped ship and had joined the rela-
tivity camp (Battimelli, 1981, 150, note 30).70 In an autobiographical sketch
written in 1919, Sommerfeld ruefully looks back on this whole episode. Re-
ferring to the trilogy (Sommerfeld, 1904a, 1904b, 1905a), he wrote: “The
last of these appeared in the critical year 1905, the birth year of relativity.
These difficult and protracted studies, to which I originally attached great
value, were therefore condemned to fruitlessness” (Sommerfeld, 1968, Vol.
4, 677).71

The second passage that we want to look at comes from Lorentz’s im-
portant book The Theory of Electrons, based on his 1906 lectures in New
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York and first published in 1909. Referring to Einstein and special relativity,
Lorentz wrote

His results concerning electromagnetic and optical phenom-
ena (leading to the same contradiction with Kaufmann’s re-
sults that was pointed out in §179[72]) agree in the main with
those which we have obtained in the preceding pages, the chief
difference being that Einstein simply postulates what we have
deduced, with some difficulty and not altogether satisfactorily,
from the fundamental equations of the electromagnetic field.
(Lorentz, 1915, 229–230).

The parenthetical reference to “Kaufmann’s results” suggests that the famous
clause that concludes this sentence—“Einstein simply postulates what we
have deduced [. . . ] from the fundamental equations of the electromagnetic
field”—refers, at least in part, to Lorentz’s own struggles with the velocity
dependence of electron mass.73 The relativistic derivation of these relations
is mathematically equivalent to Lorentz’s 1899 derivation of them from the
requirement, formally identical to the relativity principle, that ether drift can
never be detected (see sec. 3, eqs. 45–51). From Lorentz’s point of view, the
relativistic derivation therefore amounted to nothing more than postulating
these relations on the basis of the relativity principle. Lorentz himself had
gone to the trouble of producing a concrete model of the electron such that
its mass exhibited exactly the desired velocity-dependence (see sec. 4, eqs.
67–73). As we saw at the end of sec. 6, by 1922, if not much earlier, Lorentz
had recognized that this had led him on a wild goose chase: “the formula for
momentum [of which those for the velocity dependence of mass are a direct
consequence] is a general consequence of the principle of relativity [. . . ] and
tells us nothing about the nature of mass or of the structure of the electron.”
This was Lorentz’s way of saying what Pais said in the quotation with which
we began this paper.
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NOTES
1For discussion of and references to the experimental literature, we refer to

(Miller, 1981), (Cushing, 1981), and (Hon, 1995). (Pauli, 1921, 83) briefly dis-
cusses some of the later experiments. See also (Gerlach, 1933), a review article on
electrons first published in the late 1920s.

2Moreover, classical electron models have continued to attract attention from
(distinguished) physicists (see note 12 below). In addition, the notion of “Poincaré
pressure” introduced to stabilize Lorentz’s electron (see below) resurfaced in a the-
ory of Einstein (1919), which is enjoying renewed interest (Earman, 2003), as well
as in other places (see, e.g., Grøn, 1985, 1988).

3See (Sommerfeld, 1904a, 1904b, 1904c, 1905a, 1905b) and (Herglotz, 1903).
For a discussion of the development of Sommerfeld’s attitude toward the electro-
magnetic program and special relativity, see (McCormmach, 1970, 490) and (Wal-
ter 1999a, 69–73, Forthcoming, sec. 3). On Minkowski and the electromagnetic
program, see (Galison, 1979), (Pyenson, 1985, Ch. 4), (Corry, 1997), and (Walter,
1999a, 1999b, Forthcoming).

4This particular history of the electron is conspicuously absent, however, from
the collection of histories of the electron brought together in (Buchwald and War-
wick, 2001). One of us (MJ) bears some responsibility for that and hopes to make
amends with this paper.

5See also (Darrigol, 2000). We refer to (Janssen, 1995, 2002b) for references to
and discussion of earlier literature on this topic.

6For more recent commentary, see (Corry, 1999).
7As Born explains in introductory comments to the reprint of (Born, 1909b)

in a volume with a selection of his papers (Born, 1965, Vol. 1, XIV–XV). For a
brief discussion of the debate triggered by Born’s work and references to the main
contributions to this debate, see the editorial note, “Einstein on length contraction
in the theory of relativity,” in (Einstein, 1987–2002, Vol. 3, 478–480).

8For a brief discussion of this acrimonious exchange, see (Miller, 1981, sec.
1.13.1, especially notes 57 and 58).

9For brief discussions, see (Balazs, 1972, 29–30) and (Warwick, 2003, Ch. 8,
especially 413–414). We also refer to Warwick’s work for British reactions to the
predominantly German developments discussed in our paper. See, e.g., (Warwick,
2003, 384) for comments by James Jeans on electromagnetic mass.

10For a brief discussion, see (Balazs, 1972, 30)
11See also (Cuvaj, 1968). We have benefited from (annotated) translations of

Poincaré’s paper by Schwartz (1971, 1972) and Kilmister (1970), as well as from
the translation of passages from (Poincaré, 1905), the short version of (Poincaré,
1906), by Keswani and Kilmister (1983). A new translation of parts of (Poincaré,
1906) by Scott Walter will appear in (Renn, Forthcoming).

12See (Rohrlich, 1960, 1965, 1970, 1997). See also, e.g., (Fermi, 1921, 1922)
[cf. note 20 below], (Wilson, 1936), (Dirac, 1938), (Kwal, 1949), (Caldirola, 1956),
(Zink, 1966, 1968, 1971), (Pearle, 1982), (Schwinger, 1983) [in a special issue on
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the occasion of Dirac’s 80th birthday], (Comay, 1991), (Yaghjian, 1992), (Moylan,
1995), and (Hnizdo, 1997).

13The letter U rather than E is used for energy to avoid confusion with the electric
field. We shall be using SI units throughout. For conversion to other units, see, e.g.,
(Jackson, 1975, 817–819).

14From ds2 = ηµνdxµdxν = (c2 − v2)dt2 it follows that ds = c
√

1− v2/c2dt =
cdt/γ.

15The energy-momentum tensor is typically symmetric. In that case, T i0 = T 0i,
which means that the momentum density (T i0/c) equals the energy flow density
(cT 0i) divided by c2. As was first noted by Planck, this is one way of expressing the
inertia of energy, E = mc2.

16Which is why T µν is also known as the stress-energy tensor or the stress-energy-
momentum tensor.

17See (Rohrlich, 1965, 89–90, 279–281) or (Janssen, 1995, sec. 2.1.3) for the
details of the proof, which is basically an application of the obvious generalization
of Gauss’s theorem (which says that for any vector field A,

H
A ·dS =

R
divA d3x)

from three to four dimensions.
18This way of writing Pµ was suggested to us by Serge Rudaz. See (Janssen,

2002b, 440–441, note; 2003, 47) for a more geometrical way of stating the argument
below.

19As Gordon Fleming (private communication) has emphasized, the rest frame
cannot always be uniquely defined. For the systems that will concern us here, this
is not a problem. Following Fleming, one can avoid the arbitrary choice of nµ al-
together by accepting that the four-momentum of spatially extended systems is a
hyperplane-dependent quantity.

20Some of Fermi’s earliest papers are on this issue (Miller, 1973, 317). We have
not been able to determine what sparked Fermi’s interest in this problem. His biog-
rapher only devotes one short paragraph to it: “In January 1921, Fermi published his
first paper, “On the Dynamics of a Rigid System of Electrical Charges in Transla-
tional Motion” [Fermi, 1921]. This subject is of continuing interest; Fermi pursued
it for a number of years and even now it occasionally appears in the literature”
(Segrè, 1970, 21).

21(Rohrlich, 1965, 17) notes that Fermi’s idea was forgotten and independently
rediscovered at least three times, by W. Wilson (1936), by Bernard Kwal (1949), and
then by Rohrlich himself (Rohrlich, 1960). This goes to show that John Stachel’s
meta-theorem—anything worth discovering once in general relativity has been dis-
covered at least twice—also holds for special relativity. In the preface to the second
edition of his textbook on special relativity, Aharoni (1965) cites (Rohrlich, 1960)
as the motivation for some major revisions of the first edition, published in 1959.
In this same preface, Aharoni lists Dirac (1938) and Kwal as rediscoverers. For a
concise exposition of Rohrlich’s work, see (Aharoni, 1965, sec. 5.5, 160–165).

22See (Abraham, 1902a, 25–26; 1903, 110). In both places, he cites (Poincaré,
1900) for the basic idea of ascribing momentum to the electromagnetic field. For
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discussion, see (Miller, 1981, sec. 1.10), (Darrigol, 1995; 2000, 361), and (Janssen,
2003, sec. 3)

23 In fact, another force, a stabilizing force Fstab, needs to be added to keep the
charges from flying apart under the influence of their Coulomb repulsion.

24 See, e.g., (Lorentz, 1904a, sec. 7), (Abraham, 1905, sec. 5), (Jackson, 1975,
238–239), (Janssen, 1995, 56–58), (Griffith, 1999, 351–352). In special relativity,
we would write eq. 19 as the integral over the spatial components of the Lorentz
four-force density f µ, which is equal to minus ∂νT µν

EM, the four-divergence of the
energy-momentum tensor for the electron’s self-field,

Fi
self = −

Z
∂νT iν

EM d3x,

with T i0
EM ≡ cε0(E×B)i and T i j

EM ≡−T i j
Maxwell (cf. eqs. 127 and 129 and note 51).

25This assumption may sound innocuous, but under the standard definition 12 of
the four-momentum of spatially extended systems, the (ordinary three-)momentum
of open systems will in general not be in the direction of motion. Because both
Lorentz’s and Abraham’s electrons are symmetric around an axis in the direction of
motion, the momentum of their self-fields is always in the direction of motion, even
though these fields by themselves do not constitute closed systems. If a system has
momentum that is not in the direction of motion, it will be subject to a turning cou-
ple trying to align its momentum with its velocity. Trouton and Noble (1903) tried
in vain to detect this effect on a charged capaticor hanging from the ceiling of their
laboratory on a torsion wire (cf. Janssen, 2002b, 440–441, note, and Janssen, 1995,
especially secs. 1.4.2 and 2.2.5). Ehrenfest (1907) raised the question whether the
electron would be subject to a turning couple if it were not symmetric around the
axis in the direction of motion. Einstein (1907a) countered that the behavior of the
electron would be independent of its shape. This exchange between Einstein and
Ehrenfest is discussed in (Miller, 1981, sec. 7.4.4.). Laue (1911a) proved Einstein
right (see also Pauli, 1921, 186–187). As with the capacitor in the Trouton-Noble
experiment, the electromagnetic momentum of the electron is not the only momen-
tum of the system. The non-electromagnetic part of the system also contributes to
its momentum. Laue showed that the total momentum of a closed static system is
always in the direction of motion. From a modern point of view this is because the
four-momentum of a closed system (static or not) transforms as a four-vector under
Lorentz transformations. The momenta of open systems, such as the subsystems of a
closed static system, need not be in the direction of motion, in which case the system
is subject to equal and opposite turning couples. A closed system never experiences
a net turning couple. The turning couples on open systems, it turns out, are artifacts
of the standard definition 12 of the four-momentum of spatially extended systems.
Under the alternative Fermi-Rohrlich definition (see the discussion following eq.
14), there are no turning couples whatsoever (see Butler, 1968; Janssen, 1995; and
Teukolsky, 1996).

26 Substituting the momentum, p = mv, of Newtonian mechanics for PEM in eq.
26, we find m// = m⊥ = m.
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27But recall that there should be an additional term, Fstab, on the right-hand side
of eq. 16 (see note 23).

28 Substituting the kinetic energy, Ukin = 1
2 mv2, of Newtonian mechanics for UEM

in eq. 31, we find m// = m, in accordance with the result found on the basis of eq.
26 and p = mv (see note 26).

29The converse is not true. For the electron model of Bucherer and Langevin
(see sec. 4) (UEM/c,PEM) is not a four-vector, yet UEM and PEM give the same
longitudinal mass m// (see eqs. 74–77). The same is true for the Newtonian energy
Ukin = 1

2 mv2 and the Newtonian momentum p = mv (see notes 26 and 28).

30The first relation follows from
dγ−2

dv
=

d
dv

(
1− v2

c2

)
or −2γ−3 dγ

dv
= −2

v
c2 ;

the second is found with the help of the first:

d(γv)
dv

= γ+ v
dγ
dv

= γ+ γ3β2 = γ3(1−β2 + β2) = γ3.

31For more extensive discussion, see (Janssen, 1995, Ch. 3; 2002b; Janssen and
Stachel, 2004).

32For the magnetic field it is the motion of charges with respect to the ether that
matters, not the motion with respect to the lab frame.

33For the induced E and B fields it is the changes in the B and E fields at fixed
points in the ether that matter, not the changes at fixed points in the lab frame.

34Lorentz only started using the relativistic transformation formula for non-static
charge densities and for current densities in 1915 (Janssen, 1995, secs. 3.5.3 and
3.5.6).

35See (Lorentz, 1895, sec. 19–23) for the derivation of this transformation law
and (Janssen, 1995, sec. 3.2.5) or (Zahar, 1989, 59–61) for a reconstruction of this
derivation in modern notation.

36For an elegant and elementary exposition of Planck’s derivation, see (Zahar,
1989, sec. 7.1, 227–237). The equations for the relation between a′ and a can be
found on p. 232, eqs. (2)–(4).

37Einstein (1905, 919) obtained m⊥ = γ2m0 instead of m⊥ = γm0, the result ob-
tained by Planck and Lorentz (for l = 1). The discrepancy comes from Einstein
using F′ = F instead of F′ = diag(1,γ,γ)F, the now standard transformation law for
forces used by Lorentz and Planck (Zahar, 1989, 233). Einstein made it clear that he
was well aware of the arbitrariness of his definition of force. When (Einstein, 1905)
was reprinted in (Blumenthal, 1913), a footnote was added in which Einstein’s orig-
inal definition of force is replaced by the one of Lorentz and Planck. Recently a slip
of paper came to light with this footnote in Einstein’s own hand. This shows that the
footnote was added by Einstein himself and not by Sommerfeld as suggested, e.g.,
by Miller (1981, 369, 391).

38See eq. 126 below for the relation between the (contravariant) electromagnetic
field strength tensor Fµν (and its covariant form Fµν = ηµρηνσFρσ) and the compo-
nents of E and B.
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39If the Fermi-Rohrlich definition is used, the relation d3x = d3x′/γl3 used in
going from eq. 54 to eq. 55 no longer holds. Kwal (1949) clearly recognized that this
is the source of the problem. In the abstract of his paper he wrote: “The appearance
of the factor 1/3 in the expression for the total energy of the moving electron results
from the simultaneous use in the calculation of a tensorial quantity (the energy-
momentum tensor) and a quantity that is not [a tensor] (the volume element). The
difficulty disappears with a tensorial definition of the volume element.”

40This is an example of what one of us called a “common origin inference” or
COI in (Janssen, 2002a). The example illustrates how easy it is to overreach with
this kind of argument (for other examples see, ibid., 474, 491, 508).

41Cf. (Miller, 1981, sec. 1.13.2). Miller cites a letter of January 26, 1905, in
which Abraham informed Lorentz of this difficulty. See also (Lorentz, 1915, 213).

42Carrying out the differentiation with respect to γ in eq. 76, we find:

m// =
c2

v

(
2
3

γ−
1
3 +

1
3

γ−
7
3

)
γ3 v

c2 m0,

where we used eq. 35 for dγ/dv. This in turn can be rewritten as

m// = γ
8
3

(
2
3

+
1
3

γ−2
)

m0 = γ
8
3

(
2
3

+
1
3

(
1−β2))m0 = γ

8
3

(
1− 1

3
β2
)

m0.

43We are grateful to Serge Rudaz for his help in reconstructing this argument.
44Referring to (Poincaré, 1885, 1902a, 1902b), Scott Walter (Forthcoming, sec. 1)

makes the interesting suggestion that “[s]olving the stability problem of Lorentz’s
contractile electron was a trivial matter for Poincaré, as it meant transposing to
electron theory a special solution to a general problem he had treated earlier at some
length: to find the equilibrium form of a rotating fluid mass.”

45As Miller (1973, 300) points out, in the short announcement of his 1906 pa-
per, Poincaré (1905, 491) mistakenly wrote that the electron “is under the action of
constant external pressure” (Keswani and Kilmister, 1983, 352).

46For a detailed analysis of the completely analogous case of the forces on a
capacitor in the Trouton-Noble experiment, see secs. 2.3.3 and 2.4.2 of (Janssen,
1995).

47We are grateful to Scott Walter for reminding us of this problem. We essentially
follow the analysis of the problem by Miller (1973, 298–299), although we draw
a slightly different conclusion (see note 48). Schwartz (1972, 871) translates the
relevant passage from (Poincaré, 1906) but passes over the problem in silence.

48One might object, however, that our reading of Poincaré is too charitable.
Poincaré certainly does not explicitly say, once he has derived the expression for
Poincaré pressure at the end of section 6, that this restores the standard relations
between Hamiltonian, Lagrangian, and generalized momentum in Lorentz’s model.
Yet we take this to be the rationale behind his calculations. Miller (1973, 248) is
harder on Poincaré: “contrary to what is sometimes attributed to this paper [Poincaré,
1906], Poincaré never computed the counter term [our eq. 116] necessary to cancel
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the second term on the right-hand side of [our eq. 115], nor did he reduce the factor
of 4/3 in [the electromagnetic momentum] to unity [compare PEM in eq. 66 to Ptot

in eq. 113].” This is all true. Our rejoinder on behalf of Poincaré is that he did not
need to do any of this to remove the inconsistency in Lorentz’s model.

49Compare eq. 120 to eq. 87, which for small velocities reduces to

LEM ≈−U0EM(1− v2/2c2).
50Shaul Katzir (private communication) has suggested a more charitable interpre-

tation of Poincaré’s comments. Poincaré, Katzir suggests, recognized that the elec-
tron is not a purely electromagnetic system but believed that its mass is nonetheless
given by its electromagnetic momentum through eqs. 26. For the specific model
proposed by Poincaré this is not true. The non-electromagnetic piece he added to
stabilize Lorentz’s electron does contribute to the electron’s mass, giving a total
mass of (4/3)U0EM/c2. As we shall see in sec. 6, however, it is possible to add a
stabilizing piece that does not contribute to the electron’s mass (see our remarks
following eq. 158).

51 The derivation of eq. 129 is essentially just the reverse of the derivation of
eq. 17 and can be pieced together from the passages we cited for the latter (see
note 24). From a relativistic point of view, eq. 129 is immediately obvious since
the (four-)gradient of the energy-momemtum tensor gives minus the density of the
(four-)force acting on the system (see, e.g., Pauli, 1921, 126, eq. (345)). The right-
hand side of eq. 129 is minus the Lorentz force density in the absence of a magnetic
field (ibid., 85, eq. (225)).

52 T 00
0non−EM

can be any function of the spatial coordinates and the system will still

be closed. Of course, this component needs to be chosen in such a way that T µν
non−EM

continues to transform as a tensor. We ensure this by changing definition 134 to:

T µν
0non−EM

≡−ηµνPPoincaréϑ(R− r0)+ f (x0)
uµ

0uν
0

c2 ,

where uµ = γ(c,v) is the electron’s four-velocity. The function f (x0) can be chosen
arbitrarily as long as the energy density is positive definite everywhere. Hence, it
must satisfy the condition f (x0) ≥ 0 outside the electron and the condition f (x0) ≥
PPoincaré inside. If we choose f (x0) = PPoincaréϑ(R− r0), the definition above be-
comes

T µν
0non−EM

≡−
(

ηµν − uµ
0uν

0

c2

)
PPoincaréϑ(R− r0),

in which case T 00
0non−EM

= 0. This definition was proposed by Schwinger (1983, 379,
eqs. (42)–(43)).

53As Rohrlich (1997, 1056), following (Schwinger, 1983, 374, 379), put it: “The
argument over whether mes[equal to U0EM/c2 in our notation] or med = 4mes/3 is the
“right” answer is thus resolved: [. . . ] it depends on the model; either value as well as
any value in between is possible [as are values greater than med; cf. note 52 above].
But in all cases, one obtains a four-vector for the stabilized charged sphere”. Which
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situation obtains cannot be decided experimentally. The rest mass of the electron
can be determined, but that value can be represented by U0/c2, by 4U0/3c2, or by
some other value by adjusting the radius of the electron, for instance, which cannot
be determined experimentally.

54This stabilizing system will not be as simple as the Poincaré pressure for the
Lorentz-Poincaré electron. Without the spherical symmetry of this specific model,
eq. 134 for the non-electromagnetic part of the energy-momentum tensor will be
more complicated. See (Janssen, 1995, sec. 2.3.3, especially eq. (2.96)) for another
simple example, the stabilizing mechanism for the surface charge distribution on a
plate capacitor, worked out with the help of Tony Duncan.

55See the discussion following eq. 13 and (Janssen, 2003, 46–47).
56Quoted in (Miller, 1981, 331). In a review article about electrons originally

published in the late 1920s, Walter Gerlach still claimed that the experiments of
Bucherer and others decided in favor of the relativistic formula for the velocity
dependence of the electron mass. Gerlach concluded: “Today there is therefore no
reason to doubt the correctness of the results of the investigations of Bucherer, Wolz,
Schaefer, and Neumann that the experimentally observed velocity-dependence of the
electron mass agrees, within the margins to be expected from the sources of error
inherent in the method, only with the Lorentz-Einstein theory of the electron” (Ger-
lach, 1933, 81). In a footnote, he adds: “Also note in this context the corresponding
corroboration on the basis of [De Broglie] “wavelength”-measurements of electrons
of different velocity by Ponte [1930].” Inspired by Zahn and Spees, (Rogers et al.,
1940) repeated the experiment of the 1910s with sufficient accuracy to distinguish
the relativistic prediction from Abraham’s. Despite this result, (Faragó and Jánossy,
1957), in a subsequent review of the experimental confirmation of the relativistic
formula for the velocity dependence of electron mass, essentially concurred with
Zahn and Spees (Battimelli, 1981, 149; note 63 explains the reason for our qualifi-
cation).

57Lorentz to Poincaré, March 8, 1906 (see Miller, 1981, sec. 12.4.1, for the quo-
tation, and pp. 318–319 for a reproduction of the letter in facsimile).

58See, e.g., (Holton, 1988, 252–253), (Miller, 1981, sec. 12.4.3), (Hon, 1995,
208), and (Janssen, 2002a, 462, note 9).

59See Adler to Einstein, March 9, 1917 (Einstein, 1987–2002, Vol. 8, Doc. 307).
In 1909 Adler had supported Einstein’s candidacy for a post at the University of
Zurich for which both of them had applied (see Einstein to Michele Besso, April
29, 1917 (Einstein, 1987–2002, Vol. 8, Doc. 331)). Einstein reciprocated in 1917
by drafting a petition on behalf of a number of Zurich physicists asking the Austrian
authorities for leniency in Adler’s case, even as Adler was busying himself with a
critique of his benefactor’s theories (see the letter to Besso quoted above). A draft of
Einstein’s petition is reproduced in facsimile in (Renn, 2005, 317). Adler’s father,
the well-known Austrian social democrat Victor Adler, considered using his son’s
railings against relativity for an insanity defense. His son, however, was determined
to stand by his critique of relativity, even if it meant ending up in front of the firing
squad. Adler was in fact sentenced to death but it was clear to all involved that
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he would not be executed. The death sentence was commuted to eighteen years in
prison on appeal and Adler was pardoned immediately after the war. This bizarre
story is related in (Fölsing, 1997, 402–405). For an analysis of the psychology
behind Adler’s burning martyrdom, see (Ardelt, 1984).

60Einstein to Adler, September 29, 1918 (Einstein, 1987–2002, Vol. 8, Doc. 628;
translation here and in the following are based on Ann M. Hentschel’s).

61Adler to Einstein, October 12, 1918 (Einstein, 1987–2002, Vol. 8, Doc. 632;
Adler’s emphasis).

62Cf., however, the quotation from Lorentz in note 72 below.
63Einstein to Adler, October 20, 1918 (Einstein, 1987–2002, Vol. 8, Doc. 636).

Two of the studies cited by Einstein involved the deflection of fast electrons as in
the experiments of Kaufmann, Bucherer, and others; the third—by Karl Glitscher
(1917), a student of Sommerfeld—used the fine structure of spectral lines to distin-
guish between the relativistic and the Abraham prediction for the velocity depen-
dence of the electron mass. The experiment is not mentioned in the review article
on electrons by Gerlach (1933), but Faragó and Jánossy (1957, sec. 2) review it very
favorably. They write: “Analyzing the available experimental material, we have
come to the conclusion that it is the fine-structure splitting in the spectra of atoms
of the hydrogen type which give [sic] the only high-precision confirmation of the
relativistic law of the variation of electron mass with velocity” (Faragó and Jánossy,
1957, 1417; quoted in Hon, 1995, 197).

64In general we need the fields associated with the particle to be sharply peaked
around the worldline of the particle, a four-dimensional ‘world-tube.’

65Einstein and Felix Klein corresponded about this issue in 1918 (Einstein, 1987–
2002, Vol. 8, Docs. 554, 556, 561, 566, and 581). See also Hermann Weyl to Ein-
stein, November 16, 1918 (Einstein, 1987–2002, Vol. 8, Doc. 657). A precursor
to this approach can be found in (Einstein and Grossmann, 1913, sec. 4), where
Einstein pointed out that the geodesic equation, which governs the motion of a test
particle in a gravitational field, can be obtained by integrating T µν

;ν = 0—the van-
ishing of the covariant divergence of T µν, the general-relativistic generalization of
∂νT µν = 0—over the ‘worldtube’ of the corresponding energy-momentum tensor
for pressureless dust (“thread of flow” [Stromfaden] is the term Einstein used). This
argument can also be found in the so-called Zurich Notebook (Einstein, 1987–2002,
Vol. 4, Doc. 10, [p. 10] and [p. 58]). For analysis of these passages, see (Norton,
2000, Appendix C) and “A Commentary on the Notes on Gravity in the Zurich
Notebook” in (Renn, Forthcoming, sec. 3 and 5.5.10; the relevant pages of the note-
book are referred to as ‘5R’ and ‘43L’).

66See (Renn and Sauer, Forthcoming) for extensive discussion of the role of the
energy-momentum tensor in the research that led to general relativity.

67This exchange is also discussed, for instance, in (Miller, 1981, sec. 7.3.4), (Mc-
Cormmach, 1970, 489–490), and (Jungnickel and McCormmach, 1986, 249–250).

68Understandably, Bucherer took exception to the fact that Planck only discussed
the electron models of Lorentz and Abraham (Planck, 1906b, 760).
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69For brief discussions of the debate over superluminal velocities in the years
surrounding the advent of special relativity, see (Miller, 1981, 110–111, note 57)
and the editorial note, “Einstein on Superluminal Signal Velocities,” in (Einstein,
1987–2002, Vol. 5, 56–60).

70See (Walter, 1999a, sec. 3.1) for a more charitable assessment of the develop-
ment of Sommerfeld’s views.

71We are grateful to Michael Eckert for alerting us to this passage and for provid-
ing us with the date of this part of Sommerfeld’s autobiographical sketch.

72 In the second edition, Lorentz added the following footnote at this point: “Later
experiments [. . . ] have confirmed [eq. 37] for the transverse electromagnetic mass,
so that, in all probability, the only objection that could be raised against the hypothe-
sis of the deformable electron and the principle of relativity has now been removed”
(Lorentz, 1915, 339).

73For more extensive discussion of this passage, see (Janssen, 1995, sec. 4.3).
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stein, in L. O’Raifeartaigh (ed.), General Relativity. Papers in Honour of J. L. Synge,
Clarendon Press, Oxford, pp. 21–34.



124 MICHEL JANSSEN AND MATTHEW MECKLENBURG

Bargmann, V. (1960). Relativity, in M. Fierz and V. F. Weisskopf (eds), Theoretical
Physics in the Twentieth Century. A Memorial Volume to Wolfgang Pauli, Inter-
science Publishers, New York, pp. 187–198.

Battimelli, G. (1981). The Electromagnetic Mass of the Electron: A Case Study of
a Non-Crucial Experiment, Fundamenta Scientiae 2: 137–150.

Blumenthal, O. (ed.) (1913). Das Relativitätsprinzip. Eine Sammlung von Abhand-
lungen, Teubner, Leipzig.
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Studies in History and Philosophy of Modern Physics 26: 1–44.

Darrigol, O. (2000). Electrodynamics from Ampère to Einstein, Oxford University
Press, Oxford.

Dirac, P. A. M. (1938). Classical Theory of Radiating Electrons, Proceedings of the
Royal Society (London) Series A 167: 148–169.

Earman, J. (2003). The Cosmological Constant, the Fate of the Universe, Unimod-
ular Gravity, and All That, Studies in History and Philosophy of Modern Physics
34: 559–577.

Eckert, M. and Märker, K. (eds) (2000). Arnold Sommerfeld. Wissenschaftlicher
Briefwechsel. Band 1: 1892-1918, Deutsches Museum Verlag für Geschichte der
Naturwissenschaften und der Tecknik, Berlin, Diepholz, München.
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