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Abstract
This work focuses on systems where mobile robots periodically collect data from

(static) wireless sensor network nodes. Suppose we are given approximate locations
of the static nodes, and an order with which the robot will visit these nodes. We
present solutions to the following problems. (i) From the static node’s perspective:
given the stochastic nature of the robot’s arrival, what is an energy-efficient strategy
to wake up and send/receive beacon messages? Such a strategymust simultaneously
minimize the robot’s waiting time and the number of beacon messages. (ii) From the
robot’s perspective: given the stochastic nature of the wireless link quality, what is
an energy-efficient motion strategy to find a good pose (location and orientation)
from where the data can be downloaded efficiently? The robot must be able to find
such a location quickly but without taking too many measurements so as to conserve
the static node’s energy.

For the first problem, we present an optimal algorithm based on dynamic pro-
gramming. For the second problem, we present an efficient, data-driven heuristic
based on experiments. Finally, we present a system implementation for an indoor
data collection application, and validate our results on this system.

1 Introduction

Wireless sensor networks (WSNs) are finding increasing use in crucial applications
such as environmental monitoring, factory automation and security. However, de-
ploying such sensor systems and gathering the data collected by the sensors still
remains a challenge. This is especially true when the targetapplication requires col-
lecting data over a large area such as a farm, a forest or a large warehouse.

In cases where the application requires a dense sampling of the environment, the
data can be gathered by forming a wireless network where sensor nodes also act as
relays. In certain applications, the underlying environment is very large and sam-
pling locations are apart from each other. For example, in some habitat monitoring
applications, sensors are deployed to collect humidity andtemperature data across
the entire habitat of species [11]. In building automation,a WSN can be rapidly
deployed to collect data (temperature, light) in a few key locations in a large ware-
house.
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In these applications, a deployment that is dense enough to form a connected
network can be costly and difficulty to maintain. It is also very expensive to in-
stall a wired network just for data acquisition. Often, instead of deploying a dense,
connected network, data is manually downloaded from the motes.

An alternative to collecting data manually is to use mobile robots. The last decade
witnessed significant developments in mobile robot navigation. It is now feasible to
develop systems where robots periodically visit sensor nodes and gather the data
collected by them. Typically mobile robots are capable of carrying large batteries
and are easily rechargeable. Therefore, the life-time of the static nodes is usually
the most crucial factor in determining the overall life-time of the system. In this
work, we focus on such systems and address two problems that affect the life time
of the automation system.

Beacon Scheduling:In most applications, a robot’s arrival to a sensor’s vicinity
will be a stochastic process due to uncertainties in the navigation times of robots and
changes in their trajectories. Therefore, sensor nodes must wake-up, send beacon
messages and listen to the channel for availability of robots. If this is done very
frequently, energy consumed in beaconing can reduce the life-time of the network.
In Section 3, we address the problem of scheduling beacon messages and present
optimal beaconing algorithms.

Data Download: The quality of the communication link between a robot and a
sensor can affect the time to download the data (and hence theenergy consump-
tion) drastically. If the robot can utilize its mobility andfind a “good” location to
download data, this can yield significant energy savings. This statement is further
justified in Section 4 where we address the search problem andpresent a data-driven
strategy to find a good download location. In indoor environments where the behav-
ior of the signal is unpredictable due to multipath effects and the dynamic nature
of the environment, it is easy to see that there is no online algorithm with provable
performance guarantees1. Therefore, we present a heuristic strategy based on ex-
tensive experiments we performed to understand the effect of robot’s location and
orientation on the signal quality.

In Section 5, we present the details of a system implementation that utilizes
robots for gathering data, and demonstrate the utility of our algorithms with ex-
periments run on this system. We start with an overview of related work.

2 Related Work

Mobility in collecting sensor data is extensively studied.For example, in [13], Shah
et al presented an architecture that uses mobile entities inthe environment for data
delivery. In most of the related literature, mobility is treated as an uncontrolled pro-
cess.

More recently, researchers proposed architectures that exploit controlled mobil-
ity [14, 6, 3, 18, 15]. A recent review on the state of the art inexploiting sink mobility
can be found in [9].

1 For any given online strategy, an adversary can pick the “good” location to be the last location
visited by the online algorithm.
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In existing approaches, the robot’s trajectory is either given or computed in ad-
vance. This constraint is relaxed in [6] where the robot’s velocity is modified (along
a fixed path) to improve transmission quality. In more recentwork, a system where
robots efficiently collect data from static sensors have been presented [17]. This
work demonstrates the energy savings attained by using mobile robots over using
static relay nodes. In the present work, we take a further step and present a strategy
that fully utilizes the controllability of the robot’s mobility (position and orienta-
tion) to find good download locations in an online fashion. The strategy does not
make strong assumptions about the wireless signal, and we show its utility with real
implementations.

We also study the interactions between the robot and static nodes during the
discovery phase. This is related to sleep scheduling which is usually studied as a
topology management problem [2, 12]. In this work, we focus on a special case
where the arrival of the robot is given as a probability distribution, and compute
the optimal sleep schedule which simultaneously minimizesthe number of beacon
messages and the robot’s wait time. In a real system implementation, we show how
such distributions can be learned over time.

The interactions between robots and a static sensor networkhave also been ad-
dressed in the robotics literature for network repair [4], connectivity [1] and navi-
gation [7] problems. In this work, we model the interaction between the robot and
the nodes at a lower level and address signal-strength and node scheduling issues.
Such approaches have recently started appearing in the robotics literature, mostly in
tracking [8, 10] and connectivity maintenance [5, 16] applications.

3 Optimal beacon scheduling

A robot’s arrival to a sensor mote’s vicinity is a stochasticprocess, due to uncer-
tainties in navigation. It is thus necessary for the mote to periodically send beacon
messages and execute a receiver check to establish connection with the robot2. By
adapting the beacon interval to match the robot’s arrival pattern, we can keep the
duty cycle of the mote as low as possible, thereby conservingenergy and increasing
its life-time.

3.1 Formulation

Consider a system in whichm sensor motes have been statically deployed. The
approximate location of each mote is known w.r.t. a fixed origin: the home base from
where the robot starts its journey. An ordered sequence of labelsS= {s1,s2, . . . ,sm}
is assigned to the sensor motes a priori.

Although the path of the robot is specified, there are many sources of uncertainty
that contribute to the robot’s arrival at each sensor being astochastic process. For
instance, the robot may spend uncertain amounts of time to locate the motes and

2 In general, listening to the channel and sending beacon messages can be decoupled. In this case,
the discussion can be modified to focus on the most energy expensive portion (typically receiving
messages).
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download data from them. It may take alternate routes due to obstacles, and spend
time to compensate for uncertainties in its own actuators and sensors.

Ideally, if the mote knew the exact time (or the interval) therobot would be within
its communication range, then only one beacon round would suffice. A practical
alternative is to send beacon messages infrequently and have the robot wait in the
mote’s vicinity until it hears a beacon. This has the undesired effect of making the
time to visit all nodes large which, in turn, decreases the overall system performance.

The time interval between consecutive robot arrivals at sensor motes is called
the interarrival time. Due to the stochastic nature, we represent the robot’s inter-
arrival time at sensors as a probability distribution. This distribution can be either
guessed (e.g. by using a Gaussian which represents the expected arrival time and
uncertainty), or can be adaptively learned by keeping the history. In this work, we
assume that the distribution is given and omit the details ofhow it can be learned
due to space limitations.

We assume that the time between consecutive robot arrivals at a mote is bounded
from above. In general, there can also be a lower bound that isnon-zero, because
the robot’s velocity and the length of the complete path ensure that the robot takes a
non-zero amount of time to revisit the same sensor.

We now solve the following problem: Given a robot interarrival probability dis-
tribution at a mote, find a beacon schedule for that mote, using the least number
of beacons possible, such that the expected waiting time of the robot between its
arrival at that mote, and receiving a beacon message is bounded from above by a
predetermined valueTw. In Section 3.2.1, we show how such a beacon schedule can
be computed.

3.2 Optimal Solution

We now focus on the scenario where the mobile robot visits a sensors in rounds. As
explained in the formulation, we assume that for any round, the interarrival time is
bounded: there is a time before which the robot cannot be present in communication
range of the mote, and after which the robot is guaranteed to have visited the mote.
Denote this interval asT. We model time as discrete by dividing the intervalT
into n time instants spaced equally by∆ t units,T = {t1, . . . ,tn}. A beacon can be
scheduled at anyti (1≤ i ≤ n).

The robot’s arrival during the intervalT is given as a probability distribution over
the time instants inT. Let p(ti) denote the probability that the robot arrives at time
ti . In the case that the probability is continuous over time, one can interpretti to be
the end point of a time interval[ti−1,ti ], with the beacon being placed at the end of
that interval andp(ti) being the aggregate probability for that interval.

Let B= {b1, . . . ,bk = tn} be a beacon schedule. The valuesbi denote the times in
the intervalT at which beacons are scheduled. Given the arrival distribution p, the
robot’s expected waiting timeET(B, p) at sensor motes is given by

ET(B, p) =
k−1

∑
i=0

bi+1

∑
t j =bi+∆ t

p(t j)(bi+1− t j) (1)
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In Equation 1, we defineb0 as the start time ofT.
Consider beaconbi . For any robot arrival at timet j > bi, the expressionp(t j)(bi+1−

t j) is the expected waiting time for the robot, until beaconbi+1 is heard. Thus the in-
ner summation in (1) gives the robot waiting times between beaconsbi andbi+1. The
outer summation accumulates the expected waiting times over the entire schedule.

We would like to simultaneously minimize the cardinality ofB and the expected
waiting time of the robot. Let the cardinality ofB be denoted byk = |B|.

For a given value ofk, we formulate the following decision problem: Given pa-
rametersk, Tw and an arrival distributionp, can we find a beacon scheduleB such
that|B|= k andET(B, p)≤ Tw? To minimize the number of beacons used to satisfy
this Tw, we perform a search over the possible values ofk by solving the decision
problem for each value.

Typically, the time taken by the robot to traverse the whole round is much larger
than the length ofT. For such cases, we obtain the following insight about an opti-
mal schedule.

Lemma 1. During each round, there has to be a beacon at the last instantof time
in T , to ensure that ET(B, p)≤ Tw.

Proof. We prove this claim by contradiction. Suppose there is no beacon at the last
time instant over whichp(ti) is distributed. Lett j < tn be the time at which the last
beacon is scheduled. If the robot arrives aftert j , but beforetn, then it has to wait
until the mote’s next beacon, which, according to the distribution occurs only at the
estimate of the next robot interarrival time. Since this canbe of the order of the
duration of a round, the waiting time can grow arbitrarily large, giving us a value
greater thanTw: a contradiction.

Lemma 1 gives us a starting point to place a beacon: at timetn (the end ofT).
Also, note that, in Equation 1 the robot’s waiting time is determined by only the first
beacon that it hears after arrival. This motivates the following dynamic program-
ming solution.

3.2.1 Dynamic programming

Let the robot interarrival distribution for motesbep, distributed over the intervalT.
Let k be the number of beacons to be scheduled in the time intervalT. We seek to
answer the question: What is the minimum value ofk such that the beacons satisfy
the constraint on expected waiting timeTw?

Let the cost function beC(i,t j ) which denotes the expected waiting time (“cost”)
for robot arrivalsafter interarrival timet j , when beaconi is scheduled at timet j .

C(i,t j ) = min
t j <tr<tn

{

tr

∑
tq=1+t j

p(tq) · (tr − tq)+C(i +1,tr)

}

(2)

Since beaconi is placed at timet j and beaconi + 1 at timetr , the first term on
the right-hand side in Equation 2 computes expected waitingtime for a robot arrival
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between those two beacons. The second term computes the expected waiting time
for arrivals after timetr .

Since there must be a beacon attn (see Lemma 1),C(k,tn) = 0. Further, we do
not allow beaconk to be scheduled anywhere except at timetn, thusC(k,ty) = ∞ for
t1 ≤ ty < tn. We then use Equation 2 to compute the rest of the cost table, which in
total is of sizek×n. To complete the computation, we need to increment each value
C(1,t)∀t by the expected waiting time for robot arrivals fromt0 to t. This accounts
for robot arrivalsbeforethe first beacon.

The time at which the first beacon should be scheduled is:t j such that the value
of C(1,t j) is minimum i.e.b1 = argmint j

C(1,t j) . Since the computation ofC(1,t j)

used a minimum value for someC(2,tr), we backtrack to find the best possible
scheduling timesb2,b3, . . . ,bk.

We want the value ofk to be the least possible to satisfy the expected waiting
time constraint. In order to do this minimization, we start with just k = 1 beacon
i.e. a cost table of size 1×n and increasek if the expected waiting time for thatk
exceedsTw. Instead of this linear search, we could also use a binary search to find
the bestk, but that approach does not allow us to incrementally build the cost table.
As a result, it ends up computing the whole table and then eliminating half of the
values at each step. The entire computation can be performedin O(kn3) steps.

3.2.2 Simulation results

We demonstrate the utility of using the dynamic programmingalgorithm through
simulated robot arrival times and beacon schedules.
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Fig. 1 A comparison of optimal beacon scheduling (red circles, tall) to uniform scheduling (blue
circles, short) for different robot arrival patterns: unimodal Gaussian (left), uniform (middle), and
bimodal Gaussian (right).

We compare three different types of robot interarrival patterns: uniform, Gaus-
sian and bimodal Gaussian (mixture of two Gaussians). In allthree cases, the desired
waiting time is 2.5 seconds and the robot interarrival timeslie between 300 sec and
500 sec.

Figure 1 (left) models the robot’s arrival pattern at a mote as a unimodal Gaus-
sian. Uniform beaconing uses 34 beacons for an expected waiting time of 2.489 sec-
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onds. In contrast, our algorithm uses 10 beacons (≈ 70% better) with an expected
waiting time of 2.233 seconds.

The algorithm is applicable to any type of arrival distribution. For instance, if
the arrival pattern at a mote is a bimodal Gaussian (right of Fig. 1 N (350,10) and
N (450,10) with equal weights), our solution uses 7 beacons (≈ 79% better) with
an expected wait time of 2.115 seconds.

4 Local search

When the robot is downloading data from a node, the quality ofthe wireless com-
munication link is a crucial factor in determining the life time of the node: when the
link quality is high, the same amount of data can be transferred using less energy.
In this section, we present a motion strategy for a robot to find a good location to
download the data. The algorithm is based on insights from a series of experiments
which we describe next.

Fig. 2 Left: Experimental setup to measure the link quality of data transfer from a mobile robot
to a base station, with the robot moving on a uniform grid.

We started our experiments by collecting data using the setup shown in Figure 2
where we placed an 11×11 grid on a 3m×3m indoor environment. We mounted
a base station mote on our robot (iRobot Create with Asus Eee PC) and the robot
autonomously visited grid points while pointing to a fixed direction.

In the first experiment, we placed a data node at location (3,10) in Figure 3.
The robot visited each location, and took 50 measurements. Each measurement was
taken by sending a 4 byte message during which RSSI (radio signal strength indica-
tor) and LQI (link quality indicator) values were recorded.The left plots in Figure 3
show the mean (top) and median (bottom) values of the LQI measurements. The
right plots show the RSSI values. As it can be seen in the figure, all plots give a
unified view of the link quality. The main observation from this experiment is that
although in general the LQI increases as we get closer to the sensor node, the surface
is not smooth and contains many deep drops due to multi-path effects.

The next experiment illustrates the effect of link quality on the time to download
the data. In Figure 4, the top figure shows the time to download50 messages from
each grid point. The peaks show a correlation with the deep fading affects in the
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Fig. 3 The robot visited each location, and took 50 measurements.Left: mean (top) and median
(bottom) values of the LQI measurements.Right: mean (top) and median (bottom) values of the
RSSI measurements.
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Fig. 4 Time to download 50 messages from each grid point as functionof location (top), and as
functions of LQI (bottom-left) and RSSI (bottom-right). With controlled mobility, the robot can
decrease the download time significantly by moving slightly.

previous experiment (Figure 3). Bottom left (resp. right) figure shows the relation
between LQI (resp. RSSI) measurements and time transfer. Asit can be seen in
the left figure, the transfer time is very low for LQI measurements above 95. On
the other hand, the transfer time increases drastically forvalues lower than 95.This
observation shows the potential utility of controlled mobility: robots can reduce
the data download time (and increase the life of the sensor network) by finding a
“good” 3 location to download the data.

The next experiment sheds further light on path-loss and multi-path affects on
link quality. To cover a wider range, we moved the robot on a line-segment in a
corridor in our building and placed a mote on the mid-point ofthis line segment.
In Figure 5-left, the mote is located atx = 26 and robot starts taking measurements

3 above 95 in this case.



Efficient Strategies for Collecting Data from WSN Nodes using Mobile Robots 9

at x = 1 and ends atx = 51 . The discretization level is 1 foot and robot takes 50
measurements from each location. Top figure shows the mean values of 50 mea-
surements and bottom figure shows the median of the measurements. As expected,
the link quality increases when robots get closer to the sensory mote, while it tends
to decrease while getting further away from the sensory mote. After performing
similar experiments, we concluded that the following observation explains the link-
quality behavior better:Within a certain range (±8 ft, in this case), the link quality
is consistently “good” and unpredictable (random) outsidethis range.
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Fig. 5 Left: The mote is located atx = 26 and the robot moves fromx = 1 to x = 51. Within a
range of±8 ft, the link quality is consistently “good”. It is unpredictable (random) outside this
range.Right: Theθ -values correspond to robot orientations. Each curve corresponds to a different
location on a line. The sensor is located atx = 0. The behavior of RSSI or LQI as a function of
rotation is not easily predictable.

Most robotic systems have a rotational component which means that we can con-
trol the orientation of the robot. Therefore, the robot should search for not only a
good location but a good orientation as well. The next experiment focuses on this
aspect. Figure 5-right shows the change in link quality withthe various orientations
of the base station (on the robot) at fixed locations. The figure shows the results for
4 fixed points at distances 5,10,15 and 20 feet from the mote. The results show that
when the base station is close to the sensor mote, the orientation does not affect
the link quality significantly. However, when the distance is large, small changes in
orientation may result in drastic changes in link quality. Moreover, this change is
not easily predictable. For example, when the robot is at thefurthest point (the 20-
feet curve), sensor mote and base station point towards eachother when the angle
is 180◦. In this orientation the LQI is 95. If robot turns 45◦ in counter-clockwise
direction, the LQI value increases to 100. If the robot turns45◦ more on counter-
clockwise direction, then the LQI value suddenly drops to 80. This example also
shows that measurements from various orientations may not give a clear indication
about the direction of the sensory mote.

The results of these experiments can be summarized as follows:

• Within a certain distance (an environment dependent parameter), the signal
quality is predictably good and the orientation of the robotdoes not make a
significant difference.
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• When the robot is outside this range, it is very difficult to use local information
(such as gradient) to find the location or orientation of the sensor.

In the next section, we present a search strategy based on these observations.

4.1 The search algorithm

In this section, we describe a search algorithm to find a good download location.
In many applications, it is beneficial to search for this location in an online fash-
ion because the location of the mote whose data will be downloaded can change
locally, the signal properties may change over-time, or therobot may not have the
localization capability to visit a location accurately.

As mentioned in the previous section, it is very difficult, ifnot impossible, to
use local gradient information to seek a good location. A more global approach is
needed. The strategy we present uses two environment dependent parameters. The
first parameterβ is a lower-bound for an acceptable signal strength (LQI value). For
example, an appropriateβ value for the environment where the experiment shown
in Figure 4 was performed, is 95. The second valueα is mainly a grid resolution
and it is set to the distance within which the link quality is predictably good. For
the environment where the experiment shown in Figure 5-leftwas performed, an
appropriateα value is 8 ft.

Upon hearing a beacon message, the robot finds a good locationby placing a grid
on the environment where the dimension of each cell is determined byα. When
the robot visits a grid cell, it rotates 0,90,180,270 degrees. This allows us to get
rid of local multi-path effects and to simultaneously seek agood orientation. At
each rotation, the robot takes five link quality measurements. The quality of each
orientation is defined as the median of these five measurements. The weight of each
cell is then set to the the highest of these four median values. In the algorithm below,
measure(c) subroutine performs these steps at cell locationc. We also keep track of
a table where we store the expected link qualities. For each unvisited cell, we set the
average of neighbor cells which are visited before as theexpectedweightvalue for
that cell. Next, robot visits the location with maximum expected weight.

The robot searches for a good grid cell using the following heuristic:

Algorithm 1 LocalSearch

1: expectedweight(c∈C)← 0, c← (0,0) (initial location)
2: while there are unexplored cellsdo
3: if measure(c)≥ β then
4: return
5: end if
6: Forall c′ ∈Neighbor(c) if it is unvisited, make update:

expectedweight(c′) = mean(∀c′′∈Neighbor(c′)measure(c′′))
7: c←maxc′ expectedweight(c′)
8: end while

A couple of comments are in order. If theβ value is not known, we can set it to a
high value. In this case, the robot will visit all grid-cells. We can then pick the best
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location. Second, it is very easy to incorporate collision avoidance into the strategy
by setting the weight of a cell to zero if there is an obstacle at that cell.

In the next section, we demonstrate the utility of this strategy with a series of
experiments.

4.2 Search experiments

We tested the search algorithm in a number of settings. In this section, we present
two of these results.

(1,86)
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(1,83)
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(3,obs) (4,84) (5,76)

(6,76)(7,98)(8,88)

(9,108)

Fig. 6 Bottom figures show a virtual grid used by the search algorithm. The black rectangles show
the location of the mote.Top Left: The setup for an indoor experiment. The picture shows the best
configuration found by the search algorithm.Bottom Left: Steps in finding a good location in the
setup shown on top.Top Right: Search performed in an outdoor setting. The picture shows the
best configuration found by the search algorithm. The shadedcell corresponds to the obstacle that
robot avoided.Bottom Right: Steps taken during outdoor search.

The first experiment was performed in the indoor setting shown in Figure 6-left.
The signal strength in TelosB mote was set to 3. The other system parameters were
α = 1.5mandβ = 100.

When the robot started from the initial location shown in thefigure, it quickly
converged to a good location. Robot’s steps are shown in Figure 6-left bottom where



12 Onur Tekdas, Nikhil Karnad, Volkan Isler

the visited cells are labeled with the format(s, r): s is the order the cell was visited
andr is the maximum value sampled from four orientations.

The second experiment was performed in an outdoor setting with α = 3m and
β = 100. As shown in Figure 6-right, the robot quickly convergedto a good location.

In conclusion, the simple search strategy presented in thissection was very effi-
cient in finding a good download location. Where most local search heuristics would
get stuck with a single cell, the presented search strategy quickly converges to a
robot pose from where the data can be downloaded efficiently.

5 System design

In this section, we describe a system which incorporates theresults presented in this
paper. In Section 5.3 we present experimental results whichdemonstrate the utility
of these components.

5.1 Hardware Components

Our system consists of three classes of devices. (i) The sensor motes are Crossbow
Telos, (rev. B) which use the CC2420 chip. They are IEEE 802.15.4 compliant. We
deployed three static motes in the fourth floor lounge of the Digital Technology
Center (DTC, Walter Library) at the University of Minnesota, Twin-Cities. The ex-
perimental setup is shown in Figure 7. (ii) The mobile robot is an iRobot Create
without the command module. (iii) The control program for the robot runs on an
Asus Eee PC, which interfaces with the Create directly through a USB-to-Serial
cable. The system ran Linux (Ubuntu) and our Java and C++ programs used serial
communication libraries to write motion commands to the robot, in accordance with
the Create Open Interface (OI) specifications.

5.2 Adaptive Beacon Scheduling

The control program on the TelosB motes was written in thenesC language, then
compiled and programmed onto the mote usingTinyOS 2.x. In our design, sens-
ing motes transmit beacon messages and the base station moteattached to the mobile
robot listens for these messages.

To allow the TelosB motes to have an adaptive beacon schedule, we store a bea-
con time interval array on each mote. A one-shot timer cyclesthrough the array, al-
lowing the mote to keep its transmitter off for arbitrary intervals. We set the receiver
sleep interval using theLowPowerListening interface. However, we believe
that since we have packet acknowledgments enabled, the receiver of the sensing
mote is turned on every time it sends a beacon. This design decision could be re-
placed with unacknowledged packets. In both cases, our optimal beacon schedule
helps save power on the mote by reducing the amount of time during which the
transmitter and/or the receiver are active.
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15 m

16 m

Fig. 7 A proof-of-concept deployment. The stars are approximate locations of the data nodes. The
dashed lines show their communication range. The squares are locations where the robot starts
either the download or the local search.

5.3 Experiments

We performed four experiments to demonstrate the utility ofincorporating both
beacon scheduling, and local search. The experiments are: baseline (B), beacon
scheduling (BS), local search (LS) and both local search andbeacon scheduling
(LSBS). Each experiment consisted of 8 rounds. In each round, robot visits a pre-
defined location for each mote, and downloads the data from that mote. The loca-
tions that the robot starts downloading (shown as squares inFig. 7) are fixed for
comparison purposes: For example, if in experiment B the robot downloads from a
fixed location then in experiment LS, the robot starts the local search from the same
location.

We picked a range of download locations in a mote’s vicinity to simulate the
effects of localization uncertainty: If the robot does not have accurate means of lo-
calization, even if it targets a fixed location to download data, it may be off from
that location by a distance given by the uncertainty range. After arriving at a prede-
termined location, the robot either directly downloads thedata (experiment B and
BS), or performs a local search to find a good location before downloading (LS and
LSBS experiments). After download finishes, the robot either continues to the next
mote directly (experiments B and LS), or computes an updatedbeacon schedule
based on interarrival times, uploads it to that mote and proceeds to the next mote
(experiments BS and LSBS).

In all experiments, the beacons are special messages whose payload consists of
(i) the node id of the mote, and (ii) a sequence number of the triggered beacon.
To compare the local search with base case, we needed a mechanism to compare
the trade-off between energy gain in efficient download and energy spent in extra
beacons sent during the search phase. Therefore, we used data packages which are
the same as the beacon type messages. To download the data on the mote, the robot
must successfully hear 100 additional beacons. This represents scenarios where the
data stored on the mote corresponds to 100 messages and all ofit must be success-
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Fig. 8 The robot interarrival times from our experiments were modeled as normal distributions.

fully downloaded. This way, we can use the last received beacon sequence number
for each mote to represent the total energy consumption metric spent in beaconing
and download. Even with this modest amount of data, each experiment lasted about
an hour.

In experiment B, we choose the beacon interval for discoveryphase as 5 sec-
onds. This guarantees an expected robot waiting time of 2.5sec. The optimal beacon
scheduling algorithm of Section 3 and the robot inter-arrival distribution observed
in experiment B are used to achieve 2.5sec waiting time in experiment BS. In ex-
periment LSBS, we used the interarrival times from the LS experiment to compute
the optimal beacon schedule for this case. The recorded interarrival times and the
robot’s arrival model are shown in Figure 8. In experiment BS, the optimum beacon
schedule uses 8 beacons.

In comparison to the number of beacons (550/5= 110) in the base experiment B,
the beaconing strategy yields significant energy savings (8beacons) while satisfying
the same expected waiting time constraint. Comparing the total number of beacons,
we can see the effect in total performance. Beacon scheduling in experiment BS
reduced the total number of beacons to 2791 compared to 4839 in experiment B, the
baseline (first and second columns in right of Table 1).

The left one of the two tables shown in Table 1, shows the packet loss rates for
various locations in each experiment. Clearly, local search provides a significant
reduction in packet loss rate for the first two locations (compare B versus LS and
BS versus LSBS) where the distance prevents a lossless communication between
the mote and robot. For example, in the experiment B, the firstmote has to sent 538
packets until the robot successfully downloads all of the 100 data packets, whereas
after local search no packet is lost. We can see the efficiencyof local search for
the first two rounds of the examples in table on the right (Table 1). On the other
hand, for the rest of the rounds, the local search does not provide significant gains.
In fact, the energy consumption slightly increases in experiment LSBS compared
to BS experiment due to the overhead (i.e. number of beacons sent during local
search).

It is worth noting that in this indoor setting, the robot’s total path is relatively
short compared to the search distance. Thus, the search overhead becomes compa-
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rable to the number of discovery beacons. When the travel distances are large, (e.g.
in outdoor settings), the search overhead will become negligible. In this case, local
search will yield more significant energy savings.

Dist. B BS LS LSBS

7.5m 173% 36% 0% 1%
6.25m 7% 21% 0% 1%
5m 11% 0% 0% 0%
3.75m 8% 0% 0% 0%
2.5m 2% 3% 0% 3%
1.7m 0% 0% 0% 0%
0.9m 0% 0% 0% 0%
0.1m 0% 0% 0% 0%

B BS LS LSBS

1-2 1642 897 997 828
3-8 3197 1894 3215 2152

Total 4839 2791 4212 2980

Table 1 Left table shows the package loss rates for each experiments (B:Base,LS:Local
Search,BS: Beacon Schedule, LSBS: Local Search and Beacon Schedule together) with respect
to the distance that robot starts to download or starts to thelocal search. For each download we
calculate the number of packet loss until robot hears 100 beacons.Right figure shows the total
number of beacons send from 3 motes during the experiment.

Overall, the experiments clearly demonstrate that (i) adaptive beaconing strate-
gies yield significant savings in the number of discovery beacons sent, and (ii) local
search strategies can result in drastic improvements in thedownload time when the
link quality is unpredictable.

6 Conclusion

In this paper, we addressed two problems that arise in applications where robots
collect data from static nodes. In the first problem, the goalis to minimize the energy
spent by the static nodes for beaconing. For this problem, anoptimal beaconing
strategy based on dynamic programming was presented. In thesecond problem, the
goal is to minimize the energy spent in communication. For this purpose, we present
a strategy for the robot to adaptively discover a download location where the signal
is strong. The strategy is based on insights gathered by experiments. We report these
in the paper as well. Finally, we present an indoor system fordata collection which
incorporates the algorithms presented in the paper. Experiments performed on the
system demonstrate the utility of the two results in the paper.

There are additional factors (e.g. robot’s interarrival times, the amount of data to
be downloaded at each round) which effect the overall systemperformance. Cur-
rently, we are building an outdoor system for habitat monitoring including a new
robotic platform. In the near future, we will demonstrate the use of these results
within the context of a field application in environmental monitoring.
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