Distributed and Parallel Databases 5, 233-269 (1997)
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands,

Adaptive Algorithms for Join Processing
in Distributed Database Systems

PETER SCHEUERMANN* peters@ece.nwu.edu
Department of Electrical and Computer Engineering, Northwestern Uni versity, Evanston, IL 60208

EUGENE INSEOK CHONG' echong@us.oracle.com
New England R&D Center, Oracle Corporation, 1 Oracle Drive, Nashua, NH 03062

Received May 10, 1996; Accepted February 19, 1997

Recommended by: Clement Yu

Abstract. Distributed query processing algorithms usually perform data reduction by using a semijoin program,
but the problem with these approaches is that they still require an explicit join of the reduced relations in the
final phase. We introduce an efficient algorithm for join processing in distributed database systems that makes use
of bipartite graphs in order to reduce data communication costs and local processing costs. The bipartite graphs
represent the tuples that can be joined in two relations taking also into account the reduction state of the relations.
This algorithm fully reduces the relations at each site. We then present an adaptive algorithm for response time
optimization that takes into account the system configuration, i.e., the additional resources available and the data
characteristics, in order to select the best strategy for response time minimization., We also report on the results
of a set of experiments which show that our algorithms outperform a number of the recently proposed methods
for total processing time and response time minimization.

Keywords: distributed query processing, join algorithms, adaptive algorithms, bipartite graphs

1. Introduction

Query processing in distributed database systems often requires the transmission of relations
and/or temporary results among different sites via a computer network. Until recently it
has been assumed that communication costs were the predominant costs and hence much
of the research on query optimization in distributed database systems has concentrated on
producing optimal or near-optimal strategies with regard to data transmission costs [1,3,
5,6, 8, 12-14].

In order to reduce the communication time, most algorithms for distributed query pro-
cessing involve three phases [20, 30]: 1) a local processing phase which includes all local
operations such as selections and projections, 2) a reduction phase in which an effective se-
quence of semi-join (and join) operations is further used to reduce the sizes of the relations,

*The work of this author was partially supported by NSF grant IRI-9303583 and NASA-Ames grant NAG2-846.
The work of this author was performed while he was with Northwestern University.

240 SCHEUERMANN AND CHONG

ny + [Ri(FDy.a1) na f12 - [R(1 D3, 02)] n3 f12 £33 - 1Rg(1Dy, e3)l

n2f12 - naf1afaafs4) WA('&)T n3fiafas = ngfrafasfae) |Ra(le)1

Figure 2. Sizes of transmitted data (PIPE.CHQ).

components. The dominant components of the processing time are the sum S; ;, the time
to construct the bipartite graphs in the forward reduction phase, and GT,, the graph traversal
time. Inside the component S; 7, the major contribution is the /O cost for the merge-sort
step, while inside GT', the major costis the I/O time involved in retrieving the target attributes
for the tuples in the implicit join. If we denote by P; the average relation size in pages and
by K the cardinality of the implicit join, then we obtain that the time complexity of the
processing time is bounded by O(nP; log, P; + nK), with n being the number of sites.

2.2. Disk-based systems

The previous algorithm and cost model were based on the assumption that the bipartite
graphs fit in main memory. We shall show now that our algorithm can be easily extended
to disk-based systems where only a portion of each graph is memory resident. As each
bipartite graph is constructed it is dynamically partitioned into subgraphs that are stored
on secondary storage, i.e., whenever the buffer allocated to the construction of the graph
"BGg,.p,,, becomes full its page(s) is(are) flushed to secondary storage. Thus, each page
on secondary storage consists of a subgraph. We observe that these subgraphs are not
necessarily disjoint, i.e., they may have crossing edges.

In order to minimize the number of I/O operations that are performed on the bipartite
graphs during the backward reduction phase, each graph stored at site S; is augmented
so as to include for every edge (id;_,, id;) also the page number in secondary storage as-
sociated with the tuple containing id;_; at S;_;, to be denoted by page(id;_;). Thus, we
can view now a bipartite graph BGg,_, z, as corresponding to a normalized triary rela-
tion BGg,_, r (ID;-y, ID;, PAGE(ID;_;)). Similarly, the messages sent in the forward and
backward phases are augmented correspondingly to include page numbers. Hence, forward
messages sent from S;, the site of BGy, , g, are now of the form (id;, a;, { page(id;)}), with
a; being the value of the join attribute A; and { page(id,)} standing for the page number(s)
in secondary storage associated with the tuples containing id; at S;. Backward messages
sent from a site S; have the format (id; _,, page(id;_;)). As we shall see below, using these
page numbers we can guarantee that during backward reduction each page of a bipartite
graph is read and written back to storage only once.

Since the construction of the bipartite graphs during the forward phase does not guarantee
that the subgraphs stored on secondary storage are disjoint, at S; a particular tuple identifier
id; may appear in a number of distinct pages, connected in each to disjoint (sets of) tuple

240 SCHEUERMANN AND CHONG

ny - I1Ry{ID;, a1) n2 f12 - IR2(1Dz. a02)] n3 fizf23 - |R3(ID3. a3)]

(n2f12 — n2f1afa3 i) - m:um] n3f1af23 - nafrafasfas) IR\s(le)]

Figure 2. Sizes of transmitted data (PIPE.CHQ).

components. The dominant components of the processing time are the sum Sy, the time
to construct the bipartite graphs in the forward reduction phase, and GT, the graph traversal
time. Inside the component S; ¢, the major contribution is the /O cost for the merge-sort
step, while inside GT, the major cost is the I/O time involved in retrieving the target attributes
for the tuples in the implicit join. If we denote by P; the average relation size in pages and
by K the cardinality of the implicit join, then we obtain that the time complexity of the
processing time is bounded by O(nP; log, P; + nK), with n being the number of sites.

2.2. Disk-based systems

The previous algorithm and cost model were based on the assumption that the bipartite
graphs fit in main memory. We shall show now that our algorithm can be easily extended
to disk-based systems where only a portion of each graph is memory resident. As each
bipartite graph is constructed it is dynamically partitioned into subgraphs that are stored
on secondary storage, i.e., whenever the buffer allocated to the construction of the graph
"BGR,g,,, becomes full its page(s) is(are) flushed to secondary storage. Thus, each page
on secondary storage consists of a subgraph. We observe that these subgraphs are not
necessarily disjoint, i.e., they may have crossing edges.

In order to minimize the number of /O operations that are performed on the bipartite
graphs during the backward reduction phase, each graph stored at site S; is augmented
so as to include for every edge (id;_, id;) also the page number in secondary storage as-
sociated with the tuple containing id;_; at S;_;, to be denoted by page(id;_;). Thus, we
can view now a bipartite graph BGg, , g, as corresponding to a normalized triary rela-
tion BGg,_, g, (ID;_1, ID;, PAGE(ID;_,)). Similarly, the messages sent in the forward and
backward phases are augmented correspondingly to include page numbers. Hence, forward
messages sent from §;, the site of BGg,_, ., are now of the form (id;, a;, { page(id;)}), with
a; being the value of the join attribute A; and { page(id,)} standing for the page number(s)
in secondary storage associated with the tuples containing id; at S;. Backward messages
sent from a site S; have the format (id;_,, page(id;_,)). As we shall see below, using these
page numbers we can guarantee that during backward reduction each page of a bipartite
graph is read and written back to storage only once.

Since the construction of the bipartite graphs during the forward phase does not guarantee
that the subgraphs stored on secondary storage are disjoint, at S; a particular tuple identifier
id; may appear in a number of distinct pages, connected in each to disjoint (sets of) tuple

240 SCHEUERMANN AND CHONG

ny - [Ry(IDy, a) ng f12 - [R2(1Dg, a3)] n3 fizfas - 1Ra(ID3. a9

nafyz = ngfrafaatsa) - IR(1 D) n3 f13f23 = 312 fa3f34) - [Ra(1Dy)]

Figure 2. Sizes of transmitted data (PIPE.CHQ).

components. The dominant components of the processing time are the sum S; ;, the time
to construct the bipartite graphs in the forward reduction phase, and GT, the graph traversal
time. Inside the component S; ;, the major contribution is the I/O cost for the merge-sort
step, while inside GT, the major cost is the I/O time involved in retrieving the target attributes
for the tuples in the implicit join. If we denote by P; the average relation size in pages and
by K the cardinality of the implicit join, then we obtain that the time complexity of the
processing time is bounded by O(n 13, log, 13, + nK), with n being the number of sites.

2.2. Disk-based systems

The previous algorithm and cost model were based on the assumption that the bipartite
graphs fit in main memory. We shall show now that our algorithm can be easily extended
to disk-based systems where only a portion of each graph is memory resident. As each
bipartite graph is constructed it is dynamically partitioned into subgraphs that are stored
on secondary storage, i.e., whenever the buffer allocated to the construction of the graph
‘BGp, g,,, becomes full its page(s) is(are) flushed to secondary storage. Thus, each page
on secondary storage consists of a subgraph. We observe that these subgraphs are not
necessarily disjoint, i.e., they may have crossing edges.

In order to minimize the number of /O operations that are performed on the bipartite
graphs during the backward reduction phase, each graph stored at site §; is augmented
50 as to include for every edge (id;_;, id;) also the page number in secondary storage as-
sociated with the tuple containing id;_; at S;_;, to be denoted by page(id;_;). Thus, we
can view now a bipartite graph BGg,_, g, as corresponding to a normalized triary rela-
tion BGg,_, g, (ID;—, ID;, PAGE(ID; .;)). Similarly, the messages sent in the forward and
backward phases are augmented correspondingly to include page numbers. Hence, forward
messages sent from §;, the site of BGg,_, ,, are now of the form (id;, a;, { page(id,)}), with
a; being the value of the join attribute A; and { page(id;)} standing for the page number(s)
in secondary storage associated with the tuples containing id; at S;. Backward messages
sent from a site S; have the format (id;_;, page(id;_,)). As we shall see below, using these
page numbers we can guarantee that during backward reduction each page of a bipartite
graph is read and written back to storage only once.

Since the construction of the bipartite graphs during the forward phase does not guarantee
that the subgraphs stored on secondary storage are disjoint, at S; a particular tuple identifier
id; may appear in a number of distinct pages, connected in each to disjoint (sets of) tuple

Distributed and Parallel Databases 5, 233-269 (1997)
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Adaptive Algorithms for Join Processing
in Distributed Database Systems

PETER SCHEUERMANN* peters@ece.nwu.edu
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208

EUGENE INSEOK CHONG! echong @us.oracle.com
New England R&D Center, Oracle Corporation, 1 Oracle Drive, Nashua, NH 03062

Received May 10, 1996; Accepted February 19, 1997

Recommended by: Clement Yu

Abstract. Distributed query processing algorithms usually perform data reduction by using a semijoin program,
but the problem with these approaches is that they still require an explicit join of the reduced relations in the
final phase. We introduce an efficient algorithm for join processing in distributed database systems that makes use
of bipartite graphs in order to reduce data communication costs and local processing costs. The bipartite graphs
represent the tuples that can be joined in two relations taking also into account the reduction state of the relations.
This algorithm fully reduces the relations at each site. We then present an adaptive algorithm for response time
optimization that takes into account the system configuration, Le., the additional resources available and the data
characteristics, in order to select the best strategy for response time minimization. We also report on the results
of a set of experiments which show that our algorithms outperform a number of the recently proposed methods
for total processing time and response time minimization.

Keywords: distributed query processing, join algorithms, adaptive algorithms, bipartite graphs

1. Introduction

Query processing in distributed database systems often requires the transmission of relations
and/or temporary results among different sites via a computer network. Until recently it
has been assumed that communication costs were the predominant costs and hence much
of the research on query optimization in distributed database systems has concentrated on
producing optimal or near-optimal strategies with regard to data transmission costs [1, 3,
5, 6,8, 12-14).

In order to reduce the communication time, most algorithms for distributed query pro-
cessing involve three phases [20, 30]: 1) a local processing phase which includes all local
operations such as selections and projections, 2) a reduction phase in which an effective se-
quence of semi-join (and join) operations is further used to reduce the sizes of the relations,

*The work of this author was partially supported by NSF grant IRI-9303583 and NASA-Ames grant NAG2-846.
"The work of this author was performed while he was with Northwestern University.

240 SCHEUERMANN AND CHONG

ny - |Ry(IDy. a1) n2f12 + [R2(iDg. a3)] n3f12123 - |R3(IDy, a3)]

n2f12 = naf1afasfse) - Ry(1Dg)j nyf1afas - uammm)-lag(m,)]

Figure 2. Sizes of transmitted data (PIPE.CHQ).

components. The dominant components of the processing time are the sum Si.z, the time
to construct the bipartite graphs in the forward reduction phase, and GT, the graph traversal
time. Inside the component S; ¢, the major contribution is the IO cost for the merge-sort
step, while inside GT, the major cost is the /O time involved in retrieving the target attributes
for the tuples in the implicit join. If we denote by B; the average relation size in pages and
by K the cardinality of the implicit join, then we obtain that the time complexity of the
processing time is bounded by O(n P, log, P; + nK), with n being the number of sites.

2.2. Disk-based systems

The previous algorithm and cost model were based on the assumption that the bipartite
graphs fit in main memory. We shall show now that our algorithm can be easily extended
to disk-based systems where only a portion of each graph is memory resident. As each
bipartite graph is constructed it is dynamically partitioned into subgraphs that are stored
on secondary storage, i.e., whenever the buffer allocated to the construction of the graph
‘BGp, g,,, becomes full its page(s) is(are) flushed to secondary storage. Thus, each page
on secondary storage consists of a subgraph. We observe that these subgraphs are not
necessarily disjoint, i.e., they may have crossing edges.

In order to minimize the number of I/O operations that are performed on the bipartite
graphs during the backward reduction phase, each graph stored at site S; is augmented
s0 as to include for every edge (id;_;, id;) also the page number in secondary storage as-
sociated with the tuple containing id;_; at 5;_;, to be denoted by page(id;_;). Thus, we
can view now a bipartite graph BGpg, , ¢, as corresponding to a normalized triary rela-
tion BGg,_, g, (ID;_y, ID;, PAGE(ID;,)). Similarly, the messages sent in the forward and
backward phases are augmented correspondingly to include page numbers. Hence, forward
messages sent from §;, the site of BGy,_, z,, are now of the form (id;, a;, { page(id;)}), with
a; being the value of the join attribute A; and { page(id,)} standing for the page number(s)
in secondary storage associated with the tuples containing id; at S;. Backward messages
sent from a site S; have the format (id;_;, page(id;_,)). As we shall see below, using these
page numbers we can guarantee that during backward reduction each page of a bipartite
graph is read and written back to storage only once.

Since the construction of the bipartite graphs during the forward phase does not guarantee
that the subgraphs stored on secondary storage are disjoint, at §; a particular tuple identifier
id; may appear in a number of distinct pages, connected in each to disjoint (sets of) tuple

ADAPTIVE ALGORITHMS FOR JOIN PROCESSING 241

identifiers from ID;_;. Therefore, during the forward transmission it maybe necessary to
transmit, conceptually messages of the form (id;, a;, { page(id;)}). If a sort-merge is the
method of choice for the join to be performed at §;, then indeed the messages will have the
above format. On the other hand, if pipelining is employed, then this information will be
transmitted with some slight overhead, i.e., a message of the form (id;, a;, page(id;)) needs
to be sent for every distinct page at S; containing tuple identifiers from ID;_; connected
to id;. For example, assume that id; is connected with two identifiers id;_; and id;_, and
that the corresponding tuples in BGg,_, », are stored on pages p; and p, respectively. If
pipelining is employed, S; will send the messages (id;, a;, p1) and (id;, a;, p>). Trrespective
of the join method used at S;4, the graph at this site will contain both tuples (id;, id; 41, p1)
and (id;, id;4,, p2) ifid;y is connected to id;.

The forward reduction phase starts at each site with the construction of the relation
BGg,_, &, (ID;_y, ID;, PAGE(ID;)) and its storage on secondary storage. Next, each page
of the bipartite graph is read in order to construct the forward messages, and the page is
written back to storage after it has been sorted on attribute /D;. The sort step is done in order
to facilitate the backward reduction and the graph traversal at the query site. We observe
here that this sorting step does not incur any additional overhead in terms of I/Os, since the
graph had to be stored first on secondary storage in order to obtain the corresponding page
numbers necessary for the transmission.

The backward reduction phase at §; identifies as before all the identifiers id;_, that are
not connected to any id;’s and constructs messages of the form (id;_;, page(id;_,)). An
additional step needs to be performed now, before the actual backward transmission can
start, namely all the messages to be sent need to be sorted first by page(id;_;). This step
is necessary in order to guarantee that at the receiving site, S;_;, each page will be read
and written back to storage only once. However, the total amount of memory required at a
given site for its outgoing messages is quite small, and this sort can be performed in main
memory. In addition, since at the receiving site S;_; each page is sorted on id;_;, a binary
search can be performed in order to identify the tuples in the relation BGg, , g, , that need
to be eliminated. In our current implementation, these tuples are marked as deleted.

After the backward reduction is completed the size of the bipartite graphs, if compaction
were to be executed, could be small enough so that all bipartite graphs fit into main memory
at the query site. Ifthis is the case, then Step 4 of the PIPE_CHQ algorithm can be applied the
same way, by just ignoring the page numbers. Otherwise, this step is modified and proceeds
by interleaving the transmission of bipartite graphs with the construction of temporary
relations holding the implicit join tuples. Letusdenoteby Ri>a R}, , - - - < R} ; the implicit
Joinof R;, Ri4, ..., Riyj, ie., the projection of the join on (ID;, IDjy4, . . ., ID;4 ;). First,
site §, sends its graph to the query site where the graph is sorted according to page(id,—_;).
Then, we proceed in increasing page number order by joining the tuples in this graph with
those in the graph at S,_;. Note that this implicit join can be performed by sending to the
query site the pages in the graph of §,_; one at a time and then performing a binary search
in the corresponding subgraph of BGg, , &,.,. After finding the implicit join R;_, ba R},
we sort this temporary relation according to page(id,—;) and continue in a similar fashion
to find the implicit join R, , < R,_; >a R). We repeat this procedure until we obtain
Rio< R, Ry

