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AbstractÐWe address the problem of assigning nonpartitioned files in a parallel I/O system where the file accesses exhibit Poisson

arrival rates and fixed service times. We present two new file assignment algorithms based on open queuing networks which aim at

minimizing simultaneously the load balance across all disks, as well as the variance of the service time at each disk. We first present

an off-line algorithm, Sort Partition, which assigns to each disk files with similar access time. Next, we show that, assuming that a

perfectly balanced file assignment can be found for a given set of files, Sort Partition will find the one with minimal mean response time.

We then present an on-line algorithm, Hybrid Partition, that assigns groups of files with similar service times in successive intervals

while guaranteeing that the load imbalance at any point does not exceed a certain threshold. We report on synthetic experiments which

exhibit skew in file accesses and sizes and we compare the performance of our new algorithms with the vanilla greedy file allocation

algorithm.

Index TermsÐFile allocation, parallel I/O systems, load balancing, variance of service time, heuristic algorithms.
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1 INTRODUCTION

PARALLEL I/O systems have been the object of substantial
interest in recent years due to the explosive growth and

availability of RAID, Redundant Arrays of Inexpensive
Disks [3]. Disk arrays partition data across multiple disks
and access them in parallel in order to achieve higher
transfer rates for large data accesses, like those encountered
in supercomputing applications, and higher I/O rates on
small data accesses, like those typical in transaction
processing. Most importantly, the commercial success of
RAID has been ensured by the incorporation of efficient
techniques for achieving reliability based on mirroring or
error correcting codes.

While the partitioning of a file determines the degree of
parallelism in servicing a single request to the file, the
allocation of all the files (partitions) onto the disks is an
equally important parameter that affects the overall
performance of a parallel I/O system. In order to fully
benefit from the performance capabilities of a parallel I/O
system, it has been widely recognized that the load must be
uniformly distributed among all disks. Otherwise, the
creation of performance bottlenecks on some of the disks
may severely limit the response time of requests, as well as
the overall system throughput.

Algorithms for assigning data to disks in parallel or
distributed systems have been extensively studied in
literature [8], [24], [6], [7], [14], [25], [26], [20], [18], [23].

Typically, these algorithms assign the data to the disks of a
parallel or distributed system in such a way that a
particular cost function is minimized. In the most general
case, the cost function may involve communication costs,
storage costs, update costs, and queuing costs. However,
finding the optimal solution, even for very simple cost
functions, is an NP-complete problem [8]. Consequently,
viable solutions must be based on heuristics.

The heuristic methods that aim at optimizing the mean
response time or the system throughput concentrate on
minimizing the queuing delays on the disks. Since commu-
nication delays are usually negligible in comparison with
disk access times, they can be safely omitted. Minimizing
the queuing delays can be achieved by minimizing the
utilization of each disk and by minimizing the variance of
service times at each disk. Most of the published work
concentrates on minimizing the disk utilization by balan-
cing the system load across all disks and neglects the
minimization of the variance of the service time. As the
following example shows, in addition to load balancing, the
performance of a parallel or distributed system can be
significantly improved by reducing the variance of service
times at each disk.

Example 1. Assume a parallel I/O system with two
identical disks. The data to be distributed among both
disks consists of n � 1; 000 files. Among the 1,000 files,
nA � 800 belong to Class A and nB � 200 to Class B. We
assume that entire files are accessed as a unit. Each file in
Class A has a mean access rate of �A � 2 accesses per
minute and a service time sA � 20 ms, while each file in
class B has a mean access rate of �B � 1 access per
minute and a service time sB � 120 ms. The discrepancy
in service time between the two classes might be either
due to the more complex nature of class B accesses or
simply to the fact that class B has larger files. For
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simplicity of presentation, we will assume the latter.
Consider two assignments of files to disks 1 and 2:

Assignment 1: Place 400 class A files and 100 class B
files at each of the two disks.

Assignment 2: Place all class A files at disk 1 and all
class B files at disk 2.

Assignment 1 assigns the same set of files to each disk.
Consequently, it leads to a perfect load balance among
disks 1 and 2. The utilization of each disk is
� � nA � �A � sA=2� nB � �B � sB=2 � 0:46. On the other
hand, assignment 2 leads to an imbalanced load: the
utilization of disk 1 is �1 � nA � �A � sA � 0:53 and the
utilization of disk 2 is �2 � nB � �B � sB � 0:4. Never-
theless, as we show below, assignment 2 results in a
better mean system response time than assignment 1.

Under assignment 1, both disks can be modeled as
M/G/1 queues. The mean response time of each disk is
given as

E�r� � E�s� � � � E�s2�
2 � �1ÿ �� � 58:6 ms;

where � � nA � �A=2� nB � �B=2 is the mean arrival rate
of accesses to each disk and E�s� � pA � sA � pB � sB,
E�s2� � pA � s2

A � pB � s2
B are the first two statistical

moments of service times at each disk, where pA �
�nA � �A=2�=�nA � �A=2� nB � �B=2� and pB � 1ÿ pA.

Under assignment 2, the disks are modeled as M/D/1
queues with utilizations �1 and �2, respectively, and
service times sA and sB, respectively. The mean response
time of disk 1 is given as

E�r1� � sA � �1 � sA
2 � �1ÿ �1� � 31:3 ms

and, similarly, the mean response time of disk 2 is given
as

E�r2� � sB � �2 � sB
2 � �1ÿ �2� � 160:0 ms:

Consequently, the mean system response time is given as

E�r� � p1 � E�r1� � p2 � E�r2� � 45:6 ms;

where p1 � nA � �A=�nA � �A � nB � �B� and p2 � 1ÿ p1.

The above example suggests that, in the presence of a
multiclass workload, the minimization of the variance of the
service time on each disk of a parallel I/O system is an
equally important issue as load balancing in order to
optimize the system response time. Minimizing service time
variance is also important for capacity planning for the
network infrastructure, which connects the disks (and
servers) to clients consuming the data [21].

In order to address these issues, we designed two new
file assignment algorithms based on open queuing net-
works which aim at simultaneously minimizing the load
balance across all disks, as well as the variance of the
service time at each disks. Without restriction of generality,
we assume that each file is allocated in its entirety to one
disk. We present first an off-line algorithm, Sort-Partition,
which assigns to each disk files with similar service times.
We then present an on-line algorithm, Hybrid Partition,

which assigns to a given disk groups of files with similar
service times in successive intervals, while guaranteeing
that the load imbalance at any point does not exceed a
certain threshold. Our discussion is oriented toward
parallel I/O systems due to the fact that we had a parallel
I/O system prototype, namely FIVE [28], on which we
could run our experiments. However, our algorithms are
also applicable to distributed file systems.

The rest of this paper is organized as follows: In Section 2,
we survey the related work. In Section 3, we describe our
model, present two new heuristic file assignment algo-
rithms, Sort Partition and Hybrid Partition, and prove
optimality of Sort Partition in a constrained model which
assumes that a perfectly balanced file assignment can be
found. In Section 4, we describe our experimental testbed
and we report on synthetic experiments which exhibit a
skew in file accesses and sizes and we compare the
performance of our new algorithms with the vanilla greedy
file allocation algorithm. Section 5 concludes the paper.

2 RELATED WORK

The various algorithms proposed for the file assignment
problem aim at minimizing objective functions which can
be based on explicit cost functions or on implicit ones, i.e.,
various performance metrics which are used as proxies. The
explicit cost functions used may include communication
costs, storage costs, update costs, queuing costs, etc. [8],
[24], [6], [7], [14], [25], [26], [20], [18], [23]. The resulting cost
function is typically complex. Consequently, its extreme
points can be found by using some of the standard
nonlinear optimization techniques such as branch-and-
bound [24], gradient descent [14], [25], [26], genetic
algorithms [18], etc. However, all nonlinear optimization
methods are computationally intensive and they frequently
suffer from the problem of finding only local minima. This
precludes their use on problems of large size which arise in
large-scale parallel I/O systems.

In many applications, the most important performance
measures are the mean response time and/or system
throughput. Consequently, many models considered sim-
plified cost functions which account only for queuing costs
[6], [14], [27], [16], [17], [23]. As was discussed in the
previous section, the queuing cost at each disk depends
both on the utilization of each disk and on the variance of
service times at the disks. Most of the heuristic algorithms
for file assignment aim at minimizing the disks' maximal
utilization either directly, i.e., by using some measure of the
load, or indirectly by minimizing the total size of files
assigned to each disk [6], [17], [23]. The minimization of
service time variance on each disk is usually neglected.

The problem of minimizing the maximal utilization
across all disks of a file system is isomorphic to the
multiprocessor scheduling problem [10]. Consequently, the
efficient heuristics developed for the former can be reused
to solve the file assignment problem. Graham described a
simple greedy algorithm for multiprocessor load balancing
called LPT [11]. At each step, the algorithm greedily assigns
a process to the processor having the least accumulated
load. LPT can operate in either on-line or off-line modes. In
on-line mode, the processes are assigned in the order of
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their arrival. In off-line mode, all processes are first ordered
by their load and the assignment is done in descending load
order.

The LPT algorithm can be applied directly to the file
assignment problem as follows: The load of each file is
defined as the product of the file access rate and the access
service time. This metric is frequently called the heat of the
file [6], [23]. In what follows, we will refer to the LPT
algorithm as applied to the file assignment problem as the
vanilla Greedy algorithm. In the on-line version of the Greedy
algorithm, a file is placed on the disk with the currently
lowest accumulated heat and the heat of the target disk is
then incremented by the heat of the new file.

The worst-case behavior of a load balancing heuristic
algorithm can be expressed by its competitive ratio, which is
defined as the ratio of the maximal load on any disk under
the given heuristic algorithm and the maximal load on any
disk under an optimal placement. It has been shown that
the competitive ratios of the off-line and on-line versions of
the Greedy algorithm are bound by 4

3ÿ 1
3m < 1:34 and 2ÿ 1

m ,
respectively, where m is the number of disks [11]. The
worst-case bounds can be improved, to a minor extent, by
using more sophisticated algorithms [4], [2], [12]. However,
it has also been shown that no on-line algorithm can achieve
a competitive ratio better than 1� 1��

2
p � 1:7 [9]. Similarly to

the worst case behavior, the average-case behavior of a load
balancing heuristic algorithm can be measured by its average
competitive ratio, which is defined as the ratio of the
expected value of the maximal load on any disk under the
given heuristic algorithm and the expected value of the
maximal load on any disk under an optimal placement. It
has been shown that, for two disks, the average competitive
ratio of the vanilla Greedy algorithm is bound by 1�O� 1

n2�,
where n is the number of files [5].

All the file assignment algorithms reported in [6], [27],
[16], [17], [23] which aim at load balance optimization use
either the vanilla Greedy algorithm or a variant of it. Given
the known results about the good worst-case and average-
case behavior of the Greedy algorithm, we use it in Section 4
as a yardstick for performance comparison with the
heuristic algorithms presented developed in Section 3.

3 HEURISTIC ALGORITHMS

3.1 Model Description

We consider the problem of assigning n files f1; f2; . . . ; fn
among m disks of a parallel I/O system d1; d2; . . . ; dm. We
shall represent the solution to the file assignment problem
as a partition of the set I � f1; . . . ; ng, denoted as
fI1; I2; . . . ; Img, where Ii is a set of indices corresponding
to the files assigned to disk di. For simplicity of presenta-
tion, we do not consider in this work file partitioning or file
replication; thus, each file must be assigned in its entirety to
one disk. This does not restrict the generality of our model
since if a file is partitioned, each partition can be viewed as
a stand alone file. Similarly, a device having k disks, e.g., a
RAID, is modeled as k stand-alone disks. Again, this does
not not restrict the generality of our model since we assume
that the queuing delays on the buses or controllers of the
disks are negligible when compared with the queuing

delays on the disks themselves. We also assume a ªflatº
network topology with identical communication delays
between any pair of disks. Consequently, the network
delays have no impact on the file assignment.

Disk accesses to each file are modeled as a Poisson
process with a mean access rate �i known a priori. We
assume a fixed service time si for each file fi. For example,
each access to a file may result in a sequential scan of the
entire file. Such a workload is typical in most file systems or
WWW servers [19], [15]. For large files, when the unit of file
access is the entire file or a large portion of it, the seek and
rotation delays are negligible compared with the transfer
time. In addition, we consider a homogeneous parallel I/O
system with each disk having the same performance
characteristics. Thus, our assumption that the service time
of each file access is fixed is a valid one in the context
outlined above. These two file characteristics, namely access
rate and service time, can be combined in a joint metric
called heat which will used by our heuristic algorithms. We
define the heat hi of file fi as:

hi � �i � si:
The heuristic algorithms which we introduce in this

section are based on an open queuing model and employ
the mean response time as an objective function to be
minimized. As discussed in [23], an open queuing model is
more appropriate than a closed queuing model for model-
ing systems with large number of concurrent users.

An on-line file assignment algorithm must assign file fi to
disk dj using only information about the current state of all
disks and the characteristics of all previously assigned files,
as well as of the incoming file fi, i.e., �j, sj, j <� i. The
decision is made without any knowledge about the
characteristics of the files fk, k > i, which will be assigned
in the future [1]. On the other hand, an off-line algorithm
uses knowledge about the entire sequence f1; f2; . . . ; fn of
files. We proceed now to discuss first our off-line algorithm
Sort Partition and, then, we discuss the on-line version,
Hybrid Partition.

3.2 Sort Partition Algorithm

As Example 1 suggests, significant improvements in
response time can be obtained by assigning files with
similar service times to the same disk, which leads to the
minimization of the variance of service times at each disk.
Indeed, when files of a wide variety of sizes are intermixed
on each disk, it will frequently occur that small file accesses
have to wait for larger file accesses that were queued ahead
of them. This is inefficient, especially when the load is
heavy and the queuing delays dominate the response time.

In order to address the issue of minimization of service
time variance at each disk, we designed the following off-
line algorithm, called Sort Partition. Initially, all files are
ordered in a list I in descending order of their service times.
The disks are selected for allocation in random order. Each
disk dk is assigned the next contiguous segment from the
ordered list I, to be denoted by Ik, such that the load is
distributed among the disks more or less evenly. We say
that fI1; I2; . . . ; Img is a perfectly balanced file assignment
(PBFA) if for all k,

P
i2Ik hi � �0, where �0 � 1

m �
Pn

i�1 �i: � si.
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Sort Partition attempts to assign to each disk dk a segment Ik

so that a PBFA is obtained. In some applications where the

number of files is large, PBFAs are reasonable approxima-

tions of the reality. In the actual implementation, Sort

Partition will assign to disk dk a contiguous segment of files

Ik with the least number of files so that
P

i2Ik hi � �, where

� is the average disk utilization of a PBFA. In the case of a

non-PBFA, the last disk, dm, will be assigned the extra files

at the ªtailº of the list I. The pseudocode of the algorithm

can be found in Fig. 1.
We will now show the optimality of the Sort Partition

algorithm under the constraint of a PBFA. We summarize

our main result in Theorem MinRT.

Theorem MinRT. Among all PBFAs, Sort Partition finds the

one with minimal mean response time.

3.2.1 Proof of Theorem MinRT

We model each disk as a single M/G/1 queue. Conse-

quently, the mean response time of accesses to disk dk,

E�rk� is given as

E�rk� � E�sk� � �k � E�s2
k�

2 � �1ÿ �k� ; �1�

where E�sk� is the mean service time at disk dk, E�s2
k� is the

mean-square service time at disk dk, �k is the utilization of

disk dk, and �k is the aggregate access rate at disk dk,

defined as

�k �
X
i2Ik

�i:

Then, the probability p
�k�
i of access to file fi at disk dk is

given as

p
�k�
i �

�i
�k
: �2�
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Using p
�k�
i , the mean and mean-square service time for files

at disk dk can be computed as

E�sk� �
X
i2Ik

p
�k�
i � sk �

1

�k
�
X
i2Ik

�i � si

and

E�s2
k� �

X
i2Ik

p
�k�
i � s2

k �
1

�k
�
X
i2Ik

�i � s2
i :

Assuming a perfect load balance, we have

�k �
X
i2Ik

�i � si � �0;

where �0 is a constant. Consequently, (1) can be simplified

as

E�rk� � �0

�k
� �k � E�s2

k�
2 � �1ÿ �0� �

�0

�k
�
P

i2Ik �i � s2
i

2 � �1ÿ �0� :

The overall mean response time associated with the PBFA

fI1; I2; . . . ; Ikg is therefore given as

E�r� �
Xm
k�1

�k

�
� E�rk� � m�0

�k
� 1

2��1ÿ �0� �
Xm
k�1

�k

X
i2Ik

�is
2
i ;

�3�
where

� �
Xm
k�1

�k

is the aggregate access rate.
From (3), it is clear that the best PBFA must minimize the

following objective function

Ym�fI1; I2; . . . ; Img� �
Xm
k�1

�k

X
i2Ik

�is
2
i : �4�

Minimizing the objective function (4) is equivalent to

minimizing the variance of service time because (4) can be

rewritten as

Ym�fI1; I2; . . . ; Img� � m � �2
0 �

Xm
k�1

�2
k � V ar�sk�;

where the first term is a constant and V ar�sk� is the variance

of service time at disk dk.
We will show now that the PBFAs found by Sort

Partition algorithm indeed minimize (4). The proof will

proceed by induction on the number of disks m. We first

show the induction basis for m � 2 and then the inductive

step. In order to establish the inductive basis, we prove

several auxiliary lemmas.

Lemma 1. Let fI�1 ; I�2 ; . . . ; I�mg be a PBFA found by the Sort

Partition algorithm and I � Sm
k�1 I

�
k . Let the files' access rates

and service times satisfyX
i2I

�i � si � m � �0:

Then, the fo l lowing ho lds for any J � I withP
i2I �i � si � �0:X

i2J
�i � s2

i �
X
i2I�

1

�i � s2
i

Proof. Let K � J \ I�1 . Since
P

i2J �i � si �
P

i2I�
1
�i � si � �0,

we have X
i2JÿK

�i � si �
X

i2I�
1
ÿK

�i � si:

Since maxi2JÿKsi � mini2I�1ÿKsi, it follows thatX
i2JÿK

�i � s2
i �

X
i2JÿK

�i � si � �maxi2JÿKsi�

�
X

i2I�
1
ÿK

�i � si � �mini2I�
1
ÿKsi� �

X
i2I�

1
ÿK

�i � s2
i :

Therefore,X
i2J

�i � s2
i �

X
i2JÿK

�i � s2
i �

X
i2K

�i � s2
i

�
X

i2I�
1
ÿK

�i � s2
i �

X
i2K

�i � s2
i �

X
i2I�

1

�i � s2
i

and, thus, the lemma is proven. tu

Lemma 2. Let I be the set of indices representing files whose

access rates and service times satisfy
P

i2I �i � si � 2�0. Let

fI�1 ; I�2g be a PBFA found by Sort partition. Then, for any

PBFA fI1; I2g, the following inequalities holdX
i2I�

1
\I1

�i �
X

i2I�
2
\I2

�i �5�

X
i2I�

1
ÿI�

1
\I1

�i �
X

i2I�
2
ÿI�

2
\I2

�i: �6�

Proof. We first prove thatX
i2I�

1
\I1

�i � si �
X

i2I�
2
\I2

�i � si:

Since both fI1; I2g and fI�1 ; I�2g are binary partitions of I,

we have I�1 ÿ I�1 \ I1 � I2. On the other hand, we have

�I�1 ÿ I�1 \ I1� \ I�2 � ;, since I�1 \ I�2 � ;. Hence,

I�2 \ I2 � I2 ÿ �I�1 ÿ �I�1 \ I1��:
It follows thatX

i2I�
2
\I2

�i � si �
X

i2I2ÿ�I�1ÿ�I�1\I1��
�i � si

�
X
i2I2

�i � si ÿ
X

i2I�
1
ÿ�I�

1
\I1�

�i � si

�
X
i2I2

�i � si ÿ
X
i2I�

1

�i � si �
X

i2I�
1
\I1

�i � si

�
X

i2I�
1
\I1

�i � si;

where the last equality results from the fact thatP
i2I2

�i � si �
P

i2I�
1
�i � si � �0.
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Similarly, we may establish thatX
i2I�

1
\I1

�i � si �
X

i2I�
2
\I2

�i � si:

Therefore, we obtainX
i2I�

1
\I1

�i � si �
X

i2I�
2
\I2

�i � si: �7�

Besides, X
i2I�

1
ÿI�

1
\I1

�i � si �
X

i2I�
2
ÿI�

2
\I2

�i � si �8�

follows from the fact thatX
i2I�

1
\I1

�i � si �
X

i2I�
1
ÿI�

1
\I1

�i � si �
X

i2I�
2
\I2

�i � si �
X

i2I�
2
ÿI�

2
\I2

�i � si

� �0:

Using (7) and mini2I�
1
si � maxi2I�

2
si, we obtainX

i2I�
1
\I1

�i �
X

i2I�
1
\I1

�i � si � 1

mini2I�
1
si

�
X

i2I�
2
\I2

�i � si � 1

mini2I�
1
si

�
X

i2I�
2
\I2

�i � si � 1

maxi2I�
2
si

�
X

i2I�
2
\I2

�i � si � 1

si
�
X

i2I�
2
\I2

�i

which completes the proof of Part (5). Part (6) can be

proven in a similar manner using (8) and

mini2I�
1
si � maxi2I�

2
si. tu

Lemma 3. Let I be the set of indices representing files whose

access rates and service times satisfy
P

i2I �i � si � 2�0. Let

fI�1 ; I�2g be a PBFA found by Sort partition. Then, for any

PBFA fI1; I2g, the following holds

Y2�fI1; I2g� � Y2�fI�1 ; I�2g�;
where Y2��� is the objective function defined in (4).

Proof. Let

Y2 � Y2�fI1; I2g�;
Y �2 � Y2�fI�1 ; I�2g�;
A1 �

X
i2I1

�i � s2
i ;

A2 �
X
i2I2

�i � s2
i ;

A�1 �
X
i2I�

1

�i � s2
i ;

and

A�2 �
X
i2I�

2

�i � s2
i :

We can rewrite Y2 and Y �2 , respectively, as

Y2 �
X
i2I1

�i � A1 �
X
i2I2

�i �A2

�
X

i2I1\I�1
�i �A1 �

X
i2I�

1
ÿI1\I�1

�i �A2 �
X

i2I�
2
ÿI2\I�2

�i �A1

�
X

i2I2\I�2
�i �A2

and

Y �2 �
X

i2I1\I�1
�i �A�1 �

X
i2I�

1
ÿI1\I�1

�i �A�1 �
X

i2I�
2
ÿI2\I�2

�i �A�2

�
X

i2I2\I�2
�i � A�2:

It follows that

Y2 ÿ Y �2 �
X

i2I1\I�1
�i � �A1 ÿA�1� �

X
i2I�

1
ÿI1\I�1

�i � �A2 ÿA�1�

ÿ
X

i2I�
2
\I2

�i � �A�2 ÿA2� ÿ
X

i2I�
2
ÿI�

2
\I2

�i � �A�2 ÿA1�:

Now, since A1 �A2 � A�1 �A�2 �
P

i2I �i � s2
i and, thus,

A1 ÿA�1 � A2 ÿA�2 and A2 ÿA�1 � A�2 ÿA1, we have

Y2 ÿ Y �2 �
X

i2I1\I�1
�i ÿ

X
i2I�

2
\I2

�i

0@ 1A � �A1 ÿA�1�

�
X

i2I�
1
ÿI1\I�1

�i ÿ
X

i2I�
2
ÿI�

2
\I2

�i

0@ 1A � �A2 ÿA�1�:

From Lemma 1, it follows that A1 ÿA�1 � 0 and
A2 ÿA�1 � 0. Furthermore, from Lemma 2, we obtainX

i2I�
1
\I1

�i ÿ
X

i2I�
2
\I2

�i � 0

and X
i2I�1ÿI�1\I1

�i ÿ
X

i2I�2ÿI�2\I2

�i � 0:

We therefore conclude that Y2 ÿ Y �2 � 0 and the proof of
Lemma 3 is complete. tu
Lemma 3 establishes the induction basis for the proof of

Theorem 1. In order to prove the inductive step, we develop
an algorithm which correlates the file assignment found by
Sort Partition for m disks with the assignment found by Sort
Partition for m� 1 disks.

Let I be a set of file indices. We denote the partition of I,
fI�1 ; I�2 ; . . . ; I�mg found by the Sort Partition algorithm as
SPm�I�. Let Im�1 be a set of file indices satisfyingP

i2Im�1
�i � si � �0. We define a polynomial-time algorithm

Extension which extends SPm�I� to SPm�1�I [ Im�1�. The
pseudocode of the algorithm can be found in Fig. 2.

Basically, Extension works by interleaving the files
assigned to Im�1 to successive elements of the partition
created by SPm�I�. After k iterations of this procedure, the
partition elements starting with I��m�1ÿk to the end of the
sequence are already sorted. The next iteration of the
procedure moves the files out of order in element I�m�1ÿk to
the element in position m-k in the corresponding partition
created by SPm�I�.
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In order to show that the output of the Extension
algorithm is indeed SPm�1�I [ Im�1�, we first establish the
following lemma:

Lemma 4. Let fI�1 ; I�2g � SP2�I1 [ I2�, where I1 and I2

represent files such that
P

i2Ik �i � si � �0, k � 1; 2. Then,

for k � 1; 2, the following holds:

maxi2I�
2
si � maxi2Iksi

Proof. Let sj � maxi2I�
2
si. Assume by contradiction that

maxi2Iksi < sj. Consequently, from the definition of the
Sort Partition algorithm, it follows that Ik \ I�1 � ; and,
thus, Ik � I�2 .

Therefore, fjg [ Ik � I�2 . Since
P

i2Ik �i � si � �0, we
have

P
i2I�

2
�i � si > �0, which contradicts the definition of

I�2 . tu
Lemma 5. The output of algorithm Extension satisfies

fI��1 ; I��2 ; . . . ; I��m�1g � SPm�1�I [ Im�1�.
Proof. We need to prove that

mini2I��
k
si � maxi2I��

k�1
si; 1 � k � m: �9�

From the definition of algorithm Extension, we have

maxi2I��
k�1
si � mini2I�

k
si: �10�

From Lemma 4, it follows that

maxi2I��
k�1
si � maxi2I�

k
si � mini2I�

kÿ1
si; �11�

w h e r e t h e l a s t i n e q u a l i t y h o l d s b e c a u s e
fI�kÿ1; I

�
kg � SPm�I�. Combining (10) and (11) yields

maxi2I��
k�1
si � mini2I�

k
[I�

kÿ1
si: �12�

Since I��k 2 SP2�I�k [ I�kÿ1�, we have

mini2I��
K
si � mini2I�

k
[I�

kÿ1
si: �13�

We conclude from (12) and (13) that

maxi2I��
k�1
si � mini2I��

k
si:

Hence, the proof of Lemma 5 is complete. tu
We proceed with the proof of the inductive step. We

assume that, for any PBFA to m disks, fJ1; J2; . . . ; Jmg, the

following holds

Ym�fJ1; J2; . . . ; Jmg� � Ym�fJ�1 ; J�2 ; . . . ; J�mg�;
where fJ�1 ; J�2 ; . . . ; J�mg is a PBFA found by Sort Partition

and Ym��� is the objective function defined in (4). We need to

prove the claim for m� 1 disks.
Consider a set of f i le indices I such thatP
i2I �i � si � �m� 1� � �0. For an arbitrary perfectly ba-

lanced partition of I, fI1; I2; . . . ; Im; Im�1g, we have

Ym�1�fI1; I2; . . . ; Im; Im�1g�

�
Xm
k�1

�k

X
i2Ik

�i � s2
i � �m�1

X
i2Im�1

�i � s2
i ;

�14�

where �k �
P

i2Ik �i.
Let SPm�1�I� � fI��1 ; I��2 ; . . . ; I��m�1g and

Y ��m�1 � Ym�1�fI��1 ; I��2 ; . . . ; I��m�1g�:
We will show that

Ym�1�fI1; I2; . . . ; Im�1g� � Y ��m�1:

Let L � Sm
k�1 and fI�1 ; I�2 ; . . . ; I�mg � SPm�L�. By the induc-

tive assumption, we have

Ym�fI�1 ; I�2 ; . . . ; I�mg� � Ym�fI1; I2; . . . ; Img�: �15�
It follows from (14) and (15) that

Ym�1�fI1; I2; . . . ; Im�1g�

�
Xm
k�1

��k
X
i2I�

k

�i � s2
i � �m�1

X
i2I�

m�1

�i � s2
i

� Ym�1�fI�1 ; I�2 ; . . . ; I�m; Im�1g�;
where ��k �

P
i2I�

k
�i.

We use Lemma 5 to compare Ym�1�fI�1 ; I�2 ; . . . ; I�m; Im�1g�
with Y ��m�1. It can be easily seen that algorithm Extension

generates fI��1 ; I��2 ; . . . ; I��m ; I
��
m�1g on input

fI�1 ; I�2 ; . . . ; I�m; Im�1g:
Each iteration of algorithm Extension executes Sort

Partition with the number of disks m � 2. Consequently,

by Lemma 3, the objective function does not increase after

each iteration. Therefore, the theorem holds for m� 1 disks.

This concludes the proof of Theorem 1. tu
3.3 Hybrid Partition Algorithm

In the previous section, we have shown that, assuming a

PBFA, Sort Partition achieves superior performance com-

pared to Greedy in terms of response time. This is achieved

by assigning files with similar service times to the same

disk. However, Greedy can operate in on-line mode

requiring no a priori knowledge of the files to be assigned

in the future. On the other hand, Sort Partition is an off-line

algorithm which requires complete knowledge about the

service times and access rates of all the files. This may be
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clearly inappropriate in many situations where the files are
being generated dynamically, i.e., on the fly.

To address these issues, we have designed a new on-line
algorithm, called Hybrid Partition, which attempts to
simultaneously minimize the load variance across all disks,
as well as the service time variance at each disk. Hybrid
Partition requires that all files be assigned in descending
order of service times, but, in contrast to Sort Partition, it
does not require any knowledge about the statistics of files
to be allocated in the future. In many practical situations,
files arrive in batches, which can be sorted prior to their
assignment, but with no correlation between the file service
times in different batches. Hybrid Partition is intended as an
on-line alternative to Greedy for batches of reasonable size.

The Hybrid Partition assigns files to disks in distinct
allocation intervals. The algorithm selects, for each alloca-
tion interval l, a different disk dk as the allocation target.
Like Greedy, the algorithm selects the disk with the smallest
accumulated load (heat), denoted as loadk. During one

allocation interval, a number of files are allocated to the
target disk dk until its load reaches a given threshold �k. The
files to be allocated to disk dk are a contiguous segment of
files from the current batch Bnext. This is similar in spirit to
Sort Partition, except that the number of batches can be
larger than one. A high level version of our algorithm is
given in Fig. 3.

Hybrid Partition attempts to reconcile between two
conflicting goals: minimizing the load variance across the
disks and minimizing service time variance at each disk in
the following way: When the overall disk utilization is low,
the load imbalance does not significantly impact the
response time and, thus, the algorithm gives priority to
minimizing service time variance. This is achieved by
assigning to one disk a ªrelativelyº large segment of files
from Bnext with similar service times. On the other hand,
once the system utilization is high, any load imbalance
might significantly affect the system response time. In order
to give priority to load balancing, smaller segments of files
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from Bnext, i.e., fewer files, are assigned to the target disk

during one allocation interval. This basic principle is

illustrated in Fig. 4, where two allocation intervals are

depicted. The load of each disk is proportional to to its

height and the white portion of a disk represents the

additional load assigned to it during the current allocation

interval. Observe also that, like Greedy, Hybrid Partition

may select the same disk during different allocation

intervals.
In order to implement this trade-off between load

imbalance and service time minimization, our algorithm

ªdynamicallyº adjusts the threshold �k which the load can

reach during the current allocation interval on disk dk. As

loadk increases, the difference �k ÿ loadk decreases. Ideally,

the value �k should be selected in such a way that the ratio

between the mean response times on disk dk after and

before the file assignments in this interval does not exceed a

fixed constant, overflow. The constant gives the maximal

increase in response time one is willing to tolerate in order

to minimize the service time variance on each server. The

value of �k can be computed by approximating the behavior

of each disk by a M/M/1 queue. In this case, we obtain that

E�r1� and E�r2�, the mean response times at disk k before

and after the assignments in the current allocation interval,

respectively, are given as:

E�r1� � E�s�=�1ÿ loadk�
and

E�r2� � E�s�=�1ÿ �k�:
By setting E�r2�=E�r1� � overflow, we obtain

�k � 1ÿ 1ÿ loadk
overflow

:

In the experiments reported in Section 4, we set the value of
overflow to 1.05.

4 EXPERIMENTAL EVALUATION

In this section, we present an experimental performance

evaluation of Sort Partition and Hybrid Partition algo-
rithms. We compare their performance with the vanilla
Greedy algorithm.

4.1 Experimental Setup and Workload
Characteristics

The experimental testbed is based on a parallel I/O system
prototype FIVE [28], [23]. FIVE was designed to manage
files striped across several disks which are connected to a

single host. In all experiments, the contention on the host's
controller and bus was minimal. Consequently, each disk
can be viewed as connected to a single disk of a parallel I/O

system. FIVE can either manage real data on real disks or it
can simulate each disk when the former is not available. The
disk simulator keeps track of exact arm positions, as well as
rotational positions of the disk head. It also considers head

switch delays, realistic seek time as a nonlinear function of
the seek distance, and also other details of real disks [23]. In
all experiments, we used simulated disks with the config-

uration parameters described in Fig. 5.
All tests are based on synthetic workloads. In all

experiments, we distributed 5,000 files across the 16 avail-
able disks. Each file was allocated to a single disk; the

files were not partitioned or replicated. Each file access
represented a sequential read of the entire file. In order to
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study the efficiency of our algorithms in a realistic setting,
the distributions of file sizes and file accesses across the
files exhibit a skew. The sizes of the files were distributed
according to a Zipfian distribution with a skew parameter
� � log X

100 =log
Y

100 , where X percent of all accesses were
directed to Y percent of files [13]. We conducted experi-
ments with the skew parameter � corresponding to either
60-40 or 70-30 distributions. The interarrival times of
accesses to file fi were exponentially distributed with a
fixed mean 1=�i. On the other hand, in order to reflect the
scenario where different files have different access rates, we
modeled the distribution of access rates across the files also
with a Zipfian distribution having the same skew parameter
� as the distribution of file sizes.

As observed in real system traces [19], [15], the most
popular files are typically small in size, while the large files
are relatively unpopular. Therefore, the distributions of
access rates across the files and file sizes were inversely
correlated, as shown in Fig. 6. In each experiment, either all
files were assigned at the same time or the files were
assigned in several batches. The files in each batch were
randomly selected. Consequently, even after sorting each
batch (in descending order of service times), the batches did
not form an ordered sequence. We conducted experiments
with four and 64 batches each having 78 and 1,250 files,
respectively. In each series of experiments, we increased the
aggregate access rate � �P5000

i�1 �i until the point when the
model started thrashing. Each experiment simulated
approximately a 15 minute interval.

4.2 Experimental Results

We compared the performance of Sort Partition and Hybrid
Partition against the performance of Greedy. We concen-
trated on the average response time as the primary

performance metric. Because the response time grows by
more than one order of magnitude as the aggregate access
rate � approaches the thrashing point, the average response
times are represented on a logarithmic scale for all graphs
reported in this section.

We found that Sort Partition consistently provided the
best response time among all algorithms. This result would
be trivial under a PBFA. Fig. 7 shows a sample of coefficient
of variation1 of disk load under various assignments and
� � 200sÿ1. These results confirm our intuitive expectation
that Greedy leads to the best load balance because load
balancing is its only goal. On the other hand, Sort Partition
leads to the worst load balance because it does not explicitly
attempt to balance the load; rather, it assumes that a PBFA
can be found. Finally, Hybrid Partition's load balance is a
compromise between that of Greedy and Sort Partition as its
priorities alternate between load balancing and minimizing
the variance of service time.

Although Sort Partition leads to assignments with worst
load balance, it still provides the best response time among
all three assignments for both values of skew � as shown in
Figs. 8 and 9. For example, for � corresponding to a 70/30
distribution and � � 200sÿ1, Sort Partition provides a 50
percent improvement over the response time of Greedy and
24 percent improvement over the response time of Hybrid
Partition. Thus, the experiments justify our claims about the
importance of minimizing the variance of the service time at
each disk of a parallel I/O system. Fig. 8 also shows that the
higher the aggregate access rate � is, the more significant is
the improvement achieved by Sort Partition. Thus, paying
attention to minimization of service time variance is
especially important when the system is under a heavy
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Fig. 6. Workload characterization: access rate and file size distribution.

Fig. 5. Simulated hardware configuration.

1. Standard deviation normalized by mean.



load. We also found that the response times of Hybrid
Partition were between those of Greedy and Sort Partition.
This is again in accordance with our expectations because
Hybrid Partition trades off its performance for the ability to
do on-line processing.

As Figs. 8 and 9 show, the qualitative ranking of the three
algorithms does not change for different access rates and
skew parameters, �. The differences in response times
decrease slowly with smaller values of the skew parameter
�. However, for � corresponding to 60/40 distribution and
� � 200sÿ1, Sort Partition still provides a 44 percent
improvement over Greedy and a 19 percent improvement
over Hybrid Partition.

We have also compared the performance of the two on-
line algorithms, Hybrid Partition and Greedy, on workloads
with multiple batches. The results for a skew � correspond-
ing to a 70/30 distribution can be found in Figs. 10 and 11.
Hybrid Partition always provides a better response time
than Greedy. However, the improvement diminishes as the
number of batches grows and, consequently, their size
decreases. For example, as shown in Fig. 10, given an arrival
rate � � 200sÿ1, and with four runs, each consisting of 1,250
files, Hybrid Partition provides a 21 percent improvement
of response time over Greedy. Once the number of batches
grows to 64 with each batch having 78 files, the improve-
ment in response time of Hybrid Partition over Greedy
drops to 6 percent for the same value of �, as shown in
Fig. 11. The results for a skew corresponding to a 60/40
distribution were qualitatively similar.

Based on these experimental results, we arrived at the
following conclusions:

. Sort Partition should be used whenever an off-line
algorithm is feasible, i.e., when the characteristics of
all files (service times and heat) are known in
advance.

. Hybrid Partition should be used whenever the files
arrive dynamically in reasonably large batches,
which can be sorted in descending order of service
times prior to their assignment. However, as the
batch size decreases, the response time improve-
ments of Hybrid Partition over Greedy become
negligible.

. Greedy can be used whenever the files to be assigned
arrive one-at-a-time. In such an environment,
Greedy provides practically the same response time
as Hybrid Partition.

5 CONCLUSION

We have presented two novel file assignment algorithms,
Sort Partition and Hybrid Partition. Both algorithms aim at
optimizing the mean system response time by simulta-
neously minimizing the variance of the load across all
servers and the variance of the service time at each server.
Specifically, Sort Partition minimizes the variance of the
service time at each server by assigning to each server files
with similar service times. We have shown that, among all
PBFAs, Sort Partition finds the assignment guaranteeing
minimal system response time. Because Sort Partition is
inherently an off-line algorithm, we designed an on-line
algorithm, Hybrid Partition, which approximates the
behavior of Sort Partition in a given allocation interval
while guaranteeing that during each interval the load
imbalance does not exceed a certain threshold.

Our experimental results show that Sort Partition
provides consistently better response times than the vanilla
Greedy algorithm, even when the file assignment which it
produces is not load balanced. Although Hybrid Partition
does not achieve the performance level of Sort Partition, it
still provides superior performance in comparison with the
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Fig. 7. Disk load variance.

Fig. 8. Average response time for 70/30 skew, one batch.
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Fig. 9. Average response time for 60/40 skew, one batch.

Fig. 10. Average response time for 1,250 file batch size, 70/30 skew.

Fig. 11. Average response time for 78 file batch size, 70/30 skew.



vanilla Greedy algorithm in an environment where the files
arrives arrive in sorted batches of reasonable large sizes. We
are planning to extend our analysis of Hybrid Partition by
including an analytical model to determine the optimal
choice of the constant overflow, as well as to consider
explicitly the impact of the batch size.

In practice, judicious file allocation is only one of the
performance tuning issues that need to be incorporated in a
file manager for parallel I/O systems. As we mentioned
earlier, in RAIDs [3], files are usually partitioned into
extents that are distributed across disks in order to further
reduce the service time of a single request or to improve the
throughput of multiple requests. Striping is the most
commonly used variant of file partitioning whereby a file
is divided first into fixed-sized runs of logically consecutive
data units that are assigned to disks in a round-robin
manner. A file extent corresponds now to all runs of a file
that need to be allocated contiguously on a single disk.
Although file striping and file allocation are orthogonal
issues, they are not completely independent. Striping
imposes an additional constraint on the file allocation
problem. Namely, in order to support intrarequest paralle-
lism [23], it is necessary to allocate the extents of a file to
different disks. We plan to extend our algorithms for file
allocation to cover the case when the units of allocation are
file segments.

In addition, in a fully dynamic environment, not only are
files to be created or deleted on the fly, but files may grow
or shrink and the file access characteristics may change over
time. In order to deal with all these dynamics of change, it is
necessary to incorporate into a file manager another tuning
component that can redistribute the load by migrating data
from one disk to another. File migration is an on-line
reorganization process which is performed incrementally,
usually by migrating a file (or file segment) at the time [22].
Thus, file migration is a tuning step complementary to file
allocation. By performing incremental migration steps, we
can avoid the alternative of an expensive reallocation of all
files. In [29], we have presented a model for file migration
which determines whether a given file migration is
beneficial at a given point in time; this is done by measuring
whether its benefit, given as an objective function based on
the variance of the load across the disks, exceeds the
migration's cost.
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