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ABSTRACT
The last decade has witnessed a tremendous growths of in-
terests in applications that deal with querying and min-
ing of time series data. Numerous representation methods
for dimensionality reduction and similarity measures geared
towards time series have been introduced. Each individ-
ual work introducing a particular method has made spe-
cific claims and, aside from the occasional theoretical justi-
fications, provided quantitative experimental observations.
However, for the most part, the comparative aspects of these
experiments were too narrowly focused on demonstrating
the benefits of the proposed methods over some of the previ-
ously introduced ones. In order to provide a comprehensive
validation, we conducted an extensive set of time series ex-
periments re-implementing 8 different representation meth-
ods and 9 similarity measures and their variants, and testing
their effectiveness on 38 time series data sets from a wide
variety of application domains. In this paper, we give an
overview of these different techniques and present our com-
parative experimental findings regarding their effectiveness.
Our experiments have provided both a unified validation of
some of the existing achievements, and in some cases, sug-
gested that certain claims in the literature may be unduly
optimistic.

1. INTRODUCTION
Today time series data are being generated at an unprece-

dented speed from almost every application domain, e.g.,
daily fluctuations of stock market, traces of dynamic pro-
cesses and scientific experiments, medical and biological ex-
perimental observations, various readings obtained from sen-
sor networks, position updates of moving objects in location-
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based services etc. As a consequence, in the last decade
there has been a dramatically increasing amount of interest
in querying and mining such data which, in turn, resulted
in a large amount of work introducing new methodologies
for indexing, classification, clustering and approximation of
time series [13,17,22].

Two key aspects for achieving effectiveness and efficiency
when managing time series data are representation methods
and similarity measures. Time series are essentially high di-
mensional data [17] and directly dealing with such data in
its raw format is very expensive in terms of processing and
storage cost. It is thus highly desirable to develop repre-
sentation techniques that can reduce the dimensionality of
time series, while still preserving the fundamental charac-
teristics of a particular data set. In addition, unlike canoni-
cal data types, e.g., nominal or ordinal variables, where the
distance definition is straightforward, the distance between
time series needs to be carefully defined in order to reflect
the underlying (dis)similarity of such data. This is partic-
ularly desirable for similarity-based retrieval, classification,
clustering and other mining procedures of time series [17].

Many techniques have been proposed in the literature for
representing time series with reduced dimensionality, such as
Discrete Fourier Transformation (DFT) [13], Single Value
Decomposition (SVD) [13], Discrete Cosine Transformation
(DCT) [29], Discrete Wavelet Transformation (DWT) [33],
Piecewise Aggregate Approximation (PAA) [24], Adaptive
Piecewise Constant Approximation (APCA) [23], Chebyshev
polynomials (CHEB) [6], Symbolic Aggregate approXima-
tion (SAX) [30], Indexable Piecewise Linear Approximation
(IPLA) [11] and etc. In conjunction with this, there are over
a dozen distance measures for similarity of time series data in
the literature, e.g., Euclidean distance (ED) [13], Dynamic
Time Warping (DTW) [5, 26], distance based on Longest
Common Subsequence (LCSS) [39],Edit Distance with Real
Penalty (ERP) [8], Edit Distance on Real sequence (EDR) [9],
DISSIM [14], Sequence Weighted Alignment model (Swale)
[31], Spatial Assembling Distance (SpADe) [12] and similar-
ity search based on Threshold Queries (TQuEST) [4]. Many
of these work and some of their extensions have been widely
cited in the literature and applied to facilitate query pro-
cessing and data mining of time series data.

However, with the multitude of competitive techniques,
we believe that there is a strong need to compare what
might have been omitted in the comparisons. Every newly-
introduced representation method or distance measure has
claimed a particular superiority. However, it has been demon-



strated that some empirical evaluations have been inade-
quate [25] and, worse yet, some of the claims are even con-
tradictory. For example, one paper claims “wavelets out-
perform the DFT” [34], another claims “DFT filtering per-
formance is superior to DWT” [19] and yet another claims
“DFT-based and DWT-based techniques yield comparable re-
sults” [41]. Clearly these claims cannot all be true. The risk
is that this may not only confuse newcomers and practition-
ers of the field, but also cause a waste of time and research
efforts due to assumptions based on incomplete or incorrect
claims.

Motivated by these observations, we have conducted the
most extensive set of time series experiments to-date, re-
evaluating the state-of-the-art representation methods and
similarity measures for time series that appeared in high
quality conferences and journals. Specifically, we have re-
implemented 8 different representation methods for time se-
ries, and compared their pruning power over various time
series data sets. We have re-implemented 9 different simi-
larity measures and their variants, and compared their ef-
fectiveness using 38 real world data sets from highly diverse
application domains. All our source code implementations
and the data sets are publicly available on our website [1].

The rest of this paper is organized as follows. Section 2
reviews the concept of time series, and gives an overview
of the definitions of different representation techniques and
similarity measures investigated in this work. Section 3 and
Section 4 present the main contribution of this work – the
results of the extensive experimental evaluations of differ-
ent representation methods and similarity measures, respec-
tively. Section 5 concludes the paper and discusses possible
future extensions of the work.

2. PRELIMINARIES
Typically, most of the existing work on time series assume

that time is discrete. For simplicity and without any loss
of generality, we make the same assumption here. Formally,
a time series data is defined as a sequence of pairs T =
[(p1, t1), (p2, t2), ..., (pi, ti), ..., (pn, tn)] (t1 < t2 < ... < ti <
... < tn), where each pi is a data point in a d-dimensional
data space, and each ti is the time stamp at which pi occurs.
If the sampling rates of two time series are the same, one
can omit the time stamps and consider them as sequences
of d-dimensional data points. Such a sequence is called the
raw representation of the time series. In reality however,
sampling rates of time series may be different. Furthermore,
some data points of time series may be dampened by noise or
even completely missing, which poses additional challenges
to the processing of such data. For a given time series, its
number of data points n is called the length. The portion of a
time series between two points pi and pj (inclusive) is called
a segment and is denoted as sij . In particular, a segment
between two consecutive points is called a line segment.

In the following subsections, we briefly review the repre-
sentation methods and similarity measures studied in this
work. We observe that this is not meant to be a complete
survey for the respective field and is only intended to pro-
vide the readers with a necessary background for following
our experimental evaluations.

2.1 Representation Methods for Time Series
There are many time series representations proposed to

support similarity search and data mining. Figure 1 shows

a classification of the major techniques arranged in a hier-
archy.

• Data Adaptive
o Piecewise Polynomials

� Interpolation*
� Regression 

o Adaptive Piecewise Constant Approximation*
o Singular Value Decomposition*
o Symbolic

� Natural Language
� Strings

• Non-Lower Bounding 
• SAX*
• Clipped Data*

o Trees
• Non-Data Adaptive

o Wavelets*
o Random Mappings
o Spectral

� DFT* 
� DCT*
� Chebyshev Polynomials* 

o Piecewise Aggregate Approximation* 

Figure 1: A Hierarchy of Representation Methods

The representations annotated with an asterisk (∗) in Fig-
ure 1 have the very desirable property of allowing lower
bounding. That is to say, we can define a distance mea-
surement on the reduced-size (i.e., compressed) representa-
tions that is guaranteed to be less than or equal to the true
distance measured on the raw data. It is this lower bound-
ing property that allows using representations to index the
data with a guarantee of no false negatives [13]. The list
of representations considered in this study includes (in ap-
proximate order of introduction) DFT, DCT, DWT, PAA,
APCA, SAX, CHEB and IPLA. The only lower bounding
omissions from our experiments below are the eigenvalue
analysis techniques such as SVD and PCA [29]. While such
techniques give optimal linear dimensionality reduction, we
believe they are untenable for large data sets. For example,
while [38] notes that they can transform 70000 time series in
under 10 minutes, the assumption is that the data is memory
resident. However, transforming out-of-core (disk resident)
data sets using these methods becomes unfeasible. Note that
the available literature seems to agree with us on this point.
For (at least) DFT, DWT and PAA, there are more than
a dozen projects each that use the representations to index
more than 100000 objects for query-by-humming [18, 45],
Mo-Cap indexing [7] etc. However we are unaware of any
similarly scaled projects that use SVD.

2.2 Similarity Measures for Time Series
In this section, we review the 9 similarity measures eval-

uated in this work, summarized in Figure 2. Given two
time series T1 and T2, a similarity function Dist calcu-
lates the distance between the two time series, denoted by
Dist(T1, T2). In the following we will refer to distance mea-
sures that compare the i−th point of one time series to the
i−th point of another as lock-step measures (e.g., Euclidean
distance and the other Lp norms), and distance measures
that allow comparison of one-to-many points (e.g., DTW)
and one-to-many/one-to-none points (e.g., LCSS) as elastic
measures.

The most straightforward similarity measure for time se-
ries, is the Euclidean Distance [13] and its variants, based
on the common Lp-norms [43]. In particular, in this work
we used L1 (Manhattan), L2 (Euclidean) and L∞ (Maxi-



• Lock-step Measure
o Lp-norms

� L1-norm (Manhattan Distance)
� L2-norm (Euclidean Distance)
� Linf-norm

o DISSIM
• Elastic Measure

o Dynamic Time Warping (DTW)
o Edit distance based measure

� Longest Common SubSequence (LCSS)
� Edit Sequence on Real Sequence (EDR)
� Swale
� Edit Distance with Real Penalty (ERP)

• Threshold-based Measure
o Threshold query based similarity search (TQuEST) 

• Pattern-based Measure
o Spatial Assembling Distance (SpADe)

Figure 2: A Summary of Similarity Measures

mum) norms (c.f. [43]). In the sequel, the terms Euclidean
distance and L2 norm will be used interchangeably. Besides
being relatively straightforward and intuitive, Euclidean dis-
tance and its variants have several other advantages. The
complexity of evaluating these measures is linear, and they
are easy to implement and indexable with any access method
and, in addition, are parameter-free. Furthermore, as we
will present, the Euclidean distance is surprisingly compet-
itive with other more complex approaches, especially if the
size of the training set/database is relatively large. However,
since the mapping between the points of two time series is
fixed, these distance measures are very sensitive to noise and
misalignments in time, and are unable to handle local time
shifting, i.e., similar segments that are out of phase.

The DISSIM distance [14] aims at computing the similar-
ity of time series with different sampling rates. However,
the original similarity function is numerically too difficult
to compute, and the authors proposed an approximated dis-
tance with a formula for computing the error bound.

Inspired by the need to handle time warping in similar-
ity computation, Berndt and Clifford [5] introduced DTW,
a classic speech recognition tool, to the data mining com-
munity, in order to allow a time series to be “stretched”
or “compressed” to provide a better match with another
time series. Several lower bounding measures have been in-
troduced to speed up similarity search using DTW [21, 26,
27, 44], and it has been shown that the amortized cost for
computing DTW on large data sets is linear [21, 26]. The
original DTW distance is also parameter free, however, as
has been reported in [26,40] enforcing a temporal constraint
δ on the warping window size of DTW not only improves its
computation efficiency, but also improves its accuracy for
measuring time series similarity, as extended warping may
introduce pathological matchings between two time series
and distort the true similarity. The constraint warping is
also utilized for developing the lower-bounding distance [26]
as well as for indexing time series based on DTW [40].

Another group of similarity measures for time series are
developed based on the concept of the edit distance for
strings. The best known such distance is the LCSS distance,
utilizing the longest common subsequence model [3, 39]. To
adapt the concept of matching characters in the settings of
time series, a threshold parameter ε was introduced, stat-
ing that two points from two time series are considered to
match if their distance is less than ε. The work reported
in [39] also considered constraining the matching of points

along the temporal dimension, using a warping threshold δ.
A lower-bounding measure and indexing technique for LCSS
are introduced in [40].

EDR [9] is another similarity measure based on the edit
distance. Similar to LCSS, EDR also uses a threshold pa-
rameter ε, except its role is to quantify the distance between
a pair of points to 0 or 1. Unlike LCSS, EDR assigns penal-
ties to the gaps between two matched segments according
to the lengths of the gaps.

The ERP distance [8] attempts to combine the merits of
DTW and EDR, by using a constant reference point for com-
puting the distance between gaps of two time series. Essen-
tially, if the distance between two points is too large, ERP
simply uses the distance value between one of those point
and the reference point.

Recently, a new approach for computing the edit distance
based similarity measures was proposed in [31]. Whereas
traditional tabular dynamic programming was used for com-
puting DTW, LCSS, EDR and ERP, a matching threshold
is used to divide the data space into grid cells and, subse-
quently, matching points are found by hashing. The similar-
ity model Swale is proposed that rewards matching points
and penalizes gaps. In addition to the matching threshold ε,
Swale requires the tuning of two parameters: the matching
reward weight r and the gap penalty weight p.

The TQuEST distance [4] introduced a rather novel ap-
proach to computing the similarity measure between time se-
ries. The idea is that, given a threshold parameter τ , a time
series is transformed into a sequence of so-called threshold-
crossing time intervals, where the points within each time
interval have a value greater than a given τ . Each time in-
terval is then treated as a point in a two dimensional space,
where the starting time and ending time constitute the two
dimensions. The similarity between two time series is then
defined as the Minkowski sum of the two sequences of time
interval points.

Finally, SpADe [12] is a pattern-based similarity measure
for time series. The algorithm finds out matching segments
within the entire time series, called patterns, by allowing
shifting and scaling in both the temporal and amplitude
dimensions. The problem of computing similarity value be-
tween time series is then transformed to the one of finding
the most similar set of matching patterns. One disadvantage
of SpADe is that it requires tuning a number of parameters,
such as the temporal scale factor, amplitude scale factor,
pattern length, sliding step size etc.

3. COMPARISON OF TIME SERIES REP-
RESENTATIONS

We compare all the major time series representations, in-
cluding SAX, DFT, DWT, DCT, PAA, CHEB, APCA and
IPLA. Note that any of these representations can be used to
index the Euclidean Distance, the Dynamic Time Warping,
and at least some of the other elastic measures. While var-
ious subsets of these representations have been compared
before, this is the first time they are all been compared
together. An obvious question to consider is what metric
should should be used for comparison. We believe that wall
clock time is a poor choice, because it may be open to im-
plementation bias [25]. Instead, we believe that using the
tightness of lower bounds (TLB) is a very meaningful mea-
sure [24], and this also appears to be the current consensus



in the literature [6, 8, 11, 21–23, 26, 35, 40]. We note that all
the representation methods studied in this paper allow lower
bounding.

TLB = LowerBoundDist(T, S)/TrueEuclideanDist(T, S)

where T and S are the two time series. The advantage of
TLB is two-fold:

1. It is a completely implementation-free measure, inde-
pendent of hardware and software choices, and is there-
fore completely reproducible.

2. The TLB allows a very accurate prediction of index-
ing performance.

If the value of TLB is zero, then any indexing technique is
condemned to retrieving every time series from the disk. If
the value of TLB is one, then after some trivial processing
in main memory, we could simply retrieve one object from
disk and guarantee that we had the true nearest neighbor.
Note that the speedup obtained is generally non-linear in
TLB, that is to say, if one representation has a lower bound
that is twice as large as another, we can usually expect a
much greater than two-fold decrease in disk accesses. We
randomly sampled T and S (with replacement) 1000 times
for each combination of parameters. We vary the time series
length {480, 960, 1440, 1920} and the number of coefficients
per time series available to the dimensionality reduction ap-
proach {4, 6, 8, 10} (each coefficient takes 4 bytes). For SAX,
we hard coded the cardinality to 256. Figure 3 shows the
result of one such experiment with an ECG data set.

Figure 3: The tightness of lower bounds for various
time series representations on an ECG data set

The result of this experiment may at first be surprising, it
shows that there is very little difference between represen-
tations, in spite of claims to the contrary in the literature.
However, we believe that most of these claims are due to
some errors or bias in the experiments. For example, it
was recently claimed that DFT is much worse than all the
other approaches [11], however it appears that the complex
conjugate property of DFT was not exploited. As another
example, it was claimed “it only takes 4 to 6 Chebyshev co-
efficients to deliver the same pruning power produced by 20
APCA coefficients” [6], however this claim has since been
withdrawn by the authors [2]. Of course there is some vari-
ability and difference depending on data set. For example,
on highly periodic data set the spectral methods are better,
and on bursty data sets APCA can be significantly better,
as shown in Figure 4.

In contrast, in Figure 5 we can see that highly periodic
data can slightly favor the spectral representations (DCT,
DFT, CHEB) over the polynomial representations (SAX,
APCA, DWT/PAA, IPLA).

However it is worth noting that the differences presented
in these figures are the most extreme cases found in a search
over 80 diverse data sets from the publicly available UCR
Time Series Data Mining Archive [20]. In general, there
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Figure 4: The tightness of lower bounds for various
time series representations on a relatively bursty data
set (see inset)

Figure 5: The tightness of lower bounds for various
time series representations on a periodic data set of
tide levels

is very little to choose between representations in terms of
pruning power.

4. COMPARISON OF TIME SERIES SIMI-
LARITY MEASURES

In this section we present our experimental evaluation on
the accuracy of different similarity measures.

4.1 The Effect of Data Set Size on Accuracy
and Speed

We first discuss an extremely important finding which, in
some circumstances makes some of the previous findings on
efficiency, and the subsequent findings on accuracy, moot.
This finding has been noted before [35], but does not seem
to be appreciated by the database community.

For an elastic distance measure, both the accuracy of clas-
sification (or precision/recall of similarity search), and the
amortized speed, depend critically on the size of the data
set. In particular, as data sets get larger, the amortized
speed of elastic measures approaches that of lock-step mea-
sures, however the accuracy/precision of lock-step measures
approaches that of the elastic measures. This observation
has significant implications for much of the research in the
literature. Many papers claim something like “I have shown
on these 80 time series that my elastic approach is faster
than DTW and more accurate that Euclidean distance, so if
you want to index a million time series, use my method”.
However our observation suggests that even if the method
is faster than DTW, the speed difference will decrease for
larger data sets. Furthermore, for large data sets, the differ-
ences in accuracy/precision will also diminish or disappear.
To demonstrate our claim we conducted experiments on two
highly warped data sets that are often used to highlight the
superiority of elastic measures, Two-Patterns and CBF. Be-
cause these are synthetic data sets we have the luxury of
creating as many instances as we like, using the data gen-
eration algorithms proposed in the original papers [15, 16].



However, it is critical to note that the same effect can be
seen on all the data sets considered in this work. For each
problem we created 10000 test time series, and increasingly
large training data sets of size 50, 100, 200, . . ., 6400. We
measured the classification accuracy of 1NN for the various
data sets (explained in more detail in Section 4.2.1), using
both Euclidean distance and DTW with 10% warping win-
dow, Figure 6 shows the results.

Figure 6: The error rate for 1-Nearest Neighbor Clas-
sification for increasingly large instantiations of two
classic time series benchmarks

Note that for small data sets, DTW is significantly more
accurate than Euclidean distance in both cases. However,
for CBF, by the time we have a mere 400 time series in our
training set, there is no statistically significant difference.
For Two-Patterns it takes longer for Euclidean Distance to
converge to DTW’s accuracy, nevertheless, by the time we
have seen a few thousand objects there is no statistically
significant difference.

This experiment can also be used to demonstrate our
claim that amortized speed of a (lower-boundable) elastic
method approaches that of Euclidean distance. Recall that
Euclidean distance has a time complexity of O(n) and that
a single DTW calculation has a time complexity of O(nw),
where w is the warping window size. However for similarity
search or 1NN classification, the amortized complexity of
DTW is O((P ·n)+ (1−P ) ·nw), where P is the fraction of
DTW calculations pruned by a linear time lower bound such
as LB Keogh. A similar result can be achieved for LCSS as
well. In the Two-Pattern experiments above, when classi-
fying with only 50 objects, P = 0.1, so we are forced to do
many full DTW calculations. However, by the time we have
6400 objects, we empirically find out that P = 0.9696, so
about 97% of the objects are disposed of in the same time
as takes to do a Euclidean distance calculation. To ground
this into concrete numbers, it takes less that one second to
find the nearest neighbor to a query in the database of 6400
Two-Pat time series, on our off-the-shelf desktop, even if we
use the pessimistically wide warping window. This time is
for just sequential search with a lower bound, no attempt
was made to index the data.

To summarize, many of the claims over who has the fastest
or most accurate distance measure have been biased by the
lack of tests on very (or even slightly) large data sets.

4.2 Accuracy of Similarity Measures
In this section, we evaluate the accuracy of the similar-

ity measures introduced in Section 2. We first explain the
methodology of our evaluation, as well as the parameters

that need to be tuned for each similarity measure. We then
present the results of our experiments and discuss several
interesting findings.

4.2.1 Accuracy Evaluation Framework
Accuracy evaluation answers one of the most important

questions about a similarity measure: why is this a good
measure for describing the (dis)similarity between time se-
ries? Surprisingly, we found that accuracy evaluation is
usually insufficient in existing literature: it has been either
based on subjective evaluation, e.g., [4, 9], or using clus-
tering with small data sets which are not statistically sig-
nificant, e.g., [31, 40]. In this work, we use an objective
evaluation method recently proposed [25]. The idea is to
use a one nearest neighbor (1NN) classifier [17, 32] on la-
belled data to evaluate the efficacy of the distance measure
used. Specifically, each time series has a correct class la-
bel, and the classifier tries to predict the label as that of its
nearest neighbor in the training set. There are several ad-
vantages with this approach. First, it is well known that the
underlying distance metric is critical to the performance of
1NN classifier [32], hence, the accuracy of the 1NN classifier
directly reflects the effectiveness of the similarity measure.
Second, the 1NN classifier is straightforward to implement
and is parameter free, which makes it easy for anyone to
reproduce our results. Third, it has been proved that the
error ratio of 1NN classifier is at most twice the Bayes er-
ror ratio [36]. Finally, we note that while there have been
attempts to classify time series with decision trees, neural
networks, Bayesian networks, supporting vector machines
etc., the best published results (by a large margin) come
from simple nearest neighbor methods [42].

Algorithm 1 Time Series Classification with 1NN Classifier

Input: Labelled time series data set T, similarity measure
operator SimDist, number of crosses k

Output: Average 1NN classification error ratio and stan-
dard deviation

1: Randomly divide T into k stratified subsets T1, . . . , Tk

2: Initialize an array ratios[k]
3: for Each subset Ti of T do

4: if SimDist requires parameter tuning then

5: Randomly split Ti into two equal size stratified sub-
sets Ti1 and Ti2

6: Use Ti1 for parameter tuning, by performing a
leave-one-out classification with 1NN classifier

7: Set the parameters to values that yields the mini-
mum error ratio from the leave-one-out tuning pro-
cess

8: Use Ti as the training set, T− Ti as the testing set
9: ratio[i]← the classification error ratio with 1NN clas-

sifier
10: return Average and standard deviation of ratios[k]

To evaluate the effectiveness of each similarity measure,
we use a cross-validation algorithm as described in Algo-
rithm 1, based on the approach suggested in [37]. We first
use a stratified random split to divide the input data set into
k subsets for the subsequent classification (line 1), to min-
imize the impact of skewed class distribution. The number
of cross validations k is dependent on the data sets and we
explain shortly how we choose the proper value for k. We



then carry out the cross validation, using one subset at a
time for the training set of the 1NN classifier, and the rest
k−1 subsets as the testing set (lines 3−9). If the similarity
measure SimDist requires parameter tuning, we divide the
training set into two equal size stratified subsets, and use
one of the subset for parameter tuning (lines 4 − 7). We
perform an exhaustive search for all the possible (combina-
tions of) value(s) of the similarity parameter, and conduct
a leave-one-out classification test with a 1NN classifier. We
record the error ratios of the leave-one-out test, and use
the parameter values that yield the minimum error ratio.
Finally, we report the average error ratio of the 1NN classi-
fication over the k cross validations, as well as the standard
deviation (line 10).

Algorithm 1 requires that we provide an input k for the
number of cross validations. In our experiments, we need to
take into consideration the impact of training data set size
discussed in Section 4.1. Therefore, our selection of k for
each data set tries to strike a balance between the following
factors:

1. The training set size should be selected to enable dis-
criminativity, i.e., one can tell the performance difference
between different distance measures.

2. The number of items in the training set should be
large enough to represent each class. This is especially
important when the distance measure need parameter
tuning.

3. The number of cross validations should be between
5− 20 in order to minimize bias and variation, as recom-
mended in [28].

The actual number of splits is empirically selected such that
the training error for 1NN Euclidean distance (which we use
as a comparison reference) is not perfect, but significantly
better than the default rate.

Several of the similarity measures that we investigated
require the setting of one or more parameters. The proper
values for these parameters are key to the effectiveness of the
measure. However, most of the time only empirical values
are provided for each parameter in isolation. In our experi-
ments, we perform an exhaustive search for all the possible
values of the parameters, as described in Table 1.

Parameter Min Value Max Value Step Size
DTW.δ 1 25% · n 1
LCSS.δ 1 25% · n 1
LCSS.ε 0.02 · Stdv Stdv 0.02 · Stdv
EDR.ε 0.02 · Stdv Stdv 0.02 · Stdv
Swale.ε 0.02 · Stdv Stdv 0.02 · Stdv

Swale.reward 50 50 -
Swale.penalty 0 reward 1
TQuEST.τ Avg − Stdv Avg + Stdv 0.02 · Stdv

SpADe.plength 8 64 8
SpADe.ascale 0 4 1
SpADe.tscale 0 4 1

SpADe.slidestep plength/32 plength/8 plength/32

Table 1: Parameter Tuning for Similarity Measures

For DTW and LCSS measures, a common optional pa-
rameter is the window size δ that constrains the temporal
warping, as suggested in [40]. In our experiments we con-
sider both the version of distance measures without warping
and with warping. For the latter case, we search for the best
warping window size up to 25% of the length of the time se-

ries n. An additional parameter for LCSS, which is also
used in EDR and Swale, is the matching threshold ε. We
search for the optimal threshold starting from 0.02 ·Stdv up
to Stdv, where Stdv is the standard deviation of the data
set. Swale has another two parameters, the matching reward
weight and the gap penalty weight. We fix the matching re-
ward weight to 50 and search for the optimal penalty weight
from 0 to 50, as suggested by the authors. Although the
warping window size can also be constrained for EDR, ERP
and Swale, due to limited computing resource and time, we
only consider full matching for these distance measures in
our current experiments. For TQuEST, we search for the
optimal querying threshold from Avg−Stdv to Avg +Stdv,
where Avg is the average of the time series data set. For
SpADe, we tune four parameters based on the original im-
plementation and use the parameter tuning strategy, i.e.
search range, step size, as suggested by the authors. In
Table 1, plength is the length of the patterns, ascale and
tscale are the maximum amplitude and temporal scale dif-
ferences allowed respectively, and slidestep is the minimum
temporal difference between two patterns.

4.3 Analysis of Classification Accuracy
In order to provide a comprehensive evaluation, we per-

form the experiments on 38 diverse time series data sets,
provided by the UCR Time Series repository [20], which
make up somewhere between 90% and 100% of all publicly
available, labelled time series data sets in the world. For sev-
eral years everyone in the data mining/database community
has been invited to contribute data sets to this archive, and
100% of the donated data sets have been archived. This en-
sures that the collection represents the interest of the data
mining/database community, and not just one group. All
the data sets have been normalized to have a maximum
scale of 1.0 and all the time series are z-normalized. The
entire simulation was conducted on a computing cluster in
the Northwestern University, with 20 multi-core worksta-
tions running for over a month. The results are presented
in Table 2. Due to limited space, we only show the average
error ratio of the similarity measures on each data set. More
detailed results, such as the standard deviation of the cross
validations, are hosted on our web site [1].

To provide a more intuitive illustration of the performance
of the similarity measures compared in Table 2, we now use
scatter plots to conduct pair-wise comparisons. In a scatter
plot, the error ratios of the two similarity measures under
comparison are used as the x and y coordinates of a dot,
where each dot represent a particular data set. Where a
scatter plot has the label “A vs B”, a dot above line indicates
that A is more accurate than B (since these are error ratios).
The further a dot is from the line, the greater the margin
of accuracy improvement. The more dots on one side of
the line indicates that the worse one similarity measure is
compared to the other .

First, we compare the different variances of Lp-norms.
Figure 7 shows that the Euclidean distance and the Man-

hattan distance have a very close performance, while both
largely outperforms the L∞-norm. This is as expected since
the L∞-norm uses the maximum distance between two sets
of time series points, and is more sensitive to noise [17].

Next we illustrate the performance of DTW against Eu-
clidean. Figure 8 (a) shows that full DTW is clearly supe-
rior over Euclidean on the data sets we tested. Figure 8 (b)
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Figure 7: Accuracy of Various Lp-norms, above the
line Euclidean outperforms L1norm/L∞norm
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Figure 8: Accuracy of DTW, above the line Eu-
clidean/Constrained DTW outperforms Full DTW

shows that the effectiveness of constrained DTW is the same
(or even slightly better) than that of full DTW. This means
that we could generally use the constrained DTW instead
of DTW, to reduce the time for computing the distance and
to utilize proposed lower bounding techniques [26].

Unless otherwise stated, in the following we compare the
rest of the similarity measures against Euclidean distance
and full DTW, since Euclidean distance is the fastest and
most straightforward measure, and DTW is the oldest elastic
measure.
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Figure 9: Accuracy of DISSIM, above the line Eu-
clidean/Full DTW outperforms DISSIM

The performance of DISSIM against that of Euclidean
and DTW are shown in Figure 9. It can be observed that
the accuracy of DISSIM is slightly better than Euclidean
distance, however, it is apparently inferior to DTW.

The performance of TQuEST against that of Euclidean
and DTW are shown in Figure 10. On most of the data
sets, TQuEST is worse than Euclidean and DTW distances.
While the outcome of this experiment cannot account for
the usefulness of TQuEST, it indicates that there is a need
to investigate the characteristics of the data set for which
TQuEST is a favorable measure.

The performance of LCSS, EDR and ERP against that of
Euclidean and DTW are shown in Figure 11, Figure 12 and
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Figure 10: Accuracy of TQuEST, above the line Eu-
clidean/Full DTW outperforms TQuEST
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Figure 11: Accuracy of LCSS, above the line Eu-
clidean/Full DTW outperforms Full LCSS
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Figure 12: Accuracy of EDR, above the line Eu-
clidean/Full DTW outperforms EDR
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Figure 13: Accuracy of ERP, above the line Eu-
clidean/Full DTW outperforms ERP

Figure 13 respectively. All three distances outperform Eu-
clidean distance by a large percentage. On the other hand,
while it is commonly believed that these edit distance based
similarity measures are superior to DTW [8,10,12], our ex-
periments show that this is generally not the case. Only
EDR is potentially slightly better than full DTW, whereas
the performance of LCSS and ERP are very close to DTW.
Even for EDR, a more formal analysis using two-tailed,
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Figure 14: Accuracy of Constrained LCSS, above the
line Full LCSS outperforms Constrained LCSS

paired t-test is required to reach any statistically signifi-
cant conclusion [37]. We also studied the performance of
constrained LCSS, as shown in Figure 14. It can be ob-
served that the constrained version of LCSS is even slightly
better the unconstrained one, while it also reduces the com-
putation cost and gives rise to an efficient lower-bounding
measure [40].
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Figure 15: Accuracy of Swale, above the line Eu-
clidean/Full LCSS outperforms Swale

Next, we compare the performance of Swale against that
of Euclidean distance and LCSS, as Swale aims at improving
the effectiveness of LCSS and EDR. The results are shown
in Figure 15, and suggests that Swale is clearly superior to
Euclidean distance, and yields an almost identical accuracy
as LCSS.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Euclidean

S
pA

D
e

(a)  Euclidean  vs  SpADe

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Full DTW

S
pA

D
e

(b)  Full DTW  vs  SpADe

Figure 16: Accuracy of SpADe, above the line Eu-
clidean/Full DTW outperforms SpADe

Finally, we compare the performance of SpADe against
that of Euclidean distance and DTW. The results are shown
in Figure 16. In general, the accuracy of SpADe is close to
that of Euclidean but is inferior to DTW distance, although
on some data sets SpADe outperforms the other two. We
believe one of the biggest challenges for SpADe is that it
has a large number of parameters that need to be tuned.

Given the small tuning data sets, it is very difficult to pick
the right values. However, we note again that the outcome
of this experiment cannot account for the utility of SpADe.
For example, one major contribution of SpADe is to detect
interesting patterns online for stream data.

In summary, we found through experiments that there is
no clear evidence that there exists one similarity measure
that is superior to others in the literature, in terms of accu-
racy. While some similarity measures are more effective on
certain data sets, they are usually inferior on some others
data sets. This does not mean that the time series commu-
nity should settle with the existing similarity measures, –
quite the contrary. However, we believe that more caution
need to be exercised to avoid making the kind of mistakes
we illustrate in the Appendix.

5. CONCLUSION & FUTURE WORK
In this paper, we conducted an extensive experimental

consolidation on the state-of-the-art representation meth-
ods and similarity measures for time series data. We re-
implemented and evaluated 8 different dimension-reduction
representation methods, as well as 9 different similarity mea-
sures and their variants. Our experiments are carried on 38
diverse time series data sets from various application do-
mains. Based on the experimental results we obtained, we
make the following conclusions.

1. The tightness of lower bounding, thus the pruning
power, thus the indexing effectiveness of the different
representation methods for time series data have, for the
most part, very little difference on various data sets.

2. For time series classification, as the size of the train-
ing set increases, the accuracy of elastic measures con-
verge with that of Euclidean distance. However, on small
data sets, elastic measures, e.g., DTW, LCSS, EDR and
ERP etc. can be significantly more accurate than Eu-
clidean distance and other lock-step measures, e.g., L∞-
norm, DISSIM.

3. Constraining the warping window size for elastic mea-
sures, such as DTW and LCSS, can reduce the compu-
tation cost and enable effective lower-bounding, while
yielding the same or even better accuracy.

4. The accuracy of edit distance based similarity mea-
sures, such as LCSS, EDR and ERP are very close to that
of DTW, a 40 year old technique. In our experiments,
only EDR is potentially slightly better than DTW.

5. The accuracy of several novel types of similarity mea-
sures, such as TQuEST and SpADe, are on general infe-
rior to elastic measures.

6. If a similarity measure is not accurate enough for the
task, getting more training data really helps.

7. If getting more data is not possible, then trying the
other measures might help, however, extreme care must
be taken to avoid overfitting.

As an additional comment, but not something that can be
conclusively validated from our experiments, we would like
to bring an observation which, we hope, may steer some in-
teresting directions of future work. Namely, when pair-wise
comparison is done among the methods, in few instances we
have one method that has worse accuracy than the other in
majority of the data sets, but in the ones that it is better, it
does so by a large margin. Could it be due to some intrinsic
properties of the data set? If so, could it be that those prop-



erties may have a critical impact on which distance measure
should be applied? We believe that in the near future, the
research community will generate some important results
along these lines.

As an immediate extension, we plan to conduct more rig-
orous statistical analysis on the experimental results we ob-
tained. We will also extend our evaluation on the accuracy
of the similarity measures to more realistic settings, by al-
lowing missing points in the time series and adding noise to
the data. Another extension is to validate the effectiveness
of some of the existing techniques in expediting similarity
search using the respective distance measures.
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APPENDIX
A SOBERING EXPERIMENT

Our comparative experiments have shown that while elas-
tic measures are, in general, better than lock-step measures,
there is little difference between the various elastic measures.
This result explicitly contradicts many papers that claim to
have a distance measure that is better than DTW, the orig-
inal and simplest elastic measure. How are we to reconcile
this two conflicting claims? We believe the following demon-
stration will shed some light on the issue. We classified 20
of the data sets hosted at the UCR archive, using the sug-
gested two-fold splits that were establish several years ago.
We used a distance measure called ANA (explained below)

which has a single parameter that we adjusted to get the
best performance. Figure 17 compares the results of our
algorithm with Euclidean distance.

Figure 17: The classification accuracy of ANA com-
pared to Euclidean distance

As we can see, the ANA algorithm is consistently bet-
ter than Euclidean distance, often significantly so. Further-
more, ANA is as fast as Euclidean distance, is indexable
and only has a single parameter. Given this, can a paper
on ANA be published in a good conference or journal? It
is time to explain how ANA works. We downloaded the
mitochondrial DNA of a monkey, Macaca mulatta. We con-
verted the DNA to a string of integers, with A (Adenine)
= 0, C (Cytosine) = 1, G (Guanine) = 2 and T (Thymine)
= 3. So the DNA string GATCA . . . becomes 2, 0, 3, 1, 0, . . ..
Given that we have a string of 16564 integers, we can use
the first n integers as weighs when calculating the weights
of the Euclidean distance between our time series of length
n. So ANA is nothing more than the weighed Euclidean
distance, weighed by monkey DNA. More concretely, if we
have a string S: S = 3, 0, 1, 2, 0, 2, 3, 0, 1, . . . and some time
series, say of length 4, then the weight vector W with p = 1
is {3, 0, 1, 2}, and the ANA distance is simply:

ANA(A,B, W ) =

√

√

√

√

4
∑

i=1

(Ai −Bi)2 ×Wi.

After we test the algorithm, if we are not satisfied with the
result, we simply shift the first location in the string, so that
we are using locations 2 to n + 1 of the weight string. We
continue shifting till the string is exhausted and reported
the best result in Figure 17. At this point the reader will
hopefully say “but that’s not fair, you cannot change the
parameter after seeing the results, and report the best re-
sults”. However, we believe this effect may explain many of
the apparent improvements over DTW, and in some cases,
the authors explicitly acknowledge this [10]. Researchers are
adjusting the parameters after seeing the results on the test
set. In summary, based on the experiments conduced in this
paper and all the reproducible fair experiments in the liter-
ature, there is no evidence of any distance measure that is
systematically better than DTW in general. Furthermore,
there is at best very scant evidence that there is any dis-
tance measure that is systematically better than DTW in
on particular problems (say, just ECG data, or just noisy
data).

Finally, we are in a position to explain what ANA stand
for. It is an acronym for Arbitrarily Naive Algorithm.



Data Set # of crosses ED L1-norm L∞-norm DISSIM TQuEST DTW DTW (c)a EDR ERP LCSS LCSS (c) Swale Spade
50words 5 0.407 0.379 0.555 0.378 0.526 0.375 0.291 0.271 0.341 0.298 0.279 0.281 0.341
Adiac 5 0.464 0.495 0.428 0.497 0.718 0.465 0.446 0.457 0.436 0.434 0.418 0.408 0.438
Beef 2 0.4 0.55 0.583 0.55 0.683 0.433 0.583 0.4 0.567 0.402 0.517 0.384 0.5
Car 2 0.275 0.3 0.3 0.217 0.267 0.333 0.258 0.371 0.167 0.208 0.35 0.233 0.25
CBF 16 0.087 0.041 0.534 0.049 0.171 0.003 0.006 0.013 0 0.017 0.015 0.013 0.044

chlorineconcentration 9 0.349 0.374 0.325 0.368 0.44 0.38 0.348 0.388 0.376 0.374 0.368 0.374 0.439
cinc ECG torso 30 0.051 0.044 0.18 0.046 0.084 0.165 0.006 0.011 0.145 0.057 0.023 0.057 0.148

Coffee 2 0.193 0.246 0.087 0.196 0.427 0.191 0.252 0.16 0.213 0.213 0.237 0.27 0.185
diatomsizereduction 10 0.022 0.033 0.019 0.026 0.161 0.015 0.026 0.019 0.026 0.045 0.084 0.028 0.016

ECG200 5 0.162 0.182 0.175 0.16 0.266 0.221 0.153 0.211 0.213 0.171 0.126 0.17 0.256
ECGFiveDays 26 0.118 0.107 0.235 0.103 0.181 0.154 0.122 0.111 0.127 0.232 0.187 0.29 0.265

FaceFour 5 0.149 0.144 0.421 0.172 0.144 0.064 0.164 0.045 0.042 0.144 0.046 0.134 0.25
FacesUCR 11 0.225 0.192 0.401 0.205 0.289 0.06 0.079 0.05 0.028 0.046 0.046 0.03 0.315

fish 5 0.319 0.293 0.314 0.311 0.496 0.329 0.261 0.107 0.216 0.067 0.16 0.171 0.15
Gun Point 5 0.146 0.092 0.186 0.084 0.175 0.14 0.055 0.079 0.161 0.098 0.065 0.066 0.007
Haptics 5 0.619 0.634 0.632 0.64 0.669 0.622 0.593 0.466 0.601 0.631 0.58 0.581 0.736

InlineSkate 6 0.665 0.646 0.715 0.65 0.757 0.557 0.603 0.531 0.483 0.517 0.525 0.533 0.643
ItalyPowerDemand 8 0.04 0.047 0.044 0.043 0.089 0.067 0.055 0.075 0.05 0.1 0.076 0.082 0.233

Lighting2 5 0.341 0.251 0.389 0.261 0.444 0.204 0.32 0.088 0.19 0.199 0.108 0.16 0.272
Lighting7 2 0.377 0.286 0.566 0.3 0.503 0.252 0.202 0.093 0.287 0.282 0.116 0.279 0.557
MALLAT 20 0.032 0.041 0.079 0.042 0.094 0.038 0.04 0.08 0.033 0.088 0.091 0.09 0.167

MedicalImages 5 0.319 0.322 0.36 0.329 0.451 0.286 0.281 0.36 0.309 0.349 0.357 0.348 0.434
Motes 24 0.11 0.082 0.24 0.08 0.211 0.09 0.118 0.095 0.106 0.064 0.077 0.073 0.103

OliveOil 2 0.15 0.236 0.167 0.216 0.298 0.1 0.118 0.062 0.132 0.135 0.055 0.097 0.207
OSULeaf 5 0.448 0.488 0.52 0.474 0.571 0.401 0.424 0.115 0.365 0.359 0.281 0.403 0.212

plane 6 0.051 0.037 0.033 0.042 0.038 0.001 0.032 0.001 0.01 0.016 0.062 0.023 0.006
SonyAIBORobotSurface 16 0.081 0.076 0.106 0.088 0.135 0.077 0.074 0.084 0.07 0.228 0.155 0.205 0.195

SonyAIBORobotSurfaceII 12 0.094 0.084 0.135 0.071 0.186 0.08 0.083 0.092 0.062 0.238 0.089 0.281 0.322
StarLightCurves 9 0.142 0.143 0.151 0.142 0.13 0.089 0.086 0.107 0.125 0.118 0.124 0.12 0.142

SwedishLeaf 5 0.295 0.286 0.357 0.299 0.347 0.256 0.221 0.145 0.164 0.147 0.148 0.14 0.254
Symbols 30 0.088 0.098 0.152 0.093 0.078 0.049 0.096 0.02 0.059 0.053 0.055 0.058 0.018

synthetic control 5 0.142 0.146 0.227 0.158 0.64 0.019 0.014 0.118 0.035 0.06 0.075 0.06 0.15
Trace 5 0.368 0.279 0.445 0.286 0.158 0.016 0.075 0.15 0.084 0.118 0.142 0.108 0

TwoLeadECG 25 0.129 0.154 0.151 0.163 0.266 0.033 0.07 0.065 0.071 0.146 0.154 0.149 0.017
TwoPatterns 5 0.095 0.039 0.797 0.036 0.747 0 0 0.001 0.01 0 0 0 0.052

wafer 7 0.005 0.004 0.021 0.005 0.014 0.015 0.005 0.002 0.006 0.004 0.004 0.004 0.018
WordsSynonyms 5 0.393 0.374 0.53 0.375 0.529 0.371 0.315 0.295 0.346 0.294 0.28 0.274 0.322

yoga 11 0.16 0.161 0.181 0.167 0.216 0.151 0.151 0.112 0.133 0.109 0.134 0.43 0.13

Table 2: Error Ratio of Different Similarity Measures on 1NN Classifier

aDTW (c) denotes DTW with constrained warping window, same for LCSS.


