
 Oracle JRockit Mission Control
Overview

An Oracle White Paper
June 2008

JROCKIT

Oracle JRockit Mission Control Overview
�

Oracle JRockit Mission Control Overview...3
�
Introduction..3
�
Non-intrusive profiling and diagnostics..3
�

Management Console...4
�
JRA (JRockit Runtime Analyzer)..8
�
Memory Leak Detector..12
�

Conclusion..15
�

JRockit Mission Control Overview Page 2

JRockit Mission Control provides non-

intrusive profiling and diagnostics of

JVMs, making it suitable for production

time use.

JRockit Mission Control currently contains

three main tools:

•	 Console

A JMX based management

console

•	 JRA

The main profiler which works

like a flight recorder

•	 Memleak

A tool for detecting and hunting

down memory leaks

ORACLE JROCKIT MISSION CONTROL OVERVIEW

INTRODUCTION

Oracle JRockit Mission Control is a set of powerful tools running on the Oracle
JRockit JVM. These tools deliver advanced, unobtrusive JVM monitoring and
management, suitable for use both in development and production environments.
This article gives an introduction to JRockit Mission Control, describing the main
components in the suite, how this suite's components differ from competing
technologies, and how you can use them to monitor, manage, profile and diagnose
your applications when running on the JRockit JVM.

NON-INTRUSIVE PROFILING AND DIAGNOSTICS

Most technologies used today to monitor, manage, and profile the Java runtime use
fairly intrusive technologies, like byte code instrumentation and JVMTI (which has
replaced the older JVMPI). The main focus of JRockit Mission Control is to gather
the data necessary with the lowest possible impact on the running system. The
technology used also enables the application to run at full speed once the tool is
disconnected from the JVM. This makes JRockit Mission Control suitable for use
in production environments. The minimal overhead also minimizes the Heisenberg
effect and can provide more representative data for your application than the more
overhead-prone techniques.

JRockit Mission Control currently contains three powerful tools:

The Management Console
The JRockit Management Console is a tool for monitoring and managing multiple
JRockit instances. It captures and presents live data about GC pauses, memory and
CPU usage, as well as information from any JMX MBean deployed in the JVM's
internal MBean server. JVM management includes dynamic control over CPU
affinity, garbage collection strategy, memory pool sizes and more.

The JRockit Runtime Analyzer
The JRockit Runtime Analyzer (JRA) is an on-demand 'flight recorder' that
produces detailed recordings about the JVM and the application it is running. The
recorded profile can later be analyzed off line, using the JRA Mission Control plug-
in. Recorded data includes profiling of methods and locks, as well as garbage
collection statistics, optimization decisions, object statistics, and latency events.

The Memory Leak Detector
This is a tool for discovering, and finding the cause for, memory leaks. The JRockit
Memory Leak Detector's trend analyzer can discover very slow leaks, it shows
detailed heap statistics including referring types and instances to leaking objects,
allocation sites, and provides quick drill down to the cause of the leak. The Memory
Leak Detector uses advanced graphical presentation techniques to make it easier to
navigate and understand the sometimes complex information.

The next three chapters will explain each of these tools in a little bit more detail.

JRockit Mission Control Overview Page 3

http://java.sun.com/j2se/1.5.0/docs/guide/jvmpi/jvmpi.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/

The Management Console is a JMX

console you can use to monitor any JMX

compliant JVM.

To fully utilize the capabilities of the

Management Console you need to be

monitoring a JRockit JVM.

Management Console

The Management Console is a JMX-based console for managing and monitoring
the JRockit JVM. It provides vital health data like the live set, the heap usage, CPU
load, and other attributes exposed by the MBeans registered in the JVM-internal
platform MBean server. The Management Console also includes a low overhead
on-line method profiler and an exception counter.

The Management Console consists of an agent running in the JRockit process,
exposing the MBeans registered in the JVM-internal platform MBean server, and a
separate GUI plug-in running in JRockit Mission Control. When the Management
Console connects to a JRockit JVM, a set of JRockit specific MBeans will
automatically be created and registered in the platform MBean server, exposing
JRockit specific functionality.

As Figure 1 illustrates, a single Management Console can be connected to several
JRockit JVMs, and several instances of the Management Console can be connected
to a single JRockit JVM. Note that since JRockit Mission Control can handle
multiple JRockit JVMs, there is usually no need to run multiple instances of JRockit
Mission Control on the same machine.

You can connect several management

consoles to different JVMs from one

JRockit Mission Control.

The JRockit JVM contains proprietary

MBeans exposing JRockit specific data to

the Management Console, an agent that

allows the console to access the data

remotely and a server that enables

automatic discovery of the running

JRockit.

JMX Agent

JMXMAPI

PlatformMBeanServer

Local JRockit
Process

JRockit Mission Control

RJMX

Management Console

JVM Browser

JDP Client

Local Disovery

RJMX

Management Console

JMX Agent

JMXMAPI

PlatformMBeanServer

JDP Server (optional)

JRockit Process

Machine A

Machine B

Figure 1: BEA JRockit Management Console communication

From a high-level architectural perspective, the console relevant parts of the
monitored JRockit includes:

JRockit Mission Control Overview Page 4

• A set of interfaces (JMXMAPI)
JRockit specific MBeans that at a very low overhead delivers JRockit
specific data. The collection of MBeans includes a dynamically generated
MBean exposing all of JRockit's performance counters as attributes. These
extensions are internally named the JRockit JMX Management API, or
JMXMAPI for short.

• An agent exposing JMXMAPI
Communication with the console uses remote JMX over RMI. You can
start the agent using JRockit JVM command line parameters. The agent
life cycle can also be controlled by various JRockit specific APIs and
jrcmd, which is a command line utility for the JRockit JVM provided with
the JRockit JDK.

• The JDP (JRockit Discovery Protocol) Server
The Management Console carries out automatic detection of JRockit
JVMs running on the network by using multicasting to receive the location
of the particular JRockit. The JDP Server is optional, and can be started
using JRockit JVM command line parameters or jrcmd.

Note that in all versions of JRockit Mission Control other than the 1.0 version, JDP is an
extension to the JVM Browser, and not part of the Management Console.

JRockit Mission Control Overview Page 5

The console also sports an on-line, exact,

method profiler that provides invocation

counts and method timing information.

The recommended way to do profiling in

JRockit Mission Control is however to use

the JRockit Runtime Analyzer (JRA).

The console client plug-ins sports a JMX

service layer that provides persistence,

attribute subscriptions and notifications,

automatic JVM discovery and an

extensible framework to write new plug-

ins for the management console.

From a high-level architectural perspective, the Management Console client side
plug-ins includes:

• RJMX (JRockit Remote JMX services)
Provides services such as persistence, the attribute subscription
abstraction, and the notification framework.

• The JDP Client
Automatically discovers JRockit JVMs that have JDP enabled.
(Again, this is only valid for the first version of Mission Control. In more recent
versions the JDP Client is an extension to the JVM browser.)

• The main console plug-in
Defines the framework for the Management Console and the extension
points for other plug-ins extending the Management Console.

• Various plug-ins
A set of plug-ins that make out the default set of tabs that you can see in
the Management Console, such as the Overview, MBean Browser and
Method Profiler.

Figure 2: The Management Console GUI

The Management Console application introduces the concept of an Attribute
Subscription, which, somewhat simplified, is defined by the MBean ObjectName,
the Attribute Name, and the subscription interval. The console allows you to add
notification rules, plot and persist data from such attribute subscriptions. The
attribute subscriptions can be based on regular JMX MBean attributes, on
individual composite data keys from an attribute, or on JMX notification data. You
can create your own composite attribute subscriptions that depend on several other
attribute subscriptions for its data, or even create synthetic attribute subscriptions

JRockit Mission Control Overview Page 6

where it's up to you, the implementor, to provide the data by whichever means you
would like.

The Method Profiler provides a very low-overhead means of finding out how many
times a method is being invoked, and how much time is being spent in that
particular method. The machine code of the methods of interest are simply
regenerated with a tiny amount of instrumentation code, which is removed the
instant the profiler is stopped. The overhead of using the method profiler therefore
is only incurred when you have selected methods for profiling, and only for the
selected methods.

This kind of method profiling is nevertheless only useful when you already know in
advance what you’re interested in looking at - in most cases you should use the
JRockit Runtime Analyzer for profiling.

To summarize, the Management Console is a very flexible JMX monitor and
management tool that provides a wealth of features:

•	 Plotting of any numerical attribute

•	 Persistence of any set of attributes for offline analysis

•	 Special attribute subscriptions for easy plotting of pausetimes, live set size,
and continuous heap usage

•	 Notification rules that can take actions when a user-specified condition
occurs for a certain attribute

•	 The ability for users to plug in their own code for both notification actions
and constraints

•	 Management of the Java runtime, including dynamically changing the
garbage collection strategy, heap size, nursery size, JRockit process affinity,
enabling/disabling of verbosity flags, and more

•	 A low overhead method profiler

•	 An exception counter

•	 A means to dynamically invoke the operations of your MBeans

•	 A way to invoke the JRockit diagnostic commands

For more information on how to configure the console to use SSL, authentication
and roles, see the JRockit documentation.

JRockit Mission Control Overview Page 7

http://e-docs.bea.com/jrockit/webdocs/index.html

The JRockit Runtime Analyzer was

originally built to provide feedback to the

JRockit developers. It is used both

internally in the JRockit support

organization and by customers for

diagnosis, profiling and tuning of both the

JVM and Java applications running in the

JVM.

JRA (JRockit Runtime Analyzer)

JRA is a Java application and JVM profiler. It has been around for quite some time
within the JRockit development team, and was originally created to let the JRockit
developers find good ways to optimize the JVM based on representative data from
real-world applications. It has since proven very useful to customers for solving
problems in both production and development. JRA is also one of the primary
tools used by the JRockit support organization to help resolve customer issues.

JRA works like a flight recorder; it records how the Java application and the JVM
behave for a preset period of time. You can then analyze the recording using the
JRA Mission Control plug-in, where, for example, call traces for hot methods, bad
synchronization, and other important application/JVM behavior can be analyzed.
The Oracle Support organization uses JRA recordings from customers on a regular
basis to help Oracle customers resolve issues.

JRA consists of two parts: the recording engine in the JVM, and the set of GUI
plug-ins you can use to analyze the resulting recording. The recording engine uses
several sources of information including the JRockit Hot Spot Detector (also used
by the optimization engine to decide what methods to optimize), the operating
system, the memory management system (most notably the garbage collector), and
the JRockit lock profiler, if enabled.

With the JRA tool you can easily analyze the information contained in the JRA
recording by graphical means (see Figure 3). Graphs show pause times, heap
usage, and the committed heap size during the recording period. You can select any
individual garbage collection (GC) to view very detailed information about that
particular garbage collection.

Figure 3: JRA Garbage Collection Information
�

JRockit Mission Control Overview Page 8

You get call traces for the hot methods—not only the call traces leading up to the
The JRockit Runtime Analyzer provides

call of the method, but also the call traces portraying what was usually called next.
detailed garbage collection profiling,

The call traces also show whether or not an optimized version of the method was method profiling, latency events, lock
�

profiling, heap histograms and more. called.
�

Figure 4: JRA Method Profiler

A heap histogram is taken at the beginning and at the end of the recording,
revealing the heap usage per class, for instances of classes occupying more than 0.5
percent of the used heap space. The collected heap information is also used to
render pie charts showing heap utilization.

Since JRockit R27.3 Mission Control contains a latency analyzer able to profile
and graphically visualize latencies in Java applications. Mission Control has always
been good at pinpointing where performance is suffering due to pure
computational overhead, i.e. CPU bound problems. Before R27.3, however, there
was really no good way to find the cause of latency related problems, i.e. problems
when throughput in your application suffers since threads are stalling for different
reasons.

With R27.3 and the latency detection tool you can see thread graphs of where the
threads are stalling. Thanks to powerful and well optimized visualization techniques
it is possible to visualize, zoom and pan among hundreds of thousands of events
very quickly. You can also look at a method call tree to see from where the events
are occurring, or view the raw events in a log view with assorted filtering features.

JRockit Mission Control Overview Page 9

Figure 5: JRA Latency Tool

There are several ways to start a JRA recording:

• Use the JRockit Mission Control GUI.

• Use the JRCMD – a command line tool for the JRockit JVM

• Use the JRockit extension MBeans.

• Use the JRA -XXjra command-line parameters.

You can also trigger JRA recordings from the Management Console using
Notification Rules; for example, a rule can be created to start a JRA recording when
the CPU load has been above 90 percent for a minute.

JRockit Mission Control Overview Page 10

To sum things up, the JRA is a powerful JVM and Java application profiler that
provides:

•	 Efficiency (typically less than 2 percent overhead) in profiling both the
JVM and Java application.

•	 Method call traces showing which paths were taken to get to the method,
and what was called next.

•	 Method hot spot table, showing which methods were invoked most often.

•	 Very detailed garbage collection statistics, showing what happened during
each individual GC.

•	 Garbage collection strategy changes.

•	 Graphical plots of heap usage and pausetimes.

•	 Heap histograms showing the heap usage per class at the beginning and
the end of the recording.

•	 Detailed lock profiling, showing which locks were taken, if they were
contended, how many times they were taken, and more.

•	 Pie charts of heap usage per object size, including fragmentation.

•	 Which methods were optimized during the recording.

•	 Latency profiling

For more information about using the JRA, see the JRockit Mission Control
documentation.

JRockit Mission Control Overview Page 11

http://edocs.bea.com/jrockit/webdocs/index.html

Memory Leak Detector
�

The Memory Leak Detector quickly spots

even slow memory leaks. It does the

analysis on-line, while the application is

running at full speed.

The Memory Leak Detector is a tool to help you quickly discover memory leaks.
Even though the automatic memory management of Java frees the developers of
the burden to explicitly allocate and free memory used, memory leaks can still occur
if the program unwittingly keeps referencing objects that are no longer of any use.

The Memory Leak Detector gives you a trend analysis to quickly spot even slow
memory leaks. The trend analysis shows the heap usage of your application per
class. It will tell you how much space instances of the type are using, what fraction
of the heap they are occupying, how many instances there are, and how quickly that
usage is growing in bytes per second.

Figure 6: Memleak Trend Table
�

JRockit Mission Control Overview Page 12

The JRockit Memory Leak Detection Tool

can show relationships between different

types on the heap as well as instances in

interactive graphs.

The Memory Leak Detector also provides the means to quickly drill down to the
cause of the leak. You can select a suspected type in the trend analysis table, and
have the types with instances pointing to the selected type shown in a graph (see
Figure 7). The nodes of the graph can be arbitrarily expanded to let the user back-
track to what is ultimately causing the references to be held. Instances of a class can
be shown and introspected, and all instances pointing to a selected instance can be
shown in an instance graph. You can also turn on allocation traces to track all
allocations of instances of a specific class.

Figure 7: Memleak Class Graph

When a Memory Leak Detector session is started, a Memory Leak Server (MLS)
starts. Depending on the JDK version of the JRockit JVM you connect to, either
the JMX connector in JLMEXT (5.0), or the Rockit Management Protocol (RMP)
(1.4) will be used. Note that the protocols differ and that there are differences in
networking characteristics and security. A Memory Leak Server is a native server
with which the rest of the communication during the session takes place. On the
client side a Java API is used to communicate with the native server (see Figure 5).
The reason for using a native server is that if a serious memory leak condition
occurs and the JRockit JVM runs out of Java heap, JRockit will no longer be able to
run Java code.

JRockit Mission Control Overview Page 13

The Memory Leak Detection Tool can

achieve the performance it does by

piggybacking on the mark phase of the

garbage collector, adding a little bit of

extra bookkeeping whilst doing what it has

to do anyway – collect garbage.

Figure 8: Establishing a Memleak Session

The Memory Leak Detector piggybacks on the mark phase of the garbage collector,
adding some book-keeping to record the heap histograms (the memory statistics of
the heap aggregated per class) and generate the trend analysis. One common
solution to finding memory leaks in competing tools is to take several snapshots of
the entire heap of an entire system, and then compare the snapshots. In a system
with hundreds of gigabytes of heap or a system in a production environment, this
approach may not be feasible. With the JRockit Memory Leak Detector, only the
information you are interested in is sent over the wire, making the bandwidth
demands very small. When you use the allocation call trace functionality, only code
involving allocation sites for the selected class is instrumented. Also, as soon as the
session is over, or the allocation traces are turned off, the instrumentation is
removed and the code involving these allocation sites returns to full speed.

To summarize, the JRockit Memory Leak Detector is an advanced analysis tool
with a number of novel features:

•	 It can perform a trend analysis that discovers even slow memory leaks.

•	 It does the analysis online, piggybacking on the JRockit Memory Manager,
instead of, for instance, dumping the entire heap to the client multiple
times and examining the difference.

•	 It provides an advanced user interface that lets you find and examine the
relationships between the leaking type and other types, or the leaking
instance and other instances.

•	 The detector has a very low overhead and can be used to do the analysis
online, in production.

•	 No byte code instrumentation is used; when analyzed with the Memory
Leak Detector, the Java code will continue executing as if it was never
connected. No Java code will be modified.

For more information about the Memory Leak Detector, see the JRockit Mission
Control documentation.

JRockit Mission Control Overview Page 14

http://edocs.bea.com/jrockit/webdocs/index.html
http://dev2dev.bea.com/images/2005/12/memleak_com.gif

CONCLUSION

JRockit Mission Control is a versatile tools suite for monitoring, managing,
profiling, and eliminating memory leaks in your Java applications. JRockit Mission
Control is free for development use. You can reliably use JRockit Mission Control
in production environments without leaving any trace in your system after it has
been used, and with a much smaller performance overhead than comparable tools
when it is in use.

JRockit Mission Control Overview Page 15

JRockit Mission Control Overview

June 2008

Author: Marcus Hirt

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2008, Oracle. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Other names may be trademarks of their respective owners.

http:oracle.com

