Towards a Final Analysis of Pairing Heaps

Seth Pettie*
Max Planck Institut fur Informatik

Abstract

Fredman, Sedgewick, Sleator, and Tarjan proposed the
pairing heap as a self-adjusting, streamlined version of the
Fibonacci heap. It provably supports all priority queue
operations in logarithmic time and is known to be extremely
efficient in practice. However, despite its simplicity and
empirical superiority, the pairing heap is one of the few
popular data structures whose basic complexity remains
open. In this paper we prove that pairing heaps support
the deletemin operation in optimal logarithmic time and
all other operations (insert, meld, and decreasekey) in time
O(22Vloglogn) " This result gives the first sub-logarithmic
time bound for decreasekey and comes close to the lower
bound of (log logn) established by Fredman.

Pairing heaps have a well known but poorly understood re-
lationship to splay trees and, to date, the transfer of ideas
has flowed in one direction: from splaying to pairing. One
contribution of this paper is a new analysis that reasons ex-
plicitly with information-theoretic measures. Whether these
ideas could contribute to the analysis of splay trees is an
open question.

1 Introduction

Twenty years ago Fredman et al. [S] proposed the pair-
ing heap, a simple priority queue data structure that they
conjectured to be as efficient as Fibonacci heaps [6]. In
their original analysis Fredman et al. proved that all priority
queue operations (insert, deletemin, meld, and decreasekey)
were supported in O(logn) amortized time, where n is the
size of the heap. Although logarithmic time is optimal for
deletemin, theoretically efficient priority queues like the Fi-
bonacci heap enjoy O(1) amortized time for insert, meld,
and decreasekey.

In the intervening years pairing heaps have become the
priority queue of choice in applications requiring the de-
creasekey operation. Stasko & Vitter [8] demonstrated ex-

*Supported by an Alexander von Humboldt Postdoctoral Fellowship.
Email: pettie@mpi-inf.mpg.de.

perimentally that the cost of decreasekey is virtually, if not
asymptotically, constant, and Moret & Shapiro [10] con-
cluded that in Prim’s minimum spanning tree algorithm
pairing heaps are faster than the alternatives. These in-
cluded binary heaps, splay heaps, Fibonacci heaps, and oth-
ers. The pairing heap is now included in implementations
of the GNU C++ library and the LEDA library [9].
Fredman [4] proved the remarkable result that on a spe-
cific distribution of operation sequences, no (generalized)
pairing heap can perform optimally. Specifically, there
are sequences of n insertions, n deletions, and nlogn de-
creasekeys that take 2(nlognloglogn) time to execute.
He concluded that the complexity of the decreasekey op-
eration lies somewhere between Q(loglogn) and O(logn).

The difference between optimality and suboptimality is
not as stark as one might think. Because the user of
a priority queue has already resigned himself to paying
O©(nlogn) time for n deletemins, a non-constant cost for
decreasekey will only be detectable for sufficiently dense
input sequences. (Density is the ratio of decreasekeys
to deletemins.) For example, if Fredman’s lower bound
turns out to be tight, this would imply that in the stan-
dard graph applications (shortest paths, weighted match-
ings, minimum spanning trees, etc.) pairing heaps are no
worse than Fibonacci heaps when the number of edges is
O(nlogn/loglogn). Fredman’s lower bound only estab-
lishes that the pairing heap is suboptimal in the density
range w(logn/loglogn) to o(lognloglogn); for other
ranges its complexity remains open.

In this paper we provide the first proof that pairing heaps
support decreasekeys in sub-logarithmic time.

Theorem 1 The pairing heap executes a mixed sequence
of m priority queue operations, including n deletemins, in
O(nlogn + m22VI8108 ™) fipe,

The 22V1°8198 ™ function lies in the asymptotic spectrum
between w(poly(loglogn)) and o(log®n). It is an ugly
bound and undoubtedly not tight. Nonetheless, we can now
claim with certainty that the pairing heap is asymptotically
optimal for any density O(logn/22vioslegn),

The Pairing Heap. The structure consists of a single
rooted tree where the children of a node are assigned some
left-to-right ordering. Each node is identified with a key and
the key of a parent is no larger than the key of any child. (It
is heap ordered.) During the execution of an operation there
may be multiple rooted trees. If x;, 2 are two roots then
linking x1 and x5 either makes x; the leftmost child of x5 or
vice versa, depending on which node’s key is smaller. The
operations are implemented as follows. An insert creates
a new node with a given key and links it with the existing
root. A meld of two given heaps simply links their roots. A
decreasekey operation is given both a node and the heap to
which it belongs. It detaches the subtree rooted at the given
node, reduces the node’s key appropriately, then links the
given node with the existing heap root.

By the heap-order property the minimum node is neces-
sarily at the root. A deletemin proceeds by detaching ev-
ery child of the root then linking children in a prescribed
fashion until one tree remains. Several linking strategies
have been proposed [5, 8, 3]. In this paper we consider the
standard 2-pass version given in [5]. Let 21,2, ... ,) be
the children of the root in left-to-right order. In the cou-
pling pass we link the pairs (21, 22), (23, 24), (5, 26), . - . -
Let y1,¥y2,... ,y¢ be the winners of these linkings, where
y¢ = xy if k is odd. In the accumulation pass we link ¥,
with y,_1, the winner of this comparison with yy_», and so
on; in general, y; is linked with the winner of y; 41, ... , Y.

Previous Work. Fredman et al. [5] proved that the
2-pass version of deletemin takes O(logn) amortized
time. They also considered arbitrary coupling, multi-
pass, and backward 2-pass." It was shown that arbi-
trary coupling takes ©(y/n) time and that multipass takes
O(lognloglogn/logloglogn) time. No o(y/n) time
bound is known for backward 2-pass. Stasko and Vitter [8]
and Elmasry [2] proposed several variants of these linking
strategies. In [8] it was observed that with a small inser-
tion buffer the amortized cost of insertion can be reduced
to O(1). Tacono [7] proved that even the standard 2-pass
version supports insert and meld in O(1) time. Bringing the
insertion cost to O(1) is significant in applications where
the heap is likely to end in a non-empty state, for instance,
when computing single-source, single-destination shortest
paths with Dijkstra’s algorithm. Iacono [7] and Elmasry
[2] studied the distribution-sensitive properties of pairing
heaps. Before the pairing heap was introduced Sleator and
Tarjan [12] invented the skew-heap, a self-adjusting data
structure that supported insert, deletemin, and meld in log-
arithmic time; however, it did not support decreasekeys di-

! Arbitrary coupling partitions the roots into couplets arbitrarily and ac-
cumulates the couplet winners in no specific order. Multipass repeatedly
executes the coupling pass of 2-pass and backward 2-pass accumulates the
Y1, ..,y roots from left-to-right rather than right-to-left.

rectly.

Overview. In Section 2 we discuss the original analysis of
pairing heaps in order to provide a reference point for our
approach. In Section 3 we introduce some key ideas and, as
a warmup, sketch a proof that decreasekeys take O(y/logn)
time. The full proof of Theorem 1 appears in Section 4.
In Section 5 we discuss some open problems and make a
conjecture on the actual complexity of pairing heaps.

2 Pairing Heaps, Entropy, and Potentials

The original analysis of pairing heaps [5] was a stroke of
elegance. However, it was achieved by drawing a slightly
unnatural correspondence between pairing heaps and splay
trees. In particular, Fredman et al. [5] map a general rooted
tree to a binary tree: a node’s left child in the binary rep-
resentation corresponds to its leftmost child in the general
tree and its right child corresponds to its right sibling in the
general tree. They observe that in the binary representation
a deletemin operation looks very similar to a splay up the
right shoulder of the tree. By borrowing the same poten-
tial function and analysis from [11] they derive amortized
logarithmic bounds on deletemins and all other operations.

A

Figure 1. The general trees are marked with
circular nodes, the binary representation with
square nodes. On the left is a tree with en-
tropy zero and on the right is a tree with en-

tropy log(4!).

The analysis of [5] uses the potential function & =
>, logs(z) where s(z) is the size of the subtree rooted
at z in the binary representation. One property of this func-
tion is that general trees with completely different charac-
teristics can get assigned the same potential. In Figure 1
we have, among rooted 5-node trees, the two with mini-
mum and maximum entropy, respectively. Here entropy is
the logarithm of the number of linear extentions consistent
with the heap-order. Since both trees get assigned a poten-
tial of log(5!) one wonders if there is an interpretation of
this potential that makes sense in the context of a priority
queue.

Let us examine the effect of one comparison on ®. Sup-
pose that a tree rooted at z is linked as the leftmost child of
y, with y and z having A and B nodes in their trees, respec-
tively. See Figure 2.

A A

Figure 2. The effect of one linking. Circular
nodes correspond to the general representa-
tion and square ones to the binary represen-
tation.

A quick calculation shows that regardless of the out-
come of the comparison the increase in potential ¢ is
log (%). Ignoring the pesky “—1”, this in-
crease can be decomposed into h(z) + h(z):

h(z) = log (457) h(z) = log (457
where h(z) represents the entropy reduction (bits of infor-
mation) of the link (z,y) and h(z) is, for lack of a bet-
ter term, the anti-information of link (z,y). That is, anti-
information measures the hypothetical entropy reduction if
the comparison between y and z had the opposite outcome.
The roles of information and anti-information are not sym-
metric. As we will see in Sections 3 and 4, anti-information
is a critical measure. Although not stated explicitly, the
role of information in the original analysis [5] is to keep the
proofs simple: with a symmetric potential function one can
afford to be oblivious to the outcomes of individual com-
parisons. It is possible to reprove the results of [5] using
the alternative potential ' = 3~ fi(z). Lemma 2 is an
interesting exercise.

Lemma 2 An insert, decreasekey, or meld increases ®' by
O(logn). If the root has k children then performing a
deletemin reduces ®' by k — O(logn).

There is an intuitive argument for why &' is a sensible
potential function. Because the pairing heap behaves in a

somewhat unintelligent fashion a deletemin operation can
fail to reduce entropy by more than a negligible amount. In
order to bound the amortized complexity of such an opera-
tion we must show that it nevertheless made some kind of
measurable progress. Consider a singleton node with no
children. If, before the deletemin, its parent’s subtree had
size p and afterward it has size p/2, the difference in h(z)
(information) is miniscule for p large. On the other hand,
if this trend continues then x will only have to endure an-
other O(log p) inefficient linkings before an efficient one.
In short, by the measure of anti-information, = has made
one “anti-bit” of progress.

The intuition above can be recast in several ways. One
way, advocated by Fredman [4] in his lower bound proof,
is to view a pairing heap as searching for the rank of every
node, where rank is the logarithm of the size of its subtree.
An efficient link is one between nodes with ranks differ-
ing by at most a constant. (A high-rank node becoming
the child of a low-rank node is also efficient but this should
happen infrequently.) Although ranks change over time it
is useful to think of them as essentially fixed. The kernel
of Fredman’s lower bound is the observation that after a de-
creasekey on z, nothing is “known” about the rank of x ex-
cept that it lies in the range [0, log n]. The pairing heap, in-
capable of revealing more than one bit of information about
anode’s rank in every comparison, must engage x in at least
Q(loglogn) comparisons on the average before its first ef-
ficient linking. That is, no linking policy can do better than
a binary search. On the upper bound side, the analysis of
[5] says that pairing heaps do at least as well as a linear
search. (The term search here is only meant to evoke a fa-
miliar concept; pairing heaps do not search for anything.)
In this language, Section 3 gives a proof that pairing heaps
do at least as well as a two-stage linear search. This leads
to a O(y/log n) upper bound on decreasekeys. In Section 4
we generalize this idea to a kind of multi-stage search.

3 Introduction to the Analysis

At any moment the links of a pairing heap can be parti-
tioned into three categories: those destined to be cut by a de-
creasekey operation, those destined to be cut by a deletemin,
and those not cut at all. We call the first type illusory and
the rest normal. The size of the subtree rooted at z is an
important statistic, but an unstable one since nodes that lie
below an illusory edge will, at some point in the future, be
moved out of s subtree. Let |z| be the size of the nor-
mal subtree rooted at x. Clearly, until & is deleted |z| is
non-decreasing over time. Let p(z) be the parent of x and
|p(z)| be w.r.t. the moment just before establishing the link
(z,p(x)). We redefine ii(z) w.r.t. the || measure:

h(z) = log (M)

||

and if z is a root, i(x) = 0 by definition.

Recall that the deletemin operation consists of two
passes: a coupling pass and an accumulation pass. Two
nodes form a couplet if, in their next linking, they are des-
tined to be linked in the coupling pass of a deletemin. Ev-
ery node is either open or closed. A closed-couplet is one
in which both nodes are closed. The overall potential of the
heap is:

®" = —(# of closed-couplets)

R

As a rule, every node begins life in an open state. Since
h(z) < logn the potential contributed by z is no more than
2y/logn. If z is open and h(z) drops below v/logn we
close it, which, one sees by inspection, can only cause a
reduction in potential.

h(x) if z is closed

Sle) vlogn if x is open

Viogn

Decreasekey. Let « be the node in question. The link
(z,p(z)) must be cut, and is by definition illusory.
Since the nodes in z’s subtree do not contribute to the
size (by the || measure) of ancestors above p(z), cut-
ting this link does not affect the A function or the over-
all potential of the tree. We link z with the root; let 2’
be the loser of this comparison. If i(z') < v/logn we
designate =’ closed, increasing the potential by h(z').
Otherwise z' is open. Since hi(z') is bounded by log n
the increase in potential is at most 2+/log n.

Insert, Meld. See decreasekey.

Deletemin. Our analysis focuses on one couplet x;, T4+
(two children of the root). Let 2’ be the tree derived
by coupling and accumulating all the right siblings of
2iy1. Let A = |p(2i41)], B = |2i1],C = ||, and
A’ = |z'|. Due to the introduction of illusory links
A’ may be smaller than A — 1. As far as this couplet
is concerned the deletemin performs two linkings: x;
with ;11 and the winner with z’. There are numerous
cases to analyze, depending on the outcomes of the
comparisons, and the open/closed states of z;, 41,
and z'. The cases boil down to three scenarios:

e Ifx;,z;y, are both closed then this leads to fruit-
ful comparisons. (Fruitful = reduction in poten-
tial.)

e If x;,x; 1 are both open this also leads to fruitful
comparisons.

e If z; is closed and x;41 open (or the opposite)
then this couplet may not produce fruitful com-
parisons. However, the number of these unfruit-
ful couplets is dominated by the fruitful ones plus
the cost of all deletemins.

We illustrate just two sub-cases of this analysis, in or-
der to exhibit the important features of our approach.
An exhaustive case analysis is pointless since these re-
sults are superceded by those in Section 4.

Case 1. Suppose that x;,z;41 form a closed cou-
plet, and that ;11 loses to z;, which loses to z’. We
charge 21og((A + B + C)/A) units of potential to the
deletemin operation, which we account for later. As-
suming that neither of the new edges is illusory, the
reduction in potential is:

IOg AEB + log A+g+0 _ IOg BEC

—log Agfgc + 2log A+§+C -1
> log (%) > log (<A+C)) >1
where the “—1” in the second line accounts for the loss

of a closed couplet. The potential reduction is used to
pay for O(1) comparisons, including those involving
T, ;41 but possibly some others.

Case 2. Suppose that z;,x;+; are both open, and
again, that z; ;1 loses to x;, which loses to z'. We
borrow nothing from the deletemin operation; the re-
duction in potential is:

1 A+B A+B4C B+C
Jlogn (log “5= + log 245+ — log 5=

A'4B4C
—log §+g)

(log 4£2) /\/logn

1

vV v

Where the last line follows from log C' < log(A+B)—
Vlogn; if this inequality did not hold then x; would
have already been closed. This one unit is used to pay
for O(1) comparisons involving this couplet and pos-
sibly some others. After the links are established one
or both of z;,z;1 might be closed, which can only
reduce the potential further.

The cases involving a mixed couplet (with one open
and one closed node) are paid for by (a) the creation of
new closed-couplets, or (b) letting a non-mixed couplet
elsewhere pay for the comparisons of the couplet in ques-
tion. The way the closed-couplet potential works is fairly
straightforward. Suppose z;,y; and zo,y» are adjacent
mixed couplets, with y1, y»> open. If y; defeats z; then a lot
of potential is released, which can pay for the comparisons
in both couplets. On the other hand, if z; and z5 emerge as
winners (and both lose to the tree derived by accumulating
yo’s right siblings) then zj, 2o can form a closed-couplet,

reducing the overall potential by at least 1. This is just a
sketch of the arguments to come in Section 4.

In Case 1, and in many cases in Section 4, we “borrow”
potential from deletemin operations. Lemma 3 is used to
show that at most O(log n) units of potential are borrowed,
implying an amortized cost of O(log n) per deletemin. This
is the same argument used in [5], though phrased differ-
ently.

Lemma 3 If every couplet x;, ;11 charges the deletemin
operation at most

d%(mn+mﬂu+muﬂm>
|p(@is1)]

units, the total amount charged is at most clog(n — 1).

Proof: Let x1,...,x; be the children of the root to be
deleted. Notice that the following sum telescopes,

k/2
3 clog <|x2H| + il + |p<x2i)|>

im1 Ip(2:)]

totaling clog >, x; if k is even and clog((3_,; #:)/(xx+1))
otherwise. O

4 A Better Analysis

One suspects that our analysis from the previous sec-
tion could be generalized to show that decreasekeys take
O(logl/ ®n) time. Rather than consider two orders (open
and closed) we could define three orders, where the poten-
tial of a node z would be proportional to h(z) at order 0,
h(z)/log? n + log*/® n at order 1, or h(z)/log?*n +
2 logl/ % n at order 2. Whenever two nodes of the same order
end up in the same couplet we are assured of a fruitful com-
parison. However, managing three orders is significantly
more complicated because there are new ways in which a
deletemin operation can fail to release any potential. The
comparisons must be paid for by showing the configuration
of order 0, 1, and 2 nodes after the deletemin is measurably
“better” than before. This requires a potential function on
configurations. A huge case analysis ensues.

In this section we attempt a generalized analysis. Fol-
lowing the idea sketched above we assign each node z an
order o(z) € {0,1,...,k — 1}, where & is a parameter to
be fixed later. It is still useful to make an open/closed dis-
tinction; order-0 nodes are closed and all other orders are
open. The parent of z is p(x) and o(x) refers to o(p(z)) im-
mediately before establishing the link (x,p(x)). The over-
all potential function consists of five components: 7, a, 6, p,
and p. The o, 0, and T parts are generalized forms of those

introduced in Section 3 and all have some intuitive mean-
ing. It is more difficult to explain the p and p potentials
because they are tailored to the operational properties of
the pairing heap rather than structural features of the tree.
We define the five potentials then sketch their relationships
and individual roles within the analysis.

6(z) = 22°) (logn)'/*
h(zx) ifo(z) =0
a(z) =
mii)(/l otherwise
1 ifo(z) =0(z) > 1
p(z) = 20(z)+1 if o(z) < o(x)
0 otherwise
€1[0,2°® —1] ifo(z) > o(x)
niw) { =0 otherwise
7 = number of closed couplets
Total Pot. = —7+ » (8(z) + a(z) + p(x) — p(z))

In a deletemin operation each node has the possibility
of making progress in two ways, which correspond to «
and 6 potentials. Let o(y), o(y), A(y) and o' (y), ' (y), ' (y)
be with respect to y before and after the deletemin opera-
tion. If, after the operation, o(y) > 1 and A'(y) is less than
(log n)"(y)/”, then y undergoes an order reduction. We set
o'(y) =min{i > 0 : I'(y)/(logn)¥/* < (logn)'/*}. This
releases at least (c»/2)2°(%) (logn)'/* units of f-potential,
which, for ¢, sufficiently large compared to c;, pays for
some linkings and the increases in p,«, and —pu poten-
tials. (More on this later.) If y fails to undergo an or-
der reduction it can still make progress. If o(y) > 0 and
1(y) < h(y) — (logn)°®/* then at least ¢;2°(¥) units of
a-potential are released. This pays for some comparisons
and possible increases in p and —pu potentials. The other
three potentials (p, p, 7) represent an accounting scheme to
pay for fruitless comparisons. The most interesting of these
is the p-potential, which represents the bottleneck in our
whole approach. Suppose o(y) > 0'(y) > o(y), that is, the
order of y’s parent has become strictly closer to y’s own or-
der. This is a kind of progress since, if the trend continues,
y will be linked with a node of the same order after less than
k linkings. (As we will see, such a linking is always fruitful
in the sense that it coincides with a release of «-potential
or an order reduction.) However, in the time between two
order reductions on y it is not necessarily the case that o(y)
is increasing, or even non-decreasing. That is, this type of
progress is very easily destroyed. Using the u potentials we
can show that, on the average, y participates in less than

2°(%) unfruitful linkings before its next fruitful one. Con-
sider how the p potentials of ¥ and z might behave in the
situation depicted in Figure 3.

’ o) =o(z) =i

Figure 3. Nodes are labeled with their order.

One can see that y has made a kind of progress (0(y) =
i < k = 0'(y)) and that z has lost any progress made so
far (6(z) =i > 0 = 0'(2)). Since y made progress it only
makes sense that it should be responsible for paying for the
links (y, z) and (z, p(z)). Since no «, 8, p, or T potential has
been released y just borrows one unit of potential from the
void. In the past both ¢ and z may have borrowed potential
to pay for these types of linkings. Suppose the debt of y and
z are u(y) and p(z). Because y made progress we force it
to pay for the two links and take on z’s debt. That is, we set
w'(y) = p(y) + u(z) + Land p'(2) = 0. One can prove by
induction that u(y) < 2°) —1 atall times.? Since o(y) < &
the number of links made but not paid for is O (n2"), where
n is the size of the tree. These linkings can be attributed to
earlier insert operations.

It may be the case that both y and z make no progress, in
the sense that 0’ (y) < 0(y) and 0'(z) < 0'(z). The 7 and p
potentials come into play in this situation.

In the remainder of this section we show that the amor-
tized cost of deletemin is logarithmic while the cost of de-
creasekey, insert, and meld is on the order of 2% (log n)l/ K,
We set & = y/loglogn — O(1). Theorem 1 follows.

The proof focuses on one couplet z, y in a deletemin op-
eration, where z is to the left of y. Let o(z) = k, o(y) = j
and assume wlog that j > k; the analysis for 7 < k is
symmetric. Let z = p(y) be the root to be deleted. We

2This induction hypothesis is actually part of the definition of . There
is a small anomaly when 6(y) # 0(z), that is, when p(y) had undergone
an order reduction between its linkings with y and z. This case is easy to
handle separately.

assume that 6(y) = 0(z) = i; the case when o(y) # 0(2),
i.e., z underwent an order reduction between linking with
y and z, can be handled separately. Let ' be the tree root
obtained by coupling and accumulating the right siblings of
y and let o(z') = £. We assume z, y are not the rightmost
children of z and ignore the special case when z' does not
exist. Let C = |z|, B = |y|, A = || (where |z]| is the
size of x before linking with y and z) and A’ = |2'|. Due
to the introduction of illusory links we can only guarantee
that 1 < A" < A. Generally speaking, if g is an evolving
function then g is w.r.t. the moment before the deletemin
and ¢’ w.r.t. a moment during or after the deletemin. The
following inequalities hold:

logA'" < logA— (logn)t/* ifl >0
logB < logA— (logn)i/* ifj >0
logC < log(A+ B)— (logn)** ifk>0

During the accumulation linking we assign z’ (the accu-
mulation root) an a-potential of:

a(@’) = 20+ f(0)-log <%>
e {t=0}
where f({) = { c12¢/(logn)/% {0 < €< K}

Two properties of f to keep in mind are f(¢) < 1for £ > 0
and f(£+ 1) < f(¢), for n sufficiently large.

The situation is simple: we link z and y and the win-
ner with . However, due to the number of parameters in-
volved there are several cases to analyze. Factors include
the outcomes of the comparisons, the orders of the nodes
involved, whether the two new links become illusory or
not, and whether any nodes take an order reduction. Our
analysis also must take into account features of the cou-
plets containing y and z after the deletemin operation. We
make repeated reference to cases (a)—(d) depicted in Fig-
ure 4. (Most of the key ideas in the proof can be absorbed
by considering only case (a) through Situations 1-4. The
other cases are of lesser importance.)

Lemma 4 After linking z and y and the winner with ', the
adjusted reduction in a-potential (after borrowing potential
from the current deletemin operation and future and past
decreasekey operations) is at least 2 if j = k = 0 and at
least c127 if j = k > 0. In case (a) it is at least 0 and if
kE < £, £ > 0 the reduction is at least c12¢. In case (b) it is
at least 2 and if ¢ < k, k > 0 the reduction is at least ¢,2".
In cases (c) and (d) the reduction is at least ¢127.

Proof: Regardless of the final winner among {y, z, 2’} we
set its order to be min{¢, k, j} = min{¢, k}. After address-
ing cases (a)-(d) we consider the effect on our potential
function when one or both of the new links become illusory.

Wlog k<j

(" < min{k, (}

k' < min{k, £}

(@ (b)

0" < min{k, (}

j' < min{k, ¢}

() (Y]

Figure 4. Top left: x is the root to be deleted and -,y is the couplet under investigation. We assume
o(z) = o(y) = i. Top right: 2’ is the root of the tree derived from coupling and accumulating all of y’s
right siblings. If no illusory links were introduced A’ (the size of z') would be A — 1; in general it may
be smaller. Cases (a)—(d) depict the four possible outcomes of the two linkings. Regardless of which
node becomes the new root (z, y, or z'), its order is reduced to min{k, ¢}.

Case (a). Here y loses to z, which loses to z’. We set
¢ = o(z') = min{k, ¢}. The adjusted reduction in a po-
tential, after borrowing 2log((A + B + C)/A) units from
the deletemin operation, is the logarithm of:

<A+B B

T ra+B+c Brc W
B B+C

c A+B+C

(AN (aaBro\ D rarBrCN L,
A A+B+C A

o (A+B\'V B\ (A4 B+ 0\’
- \B+C C A

L (A+C)?
i=k=0} > —=—24

f(3) .
{i=k>0} > (AZ,B> > (208" myfG)
(21t1g"/'c n)lej/log"/'C no_ 2612j
f(0)
{k < Z} > (%) > (210gi/")f(f) — 26122

{otherwise} > 1

Case (b). Here y and 2’ lose to z. We set k' = 0'(z) =
min{k, ¢}. After borrowing 3log((A + B + C)/A) units
from deletemin, the reduction in a-potential is log of:

A+ B 1) A+B+C f(k) A Al F(£)
<B+C> < C) (EA'+B+C>

(A+B+C\"Y (A4 B4OV
A+B+C A

(A+B)(A'+B+C)(A+B+C)?

{j:kZO} > (B+C)CA2
2
A+ B\’ ire \TG)
{j=k>0} > () >(21°g ")
c
— 2612j
F(k) 1
{t<kk>0} > (#) > ger2*
((=k=0} > <A—£B> > 9e12’

{otherwise} > 4% > 4

Case (c). Here z loses to g, which loses to x’. Set ¢/ =
o' (z') = min{k, £}. The reduction in a-potential, after bor-
rowing log((A + B + C)/A) from the deletemin, is the log
of:

<A+B B+C

W ra+B+C ©
B A+B+C

f(k)
c B+C>

415—['

(A A +BrC Ay ByC
Al A+B+C A

<A+B)f(j)A+B+C

B A
(Consider ¢' = £ and ¢' = k separately)
A+ B)?
=k=0) » @ED0 5
A1 B\
{otherwise} > (;)

> (210gj/'€ n) f(j) — 2612j

Case (d). In this situation y defeats both z and z’. Set j' =
o' (y) = min{k, £}. We borrow 2log((A+ B+C)/A) units
from the deletemin operation, for a reduction in a-potential
of:

A+ B 1) A+B+C f(k) A Al f(6)
B B+C A'A'+ B+ C

' A+B+C " A+B+C 2412—]"
A+B+C A

o (A+BA+B+C\'Y A fé)
=\"B B+C A+B+C

(A+B+C\YV) ra+BrOY
A+B+C A

(G=k=0) (A+BKZ;B+C)

A+ B\)
{otherwise} > (; > > 2012

> 4

If either of the new links becomes illusory (in any case
(a)—(d)) then we may need to increase the orders of z,y,
or z'. The maximum increase in all potentials (including
6, p, i, 7) is O(2% (log n)'/*), which we charge to the future
decreasekey operation that cuts the new illusory link.

If any of z,y,x’ undergoes an order reduction, say y,
then at least (cy/2)2°(%)(logn)'/* units of #-potential are
released. This pays for an increase in a(y) by at most
122 W (logn)'/*, where o' (y) < o(y) is the new order,
as well an increases in p and p potentials. O

Lemma 4 gives us a bound on the reduction in a-
potential. We analyze the effects on 7, p, i1, and §-potential
with six case distinctions, which depend only on the relative
order of ¢, 7, k.

Situation 1: j = k£ = 0. (Closed couplet) By Lemma 4
the reduction in a-potential is at least 2. We use 1 unit to
pay for the increase in —7 (since this closed couplet is be-
ing destroyed) and 1 unit to pay for O(1) comparisons; see
Situation 2. The creation of new closed couplets can only
reduce the potential further.

Situation 2: j > k =i = 0. (Mixed couplet) 1f y defeats
z in the first comparison (that is, we are in case (c) or (d)
of Lemma 4) then the reduction in a-potential at least ¢;27.
We use one unit to pay for the comparisons, 2/+! units for
the increase in p(z) and perhaps 271! for an increase in
p(z') if we are in case (d). Now suppose that y loses the
first comparison. The adjusted reduction in « potential is
positive in all cases, though in case (a) perhaps too small to
pay for any comparisons.

After z defeats y it next forms a couplet with some z'.
If 2’ was the winner of its last coupling (as z is in this cou-
pling) then there are two cases. If 2’ is open then, after
inspecting Situations 3—6, one sees that at least 1 extra unit
of potential was released in the last coupling of z’, which
we use to pay for the comparisons involving z. On the other
hand, if 2’ is closed then z, 2’ is a closed couplet, implying
a reduction of 1 unit of —7 potential, which pays for our
comparisons.

The tricky case is if 2’ was the loser of its last cou-
pling. Let us stand back a bit and consider the ways in
which a winner/loser coupling like z, 2’ could be created.
Let ¢ be a child of the root just before a deletemin and
and let qo,q1,...,qw be the new children of ¢ after the
deletemin operation, in right to left order. Clearly g was
coupled with ¢ before the deletemin and is therefore a loser.
The edge (q1,q) was created in Case (b) or (d), where the
winner of the couplet, ¢, defeated the accumulator root, g;
in this case. (This type of edge is a spine edge. Spine
edges are marked with dashed lines in Figure 5.) The
edges (¢2,9), - -- ,(qw,q) were all created in Case (a) or
(c), where the winner of the couplet, ¢, . . . , gy, in this case,
was defeated by the accumulator root, ¢ in this case. Thus
the only loser in this new batch of children is ¢op. Among
q1,--- ,Qy at most 2 can be next coupled with a loser: one
can be coupled with gy and another can be coupled with a
future child of q. See Figure 5.

Figure 5. Dashed links form the spine; they
always come from the second linking in cases
(b) and (d). A loser node is one that, in the last
coupling pass in which it participated, lost to
its couplet partner.

Since couplet ¢, go fell in either case (b) or (d), Lemma 4
states that at least 2 units of o potential were released. We
use one unit to pay for the destruction of a closed couplet
(if o(q) = o(go) = 0; see Situation 1) and 1 unit to pay
for O(1) comparisons including those of the 2 children of ¢
that are winners but are unlucky enough to be coupled with
losers.

Situation 3: 7 = k£ > 0. (Open couplet; same order)
By Lemma 4 the reduction in a-potential is at least ¢;27,
which we use to pay for increases in —u and p potential.
We set 1/ (y) = p'(2) = 0, always a valid assignment to p,
increasing the overall — . potential by at most 2- (2971 —1).
Any of p(z), p(y), or p(z') may increase by 1. If any of
¥, z, ' undergoes an order reduction, the drop in §-potential
pays for the minor increases in «, p, and —u potentials.

Situation 4: j > k > i. (Open couplet; different
orders) 1If we are in case (c) or (d) then at least ¢;2/

units of a-potential are released, which pays for resetting
w(y) = p'(2) = 0 and the increase in p(z) by 27+ and
p(y), p(z') by at most 1. (Subsequent order reductions pay
for increases in —p, p with large drops in #-potential.)

If we are in cases (a) or (b) then 0'(y) = k > i = 0o(y),
that is, from y’s point of view this comparison made a little
progress since its parent’s order is now closer to its own.
We set i/ (y) = p(y) +p(z)+1and p'(2) = 0. The overall
reduction in —p potential is 1. Since u(y), u(z) < 28 — 1
we have p'(y) < 220 —1)+1 =21 -1 < 2F 1 =
29'(¥) — 1. In other words, w' is still a valid assignment. If
we are in case (a) and k£ < £then by Lemma4, ¢; 2¢ units are
released, which pays for the increase in p(z). If we are in
case (b) and ¢ < k then ¢; 2k units are released, which pays
for increases at p(z'). Again, subsequent order reductions
on y, z,z’ pay for increases in —u, p potentials with large
drops in #-potential. To sum up, the overall reduction is at
least 1, which pays for O(1) linkings: those involving y and
z and possibly some others described in Situation 2.

Situation 5: j > k£ = i > 0. (Open couplet; different
orders) Notice that p(z) = 1. We will use this unit to pay
for the comparisons and show that any further fluctuation in
potentials does no harm. If we are in case (a) or (b) then
o(y) = 0'(y) = i is unchanged, meaning p'(y) = u(y) is
still a valid assignment. If we are in case (a) and k& < / then
the ¢ 2¢ reduction in a-potential can pay for any increase in
p(z). Similarly, reductions in « potential pay for increases
in p(z') in case (b) when £ < k. Cases (c) and (d) are easily
handled.

Situation 6: j,i > k& > 0. (Open/mixed couplet) Up
until now we have been worrying about sudden increases
in p-potential. It is in this situation that p finally comes
into play. Suppose that we are in case (a), that y lost to
z which lost to z’. Assuming ¢ < k, neither of these
comparisons were fruitful in the sense that no « potential
was released. Furthermore, neither made progress in the
sense of Situation 4 since ¢'(y) = k < ¢ = 6(y) and
0'(z) = € < i = 0(z); in fact, we now need to reduce p(y)
to restore validity. We pay for increases in —u with the
reduction in p(z), from 20:)+1 = 2i+1 o zero. (If p(z)
is not reduced to zero then £ < £ and ¢/ > 0; by Lemma
4, at least ¢;2¢ units of a-potential are released. This is a
good case.) Since p(z) = 0 and pu(y) < 2¢ — 1, setting
i (y) = 0 leaves us with 2¢ + 1 units leftover to pay for
O(1) comparisons. Cases (b), (c), and (d) are handled
similarly. Again, increases in p, —u due to order reductions
ony, z, ' are paid for with reduction in #-potential.

We have established that the cost of deletemin is
O(logn). Analyzing inserts, melds, and decreasekeys is
trivial. In these three operations there is exactly one link-

ing; we assign the loser x of this linking the minimum order
o such that h(z)/(logn)?/* < (logn)'/*. The increase in
8, a, p, —p, — potential is O (2% (logn)/*).

5 Discussion and Conclusion

We have given the first sub-logarithmic bound on the
complexity of the pairing heap’s decreasekey operation. We
conjecture that our bound is not tight, and that Fredman’s
lower bound of Q(loglogn) is tight for sparse instances.
For dense instances, where m = n't(1) Fredman [4]
claimed that pairing heaps run in linear time.

Conjecture 5 The pairing heap executes any se-
quence of m operations, including n deletemins,
in O(mloglog,,,,n + nlogn) time. In particu-

lar, the pairing heap is asymptotically optimal for
m = O(nlogn/loglogn) and m = n*+*1),

The primary open question in the area of binary search
trees is whether the splay tree [11] (or any structure) is
dynamically optimal; see [1] for some recent progress on
this question. Despite the connection between splay trees
and pairing heaps, there is no obvious analogue of dynamic
optimality for priority queues. However, the corollaries
of dynamic optimality do have natural analogues. For
instance, if the pairing heap possessed versions of the
working set and dynamic finger properties, this would lead
to some very simple adaptive sorting algorithms. In [7]
Tacono proved that pairing heaps satisfy a weaker form of
the working set property.

Acknowledgment. I would like to thank Amr Elmasry and
Irit Katriel for several valuable discussions.

References

[1] E. Demaine, D. Harmon, J. Iacono, and M. Pétragcu. Dy-
namic optimality — almost. In Proceedings 45th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 484-490, 2004.

[2] A. Elmasry. Adaptive properties of pairing heaps. Technical
Report 2001-29, DIMACS, September 2001.

[3] A. Elmasry. Parameterized self-adjusting heaps. J. Algor.,
52(2):103-119, 2004.

[4] M. L. Fredman. On the efficiency of pairing heaps and re-
lated data structures. J. ACM, 46(4):473-501, 1999.

[5] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tar-
jan. The pairing heap: a new form of self-adjusting heap.
Algorithmica, 1(1):111-129, 1986.

[6] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their

uses in improved network optimization algorithms. J. ACM,
34(3):596-615, 1987.

(71

(8]

[9]

[10]

[11]

[12]

J. Tacono. Improved upper bounds for pairing heaps. In
Scandinavian Workshop on Algorithm Theory (SWAT, LNCS
1851, pages 32-43, 2000.

J. S. Vitter J. T. Stasko. Pairing heaps: Experiments and
analysis. Comm. ACM, 30(3):234-249, 1987.

K. Mehlhorn and S. Naher. LEDA: A Platform for Combi-
natorial and Geometric Computing. Cambridge University
Press, 2000.

B. M. E. Moret and H. D. Shapiro. An empirical assess-
ment of algorithms for constructing a minimum spanning
tree. In DIMACS Series on Discrete Math. and Theoretical
Computer Science, 1994.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652-686, 1985.

D. D. Sleator and R. E. Tarjan. Self-adjusting heaps. SIAM
J. Comput., 15(1):52-69, 1986.

