
These are not the final page numbers

European Journal of
Immunology

Supporting Information

for

DOI 10.1002/eji.201747006
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Supporting Information Figures 

 

Supporting Information Figure 1 

(A) The TEC identity of MHCII
neg

 was validated using the FoxN1-GFP reporter 

mouse. (B, C) Relative mRNA expression of mTEC (Aire, RANK, Cld3 and Ctss) and 

cTEC lineage-specific genes (β5t, Ctsl and Prss16) in the four different TEC subsets 

at E15.5 (B) and p0 (C) were analysed. Results are representative of a pool of 7-12 

C57BL/6 embryos/pups thymi. (D) Protein expression of the cTEC-specific surface 

marker Ly51 in the different TEC subsets at developmental stages E15.5 and p0. 
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Supporting Information Figure 2 

(A) Expression of Aire as a surrogate marker in MHCII
hi

CD80
hi

, but not in 

MHCII
hi

CD80
-
TECs

 
during emrbyonic development. Results are representative of 

two to three independent experiments performed at the indicated time-points. 

Measurements for each experiment were based on 4-10 pooled embryonic or 2 adult 

thymi. (B) Representative dot plots of cell cycle analysis on E14.5 TEC subsets using 

Ki67 and DAPI. Cycling cells were defined as being Ki67
int/high 

and DAPI
+
 2N, 

comprising G2/M- and S- cell cycle phases. 
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Supporting Information Figure 3 

(A) Sorted cell numbers for each TEC subsets seeded onto the RTOCs (day 0) and the 

percentage of CP450
+
 cells retrieved post-culture (day 4). (B) Percentage of each 

CP450
+
 TEC subset retrieved from two-three experiments on day 4. 
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Supporting Information Figure 4 

Graphical comparison of the estimated number of all four TEC subsets as provided by 

the two proposed models (discrete- versus continuous-time models) compared to the 

average observed ex vivo TEC numbers. 
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Supporting Information Table 1 

Parameter estimates and their confidence intervals for the discrete- versus continuous- 

time model setting. 

 

Supporting Information Table 2 

List of antibodies used in this study for flow cytometry analysis and sorting. 
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Supporting Information Methods 

Mathematical models 

The aim of this theoretical approach was to estimate a number of unknown parameters 

controlling the development of 4 TEC subsets during embryonic development. To 

describe the dynamics as shown in Figure 3A, we consider not only the number of 

cells of the given 4 cell types, but also the actually observed number of cells currently 

undergoing cell cycle for each cell type and embryonic day; those cell numbers are 

captured by the processes!!! ! !!! ! !!!!!! and !! ! , and are known for each 

observed time point. 

As a result, a total of 8 parameters have been estimated; for notation and 

interpretation of those parameters see Figure 3A. In particular, the parameters !! to 

!! describe the proportion of cells transforming into a different cell type per time unit. 

The parameter ! represents the proportion of cells dying through apoptosis per time 

unit. Finally, the parameter ! represents the number of additional cells of the same 

subset produced by a cell currently undergoing cell cycle per time unit. Note that we 

assume both ! and ! to be identical for all 4 TEC subsets. Additionally, we require all 

8 parameters to be constant over time and to take values between 0 and 1, except for 

the parameter!!, which is required to be non-negative only.  

 

Discrete-time model: 

In order to estimate the parameters, we first set up a discrete-time model. In the 

context of this model, given a known vector !!!of cell counts for the 4 cell types at a 

given time point !, the cell counts !!!! at time point ! ! !!can be predicted using a 

transformation matrix M, which takes the following form: 
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Each row and each column of this matrix corresponds to one of the 4 cell types: the 

first row/column represents MHCII
neg 

TECs; the second row/column represents 

cTECs; the third and fourth rows/columns represent MHCII
lo 

TECs
 
and MHCII

hi 

mTECs, respectively. For i as the row index and j as the column index, the (i, j)- entry 

in the matrix M describes the effect the number of cells of type i at a given time point 

t has on the number of cells of type j at time point ! ! !. For example, the top left 

entry indicates that MHCII
neg 

TECs will increase in number through proliferation (as 

given by !!!!!!!!), but will also take losses through apoptosis (as given by!!!!) as 

well as transformation into cTECs (as given by!!!!) and MHCII
lo 

TECs (as given by 

!!!). Similarly, the entry!!! in row 1, column 2 indicates that a proportion of!!!of 

MHCII
neg 

TECs will transform into cTECs in one time unit. 

Thus, for any given set of parameter estimate and starting cell number !!!the resulting 

matrix M allows to make predictions for cell counts at future time points. In 

particular, the cell count !!!!!!can then be estimated as !!!! ! !! !!. Moreover, 

predictions over two or more time units can also be made: e.g., !!!!!! can be derived 

as !!!! ! !!!! !! ! !! !!
!. Note that all parameter estimates refer to the 

development in one time unit. We chose to set a time unit as 4 hours, i.e. 6 time units 

per embryonic day. 

To fit the proposed discrete-time model to the experimental data, for each of the 7 

available embryonic days we used a set of starting parameter values as well as the 

observed cell frequencies at this day as an input to create a prediction for the next day 
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(including a prediction for the first postnatal day p1 in case of E18.5). This prediction 

was then compared to the average of the actual cell numbers observed in the mice on 

the following embryonic day. 

For each day and each cell type the squared deviation between observed and predicted 

values was computed and summed up over all cell subsets and days to obtain a 

goodness of fit criterion for any specific set of parameters. Then, parameter estimates 

minimizing this criterion were computed using the optimization procedure “bobyqa” 

from the “minqa” library in R Version 3.3.1. 

 

Continuous-time model: 

The main assumption of the discrete-time model above is the assumption that the cells 

differentiate, go into cell cycle or die at discrete times. To allow these processes to 

take place continuously, in the next step we also developed an alternative, continuous-

time model for describing the same dynamics of the cell populations. This model is 

given by a system of differential equations where each equation represents the 

number of cells of each considered TEC subset at each moment of time. 

In the context of the model presented in Figure 3A, we actually would have to set up 

a system with eight differential equations, i.e. one equation for each cell subset and an 

additional 4 equations for the processes !!! ! !!! ! !!!!!! and!!! ! . However, we 

did not have enough experimental data to fit such a system without an impact on the 

reliability of the obtained parameter estimates. To avoid possible inconsistency, we 

assumed that the number of cells in the division stage changes only at discrete times 

(in particular at the 7 available embryonic days) and thus the processes 

!! ! !!! ! !!!!!! and !! ! !are piecewise-constant within each embryonic day. 
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Under the latter assumption, we then obtained a system of only 4 differential 

equations, i.e. one equation for each cell subset. This system is as follows: 

                        

Wherein!!! ! !!! ! !!!!!! and !! ! !is as in Figure 3A. Analogously to the 

discrete-time model above, each differential equation corresponds to one of the 4 cell 

subsets: the first differential equation describes the dynamics of the MHCII
neg 

TECs; 

the second the dynamics of the cTECs; the third the dynamics of the MHCII
lo 

TECs; 

and the fourth the dynamics of the MHCII
hi 

mTECs. 

This model of differential equations was then fitted to the experimental data by means 

of the lowest square deviation criterion as introduced in case of the discrete-time 

model above. In particular, the functions ParametericNDSolveValue and 

NonlinearModelFit provided by Mathematica 10 were applied while estimating the 

parameters. These functions allowed us to estimate the parameters numerically, 

without computing the analytical solution of the considered system of the differential 

equations. 

 

We observed certain minor differences in the parameter estimates and their 

confidence intervals as presented in Supporting Information Table 1. Those 

differences are assumed to be a consequence of discrete- versus continuous- time 

model setting and the fact that the “bobyqa” optimization method, as applied in the 

discrete-time model, was not available for the continuous-time case. 

Confidence intervals (CIs) for parameter estimates for both models were constructed 

by the non-parametric bootstrap method based on sampling with replacement for the 
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given experimental data set [1]. In each case, bootstrap samples were generated by 

stratified sampling, i.e. separate bootstrap samples were taken for each embryonic day 

and then combined into a full bootstrap data set; these CIs are presented in 

Supporting Information Table 1 as well. 
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