
MAHERFMT4.DOC 9/29/2006 1:29 PM

619

Open Source Software: The Success of
an Alternative Intellectual Property
Incentive Paradigm

Marcus Maher*

INTRODUCTION

 Intellectual property protection in the United States is based
on an incentive system.1 The protections provided by intellectual
property law are designed to produce economic incentives to
“promote the progress of science and useful arts.”2 The open
source software movement, which has gained publicity as the
popularity of the Linux operating system has grown, provides an
alternative to the economic incentives that dominate the thinking
of U.S. intellectual property policy. Product comparisons show
that open source software attains high technical standards despite
the relative absence of economic motivation for the creators of this
software. This technical success is all the more puzzling to the
traditional computer community, given the distributed, almost ad
hoc, development methodologies employed by the open source
movement. This article shows how the science of complexity the-
ory is able to explain the open source movement’s ability to trans-

* Associate, Wiley, Rein & Fielding, J.D., Harvard Law School. The views ex-
pressed in the article are entirely those of the author. The author thanks Prof. Lawrence
Lessig for helpful comments and criticism.

1. See Statement of Copyright and Intellectual Property Law Professors in Opposi-
tion to H.R. 604, H.R. 2589, and S.505 “The Copyright Term Extension Act”(Submitted
to the Committees on the Judiciary United States Senate United States House of Repre-
sentatives)(last modified Jul. 16, 1999)
<http://www.public.asu.edu/~dkarjala/legmats/1998Statement.html>.

2. U.S. CONST. art. I, § 8.

MAHERFMT4.DOC 9/29/2006 1:29 PM

620 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

late non-economic incentive mechanisms into a process for techno-
logical development and innovation.

This paper will begin to address this quandary by providing a
factual introduction into the details of the open source develop-
ment process. Next, a background introduction to complexity the-
ory will be provided. The features of open source development
will then be analyzed, uncovering the complex nature of open
source development. While the complex nature of open source
software provides an explanation as to its technical success, it also
provides insight into a number of problems that are facing the open
source community. The threats to the complex nature of open
source development will be considered and means of circumvent-
ing these problems suggested. Finally, the potential for complexity
to solve some anticipated open source problems will be discussed.

I. OVERVIEW OF OPEN SOURCE SOFTWARE DEVELOPMENT

The open source software development process has been de-
scribed as similar in nature to the familiar methods of research in
the scientific community.3 Key to the scientific method are the
principles of discovery and justification. Justification of scientific
discoveries comes from peer review. This review is only possible
if the discovery process is shared - the hypothesis, the experiment,
the analysis, et cetera. The sharing of ideas allows not only vindi-
cation of the initial results, but information upon which other sci-
entists can build, allowing advancement of the state of knowledge
and the strengthening of existing theories.4

Open source methods could be seen, in part, as the scientific
method at work in the computer science community. As will be
seen, however, the reality is more complicated. The principles of
both discovery and justification play extremely important roles in
delineating the bounds of activity in the open source community.

3. See Chris DiBona et al., Introduction, in OPEN SOURCES: VOICES FROM THE OPEN
SOURCE REVOLUTION 1, 6-7 (Chris Dibona et al. eds., 1999).

4. See id.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 621

A. Open Source Examples

Before describing the development process, it is useful to have
a basic understanding of a few of the more prominent programs
and packages that have been developed through the open source
process.

1. Apache

Apache began as an effort to address problems that were per-
ceived in the NCSA httpd web server.5 The Apache has been the
most popular web server since April, 1996 and today is more
widely used than all other web servers combined.6 The advantages
of Apache include the fact that it is free (as in costless), that it is
free (as in open source), and that it provides high quality perform-
ance.7

2. BIND

The Berkeley Internet Name Domain package (BIND) is the
software that provides domain name service (DNS)8 for the vast
majority of name serving machines on the Internet. BIND was
originally developed at Berkeley under a grant from the Defense
Advanced Research Projects Agency (DARPA)9. However, the
development and maintenance of BIND has been taken over by the
Internet Software Consortium (ISC).10

5. See About the Apache HTTP Server Project (visited Apr. 20, 2000)
<http://www.apache.org/ABOUT_APACHE.html>.

6. See id.
7. See id.
8. See ISC BIND (visited Jan. 27 2000) <http://www.isc.org/products/BIND>
9. Id.
10. See ISC BIND (visited Jan. 27 2000) <http://www.isc.org/products/BIND>.

MAHERFMT4.DOC 9/29/2006 1:29 PM

622 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

3. Linux (GNU/Linux)11

Linux is a Unix-like operating system. It is not, however, a
version of Unix, based on a version of Unix from the basic AT&T
Unix sourcecode, or a derivative thereof.12 It was intentionally
modeled after Unix to make it convenient for others to adopt,13 and
because it had been proven to be portable.14 Beginning in 1984,
the GNU Project worked to create the elements of a complete op-
erating system.15 By the early 1990s the only substantial operating
system element remaining to be developed, was the kernel.16

The Linux kernel started as the hobby of Linus Torvalds, a
Finnish computer science student, in part to teach him about his
new 386 computer.17 He started with the “Minix” kernel, a kernel
created by a computer science professor for educational use. Tor-
valds eventually rewrote the entire kernel, creating the foundation
for the Linux kernel. After the kernel was mentioned on a Minix
newsgroup, he was provided the opportunity to distribute the ker-
nel publicly on an FTP server.18

The Linux kernel was the final element needed for the operat-
ing system. With some effort, the kernel and existing GNU pro-
grams were integrated into a functioning operating system.19 The

11. Although this open source operating system is most commonly referred to as
“Linux,” there have been some recent efforts, in particular by Richard Stallman, to en-
courage use of the name “GNU/Linux,” due to the substantial role of GNU software in
the operating system. See Richard Stallman, Linux and the GNU Project, (last modified
Jan. 22, 2000) <http://www.fsf.org/gnu/linux-and-gnu.html>. Since the term “Linux” is
still the most common usage, that term will be used throughout.

12. See Linus Torvalds, The Linux Edge, in OPEN SOURCES: VOICES FROM THE OPEN
SOURCE REVOLUTION, supra note 3 at 101,102.

13. See Richard Stallman, The GNU Manifesto (last modified Jan. 16, 2000)
<http://www.fsf.org/gnu/manifesto.html>.

14. See Richard Stallman, Overview of the GNU Project (last modified Nov. 2,
1999) <http://www.fsf.org/gnu/gnu-history.html>.

15. See Stallman, Linux and the GNU Project, supra note 11.
16. See id.
17. See Appendix A in OPEN SOURCES: VOICES FROM THE OPEN SOURCE

REVOLUTION, supra note 3, at 221, 223-24 (debate between Andrew Tanenbaum and Li-
nus Torvalds in comp.os.minix regarding Linux).

18. See Glyn Moody, The Greatest OS That (N)ever Was (last modified Aug. 1997)
<http://www.wired.com/wired/5.08/linux.html>.

19. See Stallman, Linux and the GNU Project, supra note 11.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 623

operating system grew and expanded through the open source
processes to be discussed, eventually growing into a complete op-
erating system package that is available, both freely, and as a part
of a commercial distribution. Although estimates are difficult to
pin down accurately, a good estimate for the number of current us-
ers of Linux is about 7.5 million.20

Linux is the open source project that has probably undergone
the greatest number of publicized tests, reviews and comparisons.
These have consistently shown Linux to be of superior technical
quality, performing equal to, or better than, most of the products
with which it is compared.21

4. Mozilla

Mozilla is the open source version of Netscape’s Communica-
tor. On January 23, 1998, Netscape announced that, in addition to
giving away its Communicator product, its previously closed-

20. See Robert F. Young, Sizing the Linux Market, Second Edition (last modified
Mar. 5, 1998) <http://www2.linuxjournal.com/enterprise/linuxmarket.html>.

21. See Eric Hammond, 1997 Product of the Year: Operating Systems - Network
Operating Systems (visited Jan. 27, 2000) <http://www.infoworld.com/cgi-
bin/displayTC.pl?97poy.win3.htm#linux> (naming Red Hat Linux as the best network
operating system of 1997); John Kirch, Microsoft Windows NT Server 4.0 versus UNIX
(last modified Aug. 7, 1999) <http://www.unix-vs-nt.org/kirch> (comparing Windows
NT to Linux and other UNIX operating systems, including a favorable direct technical
and feature comparison of Linux with Windows NT); Henry Baltazar, Linux: Enterprise
Ready - The New Linux: 2.2.0 Kernel PC WEEK ONLINE, Feb. 1, 1999
<http://www.zdnet.com/pcweek/stories/news/0,10228,387766,00.html> (technically re-
viewing Linux 2.2); Steven J. Vaughan-Nichols & Eric Carr, Linux Up Close: Time To
Switch, SMART RESELLER, Jan. 25, 1999
<http://www.zdnet.com/sr/stories/issue/0,4537,387506,00.html> (technical comparison
of versions of Linux); Quinn P. Coldiron, Replacing Windows NT Server with Linux (last
modified Mar. 2, 1998) <http://citv.unl.edu/linux/LinuxPresentation.html> (analysis of
trial of Linux use to replace Windows NT); Murry Shohat, Engineers Speak Out: Linux
vs. Windows NT, Part 1 (last modified Jul. 1998)
<http://www.isdmag.com/Editorial/1998/CoverStory9807.html> (Review of engineer’s
responses to a request for evaluations of Linux). But see, Linux: How Good Is It? (ab-
stract) (visited Feb. 6, 2000) <http://www.dhbrown.com/dhbrown/linux.cfm> (finding the
enterprise capabilities of UNIX and Microsoft NT superior to Linux); A File and Web
Server Comparison: Microsoft Windows NT Server4.0 and Red Hat Linux 5.2 Upgraded
to the Linux 2.2.2 Kernel (last modified Apr. 13, 1999)
<http://www.mindcraft.com/whitepapers/nts4rhlinux.pdf> (test sponsored by Microsoft
which found that NT beat Linux in performance tests).

MAHERFMT4.DOC 9/29/2006 1:29 PM

624 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

source Communicator software was going to become open
source.22 Not long after the source code was made available, a
group of developers added 128-bit encryption capabilities, releas-
ing a “Cryptozilla” product.23 Netscape’s official Communicator
version 5.0 incorporated modifications suggested by open source
contributors.24

5. Perl

Perl is a programming language that has become one of the
most popular languages for Web page development, Internet ser-
vices, graphical programming and many other purposes.25 Perl “is
the engine behind most of the ‘live content’ on the Web.”26

6. Sendmail

Sendmail is a utility that routes about 80% of the e-mail on the
Internet.27

B. Initial Stages of Open Source Development

Any open source project begins with the desire of a developer
to meet some currently unfulfilled or inadequately fulfilled need.
As one commentator artfully wrote, “[e]very good work of soft-
ware starts by scratching a developer’s personal itch.”28 To put the
point more generally, this desire also accounts for programs that
meet some need recognized by the programmer, even if that need

22. See Our Mission (last modified June 1, 1999)
<http://www.mozilla.org/mission.html>.

23. See Michael Stutz, Cryptozilla Thwarts Feds Crypto Ban (last modified Apr. 3,
1998) <http://www.wired.com/news/news/technology/story/11465.html>.

24. See Netscape’s Brain Transplant (last modified Nov. 10, 1998)
<http://www.wired.com/news/news/technology/story/16163.html>.

25. See What Is Perl? THE PERL JOURNAL, THE VOICE OF THE PERL COMMUNITY
(last modified Oct. 23, 1998) <http://tpj.com/whatisperl.html>.

26. Open Source Products (last modified Feb. 18, 1999)
<http://www.opensource.org/products.html>.

27. See Josh McHugh, For the Love of Hacking, FORBES, Aug. 10, 1998 at 94.
28. Eric S. Raymond, The Cathedral and the Bazaar: The Mail Must Get Through

(last modified Aug. 8, 1999) <http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar-2.html>.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 625

is not one the programmer experiences personally.29

Further, “[g]ood programmers know what to write. Great ones
know what to rewrite (and reuse).”30 In the open source commu-
nity, where the source code for existing programs is available, de-
velopers are more likely to reuse this code in developing new pro-
grams. When a substantial amount of open source software exists,
there is an excellent chance of finding code that can be modified to
meet a particular need. This eliminates the necessity of ineffi-
ciently reinventing the wheel.

Reusing existing code does not mean that open source software
developers escape the trial and error process.31 As Eric Raymond
put it, “you often don’t really understand the problem until after
the first time you implement a solution. . . . So if you want to get it
right, be ready to start over at least once.”32 This process can
come in several forms. First, it may be the case that a new piece of
software is in the process of being created using some code from
an existing program when a program that would provide a better
basis for modification is found.33 Second, an existing program
may provide an initial framework for development; a framework
that is eventually replaced as the project progresses.34 Finally,
subparts of a larger project may have several prototypes developed,
with only one (or parts of several) chosen for ultimate refinement
through the open source process and inclusion in the larger pro-
ject.35

29. See Richard Stallman, The GNU Operating System and the Free Software
Movement, in OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION, supra note
3, at 53, 64 (discussing the fact that “many essential pieces of GNU software” were cre-
ated as part of a plan to create a free operating system, rather than from a particular need
for the software on the part of the programmer).

30. Raymond, Mail Must Get Through, supra note 28.
31. Eric S. Raymond’s associated rule is “[p]lan to throw one away; you will, any-

how.” Id. (citing Fred Brooks, THE MYTHICAL MAN-MONTH, Chapter 11).
32. Id.
33. This is what Eric S. Raymond describes happening with his efforts to modify

fetchpop into a POP3 client for handling e-mail, which he eventually abandoned in favor
of modifications to another program, popclient. See id.

34. This is what happened with Linux. Linus Torvalds started with Minix, a Unix-
like operating system for 386 machines. Eventually all the original Minix code was re-
placed, but it had provided a basis upon which to found the initial efforts. See id.

35. Apparently, this occurred in the development of Linux. See Halloween I: Open

MAHERFMT4.DOC 9/29/2006 1:29 PM

626 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

C. Review by the Open Source Community

There are several stages to the peer review process that are part
of the success of the open source model. These stages include at-
taining technical prerequisites before soliciting feedback and de-
veloping a base of users/developers. This user base must then be
encouraged to maintain an active role in the program’s develop-
ment. This is accomplished in part through the exercise of the
traits necessary for project leadership.

1. Technical Prerequisites

Prior to submission to the open source community, a piece of
code must attain a minimal level of technical development.36 Once
sufficient development has occurred, the software is sufficiently
advanced to undergo community review. A second technical pre-
requisite is a means of handling communication with contributors.
Contributors to an open source program are often geographically
dispersed. For larger or more successful projects, the contributors
may also be substantial in number. 37 Use of modern communica-
tion technologies - project web pages, mailing lists, newsgroups, et
cetera - are necessary to facilitate the desired peer feedback that is
at the heart of the open source process. In short, the growth of the
Internet and Internet technologies has made the open source
method possible.38 Finally, the technology to engage in debugging
and development must be available to the user for them to contrib-
ute. In the case of the Linux OS, for example, the act of installing

Source Software – A (New?) Development Methodology, (last modified Aug. 11, 1998)
<http://www.opensource.org/halloween/halloween1.html>.

36. “It’s fairly clear that one cannot code from the ground up in bazaar style. One
can test, debug and improve in bazaar style, but it would be very hard to originate a pro-
ject in bazaar mode. Linus didn’t try it. I didn’t either. Your nascent developer commu-
nity needs to have something runnable and testable to play with.” Eric S. Raymond, The
Cathedral and the Bazaar: Necessary Preconditions for the Bazaar Style (last modified
Nov. 20, 1998) <http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar-
9.html>.

37. See Halloween I, supra note 35.
38. See id. Consequently, it is also reasonable to conclude that access to the Inter-

net is necessary for participation in open source projects. Thus, Internet grow, not only in
terms of technology, but also in terms of world penetration is important for open source
software.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 627

the debugging and development environment is implicit to the act
of installing the operating system.39 Thus, participation by Linux
users in open source software development is facilitated by the
common use of GNU tools for development used in the open
source community.40

2. Obtaining Peer Review

Initially obtaining peer review is an important issue in itself.
There are two principle ways to garner community involvement.
The first is to take over ownership of a relevant existing program
and make use of the existing user/developer base. The second pos-
sibility is to start a new project and solicit support from the open
source community generally.

The easiest way to get peer review of a program is to take over
an existing open source project which will serve as a basis for
modification. The first way to do this “is to have ownership of the
project handed to you by the previous owner (this is sometimes
known as ‘passing the baton’).”41 The owner of a project is seen
as having a duty to pass on the ownership of a project that he or
she no longer is able to or wishes to maintain.42 Alternatively,
ownership of an existing project may be obtained if the project
needs work and the owner no longer maintains the project. In con-
formance with community norms, the would-be successor must
first attempt to find the owner. Then it is appropriate to announce
ownership of the project in as many relevant forums as possible,
allowing substantial time to pass. If anyone claims to have been
working on the project during this period of time, their claim will
have priority. If no one makes such a claim, the successor may
take over the project, and the existing user/developer base that ac-
crues to the project’s new owner.43 Ownership of the project pro-
vides access to the existing userbase from whom it is possible to

39. Id.
40. See id.
41. Eric S. Raymond, Homesteading the Noosphere: Ownership and Open Source,

(last modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-4.html>.

42. See Raymond, Mail Must Get Through, supra note 28, ¶ 2.2.
43. See Raymond, Ownership and Open Source, supra note 41.

MAHERFMT4.DOC 9/29/2006 1:29 PM

628 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

solicit feedback and development effort regarding any changes in
the code.

The process of creating a new project can be difficult, particu-
larly in the beginning. Brian Behlendorf, co-founder of the
Apache Group, detailed the resource requirements necessary to
start an open source project. There must be a project “captain”
who oversees any changes to the code, fixes incompatibilities in
contributions and in general “has overall responsibility for the
quality of the implemented code.”44 Someone must perform “in-
frastructure support,” maintaining mailing lists, the web server,
bug database and other resources. In addition, there must be main-
tenance of the bug database - receiving reports about bugs, and re-
sponding to valid bug issues. The project must also be docu-
mented, which means not only providing explanations of the
project and its current status, but also maintaining the Web site.45
Someone also needs to “build momentum” for the project among
other developers and users who will try the project and make peer-
review contributions.46 In addition to these roles, it is necessary to
have people who can work on the development of the code until
users join the project.47

3. Converting User Base Into Developers

Once there is a user base for a program, the open source proc-
ess takes advantage of these users for program development.48
Specifically, these users are sources, not only of feedback regard-

44. See Brian Behlendorf, Open Source as a Business Strategy, in OPEN SOURCES:
VOICES FROM THE OPEN SOURCE REVOLUTION, supra note 3, at 149, 163.

45. See id. The existence of a Web site (“home” page) for the project has interest-
ing implications for the “ownership” nature of an inherently abstract thing, like an open
source project. A web page reinforces the idea of ownership as it relates to the more
physical, territorial use of the term. See Eric S. Raymond, Homesteading the Noosphere:
Noospheric Property and the Ethology of Territory (last modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-14.html>.

46. Behlendorf, supra note 44, at 164.
47. Id.
48. See Eric S. Raymond, The Cathedral and the Bazaar: The Importance of Hav-

ing Users, (last modified Nov. 20, 1998) <http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar-3.html>; Eric S. Raymond, The Cathedral and the Bazaar: Re-
lease Early, Release Often (last modified Nov. 20, 1998)
<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar-4.html>.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 629

ing flaws or shortcomings in the program, but sources of solutions
for these problems. In highly planned, hierarchical development
approaches, finding and fixing bugs is a long and arduous process,
taking “months of scrutiny by a dedicated few.”49 This necessi-
tates long periods of time between releases and disappointment
when bugs remain in these long-awaited products. In contrast,
bugs are relatively shallow, and easier to find and solve, in soft-
ware subjected to the open source approach. Users of open source
programs are encouraged to contribute not only identifications of
bugs, but potential solutions as well. Thus, bugs are not only iden-
tified quickly, but given the abilities of the average open source
user, a solution is quickly found.50

The ability to fix bugs quickly is analogized to the “Delphi ef-
fect” - the fact that the averaged opinion of a group of individuals
with equal knowledge is much more reliable than the opinion of
one randomly-chosen individual. The open source development
process has shown “that the Delphi effect can tame development
complexity even at the complexity level of an OS kernel.”51 While
this is due in part to the fact that averaged opinions are more reli-
able, it is also due to the fact that, although open source software
development “requires debuggers to communicate with some co-
ordinating developer, it doesn’t require significant coordination be-
tween debuggers.”52 This means that the intricacies and manage-
ment costs associated with adding more developers to a
hierarchical project are minimal in the distributed open source con-
text.53

This difference from the structured, hierarchical model also al-
lows much shorter release intervals. Releasing more often yields
more corrections, and ultimately results in a high-quality piece of
software developed relatively quickly.54 This also helps minimize

49. Raymond, Release Early, Release Often, supra note 48.
50. Eric S. Raymond offers three alternative formulations of this point: (1) “Given a

large enough beta-tester and co-developer base, almost every problem will be character-
ized quickly and the fix obvious to someone,” (2) “Given enough eyeballs, all bugs are
shallow,” and (3) “Debugging is parallelizable.” Id.

51. Id.
52. Id. (quoting Jeff Dutky).
53. See id.
54. See id.

MAHERFMT4.DOC 9/29/2006 1:29 PM

630 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

the administrative costs associated with peer-reviewed open source
methods. By releasing new versions often and incorporating bug
fixes obtained through feedback, the duplicative efforts of debug-
gers are kept to a minimum.55

4. The Role of Leadership

Although the open source model involves much more distrib-
uted participation than the traditional, centralized, proprietary
software development method, there are important roles for project
leaders to play. In addition to handling the logistics of incoming
bug reports and bug fixes from users, it is necessary to select
among them. Only certain fixes can be implemented, and owners
must select among the (potentially) many alternatives to find the
solution that will ultimately be used.56 However, there is more to
the role than just recognizing good ideas. Often, different perspec-
tives yield different characterizations or conceptions of a problem.
These different perspectives can be insightful in determining how
to fix problems.57 Finally, suggestions for code changes may
come, not only in the form of patches to fix problems, but code
streamlining as well. As Eric Raymond noted, “[p]erfection (in
design) is achieved not when there is nothing more to add, but
rather when there is nothing more to take away.”58

A project owner must also resolve disputes arising in the pro-
ject. The project head has the authority, under open source com-
munity norms, to make ultimate design decisions and help keep a
group from breaking into multiple branches (“forking”).59 The is-
sue of giving credit for contribution to a project is a more difficult
issue to resolve, but also involves the project owner. Decision-
making is easiest if the project is structured according to the “be-

55. See id.
56. See Eric S. Raymond, The Cathedral and the Bazaar: Popclient becomes

Fetchmail, (last modified Nov. 20, 1998)
<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar-6.html>.

57. See id.
58. Id.
59. See Eric S. Raymond, Homesteading the Noosphere: Causes of Conflict (last

modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-14.html>.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 631

nevolent dictator” model.60 This model of ownership consists of a
single leader who makes design and group maintenance decisions,
and also assigns project credit as constrained by community
norms.61 In the simplest sense, credit for contribution means en-
suring that contributors receive a fair reputational stake in the suc-
cess or failure of a project. As a project develops, tiers of con-
tributors can arise, consisting of ordinary contributors and co-
developers.62 The co-developers get greater decision-making
power over the conflicts formerly resolved solely by the “dictator.”
Even further removed from the benevolent dictator model are the
leadership committee and rotating dictatorship models. These
models involve turning co-developers into a leadership committee,
or passing control among co-developers. These models are gener-
ally more complicated and less stable than the “benevolent dicta-
tor” model.63

Several character traits are important for project leaders as
well. One important trait, even before substantial development be-
gins, is strong people and communication skills.64 These skills are
helpful in attracting others to the project, and keeping developers
happy so that they enjoy working (typically for free) on the project.
Further, a somewhat humble, or at the very least non-egotistical,
non-self-promoting, individual is necessary, given the community
norms. This not only provides confidence in the project leader’s
ability to evaluate the work of contributors, but helps assure that
participants are able to claim for themselves the prestige that they
are entitled to - a critical element for participation.65

D. Open Source Culture

The discussion of “user-developers,” taken alone, neglects an
important characteristic of the open source community that facili-

60. See Eric S. Raymond, Homesteading the Noosphere: Project Structures and
Ownership (last modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-16.html>.

61. See id.
62. See id.
63. See id.
64. Raymond, Necessary Preconditions, supra note 36.
65. See infra notes 77-81 and accompanying text.

MAHERFMT4.DOC 9/29/2006 1:29 PM

632 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

tates participation. A user base must be converted from mere users
to active contributors to the code development. Possibly the prime
factor which leads to participation in the open source development
process is the so-called “gift culture” factor.66 “In gift cultures,
social status is determined not by what you control but by what
you give away.”67 There are several particular reasons why com-
munity reputation may lead to participation. The strongest reward
is the pleasure of the good reputation itself.68 Prestige within the
open source community may allow a programmer to more readily
persuade others to join projects owned by such a person, or to
place particular value on that person’s input.69 To a lesser extent,
the prestige of a developer in the open source community may also
spill over to the exchange economy, placing them in higher de-
mand within that market. While the gift-culture idea may be
counter-intuitive to many businesses, it has been used to explain
philanthropy and donation of resources in general.70 Indeed, fol-
lowing from the analogies to philanthropy, it is reasonable to ex-
pect that open source participants’ identities in their own eyes and
the eyes of others may to come from their role in open source pro-

66. See generally Eric S. Raymond, Homesteading the Noosphere, (last modified
Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading.html>.

67. See Eric S. Raymond, Homesteading the Noosphere: The Hacker Milieu as Gift
Culture (last modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-6.html>.

68. See Eric S. Raymond, Homesteading the Noosphere: The Many Faces of Repu-
tation (last modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-8.html>.

69. See id.
70. Susan Rose-Ackerman argues that “[o]ne explanation for giving is that donors

benefit from the act of giving itself.” Altruism, Nonprofits, and Economic Theory, 34 J.
ECON. LIT. 701, 712 (1996). Thus, even though a person may benefit from someone
else’s donation to some charity, they may well prefer to donate the sum themselves be-
cause they value their own act of charity. See id. She notes that one benefit donors may
get from their own charity comes from a “buying-in” mentality. “They may feel that they
deserve to feel good about the charitable program only if they have made some marginal
contribution to it,” and further, “some charities are so small and some donors are so
wealthy that individual gifts do affect service levels in observable ways.” Id. at 713.
This is consistent with the “homesteading” label on developer behavior in Eric S. Ray-
mond’s observations of the open source community. See Eric S. Raymond, Homestead-
ing the Noosphere: Locke and Land Title, (last modified Jan. 1, 1999)
<http://www.tuxedo.org/~esr/writings/homesteading-5.html>.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 633

jects.71

Open source social ownership customs72 provide a background
in which esteem may be granted or withheld in a manner that sup-
ports the open source community. Ownership in the open source
context means “hav[ing] the exclusive right, recognized by the
community at large, to re-distribute modified versions [of a pro-
gram].”73 This idea is in tension with the ideology of the open
source movement, as expressed in licensing terms; namely, the
idea that the source code should be available to be freely modifi-
able by anyone.74

Another indication of why users may become developers
comes from what draws many users to open source software in the
first place. Specifically, the control over the code that open source
software allows users has significant appeal. Thus, many of the
users that are drawn to open source software are drawn by the
prospect of being able to make their own changes to the code.75

71. For example, it was observed that among philanthropists in New York, “that
involvement with particular organizations becomes part of donors’ own identity in the
eyes of those they know.” FRANCIE OSTROWER, WHY THE WEALTHY GIVE: THE CULTURE
OF ELITE PHILANTHROPY (1995). “[O]ne important implication is that individuals derive
prestige from their identification with organizations and the elite networks with which
they are associated.” Id.

72. These are discussed in part, supra notes 41 - 47 and accompanying text.
73. Raymond, Ownership and Open Source, supra note 41.
74. See infra Section I.F (discussing open source licenses). However, this is not a

direct conflict. Anyone can still make changes to their own copy. They have no guaran-
tee of having it implemented in the main project, however.

75. “Subsequent improvements [to projects such as Apache] of the code often stem
from individuals applying the code to their own scenarios.” Halloween I, supra note 35.
See also Dibona, Introduction, supra note 3, at 13-14 (noting that most open source pro-
jects begin when someone is looking for a tool to do a job and finds none, or one that is
poorly maintained); Robert Young, Giving it Away in OPEN SOURCES: VOICES FROM THE
OPEN SOURCE REVOLUTION 113, 117-120 (1999) (discussing the appeal provided by con-
trol over source code); Frank Hecker, Setting Up Shop: The Business of Open Source
Software, (last modified Dec. 6, 1999) <http://www.hecker.org/writings/setting-up-
shop.html> (noting a number of practical reasons why access to the source code is valu-
able to customers, including the ability to maintain their software even if the vendor goes
out of business, the ability to fix bugs themselves if the vendor is unwilling to do so, or to
port the software to platforms not otherwise supported by the vendor); Young, Giving It
Away, supra at 120 (discussing NASA’s choice of open source software due to their need
to customize the code - they require a level of performance not available from any stan-
dard distribution of a program).

MAHERFMT4.DOC 9/29/2006 1:29 PM

634 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

Coupled with this is the interaction between project owners and
users, which can facilitate turning users into user-developers. Ex-
amples from open source projects indicate that a combination of
encouraging participation among users, specifically soliciting
comments regarding design decisions, implementing suggested
changes and praising users when they provide patches and feed-
back, leads to further participation.76 These can help encourage
users, who may already be inclined to make improvements to the
code, to resubmit these improvements to the project.

The norm against explicitly egotistical behavior,77 which
would appear to be inconsistent with the role esteem-seeking plays
in the open source community, may actually help drive participants
to a higher standard of contribution.78 The norm helps assure that
“one’s work is one’s statement.”79 This, in turn, ensures that the
participants are driven toward a high level of performance, because
rewards only come from a peer determination of program quality.
Further, because code from self-promoting individuals is not re-
warded, such “noise” is filtered out of the open source develop-
ment discourse.80 Finally, self aggrandizement is inconsistent with
the quality of intelligent selection of code, necessary for a good

76. “If you treat your beta-testers as if they’re your most valuable resource, they
will respond by becoming your most valuable resource.” Eric S. Raymond, The Cathe-
dral and the Bazaar: When Is A Rose Not A Rose? (last modified Nov. 20, 1998)
<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar-5.html>. See
also id. (discussing his efforts and their results regarding an open source software pro-
ject); Marshall Kirk McKusick, Twenty Years of Berkeley Unix, in OPEN SOURCES:
VOICES FROM THE OPEN SOURCE REVOLUTION, supra note 3, at 31, 42 (contributors were
solicited to rewrite Unix utilities from scratch, compensated only by being listed among
the contributors. Contribution began slowly, but as the list of contributors grew, the rate
of contribution grew.) Cf. Jim Hamerly, et. al, Freeing the Source, in OPEN SOURCES:
VOICES FROM THE OPEN SOURCE REVOLUTION, supra note 3, at 197, 201-02 (discussing
the process as applied to the development of their open source license).

77. See Eric S. Raymond, Homesteading the Noosphere: The Problem of Ego (last
modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-10.html>.

78. However, Eric S. Raymond notes that this norm “has made it emotionally diffi-
cult for many hackers to consciously understand the social dynamics of their own cul-
ture[.]” Id.

79. Eric S. Raymond, Homesteading the Noosphere: The Value of Humility (last
modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-11.html>.

80. See id.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 635

project leader. It is also inconsistent with the proper distribution of
esteem by the leader to contributors, necessary for sustained user-
developer contributions.81 Thus, the norm against such behavior
helps strengthen the quality of individual that ultimately leads an
open source project.

The pure pleasure of hacking is another reason why individuals
contribute to open source projects.82 For some people, the enjoy-
ment of programming can be satisfied through open source pro-
jects, which, in particular, may allow for greater creativity and ex-
perimentation than opportunities in the proprietary software world.
A further aspect of this justification for participation comes from
the enjoyment of creating a beautiful program, above and beyond
any reputational benefits that may come from its creation.83 How-
ever, this is intimately intertwined with the reputational benefits of
the open source system. When contributions consist, not of entire
programs, but of particular patches, project leadership, et cetera, it
is difficult to evaluate the relative “beauty” of a particular devel-
oper’s contribution. Thus, the knowledge that a contribution is
technically superior comes from the critical review provided by the
open source model.84

The norms of the open source community can also serve as a
hurdle to participation. Such hurdles are of at least three different
types. First, there are “password-like” mysteries. 85 Groups pre-

81. See id. Taking excess esteem for him or herself means that others in the project
will be under-compensated in terms of esteem. Self-promotion may also lead others in
the open source community to screen out the “noise” of that project, reducing the amount
of esteem potentially available from the project.

82. See Eric S. Raymond, Homesteading the Noosphere: The Joy of Hacking (last
modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-7.html>.

83. See id. See also DiBona, supra note 3 at 13 (“Much like the rush a runner feels
while running a race, a true programmer will feel this same rush after writing a perfect
routine or tight piece of code. It is difficult to describe the joy felt after completing or
debugging a hideously tricky piece of recursive code that has been a source of trouble for
days.”)

84. See Raymond, The Many Faces of Reputation, supra note 68.
85. Eric S. Raymond, Homesteading the Noosphere: Acculturation Mechanisms and

the Link to Academia (last modified Nov. 21, 1998)
<http://www.tuxedo.org/~esr/writings/homesteading/homesteading-18.html>.

MAHERFMT4.DOC 9/29/2006 1:29 PM

636 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

vent participation by anyone who has not uncovered the mystery.86
Second, there is often a requirement of understanding of some par-
ticular technical issue. This serves as a proxy for the participant’s
overall technical ability to contribute to the project.87 Finally,
through the examples of other hackers working on a project, a new
participant is expected to learn both the procedural and social rules
and norms that govern behavior. 88 Such norms play an important
role in the control of the open source community by aiding in the
acculturation of new members. However, it is important to note
that barriers to participation which are not associated with the
goals of acculturation or ensuring technical proficiency could have
negative consequences.89

E. Modularity

Modularity90 of code plays an important role in open source
development as well. The advantages of modular code include:

1. If a function performed by a module changes, only that
module changes and the rest of the program is unaffected.

2. If a new program feature is added, a new module or hi-
erarchy of modules to perform that feature can be added.

3. Program testing and retesting is easier.

86. “As one example, there is a USENET newsgroup called alt.sysadmin.recovery
that has a very explicit such secret; you cannot post without knowing it, and knowing it is
considered evidence you are fit to post. The regulars have a strong taboo against reveal-
ing this secret.” Id.

87. See id.
88. See id.
89. For example, it has been suggested that the reason there was forking, a rare oc-

currence in open source projects, in the case of BSD Unix was due to the fact that not
everyone can contribute to the BSD codebase. Thus, forking could be driven by the hope
of establishing a project that could supplant the existing project in popularity and accep-
tance. See Halloween I, supra note 35. This is not likely to be a problem with the exist-
ing barriers - the excluded members have qualities (failure to follow norms, low technical
ability) that makes them unlikely to have the ability to start a project that can truly com-
pete.

90. A modularized program involves “constructing a program as a set of conceptu-
ally and operationally independent pieces (modules).” JAMES MARTIN & CARMA
MCCLURE, SOFTWARE MAINTENANCE: THE PROBLEM AND ITS SOLUTIONS 79 (1983).

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 637

4. Program errors are easier to locate and correct.

5. Program efficiency is easier to improve.91

Thus, modularity can make project leadership a manageable
task by making the program easier to maintain.92 It allows projects
to be divided up into discreet tasks, with programmers working in
parallel, yet not creating conflicting changes.93 Modularity may
also facilitate the borrowing of portions of code, making the code
for particular tasks easier to find in old programs.94 The program
design necessary to allow the insertion of code borrowed for a dis-
creet task will also encourage modular design in the program being
created. The discreet, understandable nature of modular code can
facilitate peer evaluation. Finally, “[t]he traditional approach for
enhancing program quality is modularization.”95

F. Open Source Licenses

“Open Source lives or dies on copyright law.”96 The licenses
applied to open source software play an important role in whether
future versions or changes to the software remain open source. In-
deed, the licensing terms of software are critical to the determina-
tion of whether it meets the formal “Open Source” definition.97

91. Id. at 79-80.
92. See id. at 79. For example, Linus Torvalds stated that, in leading a project,

“[w]ithout modularity I would have to check every file that changed, which would be a
lot, to make sure nothing was changed that would effect anything else.” Torvalds, The
Linux Edge, supra note 12 at 108. On the other hand, “[w]ith modularity, when someone
sends me patches to do a new filesystem and I don’t necessarily trust the patches per se, I
can still trust the fact that if nobody’s using this filesystem, it’s not going to impact any-
thing else.” Id.

93. See id.
94. See Mark A. Lemley & David W. O’Brien, Encouraging Software Reuse, 49

STAN. L. REV. 255 (1997) (discussing value of modularity to software reuse).
95. MARTIN, supra note 90, at 79.
96. Larry Wall, Diligence, Patience, and Humility, in OPEN SOURCES: VOICES FROM

THE OPEN SOURCE REVOLUTION, supra note 3, at 127, 142.
97. As a way of reliably knowing whether a piece of software is open source, the

Open Source Initiative (“OSI”) has registered the term “OSI Certified” as a certification
mark. See The OSI Certification Mark and Program (visited May 18, 2000)
<http://www.opensource.org/certification-mark.html>. Using the term “OSI Certified”
requires compliance with the Open Source Definition. Id. The Open Source definition
requires that a license “not [to] restrict any party from selling or giving away the software

MAHERFMT4.DOC 9/29/2006 1:29 PM

638 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

.

There are a number of different types of licenses that are consistent
with the requirements of the open source definition.98

1. GNU General Public License (GPL)

The GNU GPL is the most well-known and widely used of the
open source licenses. An important initial note about the GNU
GPL is that it contains not only the licensing terms, but a discus-
sion of the justifications for those terms.99 The basic requirements
of the GPL are that “enhancements, derivatives, and even code that
incorporates GPL’d code are also themselves released as source
code under the GPL.”100 Thus, modifications to GPL software
cannot be made closed-source, and no GPL program can be
incorporated into a proprietary program 101

 2. The GNU Library GPL (LGPL)
The LGPL is derived from the GPL for use with software li-

braries. The primary difference is that “a LGPL-ed program can
be incorporated into a proprietary program.”102 GNU is currently

as a component of an aggregate software distribution containing programs from several
different sources. The license may not require a royalty or other fee for such sale.” The
Open Source Definition (last modified Dec. 20, 1998)
<http://www.opensource.org/osd.html>. “The license must allow modifications and de-
rived works, and must allow them to be distributed under the same terms as the license of
the original software.” Id. “The rights attached to the program must apply to all to
whom the program is redistributed without the need for execution of an additional license
by those parties.” Id. Further, the license may not discriminate against persons or groups
or fields of endeavor. See id. These are just some examples of the license requirements.
For others, see id.

98. These licenses are intended to cover the most widely-used licenses, and is not
intended to be an exhaustive list of licenses that comply with the open source definition.

99. See The General Public License (GPL) (last modified June 1991)
<http://www.opensource.org/licenses/gpl-license.html>.

100. Behlendorf, supra note 44, at 167. See also The General Public License
(GPL), supra note 99. Behlendorf notes that this aspect of the GPL is “viral” in nature, in
that “there is no chance of a commercial interest forking their own development version
from the available code,” creating a closed-source product that they can then market and
sell exclusively. Id.

101. See Bruce Perens, The Open Source Definition, in OPEN SOURCES: VOICES
FROM THE OPEN SOURCE REVOLUTION, supra note 3, at 171, 182. For purposes of the
GNU GPL the term “proprietary” means “any program with a license that doesn’t give
you as many rights as the GPL.” Id.

102. Id

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 639

discouraging the use of the LGPL, in favor of the GPL instead.103

3. The BSD-style License

Another popular license, the BSD-type license, is used by
Apache and BSD-based Unix operating systems. This license has
been summed up as stating “‘[h]ere’s this code, do what you like
with it, we don’t care, just give us credit if you try and sell it.’”104
This does allow incorporation of the code in proprietary products,
which is seen by some as an advantage for “common” protocols or
services.105 However, there are also risks because “no incentive is
built into the license to encourage companies to contribute their
code enhancements back to the project.106 The apparently benign
requirement that advertising of products including BSD-licensed
software must give credit to Berkeley University can become un-
tenable in a large, multi-component distribution, which could re-
quire pages of footnotes.107

103. See Richard Stallman, Why You Shouldn’t Use the Library GPL For Your Next
Library (last modified Nov. 6, 1999) <http://www.fsf.org/philosophy/why-not-
lgpl.html>. The original GNU C library was issued under this, because the number of
existing C libraries meant that restricting use to GPL developers would merely have led
proprietary developers to use another C library. With new libraries, the theory was that
restricting them to GPL developers could give them a competitive advantage. See id.

104. See Behlendorf, supra note 44, at 164. For examples of the BSD-style license,
see The BSD License (last modified Nov. 30, 1998) < http://www.opensource.org/bsd-
license.html>; The Apache License (last modified Feb. 16, 1999)
<http://www.apache.org/LICENSE.txt>.

105. Apache chose the BSD-style license so that HTTP would become a true stan-
dard. It was not considered a problem if Microsoft chose to incorporate their HTTP en-
gine into their products, since that was assumed to help keep HTTP a common protocol.
See Behlendorf, supra note 44, at 165.

106. Id. This could be particularly problematic, give Microsoft’s proposed strategy
for dealing with open source software—namely, to “de-commoditize protocols & appli-
cations” See Halloween I, supra note 35. Under the BSD-style license it seems clear that
Microsoft could incorporate open source standard protocols into their products, but make
proprietary modifications, that would then propagate out through Microsoft’s large OS
user base, becoming the de-facto standard; a standard over which Microsoft has exclusive
control.

107. “[T]he Debian GNU/Linux distribution contains over 2,500 software packages,
and if even a fraction of them were BSD-licensed,” this would require a substantial list of
software and credit in an advertisement. Perens, supra note 101, at 183.

MAHERFMT4.DOC 9/29/2006 1:29 PM

640 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

4. Mozilla Public License (MPL)

The MPL was the result of dissatisfaction with existing li-
censes for the particular needs of Netscape and Netscape Commu-
nicator. Its development resulted from a consideration of the ad-
vantages and benefits of existing license types, comment from the
open source community and work by teams of Netscape employ-
ees.108 Any changes to an MPL distribution must be released un-
der the same copyright as the MPL, making it available back to the
project. However, “‘distribution’ is defined as the files as distrib-
uted in the source code,” meaning that the files could be incorpo-
rated into another, proprietary program.109 This license also re-
quires that anyone “contributing code back to the project release
any and all claims to patent rights that may be exposed by the
code.”110

5. Netscape Public License (NPL)

The NPL is a Netscape-specific version of the MPL. It grants
special privileges to Netscape that do not apply to anyone else.
Essentially, it allows Netscape “to take [open source] modifica-
tions private, improve them, and refuse to give you the result.”111

6. Artistic License

The Artistic license was originally developed for Perl, but is
currently disfavored as compared to other licenses such as the
GPL. The license “prohibits sale of the software, yet allows an ag-
gregate software distribution of more than one program to be
sold.112 The Artistic license also requires modifications to be
made open source, but then provides loopholes for taking releases
private, or putting it in the public domain.113

108. See Hamerly, supra note 76, at 200-03.
109. Behlendorf, supra note 44, at 166.
110. Id. at 166-67. See also, Mozilla Public License (last modified Dec. 8, 1998)

<http://www.mozilla.org/NPL/MPL-1.0.html>.
111. Perens, supra note 101, at 184. See also Netscape Public License (last modi-

fied Dec. 8, 1998) <http://www.mozilla.org/NPL/NPL-1.0.html>.
112. Perens, supra note 101, at 183-84. This loophole is substantial. By aggregat-

ing software under the Artistic license with a trivial program it can be sold as a “bundle.”
113. See id.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 641

G. Important Pre-existing Facilitators of the Open Source
Method

There are a number of factors that made the open source devel-
opment model possible that are not, strictly speaking, part of the
development model itself. However, given the important roles
these factors play as preconditions of open source success, they are
worth consideration.

1. Academia

Given the important role that the culture and norms of the open
source community play in the success of open source software, it is
important to recognize the role that academia plays in teaching
those norms. Richard Stallman, arguably the founder of the mod-
ern free software114 movement, first experienced this type of com-
munity at The Massachusetts Institute of Technology in the 1970s.
At the MIT Artificial Intelligence Lab there was a software-sharing
community, allowing free use of software and free access to source
code for anyone who wanted to use it. Although this culture
changed due to commercial influences in the 1980s, the principles
Stallman took away from the experience led him to recreate this
type of community through the GNU project.115 Thus, the free
software movement has its roots in the source-sharing culture of
the university computer science community. Similarly, the norms
and culture of the university setting at large may themselves
represent analogous cultural systems to the open source commu-
nity. The activities of tenured professors, who no longer have con-
cerns about “survival issues,” become focused on “reputation en-
hancement” through intellectual achievement.116 This is similar to
the behavior of hackers in the open source gift culture.

The university setting continues to be not only a forum for in-

114. “Free software” is essentially the same as open source software, but is the pre-
ferred term of Richard Stallman. For uniformity, this paper has used “open source”
throughout, but will use the term “free software” here to respect Stallman’s preference for
the term free software, for its implicit reference to principles of freedom.

115. See Stallman, supra note 29, at 53-58.
116. See Raymond, Acculturation Mechanisms and the Link to Academia, supra

note 85.

MAHERFMT4.DOC 9/29/2006 1:29 PM

642 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

troduction into the norms of open source society, but also a forum
for introduction to open source technology. For example, much
work on components of Linux and GNU was done by individuals
at educational institutions. Open source software is frequently util-
ized by universities for purposes of computer science education,
due in large part to the accessibility of the source code. Use of
open source software in the university setting also means that new
research ideas are often tried out first in open source software. Fi-
nally, universities may facilitate the distribution of open source
programs to areas with only marginal Internet penetration.117

2. Communications Technologies

The Internet is a technology whose existence was critical for
the development of the open source movement. “Open Source has
been born into a digital renaissance made possible by the Internet,
just as modern science was made possible during the Renaissance
by the invention of the printing press.”118 The economic and
physical barriers to software and source code distribution have
been lowered by the Internet.119 The Internet also brought together
hackers in a community, rather than leaving them isolated in small
groups.120 Finally, the computers and the Internet allow the mar-
ginal cost of distributing software or source code to be zero.

3. Standards

Technical standards have played an important role in the ability
of open source projects to go forward. Indeed, it is the elimination
of open source community access to standards that Microsoft has
raised as a primary means of preventing competition from
Linux.121 “OSS projects have been able to gain a foothold in many
server applications because of the wide utility of highly commodi-

117. See Halloween I, supra note 35.
118. See DiBona, supra note 3, at 16.
119. See id.
120. See Eric S. Raymond, A Brief History of Hackerdom, in OPEN SOURCES:

VOICES FROM THE OPEN SOURCE REVOLUTION, supra note 3, at 19, 20 (specifically, dis-
cussing the role of ARPANET).

121. See Halloween I, supra note 35.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 643

tized, simple protocols.”122

H. The Business of Open Source Software

Despite the feeling among some in the community that soft-
ware should be given away, not sold,123 the “business” of open
source software dates back to its origins.124 For the purposes of
this discussion, the business of open source will include efforts to
sell open source software, whether done for profit or merely to re-
cover some costs. This business includes both the marketing and
sale of pre-existing open source projects, or the “taking open
source” of previously proprietary commercial products.

A number of companies have successfully based their business
on selling open source software.125 Part of what is being sold is
simply a convenient aggregation of open source programs. How-
ever, many of these companies also provide value beyond this
convenient aggregation. For example, traditional models of cus-
tomer support126 may be provided for the programs included in the

122. Id.
123. “Many people believe that the spirit of the GNU project is that you should not

charge money for distributing copies of software, or that you should charge as little as
possible—just enough to cover the cost.” See Richard Stallman, Selling Free Software,
(last modified Dec. 17, 1998) <http://www.fsf.org/philosophy/selling.html>. However,
Stallman goes on to note that GNU “encourage[s] people who redistribute free software
to charge as much as they wish or can.” Id.

124. One of the first projects that originated what has now become the open source,
or free software, movement was GNU Emacs. Richard Stallman made this available for
free via ftp, but also would mail a copy on tape for a fee of $150. See Stallman, The
GNU Operating System, supra note 29, at 58.

125. For example, Red Hat (www.redhat.com), Debian (www.debian.org) and
S.u.S.E. (www.suse.com) sell versions of the Linux operating system. The basic eco-
nomics of the market for proprietary software taken open-source, as well as the marketing
points raised in the context of existing open source projects apply to these programs with
equal force. Thus, the two ways of getting to an open source business will not be consid-
ered separately. However, one additional factor raised to justify changing proprietary
programs to open source. In areas where there is a “commercial wall” between two open
source programs, there will be a strong tendency for an open source program to arise to
“bridge the gap.” Behlendorf, supra note 44, at 160. It may be beneficial for the com-
pany to take the program open source preemptively. See id. The business could then use
their existing brand reputation to continue to profit from the sale of a particular product
even after it has become open.

126. What is meant by customer support here is what is called “hand-holding”—
providing training and basic knowledge that helps the customer understand how to use

MAHERFMT4.DOC 9/29/2006 1:29 PM

644 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

software package. These businesses may also help to implement
changes suggested by their customers for immediate use by the
customer in their environment, and perhaps also in future versions
of the product. Because it is software whose source code is freely
available that is being sold, the open source market is a commodity
market.127 Brand equity, therefore, is a selling point to a much
greater extent than the underlying technology.128

Many in the open source community would most naturally
point to the reliability and technical superiority of open source
software as the primary marketing points.129 However, business
experience has taught that, while technical excellence is necessary
for an open source business’s success, it is not sufficient.130
Rather, other points must be emphasized in addition to the techni-
cal merits in order to be successful. Open source software can be a
means of lowering overhead.131 Open Source software also may
allow the support of a broader range of platforms than would be
possible with proprietary software. For example, privately under-

the existing product. Customer service could also include responding to customer com-
plaints and recommendations for changes or needed features for the software. See Young,
supra note 75, at 115-17.

127. See id.
128. This point is emphatically made by Robert Young. He likens the marketing of

Red Hat to the marketing of cars or ketchup. Even though ketchup can be made at home,
the convenience of having Heinz or Hunts do it encourages purchases. However, it is the
brand marketing of Heinz, rather than the technical superiority of their ketchup, that leads
them to have 80% market share. See id. See also, Nicholas Petreley, Linux and the Mo-
nopoly Game (visited Feb. 10, 2000) <http://www.linuxworld.com/linuxworld/lw-1999-
01/lw-01-penguin.html>.

129. See, e.g., The Business Case for Open Source (last modified Dec. 18, 1998)
<http://www.opensource.org/for-suits.html> (noting reliability and technical arguments);
Michael Tiemann, Future of Cygnus Solutions in OPEN SOURCES: VOICES FROM THE OPEN
SOURCE REVOLUTION, supra note 3, at 71, 83 (noting his initial marketing focus on the
technical merits of GNU tools).

130. See Young, supra note 75, at 120 (stating that “[t]he benefit to using Linux is
not the high reliability, ease of use, robustness, or the tools included with the Linux OS,”
but rather other features of the software).

131. Cygnus took the marketing approach of “explain[ing] to customers why they
should buy from us instead of trying to do the work with their own people,” noting that
“their engineers would benefit from having us do the baseline porting, support, and main-
tenance work.” Tiemann, supra note 129, at 83. This benefit will also be of importance
in the decision to take proprietary software open source. See also The Business Case for
Open Source, supra note 129.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 645

taken ports of a program to a new platform will be contributed
back to the project, allowing for incorporation into the next version
of the product.132 Because open source software is a commodity
market, competitors may try to offer new features for the software.
However, these features can simply be added into future versions
of the general program that will be sold by all the business’s com-
petitors.133 Thus, as long as a dominant company maintains its
own high levels of performance, it is unlikely a competitor will be
able to beat them merely by offering new software features.134
Further, open source software allows a business to maintain close
relations with customers, even to the point of “co-opting your cus-
tomers’ engineers to help your development.”135 This further low-
ers overhead, but also, by incorporating customer feedback and
fixes into rapidly re-released products, allows heightened respon-
siveness to customer needs.136 Implicit in the “co-opting” of a cus-
tomer’s engineers is the idea that customers can make their own
modifications when needed. The ability to make needed or desired
modifications to a program on their own is an extremely important
selling point for many customers.137

I. Freedom and Free Software

An important part of the discussion surrounding the open
source movement involves the issue of freedom, particularly as it

132. See Tiemann, supra note 129, at 83.
133. See id.
134. “Unlike proprietary software in which competitors fight in a two-sided

win/lose contest, with Open Source it’s more like fighting on a Moebius strip, and every-
thing flows to the side of the primary maintainer.” Id at 84. Thus, while competitors can
easily enter the market because the product is freely available, the grounds on which ex-
isting businesses can be outperformed is limited in the long term.

135. The Business Case for Open Source, supra note 129.
136. See Tim O’Reilly, Hardware, Software and Infoware, in OPEN SOURCES:

VOICES FROM THE OPEN SOURCE REVOLUTION, supra note 3, at 189, 195.
137. For example, NASA chose Red Hat Linux because the source code was avail-

able. Their performance standards were extremely exacting, and thus they needed to be
able to modify the code to fit particular needs. See Young, supra note 75, at 120. Young
goes on to state that “[t]he benefit to using Linux is not the high reliability, ease of use,
robustness, or the tools included with the Linux OS. It is the benefit of control that re-
sults form the two distinctive features of this OS; namely, that it ships with complete
source code, and that you can use this source code for whatever you chose—without so
much as asking our permission.” Id. at 120; See also Tiemann, supra note 129, at 86.

MAHERFMT4.DOC 9/29/2006 1:29 PM

646 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

applies to software and intellectual property. The Free Software
Foundation, and Richard Stallman in particular, have been the
leading proponents of the freedom-enhancing aspects of
“copylefted”138 software. There are three specific freedoms asso-
ciated with free software. “First, the freedom to copy the program
and give it away to your friends and co-workers; second, the free-
dom to change the program as you wish, by having full access to
source code; third, the freedom to distribute an improved version
and thus help build the community.”139 Free Software supporters
argue that “efforts to attract new users into [the free software]
community are far outstripping the efforts to teach them the civics
of our community.”140 Thus, the Free Software supporters argue
against the use of the term “open source,” as diverting the focus of
attention away from freedom and “to appeal to executives and
business users.”141

II. INTRODUCTION TO COMPLEXITY THEORY

Complexity theory, as a subject matter, has its roots in many
different fields of study. Aspects of the theory were developed in
such diverse fields as genetics and economics to explain empirical
observations that were not predictable by traditional theories. Spe-
cifically, traditional “linear” models were often unable to account
for certain observed behaviors that seemed “nonlinear” in nature.
Briefly, complex systems are groups of agents whose nature and
behavior are governed by certain sets of rules. The nature and be-
havior of these agents lead to outcomes within the system and ca-
pabilities of the system making it greater than the sum of its parts.
As will be seen, the complex nature of a system may be valuable in
many ways, but also makes the prediction of specific future char-
acteristics of the system difficult or impossible. Finally, it is im-
portant to note that complex systems may exist side-by-side with

138. Copyleft refers to the GNU-style license. Rather than withholding the ability
to use the work, as with copyright, the ability to use the work is specifically granted un-
der copyleft.

139. Stallman, Overview of the GNU Project, supra note 14.
140. Stallman, The GNU Operating System, supra note 29, at 69.
141. Id.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 647

other types of systems.142

The discovery that a system is complex in nature could lead to
two different conclusions for anyone concerned with the future of
the system. First, attempts could be made to force the system to
behave more linearly, resulting in a loss of the benefits of com-
plexity, but perhaps a gain in predictability. Alternatively, the am-
biguity in specific future states of the system could be accepted,
with faith placed in the ultimate benefits that accrue to complex
systems.

Greater explanation of the nature of complex systems has been
detailed elsewhere.143 Thus, a description of what constitutes a
complex system will be outlined here in brief. The factors that
make up a complex system are: (1) a systems of agents with certain
internal traits, (2) interactions among these agents that occur fol-
lowing certain rules, and (3) the general consequences that can be
expected to result.

A. System of agents

The term “agent” likely conjures up different, but nonetheless
clear, pictures in the minds of everyone. In the law, an agent is “a
person authorized by another to act on his account and under his
control.”144 However, in a complex system an agent is merely any
actor (be it a person, a computer program, or a gene) that has cer-
tain internal and behavioral characteristics. In complexity theory,
the internal traits of an agent are considered to be: “(1) a perform-
ance system, (2) a credit-assignment algorithm, and (3) a rule-
discovery algorithm,” and, as will also be seen, (4) a mechanism
for making predictions.145

142. See M. MITCHELL WALDROP, COMPLEXITY: THE EMERGING SCIENCE AT THE
EDGE OF ORDER AND CHAOS 43 (1992).

143. See id.; see also PETER COVENEY & ROGER HIGHFIELD, FRONTIERS OF
COMPLEXITY: THE SEARCH FOR ORDER IN A CHAOTIC WORLD (1995); JOHN H. HOLLAND,
HIDDEN ORDER: HOW ADAPTATION BUILDS COMPLEXITY (1995); STUART KAUFFMAN, AT
HOME IN THE UNIVERSE 19 (1995). For discussions of complexity geared toward the legal
audience, see J.B. Ruhl, Complexity Theory as a Paradigm for the Dynamical Law-and-
Society System: A Wake-Up Call for Legal Reductionism and the Modern Administrative
State, 45 DUKE L. J. 849 (1996).

144. RESTATEMENT (SECOND) OF AGENCY, § 1, comment e.
145. HOLLAND, supra note 143, at 87.

MAHERFMT4.DOC 9/29/2006 1:29 PM

648 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

“The performance system specifies the agent’s capabilities at a
fixed point in time—what it could do in the absence of further ad-
aptation.”146 Basically, this includes the agent’s ability to obtain
information from its environment, as well as its ability to act on its
environment on the basis of this information.147 Implicit in this
ability is the necessity of a “processing mechanism.” This can be
analogized to a set of if-then rules that allow the agent to determine
what action is appropriate for the given bit of information with
which it is dealing.148

The agent’s credit assignment mechanism is a tool for evaluat-
ing the processing rules that it uses. This mechanism must some-
how determine which if-then rules lead to good outcomes for the
agent, and which do not. Competition between rules is used to find
and reinforce rules with successful outcomes, and weed out those
that are unsuccessful.149 This is a challenging proposition for sev-
eral reasons. First, the ease with which a rule is able to be evalu-
ated will depend upon the role the rule plays. A rule that calls for
direct interaction with the agent’s environment will be easier to
evaluate, because it will generate direct feedback from the envi-
ronment. However, “[c]redit assignment is much more difficult
when some early stage-setting action makes possible a later useful
outcome.”150 Second, the credit assignment mechanism is depend-
ent on the current status of the agent in its environment. Thus, the
mechanism must be able to respond to changes in the agent and the
agent’s environment.151

A supplement to the credit assignment mechanism is the rule
discovery mechanism. This process allows new if-then rules to be
put into circulation for evaluation by the credit assignment process.

146. Id. at 88.
147. See id.
148. See id.
149. See id. at 89.
150. HOLLAND, supra note 143, at 53. Such a rule would be “if hungry, then look

for area with characteristic X,” would be harder to evaluate, because it does not (neces-
sarily) result in helpful feedback from the environment. However, if areas with charac-
teristic X are a likely source of food, the existence of the initial rule would allow the sub-
sequent invocation of the rule “if you have food, then eat food.” Thus, the mechanism
must have some way of rewarding stage-setting rules.

151. See id.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 649

This occurs principally by replacing the unsuccessful rules, which
were weeded out by the credit mechanism, with new rules based on
permutations of successful rules.152 The two processes by which
these permutations of successful rules are created are combina-
tion153 and mutation.154 Combination simply involves the inclu-
sion of various elements of successful rules to create a new rule.
Mutation is the alteration of a successful rule to create a slightly
different rule.

Finally, agents need a prediction mechanism to allow the envi-
ronmental feedback obtained by the agent to be translated into a
broader set of rules than would be possible from the limited ex-
periences of any agent. Agents with a means of making predic-
tions are able to take the “building blocks” from their actual ex-
periences, and by emphasizing patterns, use these blocks to create
tools for dealing with patterns in their environment.155 The best
example of this is the human ability to reuse basic “building
blocks” such as “tree,” “car,” or “person,” to comprehend vast
numbers of novel situations. Similarly, the laws of physics are rela-
tively simple, and small in number, compared to the behavior of
the world that they are able to describe.156 “[I]f [you] have a proc-
ess that can discover building blocks . . . the combinatorics start
working for [you], rather than against [you]. [You] can describe a
great many complicated things with relatively few building
blocks.”157

152. See HOLLAND, supra note 143, at 90.
153. This is commonly referred to in the literature as “sexual reproduction,” but the

term “combination” will also be used.
154. “Chemistry” is a related concept that applies to a wide variety of complex sys-

tems:
The first source of chemistry’s power is simple variety - unlike quarks, which
can only combine to make protons and neutrons in groups of three, atoms can
be arranged and rearranged to form a huge number of structures. The second
source of power is reactivity: structure A can manipulate structure B to form
something new - structure C.

WALDROP, supra note 142, at 314.
155. See HOLLAND, supra note 143, at 34-37.
156. See id. at 37.
157. See WALDROP, supra note 142, at 170 (quoting John Holland).

MAHERFMT4.DOC 9/29/2006 1:29 PM

650 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

B. Interactions of agents

The interaction among agents leads to many of the beneficial
aspects of complex systems. There are basic principles that de-
scribe the processes of interaction among agents in complex sys-
tem, including the presence of flows and the use of tagging mecha-
nisms. Agent interactions lead to changes in the system, not only
in the co-evolution of agents and their environment, but through
the multiplication and recycling of resources and diversity in the
system. Finally, the interaction of agents allows them to form
“meta-agents” which act as agents at a higher level.

1. Rules for Interaction

As John Holland observed, “complex large-scale behaviors
[emerge] from the aggregate interactions of less complex
agents.”158 Agent interaction is characterized by the use of tags
and the existence of flows over a network of agents. Tagging al-
lows agents to determine traits of their environment and other
agents. Agents compare their own tags with the tags of other
agents to determine if resources can be exchanged, and in what
quantity. 159 Over time, in a complex system, this allows agents to
specialize and cooperate.160 Further, tags evolve in a manner simi-
lar to that of internal rules. As agent interactions occur, the system
selects “for tags that mediate useful interactions and against tags
that cause malfunctions.”161 Cooperation, specialization and tag
evolution facilitates the emergence of meta-agents and general sys-
tem characteristics that endure despite the continual evolution of
the internal components of the system.162

In complex systems, agents can be considered “nodes” and the
possible interactions of agents, defined by the tags, are “connec-
tors” in this network.163 As interactions occur between the nodes,
“flows” of resources occur along the various connectors. These

158. HOLLAND, supra note 143, at 11.
159. See id. at 103-04.
160. See id. at 15.
161. Id. at 23.
162. See id. at 14-15.
163. See id. at 23

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 651

flows vary over time as the agents and their environments co-
evolve based on their experiences with one another.164 The impor-
tance of these flows will be seen to arise from the role they play in
the changes they bring about in the system. The future of agents in
a complex system are influenced by prior interactions of among
agents and their environment.165

2. Interactions Yield Systemic Changes

The nature of the interaction of agents in a complex system
leads to several large-scale results for the system itself. These re-
sults include system-wide changes from changes in flows, and di-
versity that results from the co-evolution of agents and their envi-
ronment. The nature of flows in a complex system are such that
the input of a resource at one node will result in that resource being
spread throughout the system producing a chain of changes.166
The fact that, as a result of flows, changes in the entire system can
occur through the introduction of a new resource or the re-routing
of an existing resource makes it nearly impossible to make long-
range predictions based on simple trends.167 A further characteris-
tic of flows is that resources are recycled as they flow between
nodes. This allows complex systems to be more productive for a
given initial input of some resource than it would be if recycling
did not occur.168

Changes in a complex system due to flows, the cooperation and

164. See id.
165. ROBERT JERVIS, SYSTEM EFFECTS 29-32 (1997).
166. For example, the purchaser of a home pays a contractor, who pays a trades-

man, who in turn buys food, et cetera. At each stage, some of the money is saved and the
rest is used for expenses. The effect of the initial contract is multiplied when its total ef-
fect is traced through the network. See HOLLAND, supra note 143, at 23-25.

167. See id. at 25.
168. John Holland uses the example of a three node system that turns steel into

automobiles. One node supplies the ore, one node processes the ore into steel, and one
node turns the steel into cars. He assumes one unit of ore produces one unit of steel
which produces one unit of car. Finally, he assumes the steel producer sends half its out-
put to the car manufacturer. If the cars are driven until they are unusable, then an input of
1000 units of ore will result in 500 units of cars. However, if 3/4 of the steel from cars is
recycled, the same input of 1000 units of ore from the ore producer, when added with the
units of steel recycled, will allow 800 cars to be produced. Thus, recycling can substan-
tially increase the resources at each node. See id. at 25-26.

MAHERFMT4.DOC 9/29/2006 1:29 PM

652 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

specialization that occur from tagging, and the co-evolution of
agents and their environment result in substantial diversity in com-
plex systems. If an agent is removed from the system, “the system
typically responds with a cascade of adaptations resulting in a new
agent that ‘fills the hole.’”169 A new agent or agents will arise to
fill the need left by the removal of the agent, but may perform the
tasks in different ways. These new agents may create new oppor-
tunities, or niches, to be exploited by other agents.170 Thus, the
minor change of removing a single agent from a system can result
in the creation of new agents and changes in roles for existing
agents, leading to greater diversity. This diversity is itself dy-
namic. When the diversity of a complex system is disturbed, it
eventually settles back down to a pattern. However, in complex
systems, this new pattern of diversity may be different than the old
one. This also leads to further interactions and new niches. Thus,
the diversity in a complex system is due both to adaptation to indi-
vidual internal changes, as well as changes in the system as a
whole.171

This co-evolution of agents occurs within a range of almost
limitless possibilities172 and a constantly co-evolving environment.
As a result, there is no practical way of “optimizing” a given
agent’s fitness. Changes only occur based on the current abilities
and surroundings of an agent - in particular those surroundings
which the agent is able to perceive. This limited range of alterna-
tives may not include the alternative that is “optimal.”173 Thus,
agents attempt to maximize their “fitness” within the range of al-
ternatives (the “fitness landscape”) that are available to them at a
given time.

169. Id. at 27.
170. See id. at 27-28.
171. See id.at 29-30.
172. This is sometimes referred to as a “fitness landscape.” This landscape consists

of “hills” of higher levels of fitness, and “valleys” of lower levels of fitness. See
KAUFFMAN, supra note 143, at 161.

173. See WALDROP, supra note 142, at 151. An analogy would be trying to predict
every possible move that could be achieved in chess, and from that determine what the
“optimal” course of action. In reality, one can only predict a limited number of moves in
advance, based upon the particular moves of a particular opponent. See id.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 653

3. Interactions Allow the Formation of Meta-Agents

The cooperation and competition of agents allows the forma-
tion of “meta-agents,” or aggregates of agents.174 These meta-
agents act as agents at a higher level. 175 The fact of agent aggre-
gation is basic to all complex systems. The resulting features of
the meta-agents, which arise from the historical interactions of
lower-level agents, “are the most enigmatic aspect of [complex
systems].”176 “The behavior of these clusters, or meta-agents, is
governed by the same principles that govern the underlying agents
that aggregated in the first instance. This process of aggregation
and re-aggregation often repeats numerous, yielding the hierarchi-
cal organization typical of complex systems.”177

The behavior of these meta-agents is different than merely the
sum of the capabilities of the constituent agents.178 “[I]t is difficult
to evolve a single agent with the aggregate’s capabilities. Such
complex capabilities are more easily approached step by step, us-
ing a distributed system.”179

C. Only Short-term Predictions

Although it should be obvious from the discussion of complex
systems thus far, it is worth stating clearly that specific long-term
predictions are not possible for complex systems. This is a result
of difficulties associated with even “trac[ing] the impact of any
change even after the fact, let alone predict[ing] it ahead of time,
making the system complex and hard to control.”180 It is also due
to the fact that small changes in complex systems yield big results.
Specifically, small changes in the initial conditions of complex

174. See PER BAK, HOW NATURE WORKS: THE SCIENCE OF SELF-ORGANIZED
CRITICALITY 1-2 (1996).

175. See id. at 11.
176. HOLLAND, supra note 143, at 12.
177. See id.
178. This is referred to as “nonlinearity.” “[A]ctions often interact to produce re-

sults that cannot be comprehended by linear models. ‘Linearity involves two proposi-
tions: 1) changes in system output are proportional to changes in input . . . and 2) system
outputs corresponding to the sum of two inputs are equal to the sum of the outputs arising
form the individual inputs.’” JERVIS, supra note 165, at 34.

179. HOLLAND, supra note 143, at 31.
180. JERVIS, supra note 165, at 17.

MAHERFMT4.DOC 9/29/2006 1:29 PM

654 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

systems will be spread throughout the system, multiplied and recy-
cled through flows. These small changes are thus magnified,181
meaning also that any uncertainty in the initial conditions will be
magnified as well.182 In a complex world, the pretense of long-
term prediction must be rejected. The true consequences of our
own best actions cannot be known. All that can be done is be lo-
cally wise, not globally wise.183

D. Edge of Chaos

Complex systems are sometimes described as existing “on the
edge of chaos,” or as a phase transition between order and
chaos.184 This is exemplified in the classes of behavior docu-
mented in “cellular automata” by Stephen Wolfram.185 Cellular
automata are simulated collections of cells programmed to carry
out rules as a group. “This collection of cells . . . could be viewed
as an organism, running on pure logic.”186 Professor Wolfram
studied the simplest automata universe—one-dimensional auto-
mata arranged in a single line. The initial state was defined at ran-
dom, and a variety of local rules governing the sites on the auto-
mata. “[T]he longtime behavior of the cellular automata” could be

181. WALDROP, supra note 142, at 45. It should be noted that not only positive
feedback is present in complex systems. Complex systems consist of a mixture of posi-
tive and negative feedback lead to complexity. See id. at 139. Complex systems, includ-
ing economies and societies must maintain a balance of order and chaos. “Like a living
cell, they have to regulate themselves with a dense web of feedbacks and regulation, at
the same time that they leave plenty of room for creativity, change and response to new
conditions.” Id. at 294.

182. Id. at 142.
183. KAUFFMAN, supra note 143, at 29.
184. See, e.g., WALDROP, supra note 142, at 230-31, 292-94; COVENEY, supra note

143 at, 271-77; Ruhl, supra note 143, at 890-91 (discussing the need of a complex system
for a blend of elements of chaos and order).

185. This is also indicated by the “sandpile” experiments of Per Bak and others. He
suggests the consideration of a sandpile - first being built on a flat surface by dropping
individual grains of sand, leading to a pile. Initially, grains stay pretty much were they
land, and disturbances in one area have little effect elsewhere. This is analogous to a lin-
ear state. Eventually the slope of the sandpile stabilizes, as newly dropped grains of sand
are balanced by sand falling off the edge of the pile. This is like a complex state. Fi-
nally, one could imagine dropping sand in such magnitude, or in the appropriate locations
so that an “avalanche” of sand would result. This could be considered the chaotic state.
See BAK, supra note 174, at 50-51.

186. COVENEY, supra note 143, at 91.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 655

classified “into four types, regardless of specific local rules em-
ployed.”187 In Class I the pattern either disappears or becomes
static. In Class II “the pattern evolves to a fixed finite size” with
continually-repeating patterns.188 Chaotic states with “little sem-
blance of regularity” occur in Class III.189 Finally, in Class IV
complex patterns occur.190 These classes of behavior were discov-
ered to bear many similarities to “second-order” phase transi-
tions.191 Class I and II states are like the ordered states that occur
well below the transition point. The Class III state is like the ran-
dom, chaotic behavior that occurs above the transition point. The
Class IV state is like the complex state that occurs near the transi-
tion point.192

Because ordered and chaotic elements are bound together to
create a complex system, it should be noted that alterations in a
complex system could serve to drive the system toward either the
ordered or chaotic states, just as temperature changes, for example,
could lead a system to complete the phase transition, resulting in a
fully ordered or fully chaotic state.193 Thus, it is worth considering
what effects these shifts could have on a system. Specifically, the
benefits of complexity must be considered, and the detrimental ef-
fects of transitions to ordered or chaotic states must be evaluated.

The main consequences of complexity are adaptability and
emergence. “[C]omplex systems constructed such that they are
poised on the boundary between order and chaos are the ones best

187. Id. at 99.
188. Id.
189. Id.
190. Id.
191. See WALDROP, supra note 142, at 229-30. First-order phase transitions are like

the familiar transition of water from ice to liquid at 32o F. The molecule is either in the
solid, ordered state, or the chaotic, liquid state. Second-order transitions do not impose a
sharp either-or choice on molecules. See id. at 229. Rather, at points near the transition
(both above and below it), there are substantial regions “where order and chaos inter-
twine,” - in other words, regions of complexity. Id. at 230.

192. See id. at 230.
193. See Ruhl, supra note 143, at 891 (“Too many fixed point and limit cycle attrac-

tors [characteristics of ordered systems] drag the system into stasis. Too many strange
attractors [characteristics of chaotic systems] drag the system into chaos.”) Cf. WALDROP,
supra note 142, at 43 (noting that when industries mature, the tend to be more stable, and
amenable to description by tradition, linear, economic theory).

MAHERFMT4.DOC 9/29/2006 1:29 PM

656 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

able to adapt by mutation and selection. Such poised systems ap-
pear to be best able to coordinate complex, flexible behavior and
best able to respond to changes in their environment.”194 As de-
scribed by J.B. Ruhl:

Systems in the complex region thus exist when the qualities
contributing to system sustainability—stability, simplicity,
and adaptability—are in harmonious balance, and chaos,
emergence, and catastrophe are collapsed into instruments
of system evolutionary robustness. Moreover, the blend of
attractors needed to promote sustainability necessarily pro-
duces emergent behaviors as a result of interaction between
the multiple components. Hence, a robust, fit, sustainable
dynamical system, because of the inherent presence of
some chaos and emergence, necessarily is unpredictable.
The key is that the complex systems have turned that
source of unpredictability around and channeled it into the
trait of adaptiveness, allowing the system to transform dis-
order into organization.195

The value of adaptability and emergence can be most clearly
seen by comparison to hierarchical, ordered systems. Such top-
down systems of rules of behavior “tend to be touchy and frag-
ile.”196 “[S]ince it’s effectively impossible to cover every conceiv-
able situation, top-down systems are forever running into combina-
tions of events they don’t know how to handle.”197 Although
linear systems have the characteristic of predictability, it comes at
the price of the emergent properties (the whole being greater than
the sum of the parts) that exists for complex systems.198 Thus, or-
dered systems are less able to deal with future events, and are lim-
ited in what they can achieve to merely the sum of the capabilities

194. STUART A. KAUFFMAN, THE ORIGINS OF ORDER 29 (1993).
195. Ruhl, supra note 143, at 891.
196. WALDROP, supra note 142, at 279. Indeed, studies of traffic jams have found

that states with jams of various sizes are better than highly ordered systems with cars go-
ing slowly. The latter state would have a higher throughput of cars theoretically, but
turns out to be “catastrophically unstable,” and “would collapse long before all the cars
became organized.” BAK, supra note 174, at 198.

197. Id.
198. See COVENEY, supra note 143, at 329-31.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 657

of their parts.
Chaotic systems differ from complex systems not so much in

behavioral procedures, but in the substantive outcomes of these
rules of behavior. Unlike complex systems, “[c]haotic systems
have no memory for the past and cannot evolve.”199 Thus, the
whole of a complex system may well be different from the sum of
its parts, but there is no reason to expect that it will be greater.200
With no “memory for the past” the chaotic system cannot create
the mechanisms for rule discovery and prediction, or develop
evolved tags. Left to itself, a complex system can be expected to
maximize its fitness to the extent possible. Chaotic systems can be
expected to change, but in ways that do not necessarily bear any
relationship to the fitness of the system. In short, the chaotic sys-
tem cannot maximize its position in the “fitness landscape” - they
can change, but not necessarily evolve.

This is not to say that such perturbations into chaos or linearity
are necessarily permanent. Rather, if the system is sufficiently
close to the “transition area” the system may evolve back to a
complex state.201 However, the complex state is relatively benefi-
cial, and order and chaos are seen to have relative disadvantages.
Thus, it makes little sense to drive the system away from complex-
ity and toward chaos and order, even if the perturbations are insuf-
ficient to drive the system fully into ordered or chaotic states.

199. BAK, supra note 174, at 30.
200. An example of this “whole is less than the sum of the parts” idea may occur in

the case of fibrillation of the heart. When this occurs, the individual muscle cells respond
to impulses correctly, yet the heart as a whole “is never all contracted or all relaxed. . . .
[T]he parts of a fibrillating heart seem to be working, yet the whole goes fatally awry.”
JAMES GLEICK, CHAOS: MAKING A NEW SCIENCE 283-84 (1987).

201. See WALDROP, supra note 142, at 295. To return to Bak’s use of the sandpile
model, supra note 185, he suggests dropping wet sand on the sandpile. This will have
greater friction than regular sand. Initially, as the wet sand sticks, there will be smaller,
more localized, avalanches. However, this will cause the sandpile to grow steeper, lead-
ing the avalanches to grow. Eventually, the pile will return to a state with system-wide
avalanches, but with a higher sloped pile. (A similar example could be done with dryer,
rather than wetter, sand. The pile would leave the complex “equilibrium” for a while, but
eventually return to the critical state, only in this instance with a steeper slope). See BAK,
supra note 174, at 51-52.

MAHERFMT4.DOC 9/29/2006 1:29 PM

658 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

III. OPEN SOURCE METHODOLOGY AS A COMPLEX SYSTEM

From the open source projects discussed202 it is clear that the
open source process develops technically strong code. This is true,
despite the fact that the development is much more distributed,
bottom-up than proprietary methods of development. A considera-
tion of the details of the open source process will show that all the
elements of a complex system are present. Thus, complexity the-
ory can explain the observed result of the technical strength of
open source projects.

A. System of Agents

The open source process consists of many elements that play
the role of agents. For example, the underlying technology (hard-
ware and software) fills the role of simple agents. Most obviously,
the users, programmers and developers also act as agents in this
system. The aggregates of these individuals play important agent
roles as well. Project-level communities may act as agents by
competing and interacting with other projects. Further, the com-
munity as a whole acts as a norm-setting and norm-enforcing agent
to help constrain the cultural aspects which are important to the
open source process.203

The performance systems of the most simple hardware and
software agents closely fit the “if-then rule” analogy.204 Com-
puters, hardware and software literally obey if-then rules and have
a performance system dictated by their own programming or mate-
rials, acting in concert with their environment (other hardware,
computers, programs, users, et cetera). The performance system of
the developers is based on their particular computer skills—
knowledge of programming languages, programming and debug-
ging abilities, et cetera. The open source community norms pro-

202. See supra Section I.A.
203. This is not intended to be an exhaustive list—other agents could be added. For

example, individuals who do not participate in open source software could be considered
agents as well, for the important role that they play in the reward system of the open
source community. See infra, note 273-274 and accompanying text.

204. See supra notes 149-150 and accompanying text.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 659

vide project ownership rules,205 necessary traits for project leader-
ship,206 and norms exist that provide a disincentive to engage in
self-promotion.207 The more localized “hurdle” norms208 are ex-
amples of norms for which the relevant community may be a pro-
ject or group of projects within the larger open source community.
It is interesting to note that, although in hindsight analysis these
rules strengthen the open source process, there was apparently no
centralized effort to develop these rules, as evidenced by the wide-
spread unawareness of their existence.209

The credit assignment mechanism for computer hardware and
software comes from the changes that result from testing and
evaluation done on the code by programmers. The credit assign-
ment mechanism for the norms governing individual and group
behavior and rule-choice could be expected to function in a manner
consistent with esteem norms generally.210 However, this category
of internal characteristic is particularly difficult to determine based
on the information presently available.

The rule discovery mechanism for developers and groups, as
with the credit assignment mechanism, should occur in a manner
consistent with norms generally. However, the rule discovery
mechanism for open source software provides a clearer example of
the type of mutation and reproduction typically of complex sys-
tems. Specifically, the recycling of code commonly done by open
source developers211 will result in the reuse of successful “rules” in
combination with other successful elements of code (reproduction),
as well as to serve as the basis for new code development (muta-
tion).

The reuse of code in open source projects is also an example of
a type of prediction mechanism. By breaking down a task to be
performed by software into familiar parts, pre-existing elements of

205. See supra Section I.D.
206. See id.
207. See id.
208. See id.
209. See Raymond, Ownership and Open Source, supra note 41.
210. See Richard H. McAdams, The Origin, Development and Regulation of Norms,

96 MICH. L. REV. 338 (1997) (discussing the development and nature of esteem norms).
211. See supra Section I.B.

MAHERFMT4.DOC 9/29/2006 1:29 PM

660 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

code can be used. The role of the normative training received in
the academic setting212 provides one example of the prediction
mechanism that occurs in the open source context. The type of be-
havioral norms learned in the academic setting get carried over and
applied to the new activities that occur in open source develop-
ment. Finally, many of the open source projects, notably Linux,
had some basis in existing technology.213

B. Interactions of Agents

The interaction of agents is one of the most important aspects
of complex systems. Thus, the rules for open source agent interac-
tion will next be investigated. Further, the systemic changes that
are due to these interactions will be considered. Finally, the means
by which open source agents form aggregates is discussed.

1. Rules for Interaction

There are two main rules for agent interaction in complex sys-
tems. Both tagging and flows are evident within the open source
methodology.

a. Tagging

The first aspect of agent interaction is the use of tags. There
are many examples of this behavior in the open source context.
One obvious example is the “OSI Certified” certification mark.214
This mark is able to be used only on software that meets the Open
Source Definition.215 Members wishing to use or participate in the
development of “true” open source software can use this “tag” to
distinguish open source software from software that only claims to
be open, or which may have only a few open source elements.

212. See supra Section I.I.1.
213. In the case of Linux, it was initially developed to be like a Unix operating sys-

tem. See Torvalds, supra note 12, at 102.
214. See Perens, supra note 101, at 174 (discussing the creation and use of the open

source mark); The Open Source Page (last modified Apr. 1, 1999)
<http://www.opensource.org/>.

215. See OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION, supra note
3, app. B at 253-54 (the Open Source definition, version 1.0); The Open Source Defini-
tion (last visited Jan. 30, 2000) <http://www.opensource.org/osd.html> (version 1.7).

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 661

Open source licenses can serve a similar function. Although they
may be less clear than the simple “OSI Certified” label, the terms
of the license can help signal whether a program is truly open
source.

Open source community norms also play a substantial tagging
role. The norm against self-promotion could be viewed as an in-
terpretation of the “tag” of egotistical behavior as representing
someone who will not allocate credit and reputation in the project
in a way consistent with community norms.216 The norms which
serve as barriers to entry help identify individuals who wish to par-
ticipate in code development, but would not be desirable as par-
ticipants.217 These norms are tags that allow participants to iden-
tify those with whom it is useful to deal and those with whom it is
not.

The “gift culture” norms of the community may serve a tagging
mechanism in a more subtle way as well. Eric Posner has dis-
cussed the ways in which gift giving can have a signaling function
that is useful in distinguishing between two types of market actors
- opportunists and cooperators.218 Specifically, giving of gifts,
when done appropriately, allows cooperators to distinguish them-
selves from opportunists in order to pair up with other coopera-
tors.219 “Cooperators give gifts as a way of showing that they ex-
pect a long-term relationship; if they expected only a short-term
relationship, they would not obtain a sufficient return to offset the
cost of the gifts.”220 This signaling helps to overcome a collective
action problem. Although together programmers could engage in
activities that produce a cooperative surplus, this can only be
achieved through a long-term relationship, while substantial incen-
tives exist to gather short-term benefits and then abandon the rela-
tionship.221

The use of gift giving as a tag could be true in the open source

216. See supra Section II.D.
217. See id.
218. See Eric A. Posner, Altruism, Status, And Trust In The Law Of Gifts And Gra-

tuitous Promises, 1997 WIS. L. REV. 567, 579-80 (1997).
219. See id. at 579.
220. Id. at 579-80.
221. See id. at 581.

MAHERFMT4.DOC 9/29/2006 1:29 PM

662 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

community as well. Initiators of a project give a gift of the initial
project development and its maintenance, and user give the gift of
debugging and development. They signal to one another that they
wish to cooperate to take advantage of the benefits that have been
seen to accrue to the open source development method. Further,
the actions of proprietary software companies claiming to go open
source with a program can be observed in this manner as well. If
they do not fully conform to the requirements of the open source
community (i.e., meet the Open Source definition or other stan-
dards) this could help the community recognize a opportunist.
Such behavior has been seen in the context of technical stan-
dards,222 and there is potential for its occurrence with open source
software as well.223

b. Flows

Flows are apparent in open source software development as
well. For example, maintainers of an open source project distrib-
ute programs and in return receive bug fixes and patches to the
program. In return for the work of users, project leaders often get
their improvements implemented in future version of the program,
and have continued access to the source code to make their own
changes. Based on their input, developers receive esteem from
other users and group members as well as from the open source
community as a whole. Open source businesses receive money in
exchange for software and support. This, in turn, may allow for
the funding of continued development of open source projects.
Proprietary software developers may take programs open source,
providing the community with guaranteed access to the source
code of the program, in exchange for the benefit of future modifi-
cations and the publicity that comes from such a move. Proprie-

222. See Marcus Maher, An Analysis of Internet Standardization, 3 Va. J. L. Tech. 5
at ¶¶ 18-19 (last visited Jan. 30, 2000)
<http://vjolt.student.virginia.edu/graphics/vol3/home_art5.html> (1998).

223. Cf. Leander Kahney & Polly Sprenger, Apple’s Open-Source Movement (last
modified Mar. 16, 1999)
<http://www.wired.com/news/news/technology/story/18503.html> (discussing Apple’s
claim to an understanding and the beginnings of going open source with their software,
and the concerns expressed by Bruce Perens that licenses of IBM and Apple may not
fully comport with the Open Source definition).

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 663

tary companies may also merely port programs to the Linux plat-
form, gaining a foothold in the open source market, in exchange
for providing open source software users with a useful program.
Finally, modularity plays an important role in the flows of the sys-
tem. Modularity of code allows the work of programmers to be
spread throughout the system. The reuse of modules from prior
programs allow the programmer’s work to be spread into future
programs. The ease of evaluation and quality improvement that
comes from modularity could be expected to make modularity val-
ued by peers.

2. Interactions Yield Systemic Changes

The recycling of code is one good example of how flows result
in the spreading of resources throughout the open source system.
One piece of code, once introduced into an open source program,
can be recycled for use in unrelated programs. These programs
may be referenced when still other, different, programs are being
written. Recycling might not occur at all for a given piece of code,
or it might occur repeatedly into the foreseeable future. The initial
input of work by the first author may result in the accomplishment
of substantial programming effort when the code’s role in future
programs is considered.

Part of how flows and tagging create change and diversity in a
complex system is through the creation and filling of niches. This
process is clearly at work in the open source context. As the range
of open source applications increases, niches are created for pro-
grams that work with these applications, for adaptations of these
programs for particular settings, or for the development of more
advanced software that these underlying technologies make possi-
ble. External changes, such as those in hardware or standards, also
lead to the extinction of former programs and the need for new
software to take its place. Thus, the range of products that exist
and the change that occurs in the open source community appears
consistent with the systemic changes to be expected in complex
systems.

3. Formation of Meta-Agents

The fact that meta-agents occur in the open source community

MAHERFMT4.DOC 9/29/2006 1:29 PM

664 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

has already been noted.224 The nature of agent interaction allows
for the meta-agents to have capabilities that would be difficult or
impossible to achieve in a single sub-agent. For example, the crea-
tion of what is now known as the Linux operating system would
hardly have been as attainable by Linus Torvalds. Rather, it was
the effort of a large number of groups, project leaders and develop-
ers that allowed the operating system to reach its current level of
sophistication. Similarly, by awarding or withholding esteem
based on participation at the aggregate level, critical levels of repu-
tational benefit may be possible, leading developers to participate
when such incentive may not have been attainable at the individual
or even single-project level.

C. Specific Example - Linux

The development of the Linux operating system provides a
good example of the complex processes of open source develop-
ment at work. The agents in this system include Richard Stallman,
Linus Torvalds, and others who contributed to the development of
the operating system.225 Agents also include the organizational-
level actors, such as the GNU project, which helped orchestrate the
development of the specific projects necessary to fill out the oper-
ating system’s components.226

The community guidelines for open source development not
only provided a performance system for the participants in the de-
velopment of Linux, but may in fact have been substantially origi-
nated (as discernible principles) in this project’s development.
These principles came, in part, from the policy statement227 and
legal constraints228 imposed by the GPL developed by the Free
Software Foundation for use with GNU software.229 This license

224. See supra Section III.A.
225. For the roles of various parties, see, e.g., supra Section I.A.3.
226. See Stallman, Overview of the GNU Project, supra note 14.
227. The GNU GPL begins with a preamble discussing the justifications for the

GPL. See GNU General Public License, supra note 99.
228. See supra, Section I.F.1.
229. See What is the Copyleft? (last modified Apr. 11, 1999)

<http://www.fsf.org/copyleft/copyleft.html #What is the Copyleft?>.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 665

was utilized by Linus Torvalds when distributing Linux,230 thus
constraining the way in which development could occur. The suc-
cess of the development of Linux resulted in its development proc-
ess being mimicked in later open source projects.231

Further, the recognized importance of modular code to open
source software may also have had its roots in these projects.232
Indeed, the fact that modularity is widely observed in open source
projects is a sign of the success of the credit assignment mecha-
nism. The mechanism credited rules not only based on environ-
mental feedback, but for stage-setting capabilities as well.233 For
example, code recycling was facilitated through modularity.234 Fi-
nally, the choice by Richard Stallman to use Unix as a model for
functionality of the operating system,235 and the decision of Linus
Torvalds to base his original kernel on the Minix kernel, which is
Unix-like,236 were instances of prediction mechanisms at work.237

Tagging played an important role in the development of the Li-
nux operating system. Confusion over the term “free” lead to a
false start in Richard Stallman’s attempt to find a free compiler to
begin work on an operating system.238 The “tag” of the GNU GPL

230. Torvalds states that he chose the GPL because that was the license under which
the GCC compiler was issued. See Torvalds, supra note 12, at 107.

231. See, e.g., Raymond, The Cathedral and the Bazaar, supra note 28 (noting that
he chose to use (and write about) the open source development process because of his
experience as a contributor to GNU projects, and evidence from the successful develop-
ment of the Linux kernel that the process could be used on a larger scale).

232. For example, the importance of modularity was recognized by Linus Torvalds,
and built into the Linux kernel, see Torvalds, The Linux Edge, supra note 12, at 108.
Richard Stallman also recognized the value of modularity, building it into, for example,
the Emacs editor. See EMACS: The Extensible, Customizable Display Editor (last modi-
fied Feb. 16, 1998) <http://www.gnu.org/software/emacs/emacs-paper.html SEC1>.

233. Modular code not only is of greater quality (direct feedback), but allows for
easier modifications, project maintenence and recycling of code (stage-setting). See su-
pra Section I.E.

234. Increased ease of code recycling is a natural consequence of modularity, due to
the greater ease of identifying complete sections of code that perform a particular func-
tion, and greater ease in copying only the useful parts of the code.

235. See Stallman, Overview of the GNU Project, supra note 14.
236. See Moody, The Greatest OS That (N)ever Was, supra note 18.
237. These programmers used familiar patterns (the look and feel of the Unix oper-

ating system) and used them as a model (either intentionally or implicitly) for what a
good operating system should be like.

238. Stallman heard about the “Free University Compiler Kit,” or “VUCK,” which

MAHERFMT4.DOC 9/29/2006 1:29 PM

666 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

under which Linux was released, signaled to GNU that the Linux
kernel would be a kernel that would fit with the goal of a free op-
erating system, not only technically, but ideologically. The distri-
bution method of Linux - given away for free public download -
may have been the kind of “gift-tag” 239 that would allow GNU to
recognize the potential for a long-term relationship with Linux.

Systemic changes and the formation of niches was also evident
in Linux’s development. A niche was perceived by Richard
Stallman - the need for a free operating system.240 This led to the
creation of the GNU Project as well as Emacs and GNU utili-
ties.241 These formed a complete operating system, except for the
kernel.242 The niche for a kernel was filled by Linux.243 The exis-
tence of the Linux operating system then created further niches for
system utilities, user interfaces, file management tools, drivers, et
cetera.244 The filling of these niches create still more niches which
must be filled. The existence of these products and a marketplace
of consumers led to the filling of the niche by software distributors
who added value.245

IV. RESULTS OF THE COMPLEXITY OF THE OPEN SOURCE
COMMUNITY

The prior section applied complexity theory to the nature of the
open source development process and revealed that the open
source process is, in fact, a complex. This has several conse-

was designed to handle multiple languages, including C and Pascal. However, Stallman
discovered that the university was free, but the compiler was not. See Stallman, supra
note 29 at 57. This shows the imperfection of some tags. The “free” tag was misleading
in this case, and has been argued to be misleading for other reasons as well. This lead to
a move (by some) the open source tag, which is less likely to cause confusion among as
large a group of people. Further advancements may be yet to come.

239. For a discussion of the signaling function of gifts in the open source process,
see supra Section III.B.1.a.

240. See Stallman, Overview of the GNU Project, supra note 14.
241. See id.
242. See Stallman, Linux and the GNU Project, supra note 11.
243. See id.
244. See, e.g., Torvalds, supra note 12 at 110-11 (discussing future developments

needed for future applications of Linux in new settings).
245. See, e.g., Tiemann, supra note 129; Young, supra note 57 (discussing their

business of adding customer service and support to the Linux operating system).

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 667

quences for open source software and the development process.
First, the complex nature of open source development means that
only short-term predictions are possible, particularly with regard to
specific matters. Second, and more importantly, the complex na-
ture of open source development makes the high quality software
developed by the open source method not only expected, but the
natural outcome of the system’s complexity.

A. Short-Term Predictions

A consequence of the complex nature of open source software
development is that the ability to predict the future of open source
software or the community with any specificity is impossible. At-
tempts to predict what software will be developed, what norms will
exist, or what the open source marketplace will look like in the
mid- or long-term would be foolish. The systemic changes that
have been seen in the open source movement when coupled with
the fact that small changes in complex systems are magnified
through recycling and feedback make such predictions impossible.
Further, any change in the surrounding environment facing the
open source community will affect the co-evolution of the system
in ways not currently predictable.

It is also important to note that the complex nature of a given
aspect of any open source project may not continue infinitely into
the future. In the study of complexity in economic markets, it is
known that as markets mature, they become less complex and
more linear.246 Thus, as some open source projects mature, and
fewer changes need to be made, some elements can be expected to
stabilize.247 The niches created by such a product’s development
can be expected to yield a continued overall complexity, both at
the system level, and more specifically at the project level, as new,
less mature projects are created to fill these niches.

246. See KAUFFMAN, AT HOME IN THE UNIVERSE, supra note 143, at 295-96.
247. This is happening with the core elements of Perl. See Larry Wall, Diligence,

Patience, and Humility, in OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION,
supra note 3, at 127, 140. The same thing is expected with Linux. See Torvalds, supra
note 12, at 110.

MAHERFMT4.DOC 9/29/2006 1:29 PM

668 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

B. Co-Evolution and Fitness Maximization

The effect of complex co-evolution of software elements such
as, user demand and background technology, maximizes the “fit-
ness” of a program, group, community, et cetera, given the con-
straints of the other elements in the system at that time. By simply
relying on the existing open source process, it can be expected that
the software developed by the process will be the best248 attainable
given the current position of the open source system in terms of all
elements - users, developers, market share, underlying technology,
community size, et cetera. That the open source methodology
should lead to technically sound products is not unexpected.
Rather, it is the natural result of a complex system. It is not just
software quality, however, that can be expected to be maximized.
Community norms, levels of participation and other factors are
regulated by the principles of complexity as well, and can be ex-
pected to maximize their relative fitnesses, as they co-evolve along
with the software and other elements of the open source environ-
ment.

Even beyond the descriptive aspects of complexity theory with
regard to open source successes, some general predictions are pos-
sible as well. Particularly, it would be the natural consequence of a
complex system, such as the open source process, to continue to
achieve the maximal attainable fitness in the future. Thus, new
versions of existing open source projects, and the new programs
developed in the future, can be expected to maintain a high level of
technical excellence, as long as the open source methodology re-
mains a complex system of behavior. This should not be mistaken
as calling for rigidity. Rather, this conclusion calls for the recogni-
tion that the evolution which led to the current open source system
can be expected to continue, and that such evolution will result in a
system that produces technically superior products.

V. OPEN SOURCE ON THE EDGE OF CHAOS

The conclusion of the last section gives hope for the future of

248. This may not mean best in every category potentially applied to the program.
Instead, it means best in an overall sense.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 669

open source software. Such a future can only be expected to occur,
however, if the open source approach to software design remains
complex. Assuming that the continued production of high quality
software is desirable, future action must be undertaken with an
awareness of the potential consequences of moving the system
from complexity to order or chaos. Short of a complete move of
the system out of complexity, admittedly an extreme result, it still
makes little sense to engage in activities that tend to push the sys-
tem toward order or chaos. Although the system will adapt back to
a complex balance in many cases, the counter-productive and ulti-
mately fruitless nature of the activities indicate that they should be
avoided.

A. Linearity

The potential problem for the open source movement from
pushes toward linearity comes from several sources. First, pushes
towards centralized leadership, even in a limited way, can pose
problems for the system. Emphasis on moving open source soft-
ware into new areas could pose problems as well, if the system has
not developed to a stage where it is ready for such a move. Fi-
nally, the threat of the closed-source development model could be
problematic.

1. The Problem of Centralized Leadership

The paradigm of linear modes of software development occurs
in the hierarchical methodologies used by most proprietary soft-
ware companies. This approach is highly planned, and imple-
mented in a top-down manner. When the open source process
moves from complexity toward linearity, a particular threat comes
from the natural attraction to centralized explanations experienced
by nearly all people.249 This causes people to impose the concept
of a “leader”250 or a “seed”251 when explaining phenomena, or

249. See, e.g., MITCHEL RESNICK, TURTLES, TERMITES AND TRAFFIC JAMS 119-44
(1994).

250. In other words, that a phenomenon came about or should come about through
the efforts of some centralized command or leader.

251. In other words, that a phenomenon came about or should come about through
growth from some preexisting inhomogeneity or element in the environment.

MAHERFMT4.DOC 9/29/2006 1:29 PM

670 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

when developing solutions to problems.252 This tendency may
lead people to push the open source community toward linear, cen-
tralized approaches to functioning, in ways that could push the sys-
tem toward linearity.

The most dangerous example of this problem comes from those
who would directly impose some hierarchical, top-down leadership
on the community. At the moment it is not clear that any organiza-
tion is openly arguing that it should have total, centralized control
over the open source community. However, organizations are ar-
guing for centralized control over certain aspects of the commu-
nity.253 The reasoning behind such an approach comes from a fail-
ure to appreciate the richness of behavior attainable by complex
systems. In the view of such individuals, “there is no place for un-
intended patterns, arising from decentralized interactions,” but
rather, an innovative software design or long term success must
arise “as an explicit goal.”254 This leads to “misintuitions when
people try to make sense of self-organizing systems.”255 In reality,
“[i]n many self-organizing systems, random fluctuations act as the
seeds from which patterns and structures grow.”256 The apparent
randomness in the system actually allows systems to explore alter-

252. See RESNICK, supra note 249, at 123-24.
253. See, e.g., Halloween I, supra note 35 (stating that the lack of “visionary leader-

ship” will hold the open source movement back from true innovation); David Bollier, The
Power of Openness - A Critique and a Proposal for The H20 Project (last modified Mar.
10, 1999) <http://www.opencode.org/h2o> (“the rich latencies of this Internet-facilitated
phenomenon may never develop if a new kind of networking leadership does not coa-
lesce to assert the important values that can only flourish in an environment of openness”
which, he proposes, could be filled by a new organization “H2O”). Another variation on
this theme are those who provide a list of ways to make money on open source projects.
See, e.g., The Business Case for Open Source, supra note 129;
<http://www.opensource.org/for-suits.html>; Hecker, Setting Up Shop, supra note 75;
Halloween I, supra note 35. While for the most part, these are merely lists of approaches
that have been successful thus far, there is a danger that, implicit in reading the list could
come the idea that these are the only categories of activity, and one can follow them, or
forget about making money. In reality, any effort to provide some wooden, formalistic
business models, no matter how clever, will be unable to adapt and evolve to meet future
challenges.

254. RESNICK, supra note 249, at 125.
255. Id. at 137.
256. Id.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 671

natives in parallel and reach a “‘global’ optimum.”257 Because the
system behaves differently at different levels of abstraction,258
such an optimum may not be apparent, let alone attainable from a
top-down perspective. Thus, an approach that appears good from a
linear perspective may be too fragile to survive, or may miss out
on opportunities that arise from nonlinear effects that are, almost
by definition, not predictable by a “leader.” Although it may ap-
pear riskier to those unfamiliar with complex systems, leaving in-
novations of all kinds to the system itself may be the best approach
to preserving the complexity that has made open source software
good.

A natural point of criticism of this argument is the observed
importance of project leaders in the open source process.259 In-
deed, the argument that linear traits are being discovered in, or
proposed for, a complex system need not immediately signal a
problem—complex systems involve balances of order and
chaos.260 However, the potential “harm” resulting from a given
project leader is limited to the replicability of the project. If the
leader is taking the project in a direction that some nontrivial seg-
ment of users dislike, they may fork the project and create their
own version to compete with the existing project. They could even
go so far as to create an entirely new project. This could be done
relatively easily (assuming user interest) for smaller projects. For
larger projects (for example, Linux) it might be reasonable to ex-
pect greater difficulty in “forking” the overall project, due to the
effort required to reproduce an operating system. However, big
projects are often subdivided into smaller projects, which are more
susceptible to forking. It is further worth noting that the difficulty
of reproducing a program of the scope of a large project is far from
prohibitive.261 Thus, the “linear” nature of project leadership is

257. Id. at 138-39.
258. In other words, meta-agents have different properties than their sub-agents or

the mere sum of these agents, and meta-meta-agents have different properties than meta-
agents, et cetera. See, e.g., id. at 139-41.

259. For a discussion of the role of project leaders, see, supra Section I.C.4.
260. See supra Section II.D.
261. See, e.g., GNOME Project (visited Apr. 8, 1999) <http://www.gnome.org>

(project to develop a window manager).

MAHERFMT4.DOC 9/29/2006 1:29 PM

672 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

constrained, in part, by the “chaos” of code forking.262

The norms of the open source community have also evolved to
constrain the role of project leader.263 These norms regulate the
project leader to require behavior in a manner consistent with the
complexity of the open source system. The means of assigning
credit to contributors, norms against self-promotion and the obliga-
tions required before taking over a project all facilitate the overall
process which allows for distributed, complex behavior.

A further counter-argument that could be raised against the cri-
tique of top-down leadership is that businesses or the government
expect, and feel most comfortable dealing with, such an entity.264
That businesses and governmental authorities should have such
expectations is not surprising.265 However, to simply cave in to
those desires evidences a failure to understand and apply another
basic principle of complex systems - that the environment co-
evolves along with the complex system.266 This gives rise to sev-
eral points. First, due to co-evolution, when the open source com-
munity creates a centralized model, the preference in business and
government for a centralized model could have the effect of mak-
ing the open source community more centralized.267 The corollary
to this point is that, by using centralized bodies to deal with gov-
ernment and business groups, the opportunity to force these bodies
to change in order to understand open source development may be
lost.268 Finally, even if the goal of the open source organization is

262. For a discussion of code forking as a chaotic system, see infra Section V.B.
263. See supra Section I.D.
264. Indeed, Eric S. Raymond makes almost exactly this argument in support of his

proposed position of “open source evangelist.” See Eric S. Raymond, The Revenge of the
Hackers, in OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION, supra note 3,
at 207, 213-15.

265. As noted, supra notes 249-252 and accompanying text, the tendency to look
for centralized causes, processes and authority is a learned behavior common to nearly all
people. Indeed, even individuals with substantial experience researching and studying
complexity harbor such tendencies. See, e.g., RESNICK, supra note 249 at 119-20 (dis-
cussing such behavior in Marvin Minsky, who “has though more—and more deeply—
about self-organization and decentralized systems than almost anyone else.”)

266. See, e.g., WALDROP, supra note 142, at 259-60; HOLLAND, supra note 143, at
97; RESNICK, supra note 249, at 142-44.

267. For example, through the creation of the new organizations.
268. Resnick notes that “[b]eing taught a list of rules isn’t going to have much ef-

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 673

not to be a community leader, but merely to inform business and
government about the merits of open source software, the tendency
of business and governmental bodies to seek centralized explana-
tions will likely lead them to treat the open source organization as
a leader. This will result in an ultimate failure to understand the
true nature of the open source process.269 Thus, it is important to
weigh carefully not only the effect a leadership organization would
have on the open source community, but the effect it would have
on its environment as well. The environmental effects of today
will lead to the co-evolutionary changes in the open source move-
ment of tomorrow.

2. Problem of Pushing Open Source into New Areas

A failure to understand the co-evolutionary relationship of the
open source community and its environment can lead to other po-
tential threats to the complex nature of the system. For example,
taking for granted the high technical standards that open source
software has thus far been able to attain could lead to mistaken ini-
tiatives. It could lead to initiatives to push open source software
into new forums for which it may not be useful, and in fact, for
which the complex approach may not necessarily be appropriate.
Specifically, attempts to make particular open source programs the
standard for everyone270 - techies and non-techies alike - may be
misguided.271 Complex systems are built upon the system’s his-

fect on a firmly entrenched centralized mindset.” RESNICK, supra note 249, at 147-148.
Rather, moving beyond the centralized mindset comes from “participat[ing] in a culture
that values and encourages decentralized thinking.” Id. at 148.

269. Resnick refers to a similar experience in the area of the sciences. “Just as chil-
dren assimilate new information by fitting it into their preexisting models and concep-
tions of the world, so do scientists. . . ‘In short we risk imposing on nature the very sto-
ries we like to hear.’” Id. at 122.

270. See generally, Raymond, The Revenge of the Hackers, supra note 264. Under-
lying his statements that the open source community had “failed,” or was “losing,” and
his goals for the future is the idea that “winning” means maximized adoption of open
source software.

271. Just as another example, the idea that “freedom” arguments should be aban-
doned due to their claimed inability to recruit businesses to open source software, see,
e.g., id. at 212, mistakenly assumes that the open source culture, which is so important to
the success of the process, would unaffected by the abandonment of the very principles
that led many participants to join the community in the first place.

MAHERFMT4.DOC 9/29/2006 1:29 PM

674 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

tory - what is possible in the system now is a result of where the
system was at prior points in time.272 This means that what will be
possible in the future is dependent upon intervening events. To
move the open source system along more rapidly toward a goal it
may not achieve for some time (or may never achieve) is to reject
the complexity that lead to the best qualities of the open source
software.

The potential for mistaken initiatives applies to the issue of
linearity in an important way. To understand how, it is first impor-
tant to consider the issue of free riders with regard to open source
software. Commonly referred to as a free-rider “problem,” the ef-
fects of free riders on open source development can vary from
good to bad. Some level of free riders273 is good. The esteem or
respect awarded a developer is dependent upon the baseline of par-
ticipation.274 If everyone is participating at a high level, for the
developers to get respect they must participate at an even higher
level. However, they may alternatively choose not to participate at
all, if the esteem is not worth the effort that would be required. If
there are free riders, then the baseline for respect is much lower,
and participation at even low levels will garner peer esteem. Thus,
it is reasonable to expect the system to maintain a rough balance
between the number of participants and free riders. Too many free
riders will lower the effort required to get esteem, leading to more
participation. Too much participation will raise the bar so high
that some participants will drop out, increasing the number of free
riders.

The problem in this situation comes from the fact that, while
the number of potential free riders is unlimited, there is an upper
limit on the number of participants. In particular, the non-hackers
that are intended to be reached by the widespread adoption of, for
example, Linux, may reasonably be expected to have little or no
capability to participate as developers. Further, these users have a
much lower ability to appreciate good programming, and thus less

272. See JERVIS, supra note 165, at 40.
273. In the open source context free riders will refer to users of open source soft-

ware who do not contribute, or those who neither use open source software nor contrib-
ute.

274. See McAdams, supra note 213 at 365-67.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 675

ability to award esteem.275 This particular element of the market
may be unable to be anything but free riders on the basic open
source model. What these users do have to offer in terms of com-
pensation is money. Thus, by purchasing software they could fund
an open source project that would create software that met their
specific needs. However, this process (software for money) is
much more linear in nature than the complex system of project
leader-user/developer interaction and feedback that leads to the
complexity of the current open source method. Non-techie users
would be less attentive to the tagging mechanisms. Since they
would not be making changes to the source code, they would be
less likely to care about the Open Source certification mark, open
source licenses or norms that help distinguish cooperators from
opportunists. It would be reasonable to expect no flow of recycled
code, and they would likely be much less active in the niche-filling
that occurs as the result of new product development.

Having a linear model of software development for these users
is only a potential outcome. There is no empirical evidence of how
little these users would contribute, or how much contribution is ac-
tually need. However, two important points can be derived from
the forgoing analysis. First, linear models of software develop-
ment may be entirely appropriate for some market segments.276

275. Since they have no technical knowledge it is difficult for them to evaluate the
product, because they have only a limited baseline of comparison. Another way of say-
ing this, is that their esteem should be less valuable (although probably greater than zero)
because they do not have the knowledge necessary to allocate it in the manner consistent
with their own best interest (maximum reward for the programming that is best, and thus
helps them, minimal or now reward for bad programming which does not help them
much). Cf. id. at 361-62 (discussing the importance of the ability to detect norm non-
compliance to the ability to effectively grant or withhold esteem).

276. This is where the arguments of Richard Stallman, the Free Software Founda-
tion and others regarding the freedom that comes from open source software become par-
ticularly important. Although the linear method of software development is commonly
associated, even within this paper, with proprietary software development, it need not be.
Linear methods could also follow the same licenses as open source products, but with
little anticipated availment of the source code access by users. However, the economic
focused arguments do not indicate why open source should be preferred if a linear model
can develop as high quality of software and meet the needs of this market segment.
However, if there are freedom considerations associated with free software, it is worth
pursuing, even in the linear context, where the users have not practical (i.e., improvement
in software quality) benefits from doing so.

MAHERFMT4.DOC 9/29/2006 1:29 PM

676 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

Second, the tendency of the segment toward linear development
models, to the extent it occurs, could needlessly interfere with the
complexity of the regular open source model. It could be prefer-
able to develop this technology as a separate entity, if possible, to
avoid any “pollution” of the existing, complex, open source ap-
proach.

3. The Problem of Closed-Source Development

Although, as noted in the prior section, a linear approach to
software development need not be closed-source, the counter-
proposition may be true. That is, it may be the case that proprie-
tary software development inherently follows a centralized, linear
mode. Much of the ability of proprietary developers to effectively
control use of their copyrighted material comes from limited ac-
cess to this material.277 Thus, the closed-source development
model almost certainly requires a barrier to the user/developer
feedback and interaction typical of the open source model. This
will also mean that the recycling of code is likely to be limited to
“in-house” developers, if such recycling occurs at all. Similarly,
the only flows occurring in the proprietary software system will
likely consist of the money-for-software exchanges. Finally, inter-
actions are much more rarely likely to cause changes in the system.
While customers can kill a product they have no desire for, they
have almost no ability to exert influence on the characteristics of
the products available to them.278 The centralized control neces-

 It is also interesting to note that Netscape’s Navigator may be similar, from the per-
spective of complexity vs. linearity, as operating systems. The Mozilla open source pro-
ject has had only about 30 voluntary participants as compared to about 100 paid pro-
grammers. The project is also months behind in its first beta release. See Ben Elgin,
Open-Source Mozilla Project Struggles for External Support (last modified Apr. 5, 1999)
<http://www.zdnet.com/pcweek/stories/news/0,4153,1014274,00.html>. These factors
indicate that the Mozilla project may not be reaping the expected open source benefits.
However, the ultimate conclusions that can be drawn at this point are merely speculative.

277. Cf. Mark Stefik & Alex Silverman, The Bit And The Pendulum: Balancing The
Interests Of Stakeholders In Digital Publishing, 16 No. 1 COMPUTER LAWYER 1 (1999)
(discussing the importance of physical constraints on copying for effective control of
copyrighted material, and the potential role to be played by trusted systems in the digital
world).

278. See The Customer Case for Open Source (last modified Nov. 28, 1998)
<http://www.opensource.org/for-buyers.htm>.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 677

sary to bring about the secrecy critical to protection of intellectual
property points to a linear development model as the natural con-
sequence of proprietary software development.

4. Intellectual Property Problems

The link between closed-source software development and
linearity can pose problems for open source software, in particular,
through intellectual property. By invoking copyright or patent re-
strictions in code,279 proprietary companies can attempt to impose
their centralized model of development on the open source com-
munity by forcing them to go through the proprietary company for
access, or to find some route around the protected code. Further,
the open source movement must be careful to ensure that projects
remain open source through future iterations, and are not cut off
from the open source community at some future date through the
use of intellectual property. This calls for the use of open source
licenses, such as the GPL, that do not allow future versions or
modifications to be “taken private.”

To ensure that open source projects are not taken private also
requires that the license originally attached to the program “apply
to all to whom the program is redistributed without the need for
execution of an additional license by those parties.”280 The valid-
ity of this type of open source license has not yet been confirmed
by any court.281 Its validity may be supported by recent cases up-
holding the validity of roughly similar “shrinkwrap” licenses.282

279. See, Bruce Perens Preparing for the Intellectual Property Offensive (visited
May 11, 2000) <http://www.linuxworld.com/linuxworld/lw-1998-11/lw-11-
thesource.html>.

280. Perens, The Open Source Definition, supra note 101, at 179.
281. See id.
282. See, e.g., Hill v. Gateway 2000, 105 F.3d 1147 (7th Cir. 1997), cert. denied

118 S.Ct. 47 (1997) (upholding arbitration clause in contract for hardware and software,
presented to the user upon receipt of computer); ProCD v. Zeidenberg, 86 F.3d 1447 (7th
Cir. 1996) (enforcement of a shrinkwrap license included with software); Brower v.
Gateway 2000, 676 N.Y.S.2d 569 (App. Div. 1998) (upholding arbitration clause in con-
tract for hardware and software, presented to the user upon receipt of computer); but see
Step-Saver Systems, Inc. v. Wyse Technology, 939 F.2d 91 (3d Cir. 1991) (shrinkwrap
license unenforceable as not part of contract terms made in an earlier phone conversa-
tion). See also, Ira V. Heffan, Note, Copyleft: Licensing Collaborative Works in the
Digital Age, 49 STAN. L. REV. 1487, 1509-11 (1997) (arguing that open source licenses

MAHERFMT4.DOC 9/29/2006 1:29 PM

678 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

The outcome of a new proposed uniform state act, the Uniform
Computer Information Transaction Act (UCITA),283 may play a
substantial role in open source license validity as well. UCITA
supports the validity of mass market licenses generally.284 As cur-
rently written, if no specific duration of a license is specified, the
default is a perpetual license.285 This is consistent with the under-
standing in open source licenses. However, source code licenses
within the proprietary software community are rarely for a perpet-
ual term. Thus, the UCITA, if adopted by the states, could help re-
solve some of the uncertainty regarding open source licenses.

B. Chaos

Although there are a wealth of problems that could push the
open source model toward linearity, there are also problems that
could push it toward chaos. Specifically, these problems include
code forking, the failure of project leaders and incompatibility of
open source licenses.

1. Code Forking

Strong norms against formal code forking286 exist in the open
source community.287 However, the marketing of open source
software to businesses stresses the ability of companies to change
the source code themselves. Many of the code changes may be
passed on to the seller based on the hope of incorporation into fu-
ture releases of the product. There is also the potential for busi-

should be found valid under existing law).
283. See Uniform Computer Information Transaction Act (last modified Aug. 4,

1999) <http://www.law.upenn.edu/bll/ulc/fnact99/1990s/ucita.htm> [hereinafter UCITA].
284. See id. § 210.
285. See id. § 308(2)(B) (“. . . the duration of the license is perpetual as to the con-

tractual rights and contractual use restrictions if: . . . the license expressly granted the
right to incorporate or use the licensed information or informational rights with informa-
tion or informational rights from other sources in a combined work for public distribution
or public performance.”). The GNU GPL, for example, expressly allows modifications
of GPL’d programs to be distributed themselves, or as part of a new program, so long as
the new work is released under the GPL, thus falling within the terms of this provision.

286. What is meant by “formal” code forking is the creation of a new, competing
open source project based on the same underlying source code.

287. See, supra Section I.D.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 679

nesses to simply keep these changes for themselves. It is not nec-
essarily the case that they would do so out of a desire to market the
product themselves, but rather, simply because there was no insti-
tutional awareness that these changes should go back to the com-
munity, or that there would be any value to resubmitting them.

If such a tendency were present, over time the products being
used by businesses would develop vast numbers of informal “ver-
sions” of the product. Essentially, the project would no longer
have a “memory of the past” or the same ability to evolve that is
expected of complex systems. Rather, as is common in chaotic
systems, the code would develop along one path, with little to no
understanding of the history of development within each of these
smaller versions. These varying versions may propagate as future
employees alter their own version of the software to deal with
hardware and software changes, or as the code is passed between
companies through merger or buyout. Typical of chaotic systems,
these programs will change, but not necessarily in an “evolution-
ary” manner. Rather, the changes will bear only a limited relation-
ship to the fitness of the code given the current environment.

To avoid this result, it is important to continue supporting the
norms against code forking. However, more is obviously needed.
Sellers of open source products must also be involved in the code’s
development. This will allow the feedback of customers to be in-
corporated into the formal project, giving businesses greater incen-
tive to submit code changes, and allowing the project to “learn”
from these changes. Maintaining the quick release rate that is cur-
rently common to open source projects is important as well. The
rapid release rate will help ensure that projects do not have enough
time to evolve too far along different paths in individual compa-
nies. It will also encourage businesses to submit changes to avoid
the need to constantly fix and re-fix new version of the program to
deal with their particular environments.

2. Poor Project Leadership

It is important to reiterate the role of project leaders in the suc-
cess of open source projects, particularly in light of the criticisms
of other types of leadership in the prior section. Indeed, just as the
chaotic nature of code forking helps balance the potentially linear

MAHERFMT4.DOC 9/29/2006 1:29 PM

680 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

nature of project leadership, project leadership is necessary to bal-
ance chaotic potentials of the open source model. First, there is the
obvious potential for increased code forking due to the absence or
inaction of project leaders. It was noted288 that a disbelief in the
potential for users’ changes to be implemented in new versions of
the software could lead the users to keep the changes to them-
selves.289 This was shown to potentially lead to numerous unique
version of the software, resulting in a more chaotic open source
project.

Excessively weak project leadership can lead to failure on the
part of users to resubmit contributions and an increase in the cha-
otic nature of the system. Specifically, this could come from a
lengthening of the intervening time between releases. Part of the
strength of open source software comes from the rapid updating of
project versions.290 This was seen to encourage contribution of us-
ers’ individual changes back to the project. Failure to make final
decisions regarding disputes over the proper course for the project,
which is part of the leader’s role, could slow the release of new
project versions as there is an attempt to achieve some consensus
regarding the technical development.291 This may be part of the
reason why the “benevolent dictator” model of project leadership
is seen to be more stable and less complicated than the committee
model.292

3. Inconsistent Open Source Licenses

A final problem that could lead to greater chaos in the open
source community is inconsistent open source licenses. “The
propagation of many different and incompatible licenses works to
the detriment of Open Source software because fragments of one

288. See supra Section V.B.1.
289. For example, when one of the GNU tools, GDB, went through a period with

“no strong maintainer,” this resulted in GDB fragmenting “with hundreds of people
around the world making their own versions to meet their own needs.” Tiemann, supra
note 129, at 79. When this was finally taken over by a Cygnus engineer he collected 137
versions of the program that required integration. See id. at 81.

290. See supra Section V.B.1.
291. See, supra Section I.C.4.
292. See id.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 681

program cannot be used in another program with an incompatible
license.”293 The inability to use a given program in conjunction
with others or as part of a package could result in several types of
problems. First, if the program fills a niche necessary to the pack-
age, it will be necessary to develop a new, equivalent, product. Es-
sentially, a type of forking must occur to create a product that can
be released under a compatible license. Further, if sufficient soft-
ware exists under incompatible licenses, a number of packages
might arise, based upon the number of incompatible open source
licenses. Thus, the forking will be repeated for each of the pack-
ages that are available.

Inconsistencies in open source licenses can further lead to an
inability to take advantage of lessons learned in past open source
projects. Specifically, the practice of recycling code from prior
open source projects could be substantially hindered by inconsis-
tent license terms coupled with uncertainty regarding a potential
finding of copyright infringement by a court.294 This could dis-
courage the recycling of code from other programs if the license
under which it was issued is inconsistent with the license under
which the current program is to be distributed.295

293. See Perens, The Open Source Definition, supra note 101, at 185.
294. For example, the consequence of translating a program for a new platform is

not entirely certain. Compare Whelan Assocs. v. Jaslow Dental Laboratories, 797 F.2d
1222 (3d Cir. 1986) (holding that translating a program from one source code to another
to allow the program to run on a different platform was a direct copying copyright in-
fringement) with Q-Co Indus., Inc. v. Hoffman, 625 F.Supp. 608 (S.D.N.Y. 1985) (where
a program was written in BASIC, a program substantially similar in function and screen
design written in PASCAL was not an infringement). Direct or literal copying can con-
stitute infringement even if only a small portion is copied. See, e.g., Susan A. Dunn,
Note, Defining The Scope Of Copyright Protection For Computer Software, 38 STAN. L.
REV. 497, 512 (1986) (noting that, in one case, SAS Inst., Inc. V. S&H Computer Sys.
Inc., 605 F. Supp. 816, 822, 830 (M.D. Tenn. 1985), infringement was found due to lit-
eral copying of less than one fortieth of one percent of a program’s code). Thus, the
translation of an open source program for a new platform and subsequent release under
an incompatible license could be deemed an infringement, as could the copying of some
small portion of code then used in a program released under an incompatible license.

295. For example, if code from a GPL-licensed program were used in a program
released under an incompatible license, such use would fall outside the license and would
subject the developer of the later program to potential liability for copyright infringe-
ment. This is true because the user of a GPL program has a license to use and re-release
parts of its code “under the terms of [the GPL] License.” See The General Public Li-
cense, supra note 99. While it might also, generally, be necessary to consider whether

MAHERFMT4.DOC 9/29/2006 1:29 PM

682 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

Ultimately, this poses less of a potential problem than the oth-
ers in this section. A good open source definition can help ensure
minimal conflict among compliant licenses. It is also unlikely that
there would be a sufficient number of programs within each of the
license categories to lead to competing packages. Nonetheless,
there exists the potential for such a situation to develop, leading to
greater chaos in the open source process.

VI. IMPACT OF COMPLEXITY ON FUTURE CONCERNS

The prior sections have shown both the benefits that have al-
ready been found as a result of the complexity of open source
software development, and the ways in which this complex nature
may be maintained. So long as the practices necessary for the suc-
cess of the open source process are continued, there is every reason
to believe that many of the concerns expressed about the future of
open source software are unwarranted.

A. Reaction of Microsoft

One of the biggest issues facing the open source community is
the potential reaction of Microsoft to counteract the success of
open source software.296 Microsoft can be expected to use all the

the license allowed for the creation of derivative works by anyone other than the owner,
the Open Source definition effectively nullifies this for all open source software by re-
quiring that Open Source licenses allow for user modifications. See The Open Source
Definition (last modified Dec. 20, 1998) <http://www.opensource.org/osd.html> (“The
license must allow modifications and derived works, and must allow them to be distrib-
uted under the same terms as the license of the original software.”)

296. Microsoft has itself expressed the view that Linux poses a threat. See Hallow-
een I, supra note 35 (internal Microsoft memo discussing the nature and threat of open
source software generally); Linux OS Competitive Analysis (last modified Aug. 8, 1998)
<http://www.opensource.org/halloween/halloween2.html> (hereinafter “Halloween II”)
(followup to Halloween I, discussing threat of Linux to Microsoft); Chris Oakes, MS:
Open Source is Direct Threat (last modified Nov. 2, 1998)
<http://www.wired.com/news/technology/0,1201,15990.html> (noting Microsoft’s ac-
knowledgment of the validity of the Halloween memos, and recognizing the threat to Mi-
crosoft posed by open source software); Nicholas Petreley, Take Nothing for Granted
(visited May 19, 2000) <http://www.linuxworld.com/linuxworld/lw-1998-12/lw-12-
penguin.html> (stating expectation that, after antitrust lawsuit ends, Microsoft will focus
its efforts to stopping open source software to a much greater extent). But see Scott Beri-
nato, Microsoft Exec Dissects Linux’s ‘Weak Value Proposition’ (last modified Mar. 4,
1999) <http://www.zdnet.com/pcweek/stories/news/0,4153,1014079,00.html> (noting the

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 683

tools at its disposal to fight the open source movement - including
code, norms, the market and law.297 In the Halloween memos it
expressed an intent to use code by taking highly commoditized,
simple protocols and “extending these protocols and developing
new protocols, [to] deny OSS projects entry into the market.”298
Further, although the memos indicate a concern that Microsoft’s
FUD299 tactics may be ineffective on open source software,300 its
use of tactics of some kind301 to get user and developer mindshare
can be expected. Finally, Microsoft may well attempt to utilize its
market position to force software vendors and OEMs to choose be-
tween Microsoft and Linux.302 The Halloween memos indicate
that law may be used by Microsoft as well, in particular, the use of

statements of one Microsoft executive that further studies of Linux indicate it is less of a
threat).
 Although Linux, rather than open source software generally, would appear to pose
the greatest threat to Microsoft, their own memos indicate an intent to “target a process
rather than a company.” See Halloween I, supra note 35.

297. For a discussion of the regulatory power of these forces see, e.g., See, e.g.,
Lawrence Lessig, The Constitution of Code: Limitations on Choice-Based Critiques of
Cyberspace Regulation, 5 COMMLAW CONSPECTUS 181 (1997); Lawrence Lessig, Con-
stitution and Code, 27 CUMB. L. REV. 1 (1997) (discussing the regulatory nature of law,
norms, market and code).

298. Halloween I, supra note 35.
299. FUD stands for “fear, uncertainty and doubt.”
300. See Halloween I, supra note 35.
301. Halloween I provides an indication that Microsoft would attempt to offer some

of the “community”-type benefits of open source software, including “putting out parts of
the code base” or “creating community/noosphere,” although not fully embracing the
open source concept. Halloween I, supra note 35. Essentially, this would involve the
creation of Microsoft’s own, proprietary “open source” methodology, thus taking a page
from their technique of creating Microsoft’s own “standards” in place of true technology
standards. Some indication of this has come from statements by Microsoft that they may
be considering taking their code “open source,” but then noting that they had a unique
definition of “open source.” See Connie Guglielmo, Microsoft to Open Source? Not
Likely (last modified Apr. 9, 1999)
<http://www.zdnet.com/zdnn/stories/news/0,4586,2239301,00.html>.

302. See, e.g., Petreley, Take Nothing For Granted, supra note 296 (predicting that,
after the DOJ antitrust suit, Microsoft will force vendors to choose between Linux and
Microsoft NT just as they did for Navigator and Internet Explorer). There is historical
precedent for such activity. See United States v. Microsoft Corp., Complaint, Civil Ac-
tion No. 98-1232 (visited Feb. 26, 1999)
<http://www.usdoj.gov/atr/cases/f1700/1763.htm> at ¶¶ 24, 97 (use of market power to
control OEM alteration of desktop); id. at ¶¶ 75-92 (use of market power to control Inter-
net content providers).

MAHERFMT4.DOC 9/29/2006 1:29 PM

684 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

patents and copyright for “combatting Linux.”303

The tactic of Microsoft to de-commoditize technical standards
can be successful only if it achieves sufficiently widespread im-
plementation of its modified technology to make its version the de
facto standard. However, for many of the technologies for which
this would be necessary, Microsoft may not have sufficient market
share to do so. With network technologies, the participants in the
IETF, World Wide Web Consortium (W3C), and other Internet
standards organizations could oppose Microsoft’s competing, pro-
prietary “standards.” Other companies will have incentives to fight
Microsoft on this front as well.304 Thus, at least within the server
market, where Microsoft has less than 50% market share,305 it is
unlikely that sufficient market presence exists for it to force a de
facto standard.

Such an attempt may also have the effect of garnering greater
support for the open source community, given the dim light in
which such anti-competitive conduct is viewed, particularly be-
cause of Microsoft’s recent antitrust problems. Although not a
necessary trait of the open source community, there seems to be an

303. Halloween II, supra note 296.
304. For example, Sun filed a lawsuit against Microsoft for allegedly engaging in

this type of “decommoditizing protocols” with respect to Java. See Microsoft Readies
Java Appeal (last modified Dec. 17, 1998)
<http://www.wired.com/news/news/politics/story/16895.html>; Will Rodger, Sun, MS
Play Java Blame Game (last modified Dec. 10, 1998)
<http://www.zdnet.com/zdnn/stories/news/0,4586,2174437,00.html>; Will Rodger, Java
Emerges as Key Antitrust Issue (last modified Dec. 4, 1998)
<http://www.zdnet.com/zdnn/stories/news/0,4586,2172096,00.html>. It has further been
noted that in the Internet market of the future, there will be a greater diversity of competi-
tors, and the market may not readily facilitate a single monopoly player. See Eric Nee,
Microsoft Gets Ready To Play a New Game, FORTUNE, Apr. 26, 1999 at 106.
Additionally, much of the software that provides the functionality of the Internet is itself
open source (for example, Sendmail, BIND and Apache), and these projects would have
incentives to resist changes to implement proprietary “standards.” Indeed, to the extent
that the open source licenses under which these programs are released restrict the licenses
of software that it uses, or with which it can be aggregated, use of these proprietary stan-
dards could be impermissible.

305. See Stephen Shankland, Linux Shipments up 212 percent (last modified Dec.
16, 1998) <http://www.news.com/News/Item/0,4,30027,00.html> (citing statistics from
an International Data Corporation study indicating that market share for Windows NT
was about 36%, while Novell Netware, for example, had about 24%, Linux had about
17%, and Unix accounted for roughly another 17%).

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 685

impression that anti- Microsoft sentiment plays a role in the inter-
est and participation of some in the open source movement.306
Further anti-competitive conduct would reinforce the perception
that open source software, and Linux in particular, is a legitimate
alternative to Microsoft.307 This would also support the conclusion
that Microsoft readily engages in questionable, anti-competitive
conduct. Thus, efforts by Microsoft may well be unable to provide
sufficient code constraints to inhibit open source software, while
having the effect of reinforcing pro-open source opinions.

Efforts to constrain OEMs and software developers through the
use of Microsoft’s market position, to the extent it would have an
effect, could also be frustrated. If Microsoft is successful in con-
trolling OEMs and software vendors, this could drive innovation in
the open source community. With no commercial options avail-
able, Linux applications and utilities could be expected to be de-
veloped by the open source movement to fill the gap caused by
Microsoft’s control.308 Further, if Linux is not able to be pre-
installed on machines, this would provide strong incentives for in-
novation among commercial Linux distributors to provide better,
more user-friendly instillation tools. Alternatively, feedback ef-
fects from the current trend of commercial software application
developers porting software to Linux309 could lead to increasingly
steep growth in the market. This could lead to a larger market for
open source software, providing revenue to fund more develop-

306. See, e.g., id. (citing anti-Microsoft sentiment as part of the reason for Linux’s
growth); Bob Sullivan, Linus Torvalds—Microsoft Killer? (last modified Feb. 8, 1999)
<http://www.msnbc.com/news/239469.asp> (characterizing Linus Torvalds as the “pa-
tron saint of anti-Microsoft forces”); Halloween I, supra note 35 (stating that the ability
to capitalize on anti-Microsoft sentiment is a strength of Mozilla).

307. This perception would be reinforced by the fact that Microsoft thought it was a
serious enough threat to bother to attack it with anticompetitive behavior.

308. Cf. Behlendorf, supra note 44, at 160 (noting that there is pressure to bridge
gaps in open source software with more open source programs).

309. See, e.g., Charles Babcock, Database Vendors, Netscape Support Linux (last
modified July 27, 1998)
<http://www.zdnet.com/zdnn/stories/news/0,4586,339810,00.html> (Informix, Oracle
and Netscape make software on Linux); Ben Elgin, Corel Chooses Linux OS for Its NC
Prodcuts (last modified May 8, 1998)
<http://www.zdnet.com/zdnn/content/smro/0508/314997.html> (Corel to make network
computer products available on Linux).

MAHERFMT4.DOC 9/29/2006 1:29 PM

686 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

ment, and further reinforcing the status of the community.
The challenges posed by the use of intellectual property as a

weapon clearly could have serious consequences for the open
source community.310 One outcome of such a challenge would be
forcing to the forefront a consideration of the incentives and moti-
vations for the existence of intellectual property in the online
world. A potential resolution of these issues could lead to Micro-
soft’s ability to restrict the use of code by open source program-
mers. This would test, once and for all, the proposition that the
open source movement is unable to engage in innovation.311 Com-
plexity theory suggests that the community would respond by the
development of innovative software technologies that would allow
the circumvention of Microsoft’s patents and copyrights. Such in-
novation may convince outsiders of the full extent of open source’s
potential, more than compensating for the loss due to legal restric-
tions on code.

An attempt by Microsoft to create its own version of the “open
source” concept could be dealt with by the open source community
as well. Attempts to co-opt the open source term provides both the
opportunity to reinforce community standards regarding open
source requirements, as well as educate others through the forum
provided by the media coverage. Indeed, an attempt to dilute the
open source requirements by Microsoft might be more likely to
elicit a strong, immediate response312 from the open source com-
munity than similar conduct from a less-vilified software devel-
oper. Attempts to formally attach the “Open Source” term to its
software could also lead to a trademark suit against Microsoft,313
further reinforcing the true requirements of open source software

310. This is the area of attack with the least certain outcome for the open source
community. For a discussion of the concerns associated with intellectual property restric-
tions, see, supra Section V.A.4.

311. This claim is raised, for example, in Halloween I, supra note 35.
312. For example, on Slashdot <http://www.slashdot.org>, an open source news

service, Microsoft’s statements that it had its own definition of the term “open source”
led to the posting of nearly 300 comments within about one day. See Microsoft Redefines
Open Source (visited Apr. 15, 1999)
<http://slashdot.org/articles/99/04/09/1850204.shtml>.

313. This is due to the fact that the term “Open Source” has been made a certifica-
tion mark. See supra note 97.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 687

and providing yet another forum for introducing this concept to
others. Thus, the response of the open source community to these
attacks could strengthen the movement as a whole.

B. Clash of Norms

Open source cultural norms are critical to the success of open
source software.314 However, efforts to “evangelize” the open
source cause has led to a clash of norms between what is accepted
in an online environment and what is the traditional behavior in the
“real world.” This conflict takes two forms. The first type in-
volves individuals engaged in behavior that is consistent with the
norms of the offline world, but seem violative of certain online
norms.315 The alternative problem occurs when behavior that is
consistent with online norms is misinterpreted according to the
norms of the offline world.316 These conflicts could lead to several
problems. Notably, open source community norms could be con-
taminated by these alternative norms,317 or the impression of the

314. See supra Section I.D., Section III.
315. Eric S. Raymond recognized that the publicizing of the open source movement

in traditional media could lead to the appearance that he was violating the norms of the
open source culture. See Raymond, The Revenge of the Hackers, supra note 264 at 214
(“I’d probably end up . . . despised as a sell-out or glory-hog by a significant fraction of
[the open source community].”)

316. One situation that may well be an example of this involves the dispute between
Eric S. Raymond and Bruce Perens regarding the consistency of Apple’s open source
claims and the requirements of the open source definition, and subsequent war of words.
See Leander Kahney, Open-Source Gurus Trade Jabs (last modified Apr. 10, 1999)
<http://www.wired.com/news/news/technology/story/19049.html>. While this heated
dispute appears like real dissension among these individuals, Chris DiBona, director of
Linux Marketing at VA Research, noted that this was “a flame war,” that “was no more
extreme than the kind of bluster that comes from other public figures in the industry.” Id.

317. See, e.g., Brett Mendel, Will Commercialism Help Or Hurt Linux? (last modi-
fied Apr. 8, 1999) <http://www.cnn.com/TECH/computing/9904/08/linuxsuits.idg> (dis-
cussing the concern “that the cooperative community atmosphere for which the Linux
operating system has been famous is being tainted by commercial interests.”). Cf. Ray-
mond, The Revenge of the Hackers, supra note 264, at 212-13. Raymond mistakenly
characterizes the position of the Free Software Foundation and others as a mere tool for
attaining widespread use of free software, rather than as a legitimate value choice. He
argues that these “freedom” arguments should be abandoned in favor of arguments more
pleasing to corporate ears. See id. However, causing individuals to abandon arguments
that may provide the ideological underpinnings of their involvement in the community to
achieve greater commercial appeal is precisely the type of tainting by commercial norms

MAHERFMT4.DOC 9/29/2006 1:29 PM

688 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

open source community in the real world could be harmed by the
conflict.318

Adaptation as a result of these norm clashes could occur in a
number of ways. For example, the emphasis courting commercial
interests may further embolden members of the open source com-
munity who attach moral significance to free software to be more
vocal about their message.319 This could provide an opportunity to
reinforce the fundamental norms upon which the community was
built. The offline world could adapt as well. As it gains greater
exposure to the online world, its cultural expectations will change
to allow different interpretations for online behavior than that same
behavior would have in the real world.320 While the precise
changes that might occur are purely speculative at this time, the
adaptive nature of the complex open source method indicates that
the system should successfully321 endure future normative chal-

that should be avoided.
318. See, e.g., Kahney, supra note 316 (discussing the concern that the vocal dis-

pute between Eric S. Raymond and Bruce Perens could negatively impact corporate
America’s view of open source software).

319. An example of this may be seen in the fanaticism with which Richard Stallman
has begun to pursue the issue of the appropriate name of the program commonly known
as “Linux,” to be “corrected” to “GNU/Linux.” See Richard Stallman, Richard Stall-
man—Re: 15 Years of Free Software (last modified Mar. 25, 1999)
<http://linuxtoday.com/stories/4377.html>; Charles Babcock, Open Source, Closed
Minds (last modified Mar. 25, 1999)
<http://www.zdnet.com/zdnn/stories/comment/0,5859,2231706,00.html>. This allows
him, indirectly, to raise the importance of the “freedom” aspects of free software. See
Editorial: The “Linux” vs. “GNU/Linux” debate (last modified Apr. 8, 1999)
<http://www.kt.opensrc.org/kt19990408_13.html#editorial>.

320. For example “ethical” hacking (or, as open source programmers would say
“cracking”) seems to have gained some approval, see Jim Kerstetter, A Reprieve for
‘Ethical Hacking’ (last modified July 20, 1998)
<http://www.zdnet.com/zdnn/stories/news/0,4586,337644,00.html> (in legislation to up-
date the copyright laws for the Internet cracking for research purposes would be permit-
ted). Thus, other types of behavior that is generally condemned by society may come to
be accepted in the online context, based on the difference in online norms.

321. This may depend upon how “success” is defined, however. If it is defined as
everyone, everywhere using and selling nothing but open source software, this may be
hindered by norms clashes. For example, the real world impression of conflict in the
open source community may limit its acceptance in this community, at least in the short
term, due to concerns about the ability of the community to continue into the future to
develop and support open source software. However, even in this scenario the open
source movement would continue, if only on a smaller scale, and could be expected to

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 689

lenges.

C. Market Competition

 As the open source marketplace has developed, and compa-
nies have begun to make money on open source software, fears
have begun to arise regarding competition within this market.
Specifically, there are fears that if Linux can de-throne Microsoft
in the operating system market (or some substantial portion
thereof) Red Hat will simply hold the position once held by Micro-
soft.322 These concerns seem unwarranted, due to the nature of the
open source community.

The first reason why Red Hat will not be able to control the
operating system market in the way that Microsoft has is due to the
open source licensing practices. Consistent with the GPL under
which Red Had issues Linux,323 they are unable to restrict distribu-
tion of Linux. Thus, Red Hat cannot threaten Original Equipment
Manufacturers (OEMs) like Dell or Compaq by requiring control
over the desktop, for example, in exchange for continuing to sup-
ply them with Linux. OEMs could get a technically equivalent Li-
nux operating system from any of a number of competing Linux
distributors.324 Unlike Microsoft, which is the only reliable source
of Windows, in some sense, Red Hat is just one of many distribu-
tors of Linux. The OEMs could even continue to use the Red Hat
Linux software they already obtained, since the GNU GPL gives
them the “right to redistribute anything it wants as long as it con-

continue to produce high quality software. Its continued existence would allow for future
attempts to penetrate other markets.

322. See Nicholas Petreley, Linux And The Monopoly Game (last visited Jan. 31
2000) <http://www.linuxworld.com/linuxworld/lw-1999-01/lw-01-penguin.html>.

323. See Red Hat Linux 6.1: The Official Red Hat Linux Getting Started Guide (last
visited Feb. 6, 2000) <http://www.redhat.com/support/manuals/RHL-6.1-Manual/getting-
started-guide/gpl.html>.

324. Other distributors include, in addition to Red Hat, Caldera
<http://www.calderasystems.com>, Debian <http://www.debian.org>, Mandrake
<http://www.linux-mandrake.com>, PowerPC Linux Project <http://www.linuxppc.org>,
WorkGroup Solutions <http://www.wgs.com>, Trans-Ameritech <http://www.trans-
am.com>, Apple Computer / The Open Group Research Group
<http://www.mklinux.apple.com>, Walnut Creek <http://www.cdrom.com>, Stampede
<http://www.stampede.org>, S.u.S.E. Linux <http://www.suse.com>, Pacific Hi-Tech
<http://www.pht.com>, Yggdrasil Computing, Inc. <Http://www.yggdrasil.com>.

MAHERFMT4.DOC 9/29/2006 1:29 PM

690 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

tinues to make the source code available.”325

However, Red Hat is not just one of many distributors of
Linux—it is arguably the most prominent.326 Red Had could re-
quire OEMs to stop using the “Red Hat” name with the products
that are distributed. Thus, Red Hat could theoretically leverage its
brand equity to try to engage in anticompetitive activities. How-
ever, it is likely that this would only be a viable threat on the
smaller OEMs. Large OEMs, like Dell and Compaq, have sub-
stantial brand equity themselves. And in a relative sense, Red Hat
could lose more from not being distributed with one of these
prominent OEMs than the OEMs would lose from not being able
to use the Red Hat name.327 Thus, the GPL, by leaving Red Hat
with only its brand equity to leverage, seems to provide fairly
strong protection against anticompetitive behavior.

To generalize from the specific example of Red Hat Linux, in
order to take advantage of the benefits that the complexity of open
source software brings to the technical quality of code, businesses
must adhere to an open source license.328 However, this forces
these businesses to put themselves on equal footing, technologi-
cally, with all their competitors. Thus, even if a market, such as
that for operating systems, is a natural monopoly, any monopoly
benefits would accrue to Linux generally, rather than to any spe-
cific Linux vendor. Because multiple vendors can offer equivalent
technologies, competition in other areas, such as customer support,
can occur.329 Flows in the system should tend to make not only
technological improvement spread throughout the system, but eco-
nomic improvement as well. Thus, increases in the number of us-
ers of Linux generally will flow (although perhaps not in equal
amounts) to the various vendors of Linux, rather than to one par-
ticular company.330

325. Petreley, supra note 322.
326. In a recent poll by LinuxWorld, with a reader sample size of almost 900 indi-

cated that people, 74% of those polled said Red Hat Linux is becoming synonymous with
Linux. See Petreley, supra note 322.

327. See id.
328. See discussion supra Section III.
329. This is true because, unlike Microsoft, there are multiple reliable sources for

Linux. See supra note 325 and accompanying text.
330. See, e.g., Young, Giving It Away, supra note 75, at 116-17.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 691

The flow of technology to all vendors can further facilitate ex-
ploitation of a larger segment of the potential market through price
discrimination. Customers can get the basic Linux operating sys-
tem technology (presently) for as little as $0.331 Customers able to
pay more can purchase essentially the same basic technology, but
with greater support, installation or other benefits. Thus, competi-
tion can occur not only in the market generally, but between ven-
dors targeting the various economic segments of the market.

D. Civil Liability

The issue of civil liability could be important to the future of
open source software. Obviously, since many programmers are
giving the software away for free, the potential costs of defending
a lawsuit and paying a judgment would be prohibitive.332 This
could theoretically discourage participation in the open source pro-
cess substantially. 333 Specifically, threat of lawsuits based on
contract or tort theories of recovery exist that could be problematic
for open source software.

1. Contract

Relevant to open source software, the U.C.C. implies warran-
ties of merchantability334 and fitness for a particular purpose335

331. For example, by downloading versions of Linux from
<ftp://sunsite.unc.edu/pub/Linux/> (last visited Jan. 31, 2000)

332. See Perens, supra note 101, at 181.
333. See id.
334. See U.C.C. § 2-314 (1997). Where the seller is considered a merchant, there is

an implied warranty that, in relevant part, the goods must (1) “pass without objection in
the trade under the contract description,” and (2) be “fit for the ordinary purpose for
which such goods are used.” Id. The U.C.C. defines a “merchant” as “a person who deals
in goods of the kind or otherwise by his occupation holds himself out as having knowl-
edge or skill peculiar to the practices or goods involved in the transaction or to whom
such knowledge or skill may be attributed by his employment of an agent or broker or
other intermediary who by his occupation holds himself out as having such knowledge or
skill.” U.C.C. § 2-104(1). The breach of implied warranty of merchantability may apply
to an original manufacturer, even if the buyer purchased the product from an intervening
party. See Pawelec v. Digitcom, Inc., 471 A.2d 60 (N.J. Super App. Div. 1984); but see
Professional Lens Plan, Inc. v. Polaris Leasing Corp. 675 P.2d 887, 898-99 (Kan. Ct.
App. 1984) aff’d, 710 P.2d 1297 (Kan. 1985) (privity of contract required).

335. See U.C.C. § 2-315 (1997). This warranty arises when, “at the time of con-

MAHERFMT4.DOC 9/29/2006 1:29 PM

692 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

into contracts.336 Liability for breach of implied warranties occur
if the goods do not meet the standards of these warranties.337

The current approach taken by open source licenses is to in-
clude a term disclaiming all warranties. 338 This approach would
appear to provide a reasonable likelihood of success in disclaiming
implied warranties. Disclaimers of implied warranties will be up-
held where they are conspicuous339 and nonambiguous.340 How-

tracting [the seller] has reason to know any particular purpose for which the goods are
required and that the buyer is relying on the seller’s skill or judgment.” Id. The warranty
requires that the goods will be suitable for this known purpose. See id.

336. Whether software is a “good,” and thus falls under the U.C.C. has been itself a
somewhat ambiguous question, although several courts have found that it is. See, e.g.,
Communications Groups, Inc. v. Warner Communications, Inc., 138 Misc.2d 80, 527
N.Y.S.2d 341 (N.Y. Civ. Ct. 1988) (software system and equipment designed for a cus-
tomer’s specific needs is a good under the U.C.C.); Analysts International Corp. v. Recy-
cled Paper Products, Inc., 1 CCH Computer Cases ¶ 45,050 (N.D. Ill. 1987) (an agree-
ment to sell a custom-designed software system was held to be a contract for a sale of
goods); RRX Industries v. Lab-Con, Inc., 772 F.2d 543 (9th Cir. 1985) (although train-
ing, repair and upgrades were part of the contract for software, it was a contract for a
good). The UCITA would specifically incorporate implied warranties of merchantability
and fitness for software. See UCITA § 403 (merchantability), § 405 (fitness for particular
purpose). Since the UCITA has not yet been adopted by any states, discussions here will
focus primarily on the related provisions of existing Article 2 when possible.

337. See, e.g., Nielson Bus. Equip. Center, Inc. v. Montelone, 524 A.2d 1172, 1175
(Del. 1987) (defendant liable for failure to meet warranties of fitness and merchantability
under lease of computer hardware, software and services).

338. See Perens, supra note 101, at 181.
339. Conspicuous means written so that “a reasonable person against whom it is to

operate ought to have notice of it,” U.C.C. § 1-201(10) (1999).
340. See MICHAEL D. SCOTT, SCOTT ON COMPUTER LAW, Vol. 2 (2d ed. 1998 Supp.)

at 7-40.1 n. 162, 7-40.2 n. 168 and cases cited therein. For the relevant provisions of the
UCITA see UCITA § 406. The requirements that would be imposed on open source li-
censes under the UCITA could be milder than those under the U.C.C. due to a more fa-
vorable definition of “conspicuous.” While also defined as written so that “a reasonable
person against which it is to operate ought to have noticed it,” the intent of this phrase is
more easily satisfied under the UCITA. A term will satisfy this definition if it is:

(i) a heading in capitals in a size equal to or greater than, or in contrasting type,
font, or color to, the surrounding text;
(ii) language in the body of a record or display in larger or other contrasting
type, font, or color or set off from the surrounding text by symbols or other
marks that call attention to the language; and
(iii) a term prominently referenced in an electronic record or display which is
readily accessible and reviewable from the record or display. . .

UCITA 102(a)(15).

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 693

ever, a disclaimer has been found unconscionable341 in such poten-
tially relevant situations as an adhesionary contract,342 or where a
complex technology is involved, and the buyer has little knowl-
edge, making them dependant upon the seller to determine suitabil-
ity. Further, resellers of a product may not be protected by dis-
claimers by the developers.343

2. Tort

Software developers, including those in the open source com-
munity, could also be liable for negligent344 or strict liability345
torts.346 Several factors may prevent tort liability for software.
First, many states follow the economic loss rule, disallowing dam-
ages that are purely economic, such as loss of data.347 Second,
strict products liability generally does not apply to information.348

341. See A&M Produce Co. v. FMC Corp., 186 Cal. Rptr. 114, 123-26 (Cal. Ct.
App. 1982) (listing situations where disclaimers are unconscionable).

342. Like shrinkwrap contracts, open source contracts could be seen as adhesionary,
and thus not entitled to enforcement with regard to unconscionable terms. Compare
Harper Tax Services, Inc. v. Quick Tax Ltd, 686 F. Supp. 109 (D. Md. 1988) (enforcing
limitations in standard from contract for tax preparation software despite finding that con-
tract was adhesionary) with Vault Corp. V. Quaid Software Ltd., 655 F. Supp. 750 (E.D.
La. 1987) aff’d 847 F.2d 255 (5th Cir. 1988) (shrinkwrap from license not enforceable
because it is a contract of adhesion).

343. For example, in Barazzotto v. Intelligent Systems, Inc., 1 Computer Cas.
(CCH) ¶ 45,031 at 60,270-71 (Ohio App. 1987) the Ohio court of appeals held that a
shrink wrap license on the package of software disclaiming all warranties alone did not
protect resellers of that software.

344. To recover for negligence, a plaintiff must show: (1) duty, (2) the breach of
that duty, (3) causation, and (4) damages. See Restatement (Third) of Torts: Products
Liability 1 (Draft 1997).

345. To recover under strict (products) liability, a plaintiff must show: (1) the prod-
uct had a defect when sold or leased to the customer, (2) that the plaintiff used the prod-
uct in a normal, intended or reasonably foreseeable way, and (3) that the defect was the
proximate cause of the injury. See Restatement (Second) of Torts 402A.

346. This potential liability has become clearer in the context of potential Y2K
problems. See, e.g. David Bender & Adam Gahtan, Legal Aspects Of The “Year 2000
Problem,” 532 PLI/PAT 47 (1998).

347. See, e.g., Scott, supra note 340, at 15-10 n.34 (listing cases in Maryland, Flor-
ida, Colorado and California allowing purely economic losses, and cases in Minnesota,
Wisconsin, Illinois, Pennsylvania, Florida and California disallowing economic losses).

348. See Winter v. G.P. Putnam’s Sons, 938 F.2d 1033, 1039 (9th Cir. 1991) (plain-
tiffs picked mushrooms based on information in book published by defendants, and got
sick. Court held that the ideas and expressions contained within a book are not a product

MAHERFMT4.DOC 9/29/2006 1:29 PM

694 FORDHAM INTELL. PROP., MEDIA & ENT. L.J. [Vol.10:619

3. Potential Resolutions

While there are technically numerous ways that this situation
could be resolved, the solutions fall within two main categories.
First, the law could tend to impose civil liability on the open
source project leaders and distributors. Alternatively, civil liability
could generally be held to be unavailable for disclaimed warranties
or torts. However, all either of these amount to is an allocation of
risk with regard to problems from open source software.

If, as under the first scenario, the risk is substantially or largely
imposed on the open source community, the community could be
expected to adapt in a manner that would allow it to bear this bur-
den. The primary result of this adaptation could be expected to be
a shift in resources and distribution away from the free and inex-
pensive Internet-distributed versions of software and toward for-
profit businesses such as Red Hat and Cygnus. The threat of law-
suit may deter some potential project leaders due to the potential
economic hardship it could cause. This would mean that develop-
ment, when it occurs, would be led by open source businesses who
could bear the burden of lawsuits. It could also lead to non-profit
or other organizations that would exist to facilitate open source de-
velopment.349 The likely judgment-proof nature of individuals dis-
tributing software for free may lead customers350 to obtain soft-
ware from vendors that have the resources to pay a civil judgment.
Thus, the organizational structure of the open source community as
a whole could adapt to allow the continuance of the open source
community despite the threat of liability. However, the extent of
that change cannot be reasonably determined at this time. If the
potential number of users that would avail themselves of this liabil-
ity is substantial, the changes will be more prevalent than if the
number of users who would do so is more limited.

Without the threat of liability, as under the second category, lit-

within the scope of products liability). By analogy, software, and particularly source
code should not be a “product” for these purposes either.

349. For example, an organization could provide an umbrella under which open
source projects could occur, with only such money sought from software as would be
necessary to provide insurance in the case of lawsuits.

350. This would likely be limited to corporate customers, who could have substan-
tial losses due to software problems.

MAHERFMT4.DOC 9/29/2006 1:29 PM

2000] OPEN SOURCE SOFTWARE 695

tle change in the open source community would likely be necessi-
tated. The market, rather than the law, may nonetheless lead to
some changes. In particular, customers that would prefer not to
bear the risk of loss themselves may create demand for vendors
who, for example, do not disclaim the implied warranties. The
magnitude of this demand will determine the scope of changes that
occur as open source vendor policy may change to compete for
these customers. However, the customers may also adapt, by
choosing the potentially more efficient option of insuring against
the potential loss due to software problems.351 Either way, the
open source methodology can be expected to adapt and remain.

CONCLUSION

The success of open source software as an alternative to tradi-
tional economic intellectual property incentives result from the
complex nature of the open source development model. However,
the only way to ensure that this highly technical achievement con-
tinues is to ensure the continued complexity of the open source
model. While this may provide a general guideline for others to
attempt to replicate this incentive structure in similar contexts, it
also highlights the fact that specific activities can pose a threat to
the beneficial complexity. Ultimately, the open source community
and those wishing to adopt its methods must embrace and encour-
age the complexity of their situations. If this is not done, at best,
substantial effort will be wasted; and at worst, the system could be
pushed out of its complex state, with resulting loss of product qual-
ity and adaptability.

351. Insurance against loss may be, in many cases, preferable to utilizing the courts
once losses have occurred. This is arguably due to the administrative costs associated
with using the legal system. See, e.g., Stephen D. Sugarman, Doing Away with Tort Law,
73 CAL. L. REV. 558 (1985); STEVEN SHAVELL, ACCIDENTS, LIABILITY, AND INSURANCE
(1979).

