METHODS & TOOLS

Global knowledge sour ce for softwar e development professionals I SSN 1023-4918
Winter 1999 (Volume 7 - number 4)

People and Organization: It isall About Willingto Share

Often the initid journey as a software developer is traveled done. At home or a school you were
gtting in front of your screen, madtering the exciting project of producing an "Hello World" window or
gack management procedures. Can you remember the happiness of making things happen on your
own? Perhagps some of you are till operating on a stand-aone bas's, but most of you are working in
teams, sharing a project with other software developers. This is the moment when the individud parts
of software development meet the Organization and sometimes the organization. The Organization with
an upper cae 'O’ is what you are working for, the organization with a smal '0' is the way you
collaborate with other software developers. This second item is the main subject of this issue.
Collaborating in an individudigtic job like programming is not easy. Despite taks about "software
engineering’”, you have to recognize thet the "design” content is strong in our professon... and design is
a mater of taste. In oppostion to "classicd” manufacturing, most of the design-related aspects in
software development are often not targeted to consumers, but they are rather only visible by co-
workers, either in the development or in the maintenance phase. There are a lot of books about good
design and coding styles and it is worthwhile to read them, but every developer has its own style. You
have to accept this, because you know that even you, at different times, will have another solution to a
specific problem or requirement.

Working together is not only about development style, it is a matter of being able to understand each
other design and code, aso with the help of comments, and to accept different solutions. It isto be sure
that modules will communicate and that the meaning of interface varigbles is well defined. It is to know
where to find a particular piece of code deding with a specific subject. It is to know that you have to
go beyond your individual vison of your work, because you cannot succeed aone in projects and you
will be glad to have colleagues that share the same concerns than you. There is nothing better in the
Organization than colleagues happy to collaborate with each-other...

TN

Insde
Management: Object Oriented Group Work, Matti Halme..........ccceveveenreneceneneceeeee s page 2
Web: The WebSite Quality ChallENgE........covceeceerecce sttt ssasns page 11

FaCtS, NEWS & COMIMENES ... oottt ettt e et ne e page 16

Quality

Object Oriented Group-Work

Matti Halme, Stonesoft Corporation, www.stonefi
Taivamaki 9, 02200 ESPOO, Finland

Asthe size of an information system pr oj ect
grows and the number of human resources
needed increases, significance of effective
and efficient group-work becomes a very
essential factor in the success of the
project. Does object orientation have
anything to do with this?

Introduction

Have you ever thought what happens if the
cooperation between the team-members more
o les fals in an informaion technology
project?

Fird, of course, inefficient teamwork results in
ineffident totd effort. Results of individud team-
members cannot be adequately used by others
and excessive rework occurs. Group meetings
and other communicetion activities may then
aso take lots of extratime.

Second, there may be potential qudity problems
since technicd and functiona compromises are
forced to be made in absence of rationa
agreement in important issues.

Third, ineffective group-work may st a
practica limit to the Sze of the system that can
be successfully implemented no matter how
many people work in the project.

Prerequisites of successful group-work in
information technology projects sure are largely
same than those of any team-oriented projects.

Of course, there must exist a common god that
everybody is trying to achieve. Features and
characterigtics of the system to be built must be
known as clearly as possible and there must be
a common agreement upon them. High-leve
gods or vigons of ‘what are we ultimately trying

to accomplish’ must aso be clear and common
among the team-members.

Additiondly, few essentid teamwork factors are
divison of work, communication and -
epecidly in IT projects - integration.

Division of work

There mugt be good divison of work between
the team-members. Everything needs to get
done and people must be able to get their own
field of work they are motivated to work in and
which does not conflict with responghilities of
other members. The divison must be clear, well
defined and understandable.

There must be a clear understanding of what are
the responghilities of each team-member and
what are the dependencies between them.
When planning the divison of work, the inter-
person dependencies should be minimized and
the project management and team-members
should be aware of the remaning ones. A
question naturdly risng of the inter-dependency
issues is how well can the project be divided
into largely independent tasks.

Additiondly, of course, a good divison of work
mugt utilize the skills and expertise of the team-
members.

A good divison of work is one that everybody
can gtick to! People must take the responsbility
of performing their tasks. On the other hand, the
team-members must be very careful when
getting involved to respongbilities of other team-
members. It is often quite tempting to do some
fixes to a college' s desgn to make it better “fit’
to one's design and idea of the system. Of
course, feedback should be given to make
things work, but basicaly team-members should

Methods & Tools* Winter 1999 * Page 2

Quality

DESIGN

DESIGN

El

DESIGN

=1

Q DESIGN

Figure 1. Communication in I T group-work through common datastore.

dick to ther responghilities, and trust other
people are doing their jobs.

Communication

Communication between the team-members
must work. Of course, communication between
human beings can not work without expressng
kills and &bility and will to lisgen and receive
information. Additiondly, for a successul
communication, al team-members must be able
to talk the same language.

They must use the same terms and a same frame
of reference that gives the terms unambiguous
meanings.

At certain point of technicaity and complexity,
when things are had to express verbdly,
vaious more or less formd modding and

diagramming techniques can help. However, in
order to a technicd notation to be useful and
cod-effective, it must be commonly
understandable among the team-members and
other affected parties. It must aso be easy to
use. Of course, the notation must have enough
expressive power to cover the problem domain.

Typicd communication methods in any
teeamwork include direct communication by
taking and sending emal messages and
different kinds of meetings This direct
communication is necessaxry in al cooperation,
but when deding with complex things, indirect
communication usng some kind of common
datastore - or just a set of written specification
documents - becomes essentid. Trying to
communicate complex highly technica sructures
and designs in project meetings can sometimes
be a total waste of time for everybody. People

Methods & Tools* Winter 1999 * Page 3

Quality

need to write it dl down and get others to read
it!

The idea represented in figure 1 is that
depending on their background and exact
profession, people have tendency to think about
and express amilar things in very different ways
and in different abgtraction levels. In datastore-
centric communication, there is a standardized
way in which the specifications are presented. In
the smples form, the datastore consgsts of
documents dl written usng common templates
specifying and indructing people on both
contents and format of specifications.

Datastore-centric communication means that
information can be produced and consumed
asynchronoudy, a any time. A prerequidte to
make datastore-centric communication work is
that people produce standardized and complete
information, keeping it up-to-date.

Integration

To get aworking information system, the results
of individud team-members somehow need to
be brought together. In IT terms this is caled
integration and, as many of us know, often
means that modules people have written are
linked together and the system is then expected
to start working aswhole.

Sometimes the integration can be caried
through with minor modifications to the system,
someimes dl the misundersanding and
incompatible interfaces pop up a once and the
integration effort gppears to greetly exceed the
effort of writing the individud modules. In the
latter case, term effort of integration is actudly
wrong. We should talk about the effort of
underganding and defining the dependencies
and interfaces, dl too late.

It is clear, that so-called big-bang integration
introduces great risks in large projects.
Integration needs to be darted a very early
phases of proects Ways to vdidae
compatibility between early software life-cycle

products such as andyss and desgn
specifications should be considered.

So, does the object orientation help?

Could the object oriented paradigm be used to
improve the cooperation of team-members in
software engineering projects? Do we get better
divisons of work, eeser communication and
free integration? Sure, OO tool vendors have
promised us largely independent units, cdled
classes, with data and functiondity combined
and encapsulated. There is the divison of work:
each designer just picks the classes he/she will
design and implement. These units only interact
through well-defined interfaces, which must lead
to easy integration. We dso have commonly
understood notations that make people talk the
‘same language . Communication must now be
easer.

But what have we got? The OO paradigm,
notations, methods and tools do not redly
automaticaly bring minimized dependencies and
well-defined interfaces, better modularity in
more traditiond words. Sometimes they
deteriorate the modularity of your design by
suggesting you to follow design principles of a
popular agpplication framework targeted to
different kinds of gpplications than yours.

The variety of different OO methods and
notations bring IT specdigs difficulties in
learning and understanding object orientation.
Understanding new notations has proven to be
epecidly hard to customers not specidized in
information technology.

Does object orientation then have anything to do
with improving the information system
teamwork? In my opinion, yes. How should we
use object orientation to get the teamwork
better organized? | believe that the answer isin
usng OO as a vehicle in desgning good,
modular software architectures, writing good,
understandable object oriented specifications
and systemaicdly applying object oriented
methods from the very beginning of the software
life-cycle.

Methods & Tools* Winter 1999 * Page 4

Quality

User Interface Logic Layer
User-Interface Objects

Application Domain Logic Layer
Entity Objects

Z)
Object Storage Logic layer
Container Objects

Data Management System
Database records

Network Management Layer
Container Objects

Network Protocol
Network Packets

Figure 2. An example of alayered application architecture

Next, we will look at some congtructs that lead
towards more modular software architectures.
Then we will show how to organize our
common datastore containing both object
oriented and more traditiona informeation.
Findly, we will examine how to consder the
integretion issues from the beginning of the
project.

What about layered ar chitecture?

Let us dart with the modularity issues. Since
object orientation itself does not lead to better
modularity, we should explicitly try to design
modular software architectures. The first step in
usng object orientation to desgn modular
software architectures can often be taken smply
by aming at alayered architecture.

In layered architecture, the system is divided
into pats tha do not have any cydlic
dependencies between them. The upper layer
knows about the layer below and can use

sarvices offered by the lower layer. The lower
layer in turn does not depend from the upper
layer in any way. In fact, it does not even need
to know what layers exist aboveit.

In object orientation, usng services often
happens through one-way-navigable
asociations between objects belonging to
clases at different layers.

It's characteridtic to each layer that the
technologies or fundamental concepts used are
somehow different. Layered architecture can
thus be called vertical or technica partitioning of
the information system.

Usng a layered architecture such as one
illustrated in figure 2, is a way to naturd,
technology-based divison of work. Persons
gpecidizing in database or network technologies
are repongble of design and implementation of
the lower layers The gpplication domain
pecidigts can concentrate to their expertise
aess without having to worry about any

Methods & Tools* Winter 1999 * Page 5

Quality

/ Customer

Product

Application Domain Loagic Layer
Entity Objects

Figure 3. A layer partitioned into domains

database technologies or network protocols.
Neither do they need to know about how the
information is presented to the user with
graphicd user-interface. Responghilities Ieft to
the Ul designer are the user-interface logic and
the graphica layout.

Layered architecture has not been invented with
the object orientation. Examples of layered
architectures existed long before the object
oriented systems were popular. Any gpplication
interfacing with the gpplication programming
interface (AP1) of an operating system is an
example of layered architecture. Operating
sysems themselves often tend to be very
layered. However, object orientation gives us
perfect tools to mode and implement layered
architectures.

Sicingthelayers

If eech layer in a layered achitecture is
respongble for one technical concept, dividing
the gpplication according to functiondity it is
respongble for leads to horizontal or functiond
partitioning. Many layers can - and they often
should - be divided into parts, cdled domains
for example. Each of the domains represents
certain well-defined, limited functiondity. Clear
interfaces and wadl-understood non-cydlic
dependencies should exist between the domains.

In afamiliar sdes and invoicing sysem example,
the gpplication domain logic layer could be
divided into domains presented in figure 3.

Each doman in turn consss of number of
relatively closdy related classes, which are the
amdlest units of modularity in object orientation.
The Order domain could have classes such as
Order and OrderLine. Domans in different
layers typicaly correspond to each other. The
Order domain in the gpplication domain layer is
associated to Order user-interface domain in
the user-interface layer.

Horizonta partitioning can be used to target a
clear gpplication doman knowledge-based
divison of work. Horizontd - like verticd -
patitioning forces you to think about
dependencies and interfaces when designing the
gpplication architecture.

When should we go to object oriented
goplication frameworks?

When severd goplications with amilar kind of
goplication logic, functiondity and technica
solutions - possbly in the same applicaion
domain - are produced, the need to reuse parts
of applications rises. Separating common
functiondity, logic and technical solutions into a
common pat shaesble among severd
applications is caled condructing an application
framework.

The difference between application frameworks
and other reusable condructs, such as class
libraries, is tha frameworks dso contan
common logic of functiondity. Typicdly,

Methods & Tools* Winter 1999 * Page 6

Quality

AN

AN

Framework

User-Interface Logic Layer

P
dv
\ — —
uoneslddy

- z

Application Domain Logic Layer

. 78

Object Storage Logic Layer

T uoneolddy
\: Z uoneoid
- ‘\
\. 8.

7|

Data Management System

Figure 4. An example of object oriented application framework and three applications using it.
Network management layers and inter-layer dependencies shown in previous figures
have been |eft out to simplify theillustration.

frameworks are responsible of the main logic of
the application. In graphica user-interface
goplications, this means in practice that the
framework handles the main event loop passing
the appropriate messages to the gpplication as
callbacks.

The object oriented paradigm can very well be
applied into application framework
architectures. Handling the application logic in
the framework can be done by defining certain
base classes in the framework. These classes
interact with other framework classes. The
application-specific functiondity is implemented
in clases inherited from the framework base
classes. Cdling overridden methods in the
gpplication classes is used as a calback-
mechanism. Base dases tha define the
gpplication logic are often caled protocol
classes. Framework classes should of course
adso implement common basic operations and

solve demanding technicd problems, thus
meaking gpplication development esger.

The problem with the application frameworks is
that they are very complex to design, implement
and maintan. The complexity naturdly rises
from the fact that a framework must act in a
common way like severd red-world
goplications expect it to do. Consructing
frameworks hardly ever succeeds at the first
shot. This iterative process has to be performed
in pardld with some pilot gpplications usng the
framework. The condruction of framework
requires to use the mos tadented and
experienced resources.

In object orientation, usng services often
happens through one-way-navigable
asociations between objects beonging to
clases at different layers.

Methods & Tools* Winter 1999 * Page 7

Quality

software.

WebBoard 4.0
Quick & Easy Community Building From O’ Reilly!

Online forums and discussions are a must in today’s Web-based environment. Whether you're
building virtud offices of classsooms, corporate intranets, commerce, or online communities,
WebBoard 4.0 can organize, enhance, and improve communication.

Creste a centra location for online communications, discussions, and email
Customize “boards’ for your own look and fedl
Run up to 255 boards with unlimited users and 1,000-user Smultaneous chat.

It's fadt, powerful, and scdable. It's the origind WebBoard from O'Relly. Vist us a
www.webboard.com/nl2 and find out why WebBoard is the world' s leading discussion and chat

http://www.webboard.com/nl2

WebB

oard

WEB CONFERENCING SOFTWARE

Putting it all into arepodgtory

Using object orientation as a tool to achieve
highly modularized software architectures with
well-known dependencies and clear interfaces
helps meking a good divison of work in
software projects. What about communication
and integration? Object orientation can offer
some help in these issues too.

Using a common datastore as a communication
method for complex dtructures requires a
comprehensve, widdly understood notation to
express things. Traditiond textud specifications
often make it hard for a reader to get a good
overdl view of the system, or even a part of it.
For an author, it might be hard to get convinced
that everything essentid is induded into the
document.

More forma specifications such as object
oriented notations, if used sysematicaly, guide
the author to a more complete and consstent
representation. However, object oriented
methods and notations sldom are themsdves
comprehensive enough.

In mogt cases, you need both structured and
textud presentations congstently completing
each other. A good object oriented design must
be able to be presented as a readable
document. A typicd way to compile a
specification from textua descriptions and more
or less object oriented graphica notations is to
embed the diagrams created by a graphica
software or a CASE tool into a text document.
This is a very naturd approach, snce pictures
and drawings are very commonly used in dl
kinds of technicd documents to illudrate the
textua presentation.

Methods & Tools* Winter 1999 * Page 8

http://www.webboard.com/nl2
http://www.webboard.com/nl2
http://www.webboard.com/nl2

Quality

A document as the
master specification

<€l

The repository as the
master specification

|11
I
>

i

1
L

IR

<E

Figure 5. Document versus repository-driven organisation of specifications.

However, when the text document acts as the
master-specification, there is a danger that the
so-called object oriented design becomes a set
of separae, incondgent pictures. Maintaining
the object model and its consstency to the
textual documentation becomes hard and error-
prone.

A repodtory is a sysematicaly organized
database of desgn information. An object
oriented repository is a database for object
modds containing logicd, graphicd and textud
information. Advanced repositories are designed
for multiple users having authentication, access-
control and data-locking properties. They adso
support versoning and references between
different models to alow the modes to be
partitioned according to the partitioning of the
information system.

The idea of using a repository-based solution as
a common daagore in information system
design is tha the repodtory can act as the
magter specification for the system. Everything is
organized around consstent object models.
Textud parts of the specification are written as
‘mini-documents that are dored into the
repostory and linked to the corresponding
elements of the object models.

Usng an object oriented repodsitory as the
mester specification for an information system
compared to a more traditional approach is
represented in figure 5. Of course, paperless
offices do not exis and a some point, the
specification needs to be printed. The content of
the repository thus needs to be able to
represented in a sequentid form as a dngle
document. However, this can be considered as
highly mechanicd task and can be automated.

Methods & Tools* Winter 1999 * Page 9

Quality

Additiondly, other representations, such as
hypertext documentation, can be derived
automaticaly from the repogitory.

What about parts of the specifications that do
not have anything to do with objects? Examples
of this kind of pats include performance
characteristics and other genera properties of
the system.

Yes, that kind of specifications exists and they
ae vay vitd to an informaion sysem A
specification should consst of mainly two parts
textud genera pat and object oriented
‘reference pat. In a repostory-driven
gpproach, the generd part is stored into the
repository as adocument.

Object oriented integration

As mentioned earlier, leaving the integration of a
software sysem too lae, can cause
unpredictable amounts of extra work, in the
phase of the project when it isthe least wanted.

A common way to avoid integration-risks is to
‘grow’ the software by integrating the new parts
of the sysem to the previoudy implemented
parts as soon as they have been implemented. In
fact, many popular object oriented languages
with drict type-checking strongly encourage
programmers to integrate the software dl the
time.

This way, the integration is done incrementdly
and the implemented parts are kept consistent
with each other dl the time. Still, the integration
is left to the implementation phase of the
software life-cycle. Mgor interface-design flaws
in the andysis and design phases may lead to a
sysgem that isimpossible to integrate.

Continuous software integration - from andyss
to desgn - means underganding and managing
the interfaces and keeping the parts consstent
with each other. Consstency of different parts
of the system with each other should be
vdidated as early as possble. It is generdly
eader to vdidate the congstency of the system if

it ismodded formaly and exactly. The mode of
the system tends to be more forma and exact a
the later phases of the software life-cycle. At the
point when a system is specified as program
source code, the modd is very formd and
exact. The compiler and linker will pretty much
tell you if it is conastent or not. Of course, you
need the integraion teding to vdidate the
semantic consgtency too.

In other words, what you need to do, isto am
to more forma and exact specifications as early
as possible. Consistency of object models can
be largely vdidated mechanicdly. Systemdic
use of object oriented specifications and
maintaining a congstent repository as the mgjor
datastore from the very beginning thus reduces
the integration risks

Get organized

The object oriented paradigm itself does not
lead to better group-work. However, object
orientation, when carefully applied to good
software architecture design principles and used
with organized repositories, can help to achieve
a better divison of work, a better
communication and it can reduce the integration
risks.

Object orientation gives good tools to design
modular software architectures and understand
and manage the inter-module dependencies.
You can gart by aiming to layered architectures
and further divide the layers into logicd parts
naturaly derived from the gpplication domain.
Application frameworks are advanced software
architectures that can be used to divide the
development of a family of gpplications among
severd work-groups and still benefit from reuse.
Improving the group-work is one more reason
to design good modular software architectures
inlarge sysems.

Organization of desgn information based on
object oriented repository directs the designers
towards more consstent object modes.
Incorporating the textud specifications into the

Methods & Tools* Winter 1999 * Page 10

Quality

repogtory as well makes the information more
managesble and maintainable.

Sysematicaly applying object oriented
techniques and keeping the models as cons stent
as possble from the very beginning of the
project can redly pay itsdf back when the
system is being integrated. In other words, we
redly need to think of minimized dependencies
and good interfaces dready in the early phases
of the project. We redly need to know how to
write good specifications and maintain them. We
redly need to get organized in things that cannot
work without a systematic approach. There is
no subgtitute for good project management,
talented system architects and good software
designers, with or without object orientation.

Originally published in the April 1998 issue
of the paper-based Methods & Tools

Methods & Tools* Winter 1999 * Page 11

Web

The WebSite Quality Challenge

Edward Miller, miller@soft.com, Software Research, Inc., www.soft.com
901 Minnesota Street, San Francisco, CA 94107 USA

Because of its possible instant worldwide
audience a WebSite's quality and reliability
are crucial. The very special nature of the
WWW and WebSites pose unique software
testing challenges. Webmasters, WWW
applications developers, and WebSite
guality assurance manages need tools and
methods that can match up to the new
needs. Mechanized testing via special
purpose WWW testing software offers the
potential to meet these challenges.

Introduction

WebSites are something entirdly new in the
world of software quality!

Within minutes of going live a WWW
goplicaion can have many thousands more
usrs than a conventiond, non-WWW
goplication. The immediacy of the WWW
crestes an immediate expectation of quality and
rgpid application delivery, but the technica
complexities of a WebSite and variances in the
browser make testing and quality control more
difficult, and in some ways, more subtle.
Automated testing of WebSites is both an
opportunity and a challenge.

Defining WebSite Quality & Reliability

A WebSte is like any piece of software no
sngle, dl-inclusve qudity measure gpplies, and
even multiple quality metrics may not apply. Yet,
veifying user-critical impressons of "qudity”
and "rdliability" take on new importance.

Dimendons of Qudity. There ae many
dimensons of qudity, and each measure will
pertain to a paticular WebSte in varying
degrees. Here are some of them:

Time: WebSites change often and rapidly?
How much has a WebSite changed since
the last upgrade? How do you highlight
the parts that have changed?

Structura: How well do dl of the parts of
the WebSite hold together. Are dl links
indde and outsde the WebSite working?
Do dl of the images work? Are there
pats of the WebSte that are not
connected?

Content: Does the content of critica pages
match what is supposed to be there? Do
key phrases exig continudly in highly-
changeable pages? Do criticad pages
maintan qudity content from verson to
vason? Wha aout dynamicdly
generated HTML pages?

Accuracy and Consstency: Are today's
copies of the pages downloaded the same
as yesterday's? Close enough? Is the data
presented accurate enough? How do you
know?

Response Time and Latency: Does the
WebSite server respond to a browser
request within certain parameters? In an
E-commerce context, how is the end to
end response time after a SUBMIT? Are
there parts of a dite that are so dow the
user declines to continue working on it?

Performance. Is the Browser-Web-
WebSite-Web-Browser connection quick
enough? How does the performance vary
by time of day, by load and usage? Is
performance adequate for E-commerce
aoplications? Taking 10 minutes to

Methods & Tools* Winter 1999 * Page 12

Web

respond to an E-commerce purchase is
clearly not acceptable!

Impact of Qudity. Qudlity is in the mind of the
user. A poor-quaity WebSite, one with many
broken pages and faulty images, with Cgi-Bin
error messages, etc. may cost in poor customer
relaions, lost corporate image, and even in logt
revenue. Vey complex WebStes can
sometimes overload the user.

The combination of WebSite complexity and
low qudity is potetidly lethd to an E-
commerce operation. Unhagppy users will
quickly depat for a different stel And they
won' leave with any good impressions.

WebSite Ar chitecture

A WebSte can be complex, and that
complexity -- which iswhat provides the power,
of course -- can be an impediment in assuring
WebSite Qudity. Add in the posshbilities of
multiple authors, very-rgpid updates and
changes, and the problem compounds.

Here are the mgor parts of WebSites as seen
from a Quality perspective.

Browser. The browser is the viewer of a
WebSte and there are s0 many different
browsers and browser options that a well-done
WebSite is probably designed to look good on
as many browsers as possible. This imposes a
kind of de facto standard: the WebSite must use
only those congdructs that work with the
mgority of browsers. But this dill leaves room
for alot of credtivity, and a range of technical
difficulties.

Display Technologies. Wha you see in your
browser is actudly composed from many
SOUrces.

HTML. There are various versons of
HTML supported, and the WebSite ought
to be built in a verdon of HTML thet is
compatible. And this should be checkable.

Java, JavaScript, ActiveX. Obvioudy
JavaScript and Java applets will be part of
any seious WebSite, so the qudity
process must be able to support these. On
the Windows side, ActiveX controls have
to be handled as well.

Cgi-Bin Scripts. This is link from a user
action of some kind (typicaly, from a
FORM passage or otherwise directly
from the HTML, and possbly aso from
within a Java gpplet). All of the different
types of Cgi-Bin Scripts (perl, awk, shdl-
scripts, etc.) need to be handled, and tests
need to check "end to end" operation.
This kind of a "loop" check is crucid for
E-commerce Stuations.

Database Access. In E-commerce applications
ether you are building data up or retrieving data
from a database. How does that interaction
perform in red world use? If you give in
"correct" or "specified" input does the result
produce what you expect? Some access to
information from the dadbase may be
gopropriate, depending on the application, but
thisistypicdly found by other means.

Navigation. Users move to and from pages,
click on links, dick on images (thumbnails), etc.
Navigation in a WebSite often is complex and
has to be quick and error free.

Object Mode. The display you see changes
dynamicdly; the only congtants are the "objects’
that make up the display. These aren't red
objects in the OO sense; but they have to be
treated that way. So, the qudity test tools have
to be able to handle URL links, forms, tables,
anchors, buttons of dl types in an "object like'
manner so that validaions are independent of
representation.

Server Response. How fast the WebSite host
responds influences whether a user (i.e
someone on the browser) moves on or
continues. Obvioudy, Internet loading affects
this too, but this factor is often outsde the
Webmeaster's control at least in terms of how the

Methods & Tools* Winter 1999 * Page 13

Web

WebSite is written. Instead, it seems to be more
an issue of sarver hardware capacity and
throughput. Yet, if a WebSite becomes very
popular -- this can happen overnight! -- loading
and tuning are red issues that often are imposed
-- perhaps not fairly -- on the webmaster.

Interaction & Feedback. For passive, content-
only gtes the only issue is avalability, but for a
WebSite that interacts with the user, how fast
and how rdiable that interaction is can be a big
factor.

Concurrent Users. Do multiple users interact on
a WebSite? Can they get in each other's way?
While WebSites often resemble conventiona
client/server software dructures, with multiple
users a multiple locations a WebSite can be
much different, and much more complex, than
complex applications.

Assuring WebSite Quality Automatically

Assuring WebSite qudity requires conducting
sets of tests, automaticaly and repeatably, that
demondtrate required properties and behaviors.
Here are some required elements of tools that
amto dothis.

Test Sessons. Typicd dements of tedts
involve these characteridtics:

Browser Independent. Tests should be
redigic, but not be dependent on a
particular browser, whose biases and
characterigtics might mask a WebSite's
problems.

No Buffering, Caching. Loca caching and
buffering -- often a way to improve
apparent performance -- should be
disabled so that timed experiments are a
true measure of the Browser-Web-
WebSite-Web-Browser response time.

Fonts and Preferences. Most browsers
support a wide range of fonts and
presentation preferences, and these should

not affect how qudity on a WebSte is
assessed or assured.

Object Mode. Edit fields, push buttons,
radio buttons, check boxes, etc. All
should be treatable in object mode, i.e.
independent of the fonts and preferences.
Object mode operation is essentid to
protect an investment in tesdts and to
assure tests continued operation when
WebSite pages change. When buttons
and form entries change location -- as
they often do -- the tests should till work.
When a button or other object is deleted,
that error should be sensed! Adding
objects to a page clearly implies re-
making the test.

Tables and Forms. Even when the layout
of atable or form varies in the browser's
view, tests of it should continue
independent of these factors.

Frames. Windows with multiple frames
ought to be processed smply, i.e as if
they were multiple sngle-page frames.

Test Context. Tests need to operate from
the browser level for two reasons. (1) this
is where users see a WebSite, so tests
based in browser operation are the most
redigtic;, and (2) tests based in browsers
can be run locdly or across the Web
equdly well. Loca execution is fine for
qudity control, but not for performance
measurement work, where response time
including Web-variable delays reflective of
red-world usage is essentidl.

WebSite Validation Processes

Confirming validity of what istested isthe key to
assuring WebSite qudity -- and is the most
difficult chalenge of dl. Here are four key aress
where tes automation will have a dgnificant

impact.

Methods & Tools* Winter 1999 * Page 14

Web

Operationd Tedting. Individua test steps may
involve avariety of checks on individuad pagesin
the WebSite:

Error Recovery. While browser fallure due
to user inputs is rare, test suites should have
the capability of resynchronizing after an

Page Qudity. Is the entire page identica
with a prior verson? Are key parts of the
text the same or different?

Table, Form Quality. Are dl of the parts of
atable or form present? Correctly laid out?
Can you confirm that selected texts are in
the "right place'?

Page Reddionships. Are dl of the links a
page mentions the same as before? Are
there new or missng links?

Performance, Response Times. Is the
response time for a user action the same as
it was (within arange)?

error.

Content Vdidation. Apat from how a
WebSite responds dynamicdly, the content
should be checkable ether exactly or
goproximately. Here are some ways that
should be possible;

Structurd. All of the links and anchors
match with prior "basdine' data Images
should be characterizable by byte-count
and/or file type or other file properties.

Checkpoints, Exact Reproduction. One or
more text eements -- or even dl text
elements -- in a page should be markable as
"required to match’.

Test Suites. Typicdly you may have dozens or
hundreds (or thousands?) of tests, and you may
wish to run testsin avariety of modes.

Gross Statidtics. Page datidics (e.g. line,
word, byte-count, checksum, etc.).

Unattended Tedting. Individud and/or
groups of tests should be executable sngly
o in padld from one o may
workstations.

Background Tedting. Tests should be
executable from multiple browsers running
"in the background" [on an agppropriately
equipped workstation].

Digtributed Testing. Independent parts of a
tet suite should be executable from
Separate workstations without conflict.

Performance Tedting. Timing in performance
tests should be resolved to 1 millisecond
levels, this gives a strong bads for averaging
data.

Random Teding. There should be a
cgpability for randomizing certain parts of
tests.

Selected ImagesFragments. The tester
should have the option to rubber band
sections of an image and require that the
sdection image maich later during a
subsequent rendition of it. This ought to be
possble for severd images or image
fragments.

Load Smulation. Load andyss needs to
proceed by having a specid purpose
browser act like a human user. This assures
that the performance checking experiment
indicates true peformance -- not
performance on Smulated but unredigtic
conditions.

Sessions should be recorded live or edited
from live recordings to assure faithful timing.
There should be adjustable speed up and
dow down ratios and intervals.

Load generation should proceed from:

Single Browser. One session played on a
browser with one or multiple responses.

Methods & Tools* Winter 1999 * Page 15

Web

Timing data should be put in a file for
Separate analysis.

Multiple Independent Browsers. Multiple
sessons played on multiple browsers with
one or multiple responses. Timing daa
should be put in a file for separate andyss.
Multivariate datigicd methods may be
needed for a complex but generd
performance model.

Multiple Coordinated Browsers. This is the
mogt-complex form -- two or more
browsers behaving in a coordinated fashion.
Specid synchronization and control
capabilities have to be available to support
this.

Stuation Summary

All of these needs and requirements impose
condraints on the test automation tools used to
confirm the qudity and rdiability of a WebSite,
At the same time they present ared opportunity
to amplify human tester/andyst capabilities.
Better, more reliable WebSites should be the
result.

Methods & Tools* Winter 1999 * Page 16

Facts, News & Comments

@ Companies

No Viasoft for Compuware

The U.S. Justice Department said last October
it planned to block the proposed merger
between Compuware and Viasoft in court
because the combination could result in higher
software fees. Jugtice Department officids sad
they were concerned the merger would give
Compuware a dominant hold over certain types
of critica/mainframe software, testing/debugging
software used to check for errors as program
codeiswritten.

Consolidation is the name of the game in the
software tools industry, but things will not run as
smoothly as liked by some big companies
executives. This decison could be linked to the
current anti-trust Microsoft trial. Governments
ae now conddering software like another
indudry and they are acting againg dominant
postions. This move could labded as limiting a
free market economy, but it is aso true that 1T
managers are worried when mergers and
acquidtions gradudly limit their options for
specific products. Did | have to mention the
recent acquidition of Plainum Technology by
Computer Associates...

Sun setsin the East

After the recent acquistion of Forte, Sun
announced in October the purchase of Prague
Czech Republic-based Java tools vendor
NetBeans. This 40-person company will be
integrated in the Forte divison and its products
will be renamed Forte for Java, Community and
Internet Edition.

This move dlows Sun to offer a complete line of
products to develop Java-based applications. It
leaves however open the point of being at the
sane time the unique provider of Java
soecifications to software tools editors like
IBM, Oracle or Inprise and a riva vendor of
tools.

$9% £ Numbers

Databases Ups and ERP Downs

The recent period of quarterly results
announcement dlows us to fed the current
trends on the world software market.

In the database sector, both Informix and
Sybase announced better than expected results
with licensng revenues growing around 10%.
After some terrible years, this two companies
are getting better, fueded by data warehousing
and Internet projects.

On the ERP Side, SAP sad its net income fdll
64% in its third quarter where revenues for this
quarter rose only 7% from a year earlier. Baan
suffered a $25 million loss for revenues of $143
million, minus 27% from the previous year. In
this area, the Y2K effect and the trangtion to
Internet are mentioned as causes for the
problems. The fact is tha many initigtives are
changing the digtribution and pricing models of
ERP companies. Externd gpplication hosting,
leasing, user-based fees are "new” concepts that
make the industry fed like 20 years younger...

Il!l In Others Words

How to Manage Geeks...

"According to the traditional Stereotype, geeks
are people who are primarily fascinated by
technology and its uses. The negative part of
that stereotype is the assumption that they have
poor socid sKkills. Like most stereotypes, it's
true in gened — but fdse a the leve of
goecifics. By society's definition, they ae
antisocid. But within their own community, they
are actudly quite socid. Youll find that they
bresk themsdves into tribes: [...]. They're tribal
in the way that they subdivide their own
community, but the tribes don't fight each other.
In fact, those tribes get dong very wdl —
because dl of them fight management.”

Methods & Tools* Winter 1999 * Page 17

Facts, News & Comments

"Perhaps the least-becoming aspect of geek
community is its inditutiond arogance.
Remember, just because geeks have under-
developed socid skills doesn't mean that they
don't have egos. Tech people are uppity by
definition: alot of them would like to have been
adronauts. They enjoy the limelight. In a power
relaionship with management, they have more in
common with pro basketbal players than they
do with average workers. Think of your techies
asfree agentsin a highly speciaized sports draft.
And the more specidized they are, the more you
need to be concerned about what each of them
needs as an individud.."

"Today technology sdaries are at least twice the
nationa average. In fact, tech sdaries are going
through the roof, and non-tech sdaries are not —
which presents a serious problem for many
companies. But, as important money is to tech
people, it's not the most important thing.
Fundamentally, geeks are interested in having an
impact. They believe in their ideas, and they like
to win. They care about getting credit for their
accomplishments. In that sense, they're no
different from a scientis who wants credit for
work that leads to a Nobel Prize. They may not
be operating a that exdted leve, but the same
principle applies.”

"If you don't want to lose your geeks, you have
to find a way to give them promotions without
turning them into managers. Most of them are
not going to make very good executives — and,
in fact, most of them would probably turn out to
be terrible managers. But you need to give them
a forward career path, you need to them
recognition, and you need to give them more
money."

"Either geeks are part of the solution — or they're
the problem. Here is another thing you need to
know about the geek mind-set: because tech
people are scientists or engineers by training,
they love to solve redly hard problems. They
love to tackle a chdlenge. The more you can get
them to fed that they're heping to come up with
a solution to a tough problem, the more likdy

they are to perform in away that works for you.
When you talk with them, your red god should
be to engage them in a diaogue about what you
and they are trying to do. If you can get your
engineering team to agree with what you're
trying to accomplish, then youll see them sdf-
organize to achieve that outcome. Youll dso
need to figure out wha they're trying to
accomplish — because no matter what you warnt,
that's probably what they're going to do. The
next thing you need to remember is that you can
tell them what to do, but you cant tel them how
todoit."

"Make sure that there is dways peer-group
pressure within your project teams. For
example, if you want to motivate your project
leaders, just require them to make presentation
to each other. They care agreat ded about how
they are perceived within their own web of
friends and by the professond community that
they belong to. [...] It sounds like I'm touting
tech people as gods, but there are plenty of bad
projects, and there is plenty of bad engineering
and bad technology. Youre dways going to
encounter techies who are arrogant and who
aren't as good as they think they are. A team
goproach is the best way to ded with tha
problem. Tech people know how to ded with
the wild ducksin their group — on their own and
with the right king of peer pressure.”

"You can listen to lots of
exceptionally bright people talk
about ther brilliant vison. But
what matters is, which ones
deliver on their vison? When a
project is on the line, who
actually getsthejob done?"

"In a high-tech company that is run by engineers,
wha matters most is being right. And what's
right' is determined by outcome. You can listen
to lots of exceptionaly bright people tak about
their brilliant vison. I've done it for the past 25
years. But what matters is, which ones ddiver

Methods & Tools* Winter 1999 * Page 18

Facts, News & Comments

on ther vison? When a project is on the line,
who actualy gets the job done? Every team has
a natural leader — and often that leader is not a
team's officiad manager. Your job is to get the
team motivated. Once you do that, the naturd
leaders will emerge very quickly. If you keep an
eye on the team, you can figure out who those
natural leaders are — and then make sure that
they're happy and that they have everything they
need to do their job. [...] There are easy ways
that you can hedp them to bypass layers of
middle management and to send you emall
directly. Sure, that will piss off the people in the
middle management, but it's better to piss off
those people than to piss off your key project
leaders.”

"You can divide project teams into two
categories. Fird there is the preferred variety:
you get an engineering team that's absolutely
brilliant, that executes wdl, and tha's exactly
right in its assumptions. Second, there is the
more usud variety: you get an engineering team
that has very strong opinion about what it's
trying to do — but that's on the wrong track,
because some of its assumptions are wrong.
That second kind of team is what you have to
focus your atention on. But often you cant
intervene from the top down. You haveto find a
way to come at the problem from the sde. [...]
In generd, as long as you condder everyone's
ideas, most teams react well to management
decidons. If you have to make a busness
decison that conflicts with what your engineers
want to do, they'll accept it —aslong asit istruly
a business decison. On the other hand, if the
decisgon is based on a technology andyss by
someone whom the engineers do not respect
professondly, then they'll never agree to it. So,
if youre facing a decison that you know will
affect a team negdivey, you must vet that
decison through a technologis who has that
team's respect.”

"Too many geeks spoil the soup. If you want
your geeks to be productive, keep your team
sndl. The productivity of any project is
inversaly proportiond to the size of the project
team. In the software business, most problems

draw on the efforts of large number of people.
Typicdly, companies ded with a problem by
putting together alarge team and then giving that
team a misson. But in this indudry, that
approach dmost never works. The results are
dmog invariably disgppointing. Still, people
keep doing it that way — presumably because
that's the way they did it last year. The question
is, how do you break out of that mode? It
seems to be a cancer on the industry. On alarge
team, the contributions of the best people are
dways gmdler, and overdl productivity is
aways lower. As a generd rule, you can count
on each new software project doubling in team
gze and in the amount of code involved — and
taking twice as long — as the preceding project.
[...] Two or three people invent a brilliant piece
of software, and then five years laer, 1000
people do a bad job of following up on thar
idea. Higtory is littered with projects that follow
this pattern: Windows, Unix, Java, Netscape
Navigator. The smdler the team, the faster the
team members work. When you make the team
gmdler, you make the schedule shorter. That
may sound counterintuitive, but it's been true for
the past 20 years in this indudtry, and it will be
true for another 20 years. The only method that
I've found that works is to redtrict the size of
teams abitrarily and panfully. Herés a smple
rule of thumb for techie teams no team should
be larger than the largest conference room that's
avalable for them to meet in."

Source "How to Manage Geeks', Russ
Mitchell, Fast Company, June 1999.

This interview of Novel's CEO Eric Schmidt
provides a indder's vison of what our work's
environment often looks like. Schmidt is an ex-
Sun chief technology officer, so his point of view
comes from practica experience on both sdes
of the management barrier. It corresponds with
Methods & Tools philosophy to bring to you
practicd and open visons, just to make you
think, even with a different point of view...

Methods & Tools* Winter 1999 * Page 19

Facts, News & Comments

No Silver Bullet...

"InfoWorld: How will the adoption of Internet
technologies such as HTTP, HTML, Java, and
XML ease the maintenance of applications and
the cost of maintaining systems?

Phipps. Wdll, the most important thing to say
there isthere are no slver bullets. None of these
technologiesis a slver bullet. The observation is
tha the way tha weve done software
development over the past two decades is to
assume the most important question is, "When
can | have it?" And wha were discovering in
the era of e-busness [is that] probably the most
important question will be, "What will it cogt?"
And if that darts to be the most important
question, it seems you need ak yoursdf,
"Wha's it going to cot me to use this
proprietary technology in a month with dl the
other things I'm doing on my Web ste?' What
its going to cost me is that proprietary
technology is anchored to the operating system.
And every time therés an upgrade to the
operding sysem, every time | ingdl other
software that works with the operating system, |
have to regression test my server to find out if
anything is broken. But if I'm usng Java or my
data is expressed in XML, | can pretty much
guarantee that any change in my server won't
affect those programs, that there won't be any

codependencies of those technologies and the
platform. The result of that is that you'll see less
frequently [that] a change [will] impact the rest
of your systems, and that's how it reduces your
codt. ... You can't say it's going to save you
loads of money to use open technologies, but
you can say it will cost you loads of money to
use proprietary technologies.”

Source www.infoworld.com, Infoworld
Electric, November 22, 1999, "IBM's chief
XML evangdig examines how the language will
change e-commerce’, interview with Simon

Phipps.

. even on the Web! But independence is
worthwhile in the software development areal

Coming next in Methods & Tools

Using Use Cases

Data Warehouse Design

How to Sponsor a Successful Project
GUI Tedting Checkligt

Tegting Client/Server Applications

Classified Advertisement

Advertisng for a new Web development tool? Looking to recruit software developers? Promoting a
conference or a book? Organizing software development related training? Selling your new report?
This space is waiting for you at the price of US $ 20 each line. Reach more than 4300 web-savvy
software developers and project managers worldwide with a classfied advertisement in Methods &
Tools. Without counting those that download the issue without being registered! To advertise in the
classified section, to place a page ad or to become the didtribution sponsor of the next issue, Smply

contact Franco Martinig at franco@martinig.ch

METHODS & TOOLS is published by Martinig & Associates, Rue des Marronniers 25,
CH-1800 Vevey, Switzerland Tel. +41 21 922 1300 Fax +41 21921 2353 www.martinig.ch

Editor: Franco Martinig; e-mail franco@martinig.ch

Free subscription: www.martinig.ch
ISSN 1023-4918.

The content of this publication cannot be reproduced without prior written consent of the publisher

Copyright @ 1999, Martinig & Associates

Methods & Tools* Winter 1999 * Page 20

