
METHODS & TOOLS
Global knowledge source for software development professionals ISSN 1023-4918
Winter 1999 (Volume 7 - number 4)

People and Organization: It is all About Willing to Share

Often the initial journey as a software developer is traveled alone. At home or at school you were
sitting in front of your screen, mastering the exciting project of producing an "Hello World" window or
stack management procedures. Can you remember the happiness of making things happen on your
own? Perhaps some of you are still operating on a stand-alone basis, but most of you are working in
teams, sharing a project with other software developers. This is the moment when the individual parts
of software development meet the Organization and sometimes the organization. The Organization with
an upper case 'O' is what you are working for, the organization with a small 'o' is the way you
collaborate with other software developers. This second item is the main subject of this issue.
Collaborating in an individualistic job like programming is not easy. Despite talks about "software
engineering", you have to recognize that the "design" content is strong in our profession... and design is
a matter of taste. In opposition to "classical" manufacturing, most of the design-related aspects in
software development are often not targeted to consumers, but they are rather only visible by co-
workers, either in the development or in the maintenance phase. There are a lot of books about good
design and coding styles and it is worthwhile to read them, but every developer has its own style. You
have to accept this, because you know that even you, at different times, will have another solution to a
specific problem or requirement.

Working together is not only about development style, it is a matter of being able to understand each
other design and code, also with the help of comments, and to accept different solutions. It is to be sure
that modules will communicate and that the meaning of interface variables is well defined. It is to know
where to find a particular piece of code dealing with a specific subject. It is to know that you have to
go beyond your individual vision of your work, because you cannot succeed alone in projects and you
will be glad to have colleagues that share the same concerns than you. There is nothing better in the
Organization than colleagues happy to collaborate with each-other...

Inside

Management: Object Oriented Group Work, Matti Halme...page 2

Web: The WebSite Quality Challenge..page 11

Facts, News & Comments ...page 16

Quality

Methods & Tools * Winter 1999 * Page 2

As the size of an information system project
grows and the number of human resources
needed increases, significance of effective
and efficient group-work becomes a very
essential factor in the success of the
project. Does object orientation have
anything to do with this?

Introduction

Have you ever thought what happens if the
cooperation between the team-members more
or less fails in an information technology
project?

First, of course, inefficient teamwork results in
inefficient total effort. Results of individual team-
members cannot be adequately used by others
and excessive rework occurs. Group meetings
and other communication activities may then
also take lots of extra time.

Second, there may be potential quality problems
since technical and functional compromises are
forced to be made in absence of rational
agreement in important issues.

Third, ineffective group-work may set a
practical limit to the size of the system that can
be successfully implemented no matter how
many people work in the project.

Prerequisites of successful group-work in
information technology projects sure are largely
same than those of any team-oriented projects.

Of course, there must exist a common goal that
everybody is trying to achieve. Features and
characteristics of the system to be built must be
known as clearly as possible and there must be
a common agreement upon them. High-level
goals or visions of ‘what are we ultimately trying

to accomplish’ must also be clear and common
among the team-members.

Additionally, few essential teamwork factors are
division of work, communication and -
especially in IT projects - integration.

Division of work

There must be good division of work between
the team-members. Everything needs to get
done and people must be able to get their own
field of work they are motivated to work in and
which does not conflict with responsibilities of
other members. The division must be clear, well
defined and understandable.

There must be a clear understanding of what are
the responsibilities of each team-member and
what are the dependencies between them.
When planning the division of work, the inter-
person dependencies should be minimized and
the project management and team-members
should be aware of the remaining ones. A
question naturally rising of the inter-dependency
issues is how well can the project be divided
into largely independent tasks.

Additionally, of course, a good division of work
must utilize the skills and expertise of the team-
members.

A good division of work is one that everybody
can stick to! People must take the responsibility
of performing their tasks. On the other hand, the
team-members must be very careful when
getting involved to responsibilities of other team-
members. It is often quite tempting to do some
fixes to a college’s design to make it better ‘fit’
to one’s design and idea of the system. Of
course, feedback should be given to make
things work, but basically team-members should

Object Oriented Group-Work

Matti Halme, Stonesoft Corporation, www.stone.fi
Taivalmäki 9, 02200 ESPOO, Finland

Quality

Methods & Tools * Winter 1999 * Page 3

stick to their responsibilities, and trust other
people are doing their jobs.

Communication

Communication between the team-members
must work. Of course, communication between
human beings can not work without expressing
skills and ability and will to listen and receive
information. Additionally, for a successful
communication, all team-members must be able
to talk the same language.

They must use the same terms and a same frame
of reference that gives the terms unambiguous
meanings.

At certain point of technicality and complexity,
when things are hard to express verbally,
various more or less formal modeling and

diagramming techniques can help. However, in
order to a technical notation to be useful and
cost-effective, it must be commonly
understandable among the team-members and
other affected parties. It must also be easy to
use. Of course, the notation must have enough
expressive power to cover the problem domain.

Typical communication methods in any
teamwork include direct communication by
talking and sending e-mail messages and
different kinds of meetings. This direct
communication is necessary in all cooperation,
but when dealing with complex things, indirect
communication using some kind of common
datastore - or just a set of written specification
documents - becomes essential. Trying to
communicate complex highly technical structures
and designs in project meetings can sometimes
be a total waste of time for everybody. People

return (x + y * z);

D E S I G ND E S I G N

D E S I G ND E S I G N

Figure 1. Communication in IT group-work through common datastore.

Quality

Methods & Tools * Winter 1999 * Page 4

need to write it all down and get others to read
it!

The idea represented in figure 1 is that
depending on their background and exact
profession, people have tendency to think about
and express similar things in very different ways
and in different abstraction levels. In datastore-
centric communication, there is a standardized
way in which the specifications are presented. In
the simplest form, the datastore consists of
documents all written using common templates
specifying and instructing people on both
contents and format of specifications.

Datastore-centric communication means that
information can be produced and consumed
asynchronously, at any time. A prerequisite to
make datastore-centric communication work is
that people produce standardized and complete
information, keeping it up-to-date.

Integration

To get a working information system, the results
of individual team-members somehow need to
be brought together. In IT terms this is called
integration and, as many of us know, often
means that modules people have written are
linked together and the system is then expected
to start working as whole.

Sometimes the integration can be carried
through with minor modifications to the system,
sometimes all the misunderstanding and
incompatible interfaces pop up at once and the
integration effort appears to greatly exceed the
effort of writing the individual modules. In the
latter case, term effort of integration is actually
wrong. We should talk about the effort of
understanding and defining the dependencies
and interfaces, all too late.

It is clear, that so-called big-bang integration
introduces great risks in large projects.
Integration needs to be started at very early
phases of projects. Ways to validate
compatibility between early software life-cycle

products such as analysis and design
specifications should be considered.

So, does the object orientation help?

Could the object oriented paradigm be used to
improve the cooperation of team-members in
software engineering projects? Do we get better
divisions of work, easier communication and
free integration? Sure, OO tool vendors have
promised us largely independent units, called
classes, with data and functionality combined
and encapsulated. There is the division of work:
each designer just picks the classes he/she will
design and implement. These units only interact
through well-defined interfaces, which must lead
to easy integration. We also have commonly
understood notations that make people talk the
‘same language’. Communication must now be
easier.

But what have we got? The OO paradigm,
notations, methods and tools do not really
automatically bring minimized dependencies and
well-defined interfaces, better modularity in
more traditional words. Sometimes they
deteriorate the modularity of your design by
suggesting you to follow design principles of a
popular application framework targeted to
different kinds of applications than yours.

The variety of different OO methods and
notations bring IT specialists difficulties in
learning and understanding object orientation.
Understanding new notations has proven to be
especially hard to customers not specialized in
information technology.

Does object orientation then have anything to do
with improving the information system
teamwork? In my opinion, yes. How should we
use object orientation to get the teamwork
better organized? I believe that the answer is in
using OO as a vehicle in designing good,
modular software architectures, writing good,
understandable object oriented specifications
and systematically applying object oriented
methods from the very beginning of the software
life-cycle.

Quality

Methods & Tools * Winter 1999 * Page 5

Next, we will look at some constructs that lead
towards more modular software architectures.
Then we will show how to organize our
common datastore containing both object
oriented and more traditional information.
Finally, we will examine how to consider the
integration issues from the beginning of the
project.

What about layered architecture?

Let us start with the modularity issues. Since
object orientation itself does not lead to better
modularity, we should explicitly try to design
modular software architectures. The first step in
using object orientation to design modular
software architectures can often be taken simply
by aiming at a layered architecture.

In layered architecture, the system is divided
into parts that do not have any cyclic
dependencies between them. The upper layer
knows about the layer below and can use

services offered by the lower layer. The lower
layer in turn does not depend from the upper
layer in any way. In fact, it does not even need
to know what layers exist above it.

In object orientation, using services often
happens through one-way-navigable
associations between objects belonging to
classes at different layers.

It’s characteristic to each layer that the
technologies or fundamental concepts used are
somehow different. Layered architecture can
thus be called vertical or technical partitioning of
the information system.

Using a layered architecture such as one
illustrated in figure 2, is a way to natural,
technology-based division of work. Persons
specializing in database or network technologies
are responsible of design and implementation of
the lower layers. The application domain
specialists can concentrate to their expertise
areas without having to worry about any

Data Management System

Conta iner Objects
Object Storage Logic layer

Network Packets
Network Protocol

Conta iner Objects
Network Management Layer

Database records

Application Domain Logic Layer

Enti ty Objects

User Interface Logic Layer

User- Inter face Objects

Figure 2. An example of a layered application architecture

Quality

Methods & Tools * Winter 1999 * Page 6

database technologies or network protocols.
Neither do they need to know about how the
information is presented to the user with
graphical user-interface. Responsibilities left to
the UI designer are the user-interface logic and
the graphical layout.

Layered architecture has not been invented with
the object orientation. Examples of layered
architectures existed long before the object
oriented systems were popular. Any application
interfacing with the application programming
interface (API) of an operating system is an
example of layered architecture. Operating
systems themselves often tend to be very
layered. However, object orientation gives us
perfect tools to model and implement layered
architectures.

Slicing the layers

If each layer in a layered architecture is
responsible for one technical concept, dividing
the application according to functionality it is
responsible for leads to horizontal or functional
partitioning. Many layers can - and they often
should - be divided into parts, called domains
for example. Each of the domains represents
certain well-defined, limited functionality. Clear
interfaces and well-understood non-cyclic
dependencies should exist between the domains.

In a familiar sales and invoicing system example,
the application domain logic layer could be
divided into domains presented in figure 3.

Each domain in turn consists of number of
relatively closely related classes, which are the
smallest units of modularity in object orientation.
The Order domain could have classes such as
Order and OrderLine. Domains in different
layers typically correspond to each other. The
Order domain in the application domain layer is
associated to Order user-interface domain in
the user-interface layer.

Horizontal partitioning can be used to target a
clear application domain knowledge-based
division of work. Horizontal - like vertical -
partitioning forces you to think about
dependencies and interfaces when designing the
application architecture.

When should we go to object oriented
application frameworks?

When several applications with similar kind of
application logic, functionality and technical
solutions - possibly in the same application
domain - are produced, the need to reuse parts
of applications rises. Separating common
functionality, logic and technical solutions into a
common part shareable among several
applications is called constructing an application
framework.

The difference between application frameworks
and other reusable constructs, such as class
libraries, is that frameworks also contain
common logic of functionality. Typically,

Application Domain Logic Layer
Entity Objects

Ord
er

Customer

Product Ship
m

en
t

In
vo

ice

Figure 3. A layer partitioned into domains

Quality

Methods & Tools * Winter 1999 * Page 7

frameworks are responsible of the main logic of
the application. In graphical user-interface
applications, this means in practice that the
framework handles the main event loop passing
the appropriate messages to the application as
callbacks.

The object oriented paradigm can very well be
applied into application framework
architectures. Handling the application logic in
the framework can be done by defining certain
base classes in the framework. These classes
interact with other framework classes. The
application-specific functionality is implemented
in classes inherited from the framework base
classes. Calling overridden methods in the
application classes is used as a callback-
mechanism. Base classes that define the
application logic are often called protocol
classes. Framework classes should of course
also implement common basic operations and

solve demanding technical problems, thus
making application development easier.

The problem with the application frameworks is
that they are very complex to design, implement
and maintain. The complexity naturally rises
from the fact that a framework must act in a
common way like several real-world
applications expect it to do. Constructing
frameworks hardly ever succeeds at the first
shot. This iterative process has to be performed
in parallel with some pilot applications using the
framework. The construction of framework
requires to use the most talented and
experienced resources.

In object orientation, using services often
happens through one-way-navigable
associations between objects belonging to
classes at different layers.

A
p

p
lica

tio
n

 1

A
p

p
lica

tio
n

 2

A
p

p
lica

tio
n

 3

Framework

Application Domain Logic Layer

Object Storage Logic Layer

User-Interface Logic Layer

Data Management System

Figure 4. An example of object oriented application framework and three applications using it.
Network management layers and inter-layer dependencies shown in previous figures

have been left out to simplify the illustration.

Quality

Methods & Tools * Winter 1999 * Page 8

Putting it all into a repository

Using object orientation as a tool to achieve
highly modularized software architectures with
well-known dependencies and clear interfaces
helps making a good division of work in
software projects. What about communication
and integration? Object orientation can offer
some help in these issues too.

Using a common datastore as a communication
method for complex structures requires a
comprehensive, widely understood notation to
express things. Traditional textual specifications
often make it hard for a reader to get a good
overall view of the system, or even a part of it.
For an author, it might be hard to get convinced
that everything essential is included into the
document.

More formal specifications such as object
oriented notations, if used systematically, guide
the author to a more complete and consistent
representation. However, object oriented
methods and notations seldom are themselves
comprehensive enough.

In most cases, you need both structured and
textual presentations consistently completing
each other. A good object oriented design must
be able to be presented as a readable
document. A typical way to compile a
specification from textual descriptions and more
or less object oriented graphical notations is to
embed the diagrams created by a graphical
software or a CASE tool into a text document.
This is a very natural approach, since pictures
and drawings are very commonly used in all
kinds of technical documents to illustrate the
textual presentation.

WebBoard 4.0
Quick & Easy Community Building From O’Reilly!

Online forums and discussions are a must in today’s Web-based environment. Whether you’re
building virtual offices of classrooms, corporate intranets, commerce, or online communities,
WebBoard 4.0 can organize, enhance, and improve communication.

• Create a central location for online communications, discussions, and email
• Customize “boards” for your own look and feel
• Run up to 255 boards with unlimited users and 1,000-user simultaneous chat.

It’s fast, powerful, and scalable. It’s the original WebBoard from O’Reilly. Visit us at
www.webboard.com/nl2 and find out why WebBoard is the world’s leading discussion and chat
software.

http://www.webboard.com/nl2

http://www.webboard.com/nl2
http://www.webboard.com/nl2
http://www.webboard.com/nl2

Quality

Methods & Tools * Winter 1999 * Page 9

However, when the text document acts as the
master-specification, there is a danger that the
so-called object oriented design becomes a set
of separate, inconsistent pictures. Maintaining
the object model and its consistency to the
textual documentation becomes hard and error-
prone.

A repository is a systematically organized
database of design information. An object
oriented repository is a database for object
models containing logical, graphical and textual
information. Advanced repositories are designed
for multiple users having authentication, access-
control and data-locking properties. They also
support versioning and references between
different models to allow the models to be
partitioned according to the partitioning of the
information system.

The idea of using a repository-based solution as
a common datastore in information system
design is that the repository can act as the
master specification for the system. Everything is
organized around consistent object models.
Textual parts of the specification are written as
‘mini-documents’ that are stored into the
repository and linked to the corresponding
elements of the object models.

Using an object oriented repository as the
master specification for an information system
compared to a more traditional approach is
represented in figure 5. Of course, paperless
offices do not exist and at some point, the
specification needs to be printed. The content of
the repository thus needs to be able to
represented in a sequential form as a single
document. However, this can be considered as
highly mechanical task and can be automated.

A document as the
master specification

The repository as the
master specification

Figure 5. Document versus repository-driven organisation of specifications.

Quality

Methods & Tools * Winter 1999 * Page 10

Additionally, other representations, such as
hypertext documentation, can be derived
automatically from the repository.

What about parts of the specifications that do
not have anything to do with objects? Examples
of this kind of parts include performance
characteristics and other general properties of
the system.

Yes, that kind of specifications exists and they
are very vital to an information system A
specification should consist of mainly two parts:
textual general part and object oriented
‘reference’ part. In a repository-driven
approach, the general part is stored into the
repository as a document.

Object oriented integration

As mentioned earlier, leaving the integration of a
software system too late, can cause
unpredictable amounts of extra work, in the
phase of the project when it is the least wanted.

A common way to avoid integration-risks is to
‘grow’ the software by integrating the new parts
of the system to the previously implemented
parts as soon as they have been implemented. In
fact, many popular object oriented languages
with strict type-checking strongly encourage
programmers to integrate the software all the
time.

This way, the integration is done incrementally
and the implemented parts are kept consistent
with each other all the time. Still, the integration
is left to the implementation phase of the
software life-cycle. Major interface-design flaws
in the analysis and design phases may lead to a
system that is impossible to integrate.

Continuous software integration - from analysis
to design - means understanding and managing
the interfaces and keeping the parts consistent
with each other. Consistency of different parts
of the system with each other should be
validated as early as possible. It is generally
easier to validate the consistency of the system if

it is modeled formally and exactly. The model of
the system tends to be more formal and exact at
the later phases of the software life-cycle. At the
point when a system is specified as program
source code, the model is very formal and
exact. The compiler and linker will pretty much
tell you if it is consistent or not. Of course, you
need the integration testing to validate the
semantic consistency too.

In other words, what you need to do, is to aim
to more formal and exact specifications as early
as possible. Consistency of object models can
be largely validated mechanically. Systematic
use of object oriented specifications and
maintaining a consistent repository as the major
datastore from the very beginning thus reduces
the integration risks

Get organized

The object oriented paradigm itself does not
lead to better group-work. However, object
orientation, when carefully applied to good
software architecture design principles and used
with organized repositories, can help to achieve
a better division of work, a better
communication and it can reduce the integration
risks.

Object orientation gives good tools to design
modular software architectures and understand
and manage the inter-module dependencies.
You can start by aiming to layered architectures
and further divide the layers into logical parts
naturally derived from the application domain.
Application frameworks are advanced software
architectures that can be used to divide the
development of a family of applications among
several work-groups and still benefit from reuse.
Improving the group-work is one more reason
to design good modular software architectures
in large systems.

Organization of design information based on
object oriented repository directs the designers
towards more consistent object models.
Incorporating the textual specifications into the

Quality

Methods & Tools * Winter 1999 * Page 11

repository as well makes the information more
manageable and maintainable.

Systematically applying object oriented
techniques and keeping the models as consistent
as possible from the very beginning of the
project can really pay itself back when the
system is being integrated. In other words, we
really need to think of minimized dependencies
and good interfaces already in the early phases
of the project. We really need to know how to
write good specifications and maintain them. We
really need to get organized in things that cannot
work without a systematic approach. There is
no substitute for good project management,
talented system architects and good software
designers, with or without object orientation.

Originally published in the April 1998 issue
of the paper-based Methods & Tools

Web

Methods & Tools * Winter 1999 * Page 12

Because of its possible instant worldwide
audience a WebSite's quality and reliability
are crucial. The very special nature of the
WWW and WebSites pose unique software
testing challenges. Webmasters, WWW
applications developers, and WebSite
quality assurance manages need tools and
methods that can match up to the new
needs. Mechanized testing via special
purpose WWW testing software offers the
potential to meet these challenges.

Introduction

WebSites are something entirely new in the
world of software quality!

Within minutes of going live, a WWW
application can have many thousands more
users than a conventional, non-WWW
application. The immediacy of the WWW
creates an immediate expectation of quality and
rapid application delivery, but the technical
complexities of a WebSite and variances in the
browser make testing and quality control more
difficult, and in some ways, more subtle.
Automated testing of WebSites is both an
opportunity and a challenge.

Defining WebSite Quality & Reliability

A WebSite is like any piece of software: no
single, all-inclusive quality measure applies, and
even multiple quality metrics may not apply. Yet,
verifying user-critical impressions of "quality"
and "reliability" take on new importance.

Dimensions of Quality. There are many
dimensions of quality, and each measure will
pertain to a particular WebSite in varying
degrees. Here are some of them:

• Time: WebSites change often and rapidly?
How much has a WebSite changed since
the last upgrade? How do you highlight
the parts that have changed?

• Structural: How well do all of the parts of
the WebSite hold together. Are all links
inside and outside the WebSite working?
Do all of the images work? Are there
parts of the WebSite that are not
connected?

• Content: Does the content of critical pages
match what is supposed to be there? Do
key phrases exist continually in highly-
changeable pages? Do critical pages
maintain quality content from version to
version? What about dynamically
generated HTML pages?

• Accuracy and Consistency: Are today's
copies of the pages downloaded the same
as yesterday's? Close enough? Is the data
presented accurate enough? How do you
know?

• Response Time and Latency: Does the
WebSite server respond to a browser
request within certain parameters? In an
E-commerce context, how is the end to
end response time after a SUBMIT? Are
there parts of a site that are so slow the
user declines to continue working on it?

• Performance: Is the Browser-Web-
WebSite-Web-Browser connection quick
enough? How does the performance vary
by time of day, by load and usage? Is
performance adequate for E-commerce
applications? Taking 10 minutes to

The WebSite Quality Challenge

Edward Miller, miller@soft.com, Software Research, Inc., www.soft.com
901 Minnesota Street, San Francisco, CA 94107 USA

Web

Methods & Tools * Winter 1999 * Page 13

respond to an E-commerce purchase is
clearly not acceptable!

Impact of Quality. Quality is in the mind of the
user. A poor-quality WebSite, one with many
broken pages and faulty images, with Cgi-Bin
error messages, etc. may cost in poor customer
relations, lost corporate image, and even in lost
revenue. Very complex WebSites can
sometimes overload the user.

The combination of WebSite complexity and
low quality is potentially lethal to an E-
commerce operation. Unhappy users will
quickly depart for a different site! And they
won't leave with any good impressions.

WebSite Architecture

A WebSite can be complex, and that
complexity -- which is what provides the power,
of course -- can be an impediment in assuring
WebSite Quality. Add in the possibilities of
multiple authors, very-rapid updates and
changes, and the problem compounds.

Here are the major parts of WebSites as seen
from a Quality perspective.

Browser. The browser is the viewer of a
WebSite and there are so many different
browsers and browser options that a well-done
WebSite is probably designed to look good on
as many browsers as possible. This imposes a
kind of de facto standard: the WebSite must use
only those constructs that work with the
majority of browsers. But this still leaves room
for a lot of creativity, and a range of technical
difficulties.

Display Technologies. What you see in your
browser is actually composed from many
sources:

• HTML. There are various versions of
HTML supported, and the WebSite ought
to be built in a version of HTML that is
compatible. And this should be checkable.

• Java, JavaScript, ActiveX. Obviously
JavaScript and Java applets will be part of
any serious WebSite, so the quality
process must be able to support these. On
the Windows side, ActiveX controls have
to be handled as well.

• Cgi-Bin Scripts. This is link from a user
action of some kind (typically, from a
FORM passage or otherwise directly
from the HTML, and possibly also from
within a Java applet). All of the different
types of Cgi-Bin Scripts (perl, awk, shell-
scripts, etc.) need to be handled, and tests
need to check "end to end" operation.
This kind of a "loop" check is crucial for
E-commerce situations.

Database Access. In E-commerce applications
either you are building data up or retrieving data
from a database. How does that interaction
perform in real world use? If you give in
"correct" or "specified" input does the result
produce what you expect? Some access to
information from the database may be
appropriate, depending on the application, but
this is typically found by other means.

Navigation. Users move to and from pages,
click on links, click on images (thumbnails), etc.
Navigation in a WebSite often is complex and
has to be quick and error free.

Object Mode. The display you see changes
dynamically; the only constants are the "objects"
that make up the display. These aren't real
objects in the OO sense; but they have to be
treated that way. So, the quality test tools have
to be able to handle URL links, forms, tables,
anchors, buttons of all types in an "object like"
manner so that validations are independent of
representation.

Server Response. How fast the WebSite host
responds influences whether a user (i.e.
someone on the browser) moves on or
continues. Obviously, Internet loading affects
this too, but this factor is often outside the
Webmaster's control at least in terms of how the

Web

Methods & Tools * Winter 1999 * Page 14

WebSite is written. Instead, it seems to be more
an issue of server hardware capacity and
throughput. Yet, if a WebSite becomes very
popular -- this can happen overnight! -- loading
and tuning are real issues that often are imposed
-- perhaps not fairly -- on the webmaster.

Interaction & Feedback. For passive, content-
only sites the only issue is availability, but for a
WebSite that interacts with the user, how fast
and how reliable that interaction is can be a big
factor.

Concurrent Users. Do multiple users interact on
a WebSite? Can they get in each other's way?
While WebSites often resemble conventional
client/server software structures, with multiple
users at multiple locations a WebSite can be
much different, and much more complex, than
complex applications.

Assuring WebSite Quality Automatically

Assuring WebSite quality requires conducting
sets of tests, automatically and repeatably, that
demonstrate required properties and behaviors.
Here are some required elements of tools that
aim to do this.

Test Sessions. Typical elements of tests
involve these characteristics:

• Browser Independent. Tests should be
realistic, but not be dependent on a
particular browser, whose biases and
characteristics might mask a WebSite's
problems.

• No Buffering, Caching. Local caching and
buffering -- often a way to improve
apparent performance -- should be
disabled so that timed experiments are a
true measure of the Browser-Web-
WebSite-Web-Browser response time.

• Fonts and Preferences. Most browsers
support a wide range of fonts and
presentation preferences, and these should

not affect how quality on a WebSite is
assessed or assured.

• Object Mode. Edit fields, push buttons,
radio buttons, check boxes, etc. All
should be treatable in object mode, i.e.
independent of the fonts and preferences.
Object mode operation is essential to
protect an investment in tests and to
assure tests' continued operation when
WebSite pages change. When buttons
and form entries change location -- as
they often do -- the tests should still work.
When a button or other object is deleted,
that error should be sensed! Adding
objects to a page clearly implies re-
making the test.

• Tables and Forms. Even when the layout
of a table or form varies in the browser's
view, tests of it should continue
independent of these factors.

• Frames. Windows with multiple frames
ought to be processed simply, i.e. as if
they were multiple single-page frames.

• Test Context. Tests need to operate from
the browser level for two reasons: (1) this
is where users see a WebSite, so tests
based in browser operation are the most
realistic; and (2) tests based in browsers
can be run locally or across the Web
equally well. Local execution is fine for
quality control, but not for performance
measurement work, where response time
including Web-variable delays reflective of
real-world usage is essential.

WebSite Validation Processes

Confirming validity of what is tested is the key to
assuring WebSite quality -- and is the most
difficult challenge of all. Here are four key areas
where test automation will have a significant
impact.

Web

Methods & Tools * Winter 1999 * Page 15

Operational Testing. Individual test steps may
involve a variety of checks on individual pages in
the WebSite:

• Page Quality. Is the entire page identical
with a prior version? Are key parts of the
text the same or different?

• Table, Form Quality. Are all of the parts of
a table or form present? Correctly laid out?
Can you confirm that selected texts are in
the "right place"?

• Page Relationships. Are all of the links a
page mentions the same as before? Are
there new or missing links?

• Performance, Response Times. Is the
response time for a user action the same as
it was (within a range)?

Test Suites. Typically you may have dozens or
hundreds (or thousands?) of tests, and you may
wish to run tests in a variety of modes:

• Unattended Testing. Individual and/or
groups of tests should be executable singly
or in parallel from one or many
workstations.

• Background Testing. Tests should be
executable from multiple browsers running
"in the background" [on an appropriately
equipped workstation].

• Distributed Testing. Independent parts of a
test suite should be executable from
separate workstations without conflict.

• Performance Testing. Timing in performance
tests should be resolved to 1 millisecond
levels; this gives a strong basis for averaging
data.

• Random Testing. There should be a
capability for randomizing certain parts of
tests.

• Error Recovery. While browser failure due
to user inputs is rare, test suites should have
the capability of resynchronizing after an
error.

• Content Validation. Apart from how a
WebSite responds dynamically, the content
should be checkable either exactly or
approximately. Here are some ways that
should be possible:

• Structural. All of the links and anchors
match with prior "baseline" data. Images
should be characterizable by byte-count
and/or file type or other file properties.

• Checkpoints, Exact Reproduction. One or
more text elements -- or even all text
elements -- in a page should be markable as
"required to match".

• Gross Statistics. Page statistics (e.g. line,
word, byte-count, checksum, etc.).

• Selected Images/Fragments. The tester
should have the option to rubber band
sections of an image and require that the
selection image match later during a
subsequent rendition of it. This ought to be
possible for several images or image
fragments.

• Load Simulation. Load analysis needs to
proceed by having a special purpose
browser act like a human user. This assures
that the performance checking experiment
indicates true performance -- not
performance on simulated but unrealistic
conditions.

• Sessions should be recorded live or edited
from live recordings to assure faithful timing.
There should be adjustable speed up and
slow down ratios and intervals.

Load generation should proceed from:

• Single Browser. One session played on a
browser with one or multiple responses.

Web

Methods & Tools * Winter 1999 * Page 16

Timing data should be put in a file for
separate analysis.

• Multiple Independent Browsers. Multiple
sessions played on multiple browsers with
one or multiple responses. Timing data
should be put in a file for separate analysis.
Multivariate statistical methods may be
needed for a complex but general
performance model.

• Multiple Coordinated Browsers. This is the
most-complex form -- two or more
browsers behaving in a coordinated fashion.
Special synchronization and control
capabilities have to be available to support
this.

Situation Summary

All of these needs and requirements impose
constraints on the test automation tools used to
confirm the quality and reliability of a WebSite.
At the same time they present a real opportunity
to amplify human tester/analyst capabilities.
Better, more reliable WebSites should be the
result.

Facts, News & Comments

Methods & Tools * Winter 1999 * Page 17

- Companies

No Viasoft for Compuware

The U.S. Justice Department said last October
it planned to block the proposed merger
between Compuware and Viasoft in court
because the combination could result in higher
software fees. Justice Department officials said
they were concerned the merger would give
Compuware a dominant hold over certain types
of critical/mainframe software, testing/debugging
software used to check for errors as program
code is written.

Consolidation is the name of the game in the
software tools industry, but things will not run as
smoothly as liked by some big companies'
executives. This decision could be linked to the
current anti-trust Microsoft trial. Governments
are now considering software like another
industry and they are acting against dominant
positions. This move could labeled as limiting a
free market economy, but it is also true that IT
managers are worried when mergers and
acquisitions gradually limit their options for
specific products. Did I have to mention the
recent acquisition of Platinum Technology by
Computer Associates...

Sun sets in the East

After the recent acquisition of Forte, Sun
announced in October the purchase of Prague
Czech Republic-based Java tools vendor
NetBeans. This 40-person company will be
integrated in the Forte division and its products
will be renamed Forte for Java, Community and
Internet Edition.

This move allows Sun to offer a complete line of
products to develop Java-based applications. It
leaves however open the point of being at the
same time the unique provider of Java
specifications to software tools editors like
IBM, Oracle or Inprise and a rival vendor of
tools.

$9%£ Numbers

Databases Ups and ERP Downs

The recent period of quarterly results
announcement allows us to feel the current
trends on the world software market.

In the database sector, both Informix and
Sybase announced better than expected results
with licensing revenues growing around 10%.
After some terrible years, this two companies
are getting better, fueled by data warehousing
and Internet projects.

On the ERP Side, SAP said its net income fell
64% in its third quarter where revenues for this
quarter rose only 7% from a year earlier. Baan
suffered a $25 million loss for revenues of $143
million, minus 27% from the previous year. In
this area, the Y2K effect and the transition to
Internet are mentioned as causes for the
problems. The fact is that many initiatives are
changing the distribution and pricing models of
ERP companies. External application hosting,
leasing, user-based fees are "new" concepts that
make the industry feel like 20 years younger...

& In Others' Words

How to Manage Geeks...

"According to the traditional stereotype, geeks
are people who are primarily fascinated by
technology and its uses. The negative part of
that stereotype is the assumption that they have
poor social skills. Like most stereotypes, it's
true in general – but false at the level of
specifics. By society's definition, they are
antisocial. But within their own community, they
are actually quite social. You'll find that they
break themselves into tribes: [...]. They're tribal
in the way that they subdivide their own
community, but the tribes don't fight each other.
In fact, those tribes get along very well –
because all of them fight management."

Facts, News & Comments

Methods & Tools * Winter 1999 * Page 18

"Perhaps the least-becoming aspect of geek
community is its institutional arrogance.
Remember, just because geeks have under-
developed social skills doesn't mean that they
don't have egos. Tech people are uppity by
definition: a lot of them would like to have been
astronauts. They enjoy the limelight. In a power
relationship with management, they have more in
common with pro basketball players than they
do with average workers. Think of your techies
as free agents in a highly specialized sports draft.
And the more specialized they are, the more you
need to be concerned about what each of them
needs as an individual."

"Today technology salaries are at least twice the
national average. In fact, tech salaries are going
through the roof, and non-tech salaries are not –
which presents a serious problem for many
companies. But, as important money is to tech
people, it's not the most important thing.
Fundamentally, geeks are interested in having an
impact. They believe in their ideas, and they like
to win. They care about getting credit for their
accomplishments. In that sense, they're no
different from a scientist who wants credit for
work that leads to a Nobel Prize. They may not
be operating at that exalted level, but the same
principle applies."

"If you don't want to lose your geeks, you have
to find a way to give them promotions without
turning them into managers. Most of them are
not going to make very good executives – and,
in fact, most of them would probably turn out to
be terrible managers. But you need to give them
a forward career path, you need to them
recognition, and you need to give them more
money."

"Either geeks are part of the solution – or they're
the problem. Here is another thing you need to
know about the geek mind-set: because tech
people are scientists or engineers by training,
they love to solve really hard problems. They
love to tackle a challenge. The more you can get
them to feel that they're helping to come up with
a solution to a tough problem, the more likely

they are to perform in a way that works for you.
When you talk with them, your real goal should
be to engage them in a dialogue about what you
and they are trying to do. If you can get your
engineering team to agree with what you're
trying to accomplish, then you'll see them self-
organize to achieve that outcome. You'll also
need to figure out what they're trying to
accomplish – because no matter what you want,
that's probably what they're going to do. The
next thing you need to remember is that you can
tell them what to do, but you can't tell them how
to do it."

"Make sure that there is always peer-group
pressure within your project teams. For
example, if you want to motivate your project
leaders, just require them to make presentation
to each other. They care a great deal about how
they are perceived within their own web of
friends and by the professional community that
they belong to. [...] It sounds like I'm touting
tech people as gods, but there are plenty of bad
projects, and there is plenty of bad engineering
and bad technology. You're always going to
encounter techies who are arrogant and who
aren't as good as they think they are. A team
approach is the best way to deal with that
problem. Tech people know how to deal with
the wild ducks in their group – on their own and
with the right king of peer pressure."

"You can listen to lots of
exceptionally bright people talk
about their brilliant vision. But
what matters is, which ones
deliver on their vision? When a
project is on the line, who
actually gets the job done?"

"In a high-tech company that is run by engineers,
what matters most is being right. And what's
'right' is determined by outcome. You can listen
to lots of exceptionally bright people talk about
their brilliant vision. I've done it for the past 25
years. But what matters is, which ones deliver

Facts, News & Comments

Methods & Tools * Winter 1999 * Page 19

on their vision? When a project is on the line,
who actually gets the job done? Every team has
a natural leader – and often that leader is not a
team's official manager. Your job is to get the
team motivated. Once you do that, the natural
leaders will emerge very quickly. If you keep an
eye on the team, you can figure out who those
natural leaders are – and then make sure that
they're happy and that they have everything they
need to do their job. [...] There are easy ways
that you can help them to bypass layers of
middle management and to send you email
directly. Sure, that will piss off the people in the
middle management, but it's better to piss off
those people than to piss off your key project
leaders."

"You can divide project teams into two
categories. First there is the preferred variety:
you get an engineering team that's absolutely
brilliant, that executes well, and that's exactly
right in its assumptions. Second, there is the
more usual variety: you get an engineering team
that has very strong opinion about what it's
trying to do – but that's on the wrong track,
because some of its assumptions are wrong.
That second kind of team is what you have to
focus your attention on. But often you can't
intervene from the top down. You have to find a
way to come at the problem from the side. [...]
In general, as long as you consider everyone's
ideas, most teams react well to management
decisions. If you have to make a business
decision that conflicts with what your engineers
want to do, they'll accept it – as long as it is truly
a business decision. On the other hand, if the
decision is based on a technology analysis by
someone whom the engineers do not respect
professionally, then they'll never agree to it. So,
if you're facing a decision that you know will
affect a team negatively, you must vet that
decision through a technologist who has that
team's respect."

"Too many geeks spoil the soup. If you want
your geeks to be productive, keep your team
small. The productivity of any project is
inversely proportional to the size of the project
team. In the software business, most problems

draw on the efforts of large number of people.
Typically, companies deal with a problem by
putting together a large team and then giving that
team a mission. But in this industry, that
approach almost never works. The results are
almost invariably disappointing. Still, people
keep doing it that way – presumably because
that's the way they did it last year. The question
is, how do you break out of that mode? It
seems to be a cancer on the industry. On a large
team, the contributions of the best people are
always smaller, and overall productivity is
always lower. As a general rule, you can count
on each new software project doubling in team
size and in the amount of code involved – and
taking twice as long – as the preceding project.
[...] Two or three people invent a brilliant piece
of software, and then five years later, 1000
people do a bad job of following up on their
idea. History is littered with projects that follow
this pattern: Windows, Unix, Java, Netscape
Navigator. The smaller the team, the faster the
team members work. When you make the team
smaller, you make the schedule shorter. That
may sound counterintuitive, but it's been true for
the past 20 years in this industry, and it will be
true for another 20 years. The only method that
I've found that works is to restrict the size of
teams arbitrarily and painfully. Here's a simple
rule of thumb for techie teams: no team should
be larger than the largest conference room that's
available for them to meet in."

Source: "How to Manage Geeks", Russ
Mitchell, Fast Company, June 1999.

This interview of Novell's CEO Eric Schmidt
provides a insider's vision of what our work's
environment often looks like. Schmidt is an ex-
Sun chief technology officer, so his point of view
comes from practical experience on both sides
of the management barrier. It corresponds with
Methods & Tools philosophy to bring to you
practical and open visions, just to make you
think, even with a different point of view...

Facts, News & Comments

Methods & Tools * Winter 1999 * Page 20

No Silver Bullet...

"InfoWorld: How will the adoption of Internet
technologies such as HTTP, HTML, Java, and
XML ease the maintenance of applications and
the cost of maintaining systems?

Phipps: Well, the most important thing to say
there is there are no silver bullets. None of these
technologies is a silver bullet. The observation is
that the way that we've done software
development over the past two decades is to
assume the most important question is, "When
can I have it?" And what we're discovering in
the era of e-business [is that] probably the most
important question will be, "What will it cost?"
And if that starts to be the most important
question, it seems you need ask yourself,
"What's it going to cost me to use this
proprietary technology in a month with all the
other things I'm doing on my Web site?" What
it's going to cost me is that proprietary
technology is anchored to the operating system.
And every time there's an upgrade to the
operating system, every time I install other
software that works with the operating system, I
have to regression test my server to find out if
anything is broken. But if I'm using Java or my
data is expressed in XML, I can pretty much
guarantee that any change in my server won't
affect those programs, that there won't be any

codependencies of those technologies and the
platform. The result of that is that you'll see less
frequently [that] a change [will] impact the rest
of your systems, and that's how it reduces your
cost. ... You can't say it's going to save you
loads of money to use open technologies, but
you can say it will cost you loads of money to
use proprietary technologies."

Source: www.infoworld.com, InfoWorld
Electric, November 22, 1999, "IBM's chief
XML evangelist examines how the language will
change e-commerce", interview with Simon
Phipps.

... even on the Web! But independence is
worthwhile in the software development area!

� Coming next in Methods & Tools

• Using Use Cases

• Data Warehouse Design

• How to Sponsor a Successful Project

• GUI Testing Checklist

• Testing Client/Server Applications

Classified Advertisement

Advertising for a new Web development tool? Looking to recruit software developers? Promoting a
conference or a book? Organizing software development related training? Selling your new report?
This space is waiting for you at the price of US $ 20 each line. Reach more than 4300 web-savvy
software developers and project managers worldwide with a classified advertisement in Methods &
Tools. Without counting those that download the issue without being registered! To advertise in the
classified section, to place a page ad or to become the distribution sponsor of the next issue, simply
contact Franco Martinig at franco@martinig.ch

METHODS & TOOLS is published by Martinig & Associates, Rue des Marronniers 25,
CH-1800 Vevey, Switzerland Tel. +41 21 922 13 00 Fax +41 21 921 23 53 www.martinig.ch
Editor: Franco Martinig; e-mail franco@martinig.ch
Free subscription: www.martinig.ch
ISSN 1023-4918.
The content of this publication cannot be reproduced without prior written consent of the publisher
Copyright  1999, Martinig & Associates

