
Application System/400 ÉÂÔ

RPG/400 User’s Guide

 SC09-1816-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page xi.

First Edition (June 1994)

This edition applies to the licensed program IBM* ILE* RPG/400* (Program 5763-RG1), Version 3 Release 0 Modification 5, and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the proper edition for
the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. Publications are not stocked at the
address given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, you can address your
comments to:

IBM Canada Ltd. Laboratory
 Information Development
 2G/345/1150/TOR

1150 Eglinton Avenue East
North York, Ontario, Canada M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to IBM.
See "Communicating Your Comments to IBM" for a description of the methods. This page immediately precedes the Readers'
Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xi
Programming Interface Information . xi
Trademarks and Service Marks . xi

About This Manual . xiii
Who Should Use This Manual . xiii
How to Interpret Syntax Diagrams . xiv

Chapter 1. An Introduction to RPG/400 and the AS/400 System 1
The OS/400 System . 1
The AS/400 Control Language . 1

Commonly Used Control Language Commands 2
System/38 Environment on the AS/400 System 3
AS/400 Utilities and Languages . 3

The Source Entry Utility . 3
The Screen Design Aid . 4
The Structured Query Language . 4

Restrictions . 4
Designing Your RPG/400 Program . 5

Designing the Output . 5
Designing the Processing . 6
Designing the Input . 6

Structured Programming in the RPG/400 Programming Language 6
Sequential Operation . 6
Conditional Branching . 6

If Else Structure . 6
SELEC Structure . 8
Other Conditional Branching Structures . 9

Repeating an Operation . 9
Do Operation . 9
Do While Operation . 11
Do Until Operation . 13

Summary of Structured Programming Operation Codes 14
Designing Applications . 15

Single Program Design . 15
Modular Program Design . 16
Examples of Application Design . 17

Chapter 2. Entering RPG/400 Specifications 21
The RPG/400 Specifications . 21

The Control Specification . 21
File Description Specifications . 22
Extension Specifications . 22
Line Counter Specifications . 22
Input Specifications . 22
Calculation Specifications . 22
Output Specifications . 23

Entering Your Program . 23

Chapter 3. Compiling an RPG/400 Program 25

 Copyright IBM Corp. 1994 iii

Create RPG400 Program (CRTRPGPGM) Command 26
Using the CRTRPGPGM Command . 27

Elements of the CRTRPGPGM Command Lines 28
Entering Elements from the CRTRPGPGM Command Display 28
Entering Only Certain Parameters . 28
Entering Only the Parameter Values . 29

CRTRPGPGM Command . 29
Compiling under the System/38 Environment . 45

Chapter 4. Error Messages, Testing, and Debugging 47
Using, Displaying, and Printing Messages . 47

Using Messages . 47
Systems Application Architecture Flagging Messages 49
Displaying and Printing Messages . 49

How to Run an RPG/400 Program . 49
Save-While-Active Support . 50

Using a Test Library . 51
Using Breakpoints . 54

Example of Using Breakpoints . 54
Considerations for Using Breakpoints . 57

Using a Trace . 58
Example of Using a Trace . 59
Considerations for Using a Trace . 60

Using the DEBUG Operation Codes . 60
Using the RPG/400 Formatted Dump . 60
Exception/Error Handling . 70

Chapter 5. General File Considerations . 75
Device Independence/Device Dependence . 75
Spooling . 77

Output Spool . 77
Externally Described and Program-Described Files 78
Level Checking . 80
File Locking by an RPG/400 Program . 81
Record Locking by an RPG/400 Program . 81
Unblocking Input Records and Blocking Output Records 82
Sharing an Open Data Path . 83
Using the Control Language Command RCLRSC 84
Specifications for Externally Described Files . 84

File Description Specifications . 85
Renaming Record-Format Names . 85
Ignoring Record Formats . 86
Floating-Point Fields . 86
Overriding or Adding RPG/400 Functions to an External Description 87
Output Specifications . 88

Program-Described Files . 90
Printer Files . 90

Page Overflow . 91
Overflow Indicators . 92
Fetch-Overflow Logic . 94
PRTCTL (Printer Control) Option . 96

Sequential File . 99
Special File . 101

iv RPG/400 User's Guide

Chapter 6. Commitment Control . 107
Using Commitment Control . 107

Starting and Ending Commitment Control 107
Specifying Files for Commitment Control 108
Commitment Control Operations . 108
Commitment Control Locks . 109
Commitment Control in the Program Cycle 109
Example of Using Commitment Control . 110

Chapter 7. Using DISK Files . 113
Externally Described Disk Files . 113

Record Format Specifications . 113
Access Path . 114
Valid Keys for a Record or File . 117

Valid Search Arguments . 117
Referring to a Partial Key . 118

Processing Methods for Externally Described DISK Files 118
Program-Described Disk Files . 119

Indexed File . 119
Valid Search Arguments . 119

Sequential Files . 122
Record Address File . 122

Limits Records . 122
Relative Record Numbers . 123

Externally Described File as Program Described 123
Methods for Processing Disk Files . 123

Relative-Record-Number Processing . 123
Consecutive Processing . 124
Sequential-by-Key Processing . 124
Sequential-within-Limits Processing . 132
Keyed Processing Examples . 132

Valid File Operations . 140

Chapter 8. Using WORKSTN Files . 143
Intersystem Communications Function . 143
Externally Described WORKSTN Files . 143

Processing an Externally Described WORKSTN File 144
Function Key Indicators on Display Device Files 146
Command Keys on Display Device Files . 147

Processing WORKSTN Files . 147
EXFMT Operation . 147
READ Operation . 147
WRITE Operation . 147

WORKSTN file . 148
Subfiles . 150

Use of Subfiles . 152
Program-Described WORKSTN File . 154

Program-Described WORKSTN File with a Format Name 154
Output Specifications . 154
Input Specifications . 155
Calculation Specifications . 155
Additional Considerations . 156

Program-Described WORKSTN File without a Format Name 156
Input File . 156

 Contents v

Output File . 156
Combined File . 156

Multiple-Device Files . 157
WORKSTN File Examples . 158

Sample Program 1–Inquiry . 159
Sample Program 2–Data Entry with Master Update 166
Sample Program 3–Maintenance . 174
Sample Program 4–WORKSTN Subfile Processing 187
Sample Program 5–Inquiry by Zip Code and Search on Name 196
Sample Program 6–Program-Described WORKSTN File with a FORMAT

Name on Output Specifications . 206
Sample Program 7–Variable Start Line . 208
Sample Program 8–Read Operation with Time-Out 211

Chapter 9. Data Field Formats and Data Structures 215
Format of Fields in Files . 215

Packed-Decimal Format . 215
Zoned-Decimal Format . 216
Binary Format . 217

Program-Described File . 217
Externally Described File . 218

Signs . 219
External Formats . 220
Internal Format . 220

Data Structures . 220
Format of Data Structure Subfields in Storage 221
Data Structure Statement Specifications . 221

Rules for Specifying Data Structure Statements 222
Multiple Occurrence Data Structure . 223

Special Data Structures . 223
Data Area Data Structure . 223
File Information Data Structure . 224
Program-Status Data Structure . 224

Data Structure-Subfield Specifications . 224
Rules for Subfield Specifications . 226

Data Structure Examples . 226

Chapter 10. Named Constants, Initialization, and SAA Data Types . . . 237
Named Constants . 237

Rules for Named Constants . 237
Initialization . 240

Initialization Subroutine (*INZSR) . 240
CLEAR and RESET Operation Codes . 240
Data Structure Initialization . 241
Special Considerations for Initializing Data Structures 241
Rules for Initializing Subfields . 242
Initialization and the Program Cycle . 243
Initialization Examples . 243

SAA Data Types . 247
Variable-Length Fields . 247
Date, Time, and Timestamp Fields . 250
DBCS-Graphic Data Type Support . 251
Null Value Support . 252
Error Handling for SAA Data Types . 253

vi RPG/400 User's Guide

Chapter 11. Communicating with Objects in the System 255
Calling Other Programs . 255

CALL (Call a Program) . 258
PLIST (Identify a Parameter List) and PARM (Identify Parameters) 259

Rules for Specifying PLIST . 259
Rules for Specifying PARM . 260

OS/400 Graphics Support . 260
FREE (Deactivate a Program) . 261

Calling Special Subroutines . 261
Message-Retrieving Subroutine (SUBR23R3) 261
SAA Common Programming Interface Support 263
Moving Bracketed Double-byte Data and Deleting Control Characters

(SUBR40R3) . 263
Moving Bracketed Double-byte Data and Adding Control Characters

(SUBR41R3) . 264
Returning from a Called Program . 265

A Normal End . 266
An Abnormal End . 266
Return without an End . 267

Data Areas . 267
Program Initialization Parameters (PIP) Data Area 269

Chapter 12. Auto Report Feature . 271
Group Printing . 271

Specifications . 271
Examples . 271

/COPY Statement Specifications . 275
Changing Copied Specifications . 276

Changing File Description Specifications 277
Changing Input-Field Specifications . 277

Report Format . 280
Spacing and Skipping . 280
Placement of Headings and Fields . 281

Page Headings . 281
Reformatting *AUTO Page Headings . 282
Body of the Report . 283
Overflow of the D/T-*AUTO Print Lines 283

Generated Specifications . 284
Generated Calculations . 285
Generated Output Specifications . 285

Programming Aids . 291
Using CRTRPTPGM to Compile an Auto Report Program 294

Using the CRTRPTPGM Command . 295
CRTRPTPGM Command . 295

Examples of Using Automatic Report . 299
EXAMPLE 1 - Sales Report . 299
EXAMPLE 2 - Sales Report with Three Levels of Totals 304
EXAMPLE 3 - Sales Report with Group Indication 307
EXAMPLE 4 - Sales Report with Cross-Column Totals 310
EXAMPLE 5 - Sales Report Using Copied Specifications 314
EXAMPLE 6 - Override Copied Input Specifications 317

Chapter 13. RPG/400 Sample Programs . 321
Checklist of Program Examples . 321

 Contents vii

Database Design . 324
Employee Master File . 324
Project Master File . 324
Reason-Code Master File . 325

Transaction History Files . 325
Data Area Control File . 326
Master File Maintenance . 326
Data Area Control File Maintenance . 326
Time-File Entry . 327
Weekly Time-File Update . 328
Monthly Time-Entry File Reporting and Update 330

Database Field Definition . 332
Database Reference Master File - REFMST 333
Data Area Control File - CTLFIL . 336
Employee Master File - EMPMST . 337
Project Master File - PRJMST . 338
Reason-Code Master File - RSNMST . 339
Weekly Transaction Entry File - TRWEEK 340
Monthly Transaction Entry File - TRMNTH 341

Time Reporting Menu Design . 343
Master File Maintenance . 346

Master File Maintenance Display - PRG01FM 347
SELECT Format - Maintenance Selection 347

Employee Master Selection - EMPSEL Format 348
Employee Master Maintenance - EMPMNT Format 349
Project Master Selection - PRJSEL Format 350
Project Master Maintenance - PRJMNT Format 351
Reason Code Master Selection - RSNSEL Format 352
Reason Code Master Maintenance - RSNMNT Format 353
Master File Maintenance Data Descriptions - PRG01FM 354
Master File Maintenance RPG/400 program - PRG01 364

Control File Maintenance . 382
Control File Maintenance - PRG02FM . 383
Control File Maintenance Data Descriptions - PRG02FM 384
Control File Maintenance RPG/400 Program - PRG02 386

Time File Transaction Entry . 394
Time Reporting Transaction Entry - PRG03FM 395

Employee Selection Display . 395
Time Reporting Transaction Entry Data Descriptions - PRG03FM 397
Time Reporting Transaction Entry RPG/400 Program - PRG03 401

Weekly Time File Update . 418
Time File Entry Edit RPG/400 Program - PRG05 421
Weekly Employee Transaction Report Layout - PRG09 427
Master File Update and Weekly Transaction Report - PRG09 428

Monthly Processing . 444
Monthly Time File Update and Reporting 444
Time Reporting Employee Summary Report Layout - PRG06RP 448
Employee Summary Report Data Descriptions - PRG06RP 449
Employee Summary Report RPG/400 Program - PRG06 453
Time Reporting Project Summary Report Layout - PRG07RP 463
Project Summary Report Data Descriptions - PRG07RP 464
Project Summary Report RPG/400 Program - PRG07 468
Time Reporting Reason Code Summary Report Layout - PRG08RP . . . 475
Reason Code Summary Report Data Descriptions - PRG08RP 476

viii RPG/400 User's Guide

Reason Code Summary Report RPG/400 Program - PRG08 479
Master File Monthly Update and Clear RPG/400 Program - PRG04 487

Year End Processing . 491

Appendix A. RPG Compiler and Auto Report Program Service
Information . 493

Compiler Overview . 493
Compiler Phases . 494
Major Compiler Data Areas . 496
Compiler Error Message Organization . 496
Run-Time Subroutines . 497

Compiler Debugging Options . 498
*SOURCE Value for the OPTION Parameter 498
*XREF Value for the OPTION Parameter 498
*DUMP Value for the OPTION Parameter 498
*LIST Value for the GENOPT Parameter 498
*ATR Value for the GENOPT Parameter . 498
*XREF Value for the GENOPT Parameter 498
*DUMP Value for the GENOPT Parameter 498
*PATCH Value for the GENOPT Parameter 498
*OPTIMIZE Value for the GENOPT Parameter 499
ITDUMP Parameter . 499
SNPDUMP Parameter . 499
CODELIST Parameter . 499
PHSTRC Parameter . 499

Examples of Using Compiler Debugging Options 500
IRP Layout . 515
Auto Report Program . 518

Appendix B. RPG/400 and AS/400 RPG II System/36-Compatible
Functions . 521

Language Enhancements . 521

Appendix C. Data Communication . 527
Exception and Error Handling with ICF Files 527
Communications Error Recovery . 527

Appendix D. Distributed Data Management (DDM) Files 529

Appendix E. System/38 Environment Option of the RPG Compiler . . . 531
Differences between System/38 RPG III and the System/38 Environment

Option of the RPG Compiler . 531
Differences between the System/38 Environment Option of the RPG Compiler

and RPG/400 Compiler . 531
File Types Supported by Each Compiler . 535

Appendix F. Examples of Using Arrays . 537

Appendix G. Glossary of Abbreviations . 547

Bibliography . 549

Index . 551

 Contents ix

x RPG/400 User's Guide

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to

| these patents. You can send license inquiries, in writing, to the IBM Director of
| Licensing, IBM Corporation, 208 Harbor Drive, Stamford, Conecticut, USA
| 06904-2501.

Changes or addition to the text are indicated by a vertical line (|) to the left of the
change or addition.

This publication contains examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information
This RPG/400 User's Guide is intended to help you create RPG/400 programs.
This RPG/400 User's Guide documents general-use programming interfaces and
associated guidance information provided by the RPG/400 compiler.

General-use programming interfaces allow the customer to write programs that
request or receive services of the RPG/400 compiler.

Trademarks and Service Marks
The following terms, denoted by an asterisk (*), used in this publication, are trade-
marks of the IBM Corporation in the United States or other countries:

Application System/400 AS/400
IBM| ILE
Operating System/2 Operating System/400
OS/2 OS/400
RPG/400 SAA
Systems Application Architecture SQL/400
400

 Copyright IBM Corp. 1994 xi

xii RPG/400 User's Guide

 About This Manual

About This Manual

This manual is a guide for the RPG/400* programming language on the AS/400
system using the Operating System/400* (OS/400*) system. The RPG/400 com-
piler is a Systems Application Architecture* (SAA*) compiler that adheres to SAA
conventions.

The topics covered in this manual include:

¹ Designing RPG/400 programs
¹ Coding RPG/400 programs
¹ Entering and compiling RPG/400 programs
¹ Testing and debugging RPG/400 programs
¹ Studying coded RPG/400 examples and sample programs.

This manual may refer to products that are announced but are not yet available.

You may need to refer to other IBM* manuals for more specific information about a
particular topic. The Publications Guide, GC41-9678, provides information on all of
the manuals in the AS/400* library. For a list of related publications, see the
“Bibliography” on page 549.

Who Should Use This Manual
This manual is intended for people who have a basic understanding of data proc-
essing concepts and of the RPG/400 programming language. It is also designed to
guide the programmer in the use of RPG/400 programs and compilers on the
AS/400 system. RPG/400 specifications and operations are frequently mentioned.
For a detailed description of RPG/400 specifications and operation codes, see the
RPG/400 Reference, SC09-1817.

Before you use this manual, you should be familiar with certain information:

¹ You should know how to use data management support to work with files,
display stations, printers, tapes, and diskettes, as well as spooling support.
This information is contained in the Data Management Guide.

¹ You should be familiar with your display station (also known as a work station)
and its controls. Some elements of its display and certain keys on the key-
board are standard regardless of the software system currently running at the
display station or the hardware system the display station is connected to.
Some of these keys are:

– Cursor movement keys
 – Command keys

– Field exit keys
– Insert and delete keys
– The Error Reset key.

This information is contained in the New User’s Guide, SC41-8211.

¹ You should know how to operate your display station when it is connected to
the IBM AS/400 system and running AS/400 software. This means knowing
about the OS/400 system and the Control Language (CL) to perform the tasks
of:

 Copyright IBM Corp. 1994 xiii

 Reading Syntax

– Sign on and sign off of the AS/400 system
– Interact with displays

 – Use Help
– Enter control commands

 – Call utilities
– Respond to messages.

To find out more about control language, refer to these IBM AS/400
publications:

– CL Programmer’s Guide
– Control Language Reference

¹ You should be familiar with the RPG/400 program cycle, how indicators affect
the program cycle, and how to code entries on the RPG/400 specification
sheets.

The sample application programs contained in this manual are scaled in such a
way that you can use the RPG Debugging Template, GX21-9129 to check the
coding in the programs.

These general items about the RPG/400 programming language are taught in
an RPG/400 coding class. Detailed information on the RPG/400 programming
language can be found in the RPG/400 Reference.

How to Interpret Syntax Diagrams
The syntax diagrams in this book use the following conventions:

55──PARAMETER──(─ ──┬ ┬────────────────── ─user-defined-value──)─────────5%
 └ ┘─PREDEFINED-VALUE─

Figure 1. Structure of a Syntax Diagram

Read the syntax diagram from left to right, from top to bottom, following the path of
the line.

The 55── symbol indicates the beginning of the syntax diagram.

The ──5% symbol indicates the end of the syntax diagram.

The ───5 symbol indicates that the statement syntax is continued on the next line.

The 5─── symbol indicates that a statement is continued from the previous line.

The ──(──)── symbol indicates that the parameter or value must be entered in
parentheses.

Required parameters appear on the base line and must be entered. Optional
parameters appear below the base line and do not have to be entered. In the
following sample, you must enter REQUIRED-PARAMETER and a value for it, but
you do not have to enter OPTIONAL-PARAMETER or a value for it.

xiv RPG/400 User's Guide

 Reading Syntax

55──REQUIRED-PARAMETER──(─ ──┬ ┬─PREDEFINED-VALUE─── ─)───────────────────5
 └ ┘─user-defined-value─

5─ ──┬ ┬── ──────────────5%
 └ ┘ ─OPTIONAL-PARAMETER──(─ ──┬ ┬─PREDEFINED-VALUE─── ─)─
 └ ┘─user-defined-value─

Default values appear above the base line and do not have to be entered. They
are used when you do not specify a parameter. In the following sample, you can
enter DEFAULT-VALUE, OTHER-PREDEFINED-VALUE, or nothing. If you enter
nothing, DEFAULT-VALUE is assumed.

 ┌ ┐─DEFAULT-VALUE──────────
55──PARAMETER──(─ ──┴ ┴─OTHER-PREDEFINED-VALUE─ ─)───────────────────────5%

Optional values are indicated by a blank line. The blank line indicates that a value
from the first group (OPTIONAL-VALUE1, OPTIONAL-VALUE2, user-defined-value)
does not have to be entered. For example, based on the syntax below, you could
enter: KEYWORD(REQUIRED-VALUE).

 ┌ ┐─OPTIONAL-VALUE1────
55──PARAMETER──(─ ──┼ ┼──────────────────── ─── ──REQUIRED-VALUE─ ─)───────5%
 ├ ┤─OPTIONAL-VALUE2────
 └ ┘─user-defined-value─

Repeated values can be specified for some parameters. The , in the following
sample indicates that each user-defined-value must be separated by a comma.

 ┌ ┐─,──────────────────────
55──KEYWORD──(─ ───6 ┴─── ──user-defined-value─ ─)─────────────────────────5%

 About This Manual xv

 Reading Syntax

xvi RPG/400 User's Guide

Chapter 1. An Introduction to RPG/400 and the AS/400
System

The RPG/400 programming language is designed to make it easier for you to
create business software applications.

RPG is a language under evolution. A slightly different version of RPG is available
on each machine that supports it. The AS/400 system is the most recent of these
computing systems. You should know that, as well as offering a new enhanced
version of RPG, the AS/400 system also supports the previous versions of RPG
available on System/38 and System/36. For more information, see Appendix B,
“RPG/400 and AS/400 RPG II System/36-Compatible Functions,” and Appendix E,
“System/38 Environment Option of the RPG Compiler.”

This chapter provides an overview of the following subjects:

¹ The OS/400 system and Control Language (CL)
¹ RPG/400 functions on the AS/400 system
¹ The System/38 environment on the AS/400 system
¹ Available languages and utilities
¹ The RPG/400 programming cycle
¹ RPG/400 program design
¹ Structured programming in RPG/400 programs

 ¹ Application design.

The OS/400 System
The operating system that controls all of your interactions with the AS/400 system
is called the Operating System/400 (OS/400) system. From your work station, the
OS/400 system allows you to:

¹ Sign on and sign off
¹ Interact with the displays
¹ Use the online help information
¹ Enter control commands and procedures
¹ Respond to messages

 ¹ Manage files
¹ Run utilities and programs.

Refer to the Publications Guide for a complete list of publications that discuss the
OS/400 system.

The AS/400 Control Language
You can manipulate the OS/400 system with the CL. You interact with the system
by entering or selecting CL commands. The AS/400 system often displays a series
of CL commands or command parameters appropriate to the situation on the
screen. You then select the desired command or parameters.

 Copyright IBM Corp. 1994 1

Commonly Used Control Language Commands
The following table lists some of the most commonly used CL commands, their
function, and the reasons you might want to use them.

The Control Language and all of its commands are described in detail in the CL
Reference manual.

Table 1. RPG/400 Functions and Associated CL Commands

RPG/400 Function Associated Control Language Commands and their
Uses

Calling CALL program-name Run an RPG/400 program
CALL QCL Access the System/38 environment

Commitment Control CRTJRN Prepare to use commitment control.
CRTJRNRCV Prepare to use commitment control.
ENDCMTCTL Notify the system you want to end

commitment control.
JRNPF Prepare to use commitment control.
STRCMTCTL Notify the system you want to begin

commitment control.

Communications CRTICFDEVE Create ICF Device
OVRICFDEVE Override ICF Device

Compiling CRTRPGPGM Create RPG Program
CRTRPTPGM Create Auto Report Program

Consecutive Processing OVRDBF Override with Database file

Control Specification
Data Area

CRTDTAARA Create Data Area
DSPDTAARA Display Data Area

Debugging ADDBKP Add Breakpoint
ADDTRC Add Trace
DSPBKP Display Breakpoint
STRDBG Start Debug

Edit Codes CRTEDTD Create Edit Description (For User
Defined Edit Code)

DSPDTAARA Display Data Area

Printer Files CRTPRTF Create Print File
OVRPRTF Override Print File

System Editor STRSEU Start Source Entry Utility

2 RPG/400 User's Guide

 AS/400 Utilities and Languages

System/38 Environment on the AS/400 System
The AS/400 system offers increased function over System/38. Because many
RPG/400 language programs are written for the System/38, and because many
programmers are already familiar with System/38, the AS/400 system also supports
these programs under the System/38 environment. The CL command CALL QCL
changes the AS/400 system display to appear to the user as a System/38 display.
This is known as the System/38 environment. When you are in this environment,
you can enter and compile RPG/400 programs as if you were using a System/38.
The file naming conventions are the same as in System/38. You can also enter
AS/400 CL commands in the System/38 environment. You can enter System/38
environment commands from the AS/400 system by library qualifying commands.
The QSYS38/CRTRPGPGM command calls the System/38 environment RPG III
compiler. For more information on the System/38 environment, see the System/38
Environment Programmer’s Guide/Reference.

You can use the Source Entry Utility (SEU) to enter your RPG/400 source program
interactively. Enter the CL command STRSEU to call SEU. If you specify the
TYPE(RPG) parameter on this command, the RPG/400 syntax checker is called
and detects RPG/400 syntax errors, statement by statement, while the source
program is entered. Alternatively, you can enter a source program on diskettes and
upload the program into a source file.

 Note

To find out how to use RPG III in the System/38 environment, refer to the
following:

¹ Appendix E, “System/38 Environment Option of the RPG Compiler” on
page 531

¹ the System/38 RPG III Reference Manual and Programmer‘s Guide
SC21-7725.

For information on System/38 devices and commands, refer to the appropriate
manuals in the System/38 library.

AS/400 Utilities and Languages
The AS/400 system offers two utilities and a language that you may find useful for
programming. They are the Screen Design Aid (SDA) utility, the Source Entry
Utility (SEU), and the Structured Query Language (SQL).

The Source Entry Utility
You use the SEU to enter your code into the system. SEU also provides extensive
syntax checking. For more information about SEU, refer to the SEU User's Guide
and Reference.

 Chapter 1. An Introduction to RPG/400 and the AS/400 System 3

 AS/400 Utilities and Languages

The Screen Design Aid
The SDA utility makes it easier for you to create the displays your program
requires. For more information about SDA, refer to the SDA User's Guide and Ref-
erence.

The Structured Query Language
The AS/400 system allows you to insert SQL/400 statements into RPG/400 pro-
grams. You enter SQL/400 statements on a calculation specification. The syntax
is shown in Figure 2. You must observe the following rules:

¹ The starting delimiter /EXEC SQL must be entered into columns 7-15, with the
slash in column 7.

¹ SQL/400 statements can be started on the same line as the starting delimiter.

¹ SQL/400 statements can be continued on any number of subsequent continua-
tion lines. The continuation line delimiter is the + in column 7.

¹ SQL/400 statements cannot go past column 74.

¹ The ending delimiter /END-EXEC must be entered in columns 7-15, with the
slash in column 7, on a separate line. This signals the end of the SQL/400
statements. It must be entered by itself, with no SQL/400 statements following
it.

C

C |

C |

C/EXEC SQL (the starting delimiter)

C+

C+ (continuation lines containing SQL statements)

C+

.

.

.

C/END-EXEC (the ending delimiter)

C |

C |

C |

Figure 2. Syntax for Entering SQL/400 Statements into an RPG/400 Program

You must enter a separate command to process the SQL/400 statements.

Refer to the SQL/400* Programmer’s Guide and the Programming: Structured
Query Language Reference for the descriptions of how to code SQL/400 state-
ments.

 Restrictions
In the RPG/400 programming language, SQL/400 statements cannot be specified in
the referred source member of a /COPY statement.

4 RPG/400 User's Guide

 Designing Your RPG/400 Program

You should not use SQL/400 statements in an RPG automatic report program.
Instead, you should use the CRTRPTPGM command to process your RPG auto-
matic report programs and to save the generated RPG/400 source. Automatic
report will generate RPG/400 source, to which you can add SQL/400 statements.
To process your SQL/400 statements and generate an RPG object program, you
should use the SQL/400 preprocessor. If SQL/400 statements are processed by
the RPG/400 automatic report preprocessor, unpredictable results may occur.

Refer to the SEU User's Guide and Reference for information on how the SEU
handles SQL/400 statement syntax checking, and to the SQL/400* Programmer’s
Guide and the Programming: Structured Query Language Reference for more infor-
mation on the SQL/400 preprocessor.

Designing Your RPG/400 Program
Designing a program includes:

¹ Deciding what output you need from your program
¹ Deciding what processing will produce the output you need
¹ Deciding what input is required by and available to your program.

This sequence may seem backwards because it starts at the results (the output)
and ends at the beginning (the input). Designing the output first is like knowing
where you are going before you set out on a trip: it helps you decide the best way
to get there.

Designing the Output
Your program produces output records. You must decide what to do with those
records. In general, you have three choices (or any combination of the three
choices):

¹ You can display them.
¹ You can print them.
¹ You can store them.

If you want to display the output records at your display station, you have to decide
what information you want displayed and how you want it laid out. To define how
you want your displays laid out, you use the display layout sheet. You can then
use the SDA utility to create your own displays. For more information about SDA,
refer to the SDA User's Guide and Reference.

If you want to print the output records, you have to decide what information you
want printed (which fields from which records) and how you want that information
laid out on the printed report. To indicate how you want the printed report laid out,
use the printer layout sheet.

If you want to keep the output records in storage, you have to decide what informa-
tion you want to keep and how you want to organize the fields in the output
records.

After you design all your output records, you code those records on the RPG/400
file description specifications and output specifications.

 Chapter 1. An Introduction to RPG/400 and the AS/400 System 5

 Structured Programming

Designing the Processing
Designing the processing means planning the calculations that produce the neces-
sary output. When you design the processing, you must be aware of how the
RPG/400 program cycle works. The RPG/400 program cycle controls certain read
and write operations done on each record. As a result, the program cycle partly
determines how you can process your data.

Designing the Input
After you decide what output you need and the calculations that produce the
output, the next step is to determine where the input data for your program will
come from. It might come from one or more files already on the system, from one
or more display stations on your system, from one or more other systems, or from
a combination of these sources. You have to know the names used for input files,
the location of fields in the input records, the sequence of record types, the formats
of numeric data, and the indicators used. When you know all these kinds of infor-
mation, you can describe your input records on the RPG/400 input specifications.

Structured Programming in the RPG/400 Programming Language
Structured programming is an approach to design and coding that makes programs
easy to understand, debug, and modify.

Three structures used in every computer program are:

 ¹ Sequential operation
 ¹ Conditional branching
¹ Repeating an operation based on a certain condition.

Ideally, a structured program is a hierarchy of modules that can have a single entry
point and a single exit point. Control is passed downward through the structure
without unconditional branches to higher levels of the structure.

The following discuss how the three structures can be accomplished in the
RPG/400 programming language.

 Sequential Operation
Sequential operation means any series of instructions that is processed one instruc-
tion after another, without transferring control to another part of the program.

 Conditional Branching

If Else Structure
An example of an If-Then-Else conditional branching structure in simple English is:

IF the weather is cold,

THEN I will wear my coat;

ELSE, I will leave my coat at home.

Figure 3 is a flowchart of a conditional branch.

6 RPG/400 User's Guide

 Structured Programming

C O N D I T I O N

E X I S T S ?

M O D U L E 1

T R U E

F A L S E

M O D U L E 2

Figure 3. Flowchart of a Conditional Branch

In the RPG/400 programming language, the If-Then-Else structure is carried out
through the operation codes IFxx, ELSE, and END. Figure 4 shows a design for a
conditional branch using the IFxx, ELSE, and END operation codes.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* In this example, if CENTR equals Y or if CENTR equals N, then

C* indicator 52 is set off by moving '0' to *IN52. If CENTR equals

C* neither Y nor N, then indicator 52 is set on by moving '1' to

C* *IN52. The END statement ends the IF/THEN/ELSE group.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C CENTR IFEQ 'Y'

C CENTR OREQ 'N'

C MOVE '0' *IN52

C ELSE

C MOVE '1' *IN52

C END

Figure 4. Design for a Conditional Branch Using the IF/ELSE/END Operations

 Chapter 1. An Introduction to RPG/400 and the AS/400 System 7

 Structured Programming

 SELEC Structure
An example of a SELEC-WHEN-OTHER conditional branching structure in simple
english is:

SELEC
WHEN the weather is warm

I will wear my sunhat
I will go to the beach

WHEN the weather is cool
I will wear my jacket

OTHERwise, I will not go outside

Figure 5 is a flowchart of a SELEC-WHEN-OTHER conditional branch.

S e c o n d c o n d i t i o n

e x i s t s ?

O t h e r

m o d u l e

M o d u l e 2

M o d u l e 1

F i r s t c o n d i t i o n

e x i s t s ?

O T H E R o p e r a t i o n

s p e c i f i e d ?

t r u e

t r u e

t r u e

F a l s e

F a l s e

F a l s e

:

r e p e a t f o r a s m a n y c o n d i t i o n s a s r e q u i r e d

: :

:

Figure 5. Flowchart of a SELEC-WHEN-OTHER Conditional Branch

In the RPG/400 programming language, the SELEC-WHEN-OTHER structure is
carried out through the operation codes of SELEC, WHxx, and OTHER. Figure 6
shows conditional branching using the SELEC, WHxx, and OTHER operation
codes.

8 RPG/400 User's Guide

 Structured Programming

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C*

C* If X equals 1 then do the operations in sequence 1; if

C* X does not equal 1, then if Y=2 and X<10 do the operations

C* in sequence 2. If neither condition is true, then do the

C* operations in sequence 3.

C*

C SELEC

C X WHEQ 1

C : seq 1

C Y WHEQ 2

C X ANDLT10

C : seq 2

C OTHER

C : seq 3

C ENDSL

C*

Figure 6. Conditional Branching Using the SELEC/WHxx/OTHER Operations

Other Conditional Branching Structures
There are three other ways you can create conditional branches:

¹ The CASxx operation
¹ The GOTO operation and conditioning indicators
¹ The CABxx operation.

You can also create a branch to a subroutine with the EXSR operation and condi-
tioning indicators.

Repeating an Operation
The RPG/400 programming language implements three repeat structures–Do, Do
While, and Do Until–by means of the DOWxx, DOUxx, and DO operation codes and the
END operation code.

 Do Operation
Figure 7 on page 10 is a flowchart of a Do operation, and Figure 8 on page 11
illustrates the coding.

 Chapter 1. An Introduction to RPG/400 and the AS/400 System 9

 Structured Programming

S E T

I n d e x f i e l d t o

s t a r t i n g v a l u e

P e r f o r m a l l

o p e r a t i o n s

Y E S

N O

B r a n c h t o s t a t e m e n t

f o l l o w i n g E N D

I n d e x v a l u e >

e n d i n g v a l u e ?

E N D :

I n c r e m e n t

i n d e x b y

i n c r e m e n t i n g

v a l u e

Figure 7. Flowchart of a Do Operation

This is how the Do operation works:

1. Set the index field (result field) to the starting value (factor 1).

2. Test if the index field value is greater than the ending value (factor 2).

If the index field value is greater than the ending value, control passes to the
statement following the END statement.

3. If the index field value is not greater than the ending value, the operations
between the DO statement and the END statement are processed.

4. At END, the index field value is increased by the increment value specified in
factor 2 on the END statement, or by 1 if the increment is not specified.

5. Control passes to step 2 above.

10 RPG/400 User's Guide

 Structured Programming

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The following example illustrates a Do operation. Because factor

C* 1 of the DO statement is blank, the starting value of Y is 1, and

C* because factor 2 of the END statement is blank, the increment

C* value of Y is 1. Factor 2 of the DO statement contains the value

C* 10, which is the ending value for the DO routine.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C Z-ADD1 X 20

C DO 10 Y 30

C X LOKUPTABA TABR 50

C 50 TABR MULT 1.04 RATE 72

C MOVE '1' *IN90

C EXCPT

C MOVE '0' *IN90

C ADD 1 X

C END

Figure 8. Design for a Do Operation Using the DO and END Operation Codes

Do While Operation
If you test the condition first and then process the operations, the structure is called
a Do While. An example of a Do While operation is:

1. Compare a sum with 5.

2. If the sum is less than 5, add 1 to the sum.

3. Repeat steps 1 and 2 until the sum is equal to or greater than 5.

Figure 9 is a flowchart of a Do While operation, and Figure 10 on page 12 illus-
trates the coding of a Do While operation.

C O N D I T I O N

E X I S T S ?

C O D E

T O B E

E X E C U T E D

T R U E

F A L S E

Figure 9. Flowchart of a Do While Operation

 Chapter 1. An Introduction to RPG/400 and the AS/400 System 11

 Structured Programming

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The following code determines if the subfile has been filled.

C* If indicator 32 is off (*IN32 equal 0), the DOWEQ operation

C* processes until the remainder of the subfile is filled with

C* blank records.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN32 DOWEQ'0'

C MOVE *BLANKS STATUS

C MOVE *BLANKS PRCDEX

C MOVE *BLANKS RSCDEX

C Z-ADD0 EHWRKX

C Z-ADD0 ACDATX

C Z-ADD0 TFRRN

C ADD 1 RECNO

C WRITEEMPFIL 32

C END

C* The preceding END denotes the end of the Do While operation.

Figure 10. Design for a Do While Operation Using the DOWxx Operation Code

Notice in Figure 10 (the Do While) that the program first tests if the condition is
true. If it is true, the code between the DOW and the END operations is processed.
The program then goes back to test again if the condition is still true, and the entire
cycle is repeated. If the condition is no longer true, control passes to the instruc-
tion immediately following the END operation.

12 RPG/400 User's Guide

 Structured Programming

Do Until Operation
If you process the operations first and then test the condition, the structure is called
a Do Until operation. An example of a Do Until operation is:

1. Add 1 to a sum.

2. Compare the sum with 5.

3. If the sum is less than 5, repeat steps 1 and 2 .

Figure 11 is a flowchart of a Do Until operation, and Figure 12 on page 14 illus-
trates the coding.

T R U E

F A L S E

C O D E

T O B E

E X E C U T E D

C O N D I T I O N

E X I S T S ?

Figure 11. Flowchart of a Do Until Operation

 Chapter 1. An Introduction to RPG/400 and the AS/400 System 13

 Structured Programming

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C*

C* The following lines of code perform a Do Until condition. The

C* program loops between the DOUEQ statement and the END statement

C* until end of file (*IN50 equal 1) is reached.

C EMPSR BEGSR

C*

C *IN50 DOUEQ'1'

C READ RCEMP 50

C* The following lines of code add current month hours to the year-

C* to-date hours for the employee master file. Since factor 1 is

C* not specified in the statements, factor 2 is added to the result

C* field and the result is placed in the result field. If *INU4

C* is on, this session is being run for year end, and the current

C* year hours are moved to the prior year hours.

C ADD EPHRC EPHRY

C ADD EPNRC EPNRY

C U4 MOVE EPHRY EPHRP

C U4 MOVE EPNRY EPNRP

C* The following code clears the current month hours fields by

C* zeroing them and adding 0 to them. If *INU4 is on, this session

C* is being run for year end, and the current year hours must be

C* zeroed as well.

C Z-ADD0 EPHRC

C Z-ADD0 EPNRC

C U4 Z-ADD0 EPHRY

C U4 Z-ADD0 EPNRY

C* The following code updates the employee master file using the

C* RCEMP format.

C UPDATRCEMP

C END

C* The preceding END statement is associated with the DOUEQ

C* statement.

Figure 12. Design for a Do Until Operation Using the DOUxx Operation Code

Summary of Structured Programming Operation Codes
The structured programming operation codes are:

 ¹ IFxx (If/Then)
¹ ELSE (Else Do)

 ¹ ENDyy (End)
 ¹ DO (Do)
¹ DOWxx (Do While)
¹ DOUxx (Do Until)

14 RPG/400 User's Guide

 Designing Applications

 ¹ ANDxx (And)
 ¹ ORxx (Or)
¹ CASxx (Conditional Invoke Subroutine)
¹ SELEC (Select a module)

 ¹ WHxx (When)
 ¹ OTHER (Otherwise).

where xx can be:

GT Factor 1 is greater than factor 2.
LT Factor 1 is less than factor 2.
EQ Factor 1 is equal to factor 2.
NE Factor 1 is not equal to factor 2.
GE Factor 1 is greater than or equal to factor 2.
LE Factor 1 is less than or equal to factor 2.
Blanks Factor 1 is not compared to factor 2 (unconditional processing). This is

valid for CASxx operation only.

and where yy can be:

CS End a CAS group.
DO End a DO, DO UNTIL, or DO WHILE group.
IF End an IF group.
SL End a SELEC group.

 Designing Applications
Application design involves determining whether to create one program to do all of
the required functions, or to create multiple programs to make up an application.

Single Program Design
In a single program design, all functions are done within one program. Single
program design applies to both batch and interactive programs. It is best used
when there are few, relatively simple functions.

For example, an interactive inquiry program that accepts a customer number from
an operator, finds the corresponding record in a customer master file, and displays
the record as a simple program that could have a single program design.

C u s t . N o . 1 5 7 8

R P G

I n q u i r y

P r o g r a m

C u s t . N o . 1 5 7 8

A d d r e s s

S h i p t o

A slightly more complex program that might also have a single program design is a
file maintenance program that allows an operator to:

¹ Inquire into a record
¹ Change a record
¹ Delete a record
¹ Add a record.

 Chapter 1. An Introduction to RPG/400 and the AS/400 System 15

 Designing Applications

R P G

P r o g r a m
1 .

2 .

3 .

4 .

I n q u i r e

C h a n g e

D e l e t e

A d d

P r o m p t

f o r f u n c t i o n .

D o t h e

s e l e c t e d

f u n c t i o n .

An example of a batch program that has a single program design is a program that
prints a list of orders that each operator entered during the day.

O r d e r
F i l e

B a t c h
R P G
P r o g r a m

O r d e r s

Modular Program Design
Modular program design includes using multiple programs to do multiple functions,
one function per program. Modular program design can be applied to both batch
and interactive programs. For example, the order entry application shown in
Figure 13 is designed to have four programs:

¹ An RPG/400 or CL mainline program

¹ An RPG/400 program that prompts for the customer number and shows cus-
tomer information on the display

¹ An RPG/400 program that accepts input of line items from the order

¹ An RPG/400 program that calculates totals for the order.

16 RPG/400 User's Guide

 Designing Applications

 Mainline Program
 ┌────────────────┐ Program
 │ │ Call ┌────────────────┐
┌────5│ │────────5│ _____________ │%───── Prompt for

 │ │ │ │ _____________ │ Customer
 │ │ │ │ _____________ │ Number
 │ │ │%────────│ _____________ │
 │ │ │ └────────────────┘
 │ │ │
 │ │ │ Program
 │ │ │ Call ┌────────────────┐
│ │ │────────5│ _____________ │%───── Line Item

 │ │ │ │ _____________ │ Input
 │ │ │ │ _____________ │
 │ │ │%────────│ _____________ │
 │ │ │ └────────────────┘
 │ │ │
 │ │ │ Program
 │ │ │ Call ┌────────────────┐
 │ │ │────────5│ _____________ │%───── Totals
 │ │ │ │ _____________ │
 │ │ │ │ _____________ │
 └─────│ │%────────│ _____________ │
 └────────────────┘ └────────────────┘

Figure 13. Modular Design for an Order Entry Application

A modular program design has several potential advantages:

¹ Designing, coding, testing, and maintaining several small programs can be
easier than designing, coding, testing, and maintaining one large, complex
program. This choice is a matter of personal preference, but it is often benefi-
cial to keep your programs small and as simple as possible.

¹ CL functions can be requested from RPG/400 programs because the AS/400
system allows RPG/400 programs and CL programs to call one another.

A single, long-running program might have sections of code that run infrequently. A
modular design could arrange to have the seldom-used code called only when
needed.

A potential disadvantage of modular program design is the additional calling of pro-
grams that is required. These calls take time to code and might require additional
system overhead for program processing.

Examples of Application Design
Following are descriptions of modular programs that illustrate some design
approaches.

The order entry function shown in Figure 14 has three sub-functions:

¹ Accepting heading information about an order
¹ Accepting line item input from the order
¹ Calculating totals for the order.

One way to design this application is to have a CL mainline program call RPG/400
programs to do the functions.

 Chapter 1. An Introduction to RPG/400 and the AS/400 System 17

 Designing Applications

 Control Language
 Mainline Program
 ┌────────────────────┐ HEADER Program
 │ │ Call ┌────────────────┐
┌────5│ │────────5│ Open files │
│ │ │ │ Put prompt │
│ │ │ │ Get header │
│ │ │ │ Process header │
│ │ │ │ Close Files │

 │ │ │%────────│ Return │
 │ │ │ └────────────────┘
 │ │ │
 │ │ │ ITEM Program
 │ │ │ Call ┌────────────────┐
│ │ │────────5│ Open files │
│ │ │ │ Put prompt │
│ │ │ │ Get item │
│ │ │ │ Process item │
│ │ │ │ Close Files │

 │ │ │%────────│ Return │
 │ │ │ └────────────────┘
 │ │ │
 │ │ │ TOTALS Program
 │ │ │ Call ┌────────────────┐
│ │ │────────5│ Open files │
│ │ │ │ Put prompt │
│ │ │ │ Get total │

 │ │ │ │ information │
 │ │ │ │ Calculate │
│ │ │ │ Close files │

 └─────│ │%────────│ Return │
 └────────────────────┘ └────────────────┘

Figure 14. Example of Application Design for an Order Entry Function

Each of the RPG/400 programs:

 ¹ Opens files
¹ Displays a prompt for user information and input
¹ Accepts input from the user
¹ Processes the information
¹ Closes the files
¹ Returns to the mainline program.

The following events occur after a user enters input:

1. The input is processed.
2. Files are closed.
3. Control returns to the mainline program.
4. The mainline program calls the next program.
5. That program prompts for user input.

All processing of input and output from work stations and all opening and closing of
files occurs in the RPG/400 programs. Therefore, the user might have to wait for a
while after entering a display before seeing the next display.

A change in the previous design that might shorten response times and make more
efficient use of system resources is shown in Figure 15.

18 RPG/400 User's Guide

 Designing Applications

 Control Language
 Mainline Program
 ┌────────────────────┐ HPROMPT Program
 │ │ ┌────────────────────────┐
┌────5│ Call HPROMPT │────────5│ Open files │
│ │ │ │ Put prompt for header │
│ │ │ │ Close files │

 │ │ │%────────│ Return │
 │ │ │ └────────────────────────┘
 │ │ │ .1/
 │ │ │ HEADER Program
 │ │ │ ┌────────────────────────┐
│ │ Call HEADER │────────5│ Open files │
│ │ │ │ Get header input │
│ │ │ │ Process header │
│ │ │ │ Put prompt for │

 │ │ │ │ line item │
│ │ │ │ Close Files │

 │ │ │%────────│ Return │
 │ │ │ └────────────────────────┘
 │ │ │ .2/
│ │ │ ITEM Program (see Note)

 │ │ │ ┌────────────────────────┐
│ │ Call ITEM │────────5│ Open files │
│ │ │ │ Get line item input │
│ │ │ │ Process line item │
│ │ │ │ Put prompt for next │
│ │ │ │ line item or put │

 │ │ │ │ totals prompt │
│ │ │ │ Close Files │

 │ │ │%────────│ Return │
 │ │ │ └────────────────────────┘
 │ │ │ .3/
 │ │ │ TOTALS Program
 │ │ │ ┌────────────────────────┐
└─────│ Call TOTALS │────────5│ Open files │

│ │ │ Get totals input │
│ │ │ Calculate totals │
│ │ │ Close Files │

 │ │%────────│ Return │
 └────────────────────┘ └────────────────────────┘

Figure 15. Example of Changed Application Design for an Order Entry Function

Note: Rather than returning unconditionally to the mainline program, the ITEM
program could be designed to loop within itself as long as line items are being
entered.

This modification allows user data entry to occur while programs are started and
files are opened and closed. The overlap of data entry and AS/400 system proc-
essing occurs at points .1/, .2/, and .3/.

For the previous two examples of modular program design, all input from and
output to work stations occurs in the programs. For the example in Figure 16, a
series of operations occur in an RPG/400 mainline program.

 Chapter 1. An Introduction to RPG/400 and the AS/400 System 19

 Designing Applications

 RPG RPG Programs
 Mainline Program
 ┌────────────────────────┐
┌────5│ Put header prompt │ HEADER Program
│ ┌──5│ Get input from display │ ┌────────────────────┐
│ │ │ Call HEADER │%───────5│ Open files │
│ │%──┤ Put item prompt │ & │ (first time only) │
│ │ │ │ │ │ Process header │

 │ │ │ │ └────┤ Return │
 │ │ │ │ └────────────────────┘
 │ │ │ │
 │ │ │ │ ITEM Program
 │ │ │ │ ┌────────────────────┐
│ └───┤ Call ITEM │%───────5│ Open files │
│ │ │ & │ (first time only) │
│ │ │ │ │ Process line item │

 │ │ │ └────┤ Return │
 │ │ │ └────────────────────┘
 │ │ │
 │ │ │ TOTALS Program
 │ │ │ ┌────────────────────┐
└─────┤ Call TOTALS │%───────5│ Open files │

│ │ & │ (first time only) │
│ │ │ │ Process Totals │

 │ │ └────┤ Return │
 └────────────────────────┘ └────────────────────┘

Figure 16. Example of Application Design with Input and Output in Mainline Program

The input from the display determines the program to call. If a header is read,
HEADER is called and the header record is passed as a parameter. If a line item is
read, ITEM is called and a line item record is passed as a parameter. If total infor-
mation is read, TOTALS is called and a total record is passed as a parameter.

The programs leave files open until the job ends, thereby eliminating open and
close processing time for the files. The programs do not end when they return to
the mainline program.

20 RPG/400 User's Guide

 The RPG/400 Specifications

Chapter 2. Entering RPG/400 Specifications

After designing your program, you must write the individual statements that you will
combine into a source program. These statements are coded on RPG/400 specifi-
cation sheets. Each line coded on a specification sheet represents a statement in
the source program. Each specification sheet contains 80 columns. Column
headings indicate the kind of information to code in particular columns.

This chapter describes the kinds of specifications you can enter when creating an
RPG/400 source program. This chapter also describes how to use a text editor,
such as SEU, to enter this information directly into the system and thus begin cre-
ating your source program online.

The RPG/400 Specifications
There are seven kinds of RPG/400 specifications. When your source program is
compiled, these specifications must be in the following sequence:

 1. Control specifications
2. File description specifications

 3. Extension specifications
4. Line counter specifications

 5. Input specifications
 6. Calculation specifications
 7. Output specifications.

Each of these specifications is described briefly in this chapter. The RPG/400
Reference provides detailed descriptions for these specifications.

RPG/400 programs do not have to use all specifications. A typical program may
use file description, input, calculation, and output specifications.

The Control Specification
The control specification provides the RPG/400 compiler with information about
your program and your system. This includes:

¹ Name of the program
¹ Date format for the program
¹ If an alternative collating sequence or file translation is used.

Note: The control specification is optional.

 Copyright IBM Corp. 1994 21

 The RPG/400 Specifications

File Description Specifications
File description specifications describe all the files that your program uses. The
information for each file includes:

¹ Name of the file
¹ How the file is used
¹ Size of records in the file
¹ Input or output device used for the file
¹ If the file is conditioned by an external indicator.

 Extension Specifications
Extension specifications describe all record address files, table files, and array files
used in the program. The information includes:

¹ Name of the file, table, or array
¹ Number of entries in a table or array input record
¹ Number of entries in a table or array
¹ Length of the table or array entry.

Line Counter Specifications
Line counter specifications describe the page or form on which output is printed.
The information includes:

¹ Number of lines per page
¹ Line of the page where overflow occurs.

 Input Specifications
Input specifications describe the records, fields, data structures and named con-
stants used by the program. The information in the input specifications includes:

¹ Name of the file
¹ Sequence of record types
¹ Whether record-identifying indicators, control-level indicators, field-record-

relation indicators, or field indicators are used
¹ Whether data structures, lookahead fields, record identification codes, or match

fields are used
¹ Type of each field (alphanumeric or numeric; packed-decimal, zoned-decimal,

or binary format)
¹ Location of each field in the record
¹ Name of each field in the record

 ¹ Named constants.

 Calculation Specifications
Calculation specifications describe the calculations to be done on the data and the
order of the calculations. Calculation specifications can also be used to control
certain input and output operations. The information includes:

¹ Control-level and conditioning indicators for the operation specified
¹ Fields or constants to be used in the operation
¹ The operation to be processed
¹ Whether resulting indicators are set after the operation is processed.

22 RPG/400 User's Guide

 Entering Your Program

 Output Specifications
Output specifications describe the records and fields in the output files and the con-
ditions under which output operations are processed. The information includes:

¹ Name of the file
¹ Type of record to be written
¹ Spacing and skipping instructions for PRINTER files
¹ Output indicators that condition when the record is to be written
¹ Name of each field in the output record
¹ Location of each field in the output record
¹ Edit codes and edit words
¹ Constants to be written
¹ Format name for a WORKSTN file.

Entering Your Program
After you have written your RPG/400 program on the specifications forms, you must
enter it into source files in the system. You can enter the source program in two
ways:

¹ Interactively by using SEU:

S E U
R P G
S o u r c e
P r o g r a m

I
F

H

The SEU User's Guide and Reference provides a complete description of how
to enter or update an RPG/400 source program using SEU.

¹ In a batch manner (that is, from diskette) by using either the OS/400 system
copy or spooling functions:

I

F

H K e y i n g

D i s k e t t e

S p o o l i n g

C o p y

R P G
S o u r c e
P r o g r a m

The Data Management Guide provides more information on how to use the
copy or spooling function for batch entry of the source program.

Note: Whichever method of source entry you use, you can use lowercase letters
only in literals, constants, comments, array data, and table data. All other informa-
tion must be in uppercase letters.

 Chapter 2. Entering RPG/400 Specifications 23

 Entering Your Program

24 RPG/400 User's Guide

Chapter 3. Compiling an RPG/400 Program

There are two environments that you can compile source programs from: the
AS/400 system environment, and the System/38 environment. Consequently, there
are two ways of compiling source programs. This chapter describes:

¹ Using the CL command CRTRPGPGM to compile an RPG/400 source program
in AS/400 system environment

¹ Using the CL commands CALL QCL and CRTRPGPGM to compile an
RPG/400 source program in the System/38 environment.

This chapter also contains information on interpreting a compiler listing.

To compile a program, you must ensure that the library QTEMP is in the library list.
The CL command CRTRPGPGM calls the compiler to create an RPG/400 program
object and a listing. (If externally described files are used in the program, the
OS/400 system provides information about the files to the program during compila-
tion.) The following figure shows an overview of the compilation process:

R P G
S o u r c e
P r o g r a m

D D S f o r
E x t e r n a l l y
D e s c r i b e d
F i l e s

E x e c u t a b l e
R P G
P r o g r a m

C o m p i l e r o p t i o n s

C o n t r o l s p e c i f i c a t i o n s

I n f o r m a t i o n f r o m D D S

S o u r c e D D S

R e s u l t i n g i n d i c a t o r u s a g e

N e s t e d l e v e l s o f D O / I F g r o u p s

C r o s s - r e f e r e n c e l i s t i n g f o r

f i l e s , f i e l d s a n d i n d i c a t o r s

E r r o r i n d i c a t i o n s

L i s t i n g :

R P G C o m p i l e r

O S / 4 0 0
S y s t e m

Figure 17. Overview of the Compilation Process

The compiler checks the syntax of the RPG/400 source program line by line and
the interrelationships between the lines. For example, it checks that all field names
are defined and, if a field is multiply defined, that each definition has the same attri-
butes.

The RPG/400 compiler supports a source file record length of 102. In addition to
the usual fields of sequence number (6 characters), last-changed date (6 charac-
ters), and the data (80 characters), a field of 10 characters that can contain addi-

 Copyright IBM Corp. 1994 25

 Create RPG/400 Program (CRTRPGPGM) Command

tional information is placed at the end of the record (positions 93-102). This
information is not used by the RPG/400 compiler but is placed on the extreme right
of the compiler listing. You, the programmer, place information into this field. If
you want to use the additional field, create a source file with a record length of 102.
The AS/400 system has an IBM-supplied RPG/400 source file called QRPGSRC,
which has a record length of 92.

Create RPG400 Program (CRTRPGPGM) Command
To compile an RPG/400 source program into a program object, you must enter the
CL command CRTRPGPGM (Create RPG/400 Program) to call the RPG/400 com-
piler. RPG/400 program objects are created with the public authority of
*LIBCRTAUT. You may want to change this authority to maintain greater security
on your system.

If the RPG/400 compiler stops because of errors, the escape message QRG9001 is
issued. A CL program can monitor for this exception by using the CL command
MONMSG (Monitor Message). See Chapter 4, “Error Messages, Testing, and
Debugging.”

The compiler creates and updates a data area with the status of the last compila-
tion. This data area is named RETURNCODE, is 400 characters long, and is
placed into library QTEMP. You can access the RETURNCODE data area by
specifying RETURNCODE in factor 2 of an *NAMVAR DEFN statement. The data area
RETURNCODE has the following format:

Table 2 (Page 1 of 2). Contents of the Data Area RETURNCODE

 Byte Content and Meaning

1 Character 1 means a program was created.

2 Character 1 means the compilation failed because of
compiler errors.

3 Character 1 means the compilation failed because of
source errors.

4 Character 1 means compiled from source generated by
automatic report.

5 Character 1 means program resolution monitor was not
called because *NOGEN option was selected on
CRTRPGPGM command.

6-10 Number of source statements.

11-12 Severity level from command.

13-14 Highest severity on message diagnostic.

15-20 Number of errors found in program.

21-26 Compile date.

27-32 Compile time.

33-100 Not set.

101-110 Program name.

111-120 Program library name.

121-130 Source file name.

26 RPG/400 User's Guide

 Create RPG/400 Program (CRTRPGPGM) Command

All object names specified on the CRTRPGPGM command must be composed of
alphanumeric characters, the first of which must be alphabetic. The full OS/400
system naming convention is allowed. The length of the names cannot exceed 10
characters. See the CL Programmer’s Guide for a detailed description of OS/400
object naming rules and for a complete description of OS/400 command syntax.

It is unlikely that the system internal size limits for a program will be exceeded.
However, if these limits are exceeded, the program must be rewritten, usually as
multiple programs.

Table 2 (Page 2 of 2). Contents of the Data Area RETURNCODE

 Byte Content and Meaning

131-140 Source file library name.

141-150 Source file member name.

151-160 Compiler listing file name.

161-170 Compiler listing library name.

171-180 Compiler listing member name.

181-190 Automatic report source file name.

191-200 Automatic report library name.

201-210 Automatic report member name.

211-370 Not set.

371-378 Size of intermediate representation of program passed to
program resolution monitor.

379 Not set.

380-384 Total compile time.

385 Not set.

386-390 Time used by compiler.

391-395 Time used by program resolution monitor.

396-400 Time used by translator.

Using the CRTRPGPGM Command
You can call the RPG/400 compiler in one of three ways:

¹ Interactively from the CRTRPGPGM command display screen using prompts.
You start the display, illustrated in Figure 19 on page 31 and Figure 20 on
page 37, by typing the CL command CRTRPGPGM and then pressing F4.

¹ Entering CRTRPGPGM followed by only those parameters by keyword that
override the default settings. This statement is entered on the command line
interactively or as part of a batch input stream.

 Chapter 3. Compiling an RPG/400 Program 27

 Create RPG/400 Program (CRTRPGPGM) Command

¹ Entering CRTRPGPGM followed only by the parameter values, in the proper
sequence. This method is most often used when you are submitting the com-
piling request as part of a batch input stream, or if you are including the com-
piling request as part of a CL program. This method can also be used
interactively, but you are limited by CL to entering only the first three parameter
values.

Note: Any default on the CRTRPGPGM command or any other CL command can
be changed using the CL command CHGCMDDFT (Change Command Default).
Refer to the CL Reference for more information.

Elements of the CRTRPGPGM Command Lines
The descriptions that follow refer to the three elements of the compiler command
line:

¹ The CL compiler command word CRTRPGPGM.

¹ The parameter, which is referred to by a keyword such as PGM, SRCFILE,
GENOPT, and so on.

¹ The value for the parameter. This can be a predefined value or an object
name.

All object names specified must consist of alphanumeric characters. The first char-
acter must be alphabetic, and the length of the name cannot exceed 10 characters.
You can use the full OS/400 system naming convention.

Entering Elements from the CRTRPGPGM Command Display
Type CRTRPGPGM, and press F4. The CRTRPGPGM prompt screens appear. Press
F10 to get additional parameters. These screens, and the values you can enter on
them, are described later in this chapter.

Each parameter on the screen displays a default value. Move the cursor past
items where you want the default value to apply. Type over any items where you
want to set a different value or option. If you are not sure about what to set a
particular parameter to, type a question mark (?) as the first character in that field
and press Enter to receive more detailed information. The question mark must be
followed by a blank.

When you have set all values to your satisfaction, press Enter.

Entering Only Certain Parameters
All of the CRTRPGPGM parameters have default values. Simply type CRTRPGPGM,
followed only by those parameters (specified by keyword) whose default settings
you want to override. Separate parameters by spaces; enter values for each
parameter by enclosing the value or values in parentheses.

For example, to change the program and library name, and accept default values
for all other parameters, enter:

 CRTRPGPGM PGM(newlibrary/newname)

28 RPG/400 User's Guide

 CRTRPGPGM Command

Entering Only the Parameter Values
You have the choice of entering only the parameter values without specifying the
parameter keywords. Because there is no keyword to tell the system which value
belongs to which parameter, you must enter all the values in the sequence shown
below. You need not enter the entire set of options, but you must enter the options
for all the parameters up to the one you want. The system uses the default values
for the remaining parameters.

For example, to compile a source program in member ABC in file QRPGSRC in
library SRCLIB, enter:

CRTRPGPGM QTEMP/ABC SRCLIB/QRPGSRC *PGM

Notice that you also had to enter names for the program and library for the com-
piled program. The system recognizes which option belongs to which parameter by
the position of the value on the compiler command line. You can enter a maximum
of three parameter values positionally.

For more information on AS/400 system commands, see the CL Reference.

 CRTRPGPGM Command
The entire syntax diagram for the CRTRPGPGM command is shown in Figure 18
on page 30.

Read the syntax diagram from left to right, from top to bottom, following the path of
the line.

Control Language (CL) commands , parameters , and keywords can be entered
in either uppercase or lowercase characters. In this manual they are shown in
uppercase (for example, PARAMETER, PREDEFINED-VALUE). Variables appear
in lowercase italic letters (for example, user-defined-value). Variables are
user-defined names or values.

For information on how to read syntax diagrams, see “How to Interpret Syntax
Diagrams” on page xiv.

 Chapter 3. Compiling an RPG/400 Program 29

 CRTRPGPGM Command

Job: B,I Pgm: B,I REXX: B,I Exec

55──CRTRPGPGM─ ──┬ ┬── ───5
 │ │┌ ┐─*CURLIB/────── ┌ ┐─*CTLSPEC─────
 └ ┘ ─PGM──(─ ──┼ ┼─────────────── ──┼ ┼────────────── ─)─
 └ ┘─library-name/─ └ ┘─program-name─

5─ ──┬ ┬── ───(P) ──┬ ┬─── ───5
 │ │┌ ┐─*LIBL/──────── ┌ ┐─QRPGSRC────────── │ │┌ ┐─*PGM────────────────────
 └ ┘ ─SRCFILE──(─ ──┼ ┼─────────────── ──┼ ┼────────────────── ─)─ └ ┘ ─SRCMBR──(─ ──┴ ┴─source-file-member-name─ ─)─
 ├ ┤─*CURLIB/────── └ ┘─source-file-name─
 └ ┘─library-name/─

5─ ──┬ ┬────────────────────────────────── ──┬ ┬────────────────────────────────── ─────────────────────────────────────5
 └ ┘─OPTION──(──┤ OPTION Details ├──)─ └ ┘─GENOPT──(──┤ GENOPT Details ├──)─

5─ ──┬ ┬─────────────────────────────────── ──┬ ┬────────────────────────────────────── ────────────────────────────────5
 │ │┌ ┐─*NONE─────────── │ │┌ ┐─*NONE──────────────
 └ ┘ ─INDENT──(─ ──┴ ┴─character-value─ ─)─ └ ┘─CVTOPT──(─ ──┴ ┴─┤ CVTOPT Details ├─ ─)─

5─ ──┬ ┬──────────────────────────── ──┬ ┬── ─────────────────────────────────────5
 │ │┌ ┐─*NOFLAG─ │ │┌ ┐─9────────────────────
 └ ┘ ─SAAFLAG──(─ ──┴ ┴─*FLAG─── ─)─ └ ┘ ─GENLVL──(─ ──┴ ┴─severity-level-value─ ─)─

5─ ──┬ ┬─── ──┬ ┬───────────────────────── ───────────────────────────────5
 │ │┌ ┐─*LIBL/──────── ┌ ┐─QSYSPRT─── │ │┌ ┐─*YES─
 └ ┘ ─PRTFILE──(─ ──┼ ┼─────────────── ──┼ ┼─────────── ─)─ └ ┘ ─REPLACE──(─ ──┴ ┴─*NO── ─)─
 ├ ┤─*CURLIB/────── └ ┘─file-name─
 └ ┘─library-name/─

5─ ──┬ ┬───────────────────────────────── ──┬ ┬────────────────────────── ──5
 │ │┌ ┐─*CURRENT────── │ │┌ ┐─*USER──
 └ ┘ ─TGTRLS──(─ ──┼ ┼─*PRV────────── ─)─ └ ┘ ─USRPRF──(─ ──┴ ┴─*OWNER─ ─)─
 └ ┘─release-level─

5─ ──┬ ┬── ──┬ ┬─────────────────────────────── ──┬ ┬──────────────────────── ──────5
 │ │┌ ┐─*LIBCRTAUT────────────── │ │┌ ┐─*SRCMBRTXT──── │ │┌ ┐─*NO──
 └ ┘ ─AUT──(─ ──┼ ┼─*CHANGE───────────────── ─)─ └ ┘ ─TEXT──(─ ──┼ ┼─*BLANK──────── ─)─ └ ┘ ─PHSTRC──(─ ──┴ ┴─*YES─ ─)─
 ├ ┤─*USE──────────────────── └ ┘─'description'─
 ├ ┤─*ALL────────────────────
 ├ ┤─*EXCLUDE────────────────
 └ ┘─authorization-list-name─

5─ ──┬ ┬───────────────────────────────────── ──┬ ┬────────────────────────────────────── ──────────────────────────────5
 │ │┌ ┐─*NONE───────────── │ │┌ ┐─*NONE─────────────
 │ ││ │┌ ┐────────────── │ ││ │┌ ┐──────────────
 └ ┘ ─ITDUMP──(─ ──┴ ┴───(1) ───6 ┴─phase-name─ ─)─ └ ┘ ─SNPDUMP──(─ ──┴ ┴───(1) ───6 ┴─phase-name─ ─)─

5─ ──┬ ┬─────────────────────────────────────── ──┬ ┬─────────────────────────── ──┬ ┬───────────────────────── ─────────5%
 │ │┌ ┐─*NONE───────────── │ │┌ ┐─*NO── │ │┌ ┐─*NO──
 └ ┘ ─CODELIST──(─ ──┼ ┼─*ALL────────────── ─)─ └ ┘ ─IGNDECERR──(─ ──┴ ┴─*YES─ ─)─ └ ┘ ─ALWNULL──(─ ──┴ ┴─*YES─ ─)─
 │ │┌ ┐──────────────
 └ ┘───(1) ───6 ┴─phase-name─

Notes:
1 A maximum of 25 repetitions
P All parameters preceding this point can be specified by position.

OPTION Details:
 ┌ ┐─*SRC──────
 ├ ┤─*SOURCE─── ┌ ┐─*XREF─── ┌ ┐─*GEN─── ┌ ┐─*NODUMP─ ┌ ┐─*NOSECLVL─ ┌ ┐─*NOSRCDBG─ ┌ ┐─*NOLSTDBG─
├─ ──┼ ┼─────────── ──┼ ┼───────── ──┼ ┼──────── ──┼ ┼───────── ──┼ ┼─────────── ──┼ ┼─────────── ──┼ ┼─────────── ───────────────┤
 ├ ┤─*NOSRC──── └ ┘─*NOXREF─ └ ┘─*NOGEN─ └ ┘─*DUMP─── └ ┘─*SECLVL─── └ ┘─*SRCDBG─── └ ┘─*LSTDBG───
 └ ┘─*NOSOURCE─

GENOPT Details:
 ┌ ┐─*NOLIST─ ┌ ┐─*NOXREF─ ┌ ┐─*NOATR─ ┌ ┐─*NODUMP─ ┌ ┐─*NOPATCH─ ┌ ┐─*NOOPTIMZE─
├─ ──┼ ┼───────── ──┼ ┼───────── ──┼ ┼──────── ──┼ ┼───────── ──┼ ┼────────── ──┼ ┼──────────── ────────────────────────────────┤
 └ ┘─*LIST─── └ ┘─*XREF─── └ ┘─*ATR─── └ ┘─*DUMP─── └ ┘─*PATCH─── └ ┘─*OPTIMIZE──

CVTOPT Details:
├─ ──┬ ┬─────────── ──┬ ┬────────── ──┬ ┬────────── ──┤
 └ ┘─*DATETIME─ └ ┘─*VARCHAR─ └ ┘─*GRAPHIC─

Figure 18. Syntax of the CRTRPGPGM Command

Following are examples of the prompt screens for the CRTRPGPGM command.
The example screens are provided in sets. The first screen in the set describes the
values you can enter, the second screen presents the keywords and defaults. You

30 RPG/400 User's Guide

 CRTRPGPGM Command

can switch between the values and keywords screens by pressing F11. The text
that follows the screens describes those keywords and defaults.

In the description of the parameters, all defaults are explained first and highlighted.
The parameters are presented in sequence. Follow this sequence if you are
entering only the parameter values without the corresponding parameter abbrevi-
ation.

Note: For a description of the differences between compiling RPG/400 and
System/38 environment RPG III programs, see Appendix E, “System/38 Environ-
ment Option of the RPG Compiler.”

� �
Create RPG/400 Program (CRTRPGPGM)

 Type choices, press Enter.

 Program *CTLSPEC__ Name, *CTLSPEC
Library *CURLIB___ Name, *CURLIB

 Source file QRPGSRC___ Name, QRPGSRC
Library *LIBL_____ Name, *LIBL, *CURLIB

 Source member *PGM______ Name, *PGM
 Generation severity level . . . 9___ 0-99
 Text 'description' *SRCMBRTXT__________________________________

 Additional Parameters

 Source listing options _________ *SOURCE, *NOSOURCE, *SRC...
+ for more values _________

 Generation options ___________ *LIST, *NOLIST, *XREF...
+ for more values ___________

 Source listing indentation . . . *NONE Character value, *NONE
 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

� �

Figure 19 (Part 1 of 2). First Set of CRTRPGPGM Prompt Screens

 Chapter 3. Compiling an RPG/400 Program 31

 CRTRPGPGM Command

� �
Create RPG/400 Program (CRTRPGPGM)

 Type choices, press Enter.

 Program PGM *CTLSPEC_
Library *CURLIB__

 Source file SRCFILE QRPGSRC__
Library *LIBL____

 Source member SRCMBR *PGM_____
 Generation severity level . . . GENLVL 9___
 Text 'description' TEXT *SRCMBRTX_____________________

 Additional Parameters

 Source listing options OPTION _________
+ for more values _________

 Generation options GENOPT ___________
+ for more values ___________

 Source listing indentation . . . INDENT *NONE
 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

� �

Figure 19 (Part 2 of 2). First Set of CRTRPGPGM Prompt Screens

PGM
Specifies the library and program name by which the compiled RPG/400
program is to be known. If no library is specified, the created program is stored
in the current library.

*CTLSPEC

The program name specified in positions 75 through 80 of the control spec-
ification is used.

If the program name is not specified on the control specification, but the
source program is from a database file, the member name, specified by the
SRCMBR parameter, is used as the program name. If the source is not
from a database file, the program name defaults to RPGOBJ.

program-name

Enter the name by which the program is to be known.

*CURLIB

The compiled program is stored in the current library. If you have not spec-
ified a current library, QGPL is used.

library-name

Enter the name of the library where the compiled program is to be stored.

SRCFILE

Specifies the name of the source file that contains the RPG/400 source
program to be compiled and the library where the source file is located.

32 RPG/400 User's Guide

 CRTRPGPGM Command

QRPGSRC

The default source file QRPGSRC contains the RPG/400 source program
to be compiled.

source-file-name

Enter the name of the source file that contains the RPG/400 source
program to be compiled.

*LIBL

The system searches the library list to find the library where the source file
is located.

*CURLIB

The current library is used to find the source file. If you have not specified
a current library, QGPL is used.

library-name

Enter the name of the library where the source file is stored.

SRCMBR

Specifies the name of the member of the source file that contains the RPG/400
source program to be compiled. This parameter can be specified only if the
source file named in the SRCFILE parameter is a database file.

*PGM

Use the name specified by the *PGM parameter as the source file member
name. The compiled program will have the same name as the source file
member. If no program name is specified by the *PGM parameter, the
command uses the first member created in or added to the source file as
the source member name.

source-file-member-name

Enter the name of the member that contains the RPG/400 source program.

GENLVL

Specifies whether or not a program object is generated, depending on the
severity of the errors encountered. A severity-level value corresponding to the
severity level of the messages produced during compilation can be specified
with this parameter. If errors occur in a program with a severity value less than
30, and if a severity-level greater than that of the program is specified for this
parameter the program is compiled; however, the program may contain errors

 Chapter 3. Compiling an RPG/400 Program 33

 CRTRPGPGM Command

that cause unpredictable results when the program is run. For program errors
equal to or greater than severity 30, the compilation of the program may be
ended or the program object may not be generated, regardless of the value of
this parameter. Specifying a value greater than 30 is not recommended for this
parameter.

9

A program object will not be generated if you have messages with a
severity-level greater than or equal to 9.

severity-level-value:

Enter a number, 0 through 99.

Note: The severity-level value of RPG/400 compile messages does not
exceed 50.

TEXT

Lets the user enter text that briefly describes the program and its function. The
text appears whenever program information is displayed.

*SRCMBRTXT

The text of the source member is used.

*BLANK

No text appears.

'description'

Enter the text that briefly describes the program and its function. The text
can be a maximum of 50 characters and must be enclosed in apostrophes.
The apostrophes are not part of the 50-character string. Apostrophes are
not required if you are entering the text on the prompt screen.

OPTION

Specifies the options to use when the source program is compiled. You can
specify any or all of the options in any order. Separate the options with a blank
space.

*SOURCE

Produces a source listing, consisting of the RPG/400 program input and all
compile-time errors.

*NOSOURCE

A source listing is not produced. If *NOSOURCE is specified, the system

34 RPG/400 User's Guide

 CRTRPGPGM Command

assumes that you also don't want a cross-reference listing and *NOXREF is
also specified.

The acceptable abbreviation for *SOURCE is *SRC, and for *NOSOURCE is
*NOSRC.

*XREF

Produces a cross-reference listing and key-field-information table (when
appropriate) for the source program.

Note: If you also want to specify *NOSOURCE or *NOSRC, you must explicitly
specify *XREF or else *NOXREF is assumed.

*NOXREF

A cross-reference listing is not produced.

Note: If either *NOSOURCE or *NOSRC is also specified, the usual default
(*XREF) is overridden and *NOXREF is the default.

*GEN

Creates a program object that can be run after the program is compiled.

*NOGEN

Do not create a program object.

*NODUMP

Do not dump major data areas when an error occurs during compilation.

*DUMP

Dump major data areas when an error occurs during compilation.

*NOSECLVL

Do not print second-level message text on the line following the first-level
message text.

*SECLVL

Print second-level message text.

*NOSRCDBG

Do not generate source level error and debug information.

 Chapter 3. Compiling an RPG/400 Program 35

 CRTRPGPGM Command

*SRCDBG

Generate source level error and debug information. Produce an event file
even if the compiler completes without error.

*NOLSTDBG

Do not generate error and debug information.

*LSTDBG

Generate a listing view and error and debug information required for the
listing view.

Note: You can only use the *NOSRCDBG, *SRCDBG, *NOLSTDBG and
*LSTDBG options if you are using the AD/Cycle CoOperative Devel-
opment Environment/400 product to compile your program. If you

| specify one or more of these options but do not have the AD/Cycle
| CODE/400 product installed, the RPG/400 compiler will not continue

processing and an error message is issued. For more information
on these options, see the CODE Debug Tool User's Guide and Ref-
erence, SC09-1622.

GENOPT

Specifies the options to use to create the program object: the printing of the
intermediate representation of a program (IRP), a cross-reference listing of
objects defined in the IRP, an attribute listing from the IRP, and the program
template. You can also specify options in the GENOPT parameter to reserve a
program patch area, and to improve a program for more efficient running.
These results may be useful if a problem occurs when you are trying to run the
compiled program. You can specify any or all of the options in any order.
Separate the values with a blank. For a description of the GENOPT parameter
and the information it provides, see “Compiler Debugging Options” on
page 498 in Appendix A, “RPG Compiler and Auto Report Program Service
Information.”

*NOOPTIMIZE

Do not process program optimization.

*OPTIMIZE

Process program optimization. With *OPTIMIZE, the compiler generates a
program for more efficient processing and one that will possibly require less
storage. Specifying *OPTIMIZE can substantially increase the time required
to create a program. Existing program objects can be optimized with the
CL command CHGPGM.

36 RPG/400 User's Guide

 CRTRPGPGM Command

INDENT
Specifies whether or not the compiled RPG/400 program's source listing is gen-
erated with the indentation of structured operations for enhanced readability.
Also specifies the characters that are used to mark the structured operation
clauses.

*NONE

A listing without indentation will be produced by the compiler.

character-value

The source listing is indented for structured operation clauses. Alignment
of statements and clauses are marked using the characters you choose.
You can choose any character string up to 2 characters in length. If you
want to use a blank in your character string, you must enclose it in single
quotation marks.

Note: The indentation may not appear as expected if there are errors in
the RPG/400 program.

The second set of prompt screens shown in Figure 20 provides more values
and keywords that you can enter for the CRTRPGPGM command.

� �
Create RPG/400 Program (CRTRPGPGM)

 Type choices, press Enter.

 Type conversion options *NONE____ *NONE, *DATETIME, *VARCHAR...
+ for more values _________

 SAA flagging *NOFLAG *NOFLAG, *FLAG
 Print file QSYSPRT___ Name

Library *LIBL_____ Name, *LIBL, *CURLIB
 Replace program *YES *YES, *NO
 Target release *CURRENT *CURRENT, *PRV, V2R1M0...
 User profile *USER_ *USER, *OWNER
 Authority *LIBCRTAUT Name, *LIBCRTAUT, *ALL...
 Phase trace *NO_ *NO, *YES
 Intermediate text dump *NONE_______________________________________

 Snap dump *NONE_______________________________________

 Codelist *NONE_______________________________________

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

� �
Figure 20 (Part 1 of 2). Second Set of CRTRPGPGM Prompt Screens

 Chapter 3. Compiling an RPG/400 Program 37

 CRTRPGPGM Command

� �
Create RPG/400 Program (CRTRPGPGM)

 Type choices, press Enter.

 Type conversion options CVTOPT *NONE____
+ for more values _________

 SAA flagging SAAFLAG *NOFLAG
 Print file PRTFILE QSYSPRT___

Library *LIBL_____
 Replace program REPLACE *YES
 Target release TGTRLS *CURRENT
 User profile USRPRF *USER_
 Authority AUT *LIBCRTAUT
 Phase trace PHSTRC *NO_
 Intermediate text dump ITDUMP *NONE__________________________

 Snap dump SNPDUMP *NONE__________________________

 Codelist CODELIST *NONE__________________________

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

� �
Figure 20 (Part 2 of 2). Second Set of CRTRPGPGM Prompt Screens

CVTOPT

Specifies how the RPG/400 compiler handles date, time, and timestamp data-
base data types, and variable-length data types which are retrieved from
externally-described files. See “SAA Data Types” on page 247 for a detailed
description of how the RPG/400 compiler supports SAA data types.

*NONE

Date, time, timestamp and variable-length database data types are ignored
and not accessible in the RPG/400 program. A severity 0, compile-time
informational message is issued when a record format contains ignored
fields.

*DATETIME

Specifies that date, time, and timestamp database data types are to be
declared as fixed length character fields and are accessible in the RPG/400
program.

*VARCHAR

Specifies that variable-length database data types are to be declared as
fixed length character fields and are accessible in the RPG/400 program.

*GRAPHIC

Specifies that double-byte character set (DBCS) graphic data types are to
be declared as fixed length character fields and are accessible in the
RPG/400 program.

Note: Choose both of the parameters *VARCHAR and *GRAPHIC if you want
variable-length DBCS graphic data types to be declared in your program.

38 RPG/400 User's Guide

 CRTRPGPGM Command

SAAFLAG

Specifies if there will be flagging of specifications not supported by SAA RPG.
For more information on SAA flagging, how and why to use it, see “Systems
Application Architecture Flagging Messages” on page 49.

*NOFLAG

No flagging will be performed.

*FLAG

Flagging will be performed. Messages will be listed under the heading of
SAA Message Summary. No SAA message will be issued for a specifica-
tion if a message of severity 30 or above is issued for that specification.

PRTFILE

Specifies the name of the file where the compiler listing is to be placed, and the
library where the file is located. If you specify a file whose record length is less
than 132, information will be lost.

QSYSPRT

If a file name is not specified, the compiler listing is placed in the
IBM-supplied file, QSYSPRT. The file QSYSPRT has a record length of
132.

file-name

Enter the name of the file where the compiler listing is to be placed.

*LIBL

The system searches the library list to find the library where the file is
located.

*CURLIB

The current library will be used to find the file. If you have not specified a
current library, QGPL will be used.

library-name

Enter the name of the library where the file is located.

REPLACE

Specifies whether or not a new program object is to be created if a program
with the same name already exists in the specified library.

*YES

A new program object will be created and any existing program object of
the same name in the specified library will be moved to library QRPLOBJ.

 Chapter 3. Compiling an RPG/400 Program 39

 CRTRPGPGM Command

*NO

A new program object will not be created if a program object of the same
name already exists in the specified library.

TGTRLS

Specifies the release level of the operating system on which you intend to use
the object being created.

You can specify an exact release level in the format VxRxMx, where Vx is the
version, Rx is the release, and Mx is the modification level.

Note: To use the object on the target system, you must save the object to the
target release level specified on the create command and then restore it
on the target system.

*CURRENT

The object is to be used on the release of the operating system currently
running on your system.

*PRV

The object is to be used on the previous release with modification level 0 of
the operating system.

release-level

Specify the release in the format VxRxMx. The object can be used on a
system with the specified release or with any subsequent release of the
operating system installed.

Valid values depend on the current version, release, and modification level,
and they change with each new release.

USRPRF

Specifies the user profile the compiled RPG/400 program runs under. This
profile controls which objects can be used by the program (including what
authority the program has for each object). If the program already exists, the
USRPRF parameter will not be updated to a new profile.

*USER

The program runs under the user profile of the program’s user.

*OWNER

The program runs under the user profiles of both the program’s owner and
user. The collective sets of object authority in both user profiles are used
to find and access objects while the program is running. Any objects that
are created during the program are owned by the program’s user.

40 RPG/400 User's Guide

 CRTRPGPGM Command

Note: The USRPRF parameter reflects the security requirements of your
system. The security facilities available on the AS/400 system are
described in detail in the Security Reference and the CL Reference.

AUT

Specifies the authority given to users who do not have specific authority to the
object, who are not on the authorization list, and whose user group has no spe-
cific authority to the object. The authority can be altered for all or for specified
users after program creation with the CL commands Grant Object Authority
(GRTOBJAUT) or Revoke Object Authority (RVKOBJAUT). For further informa-
tion on these commands, see the CL Reference.

*LIBCRTAUT

The public authority for the object is taken from the CRTAUT keyword of
the target library (the library that contains the object). The value is deter-
mined when the object is created. If the CRTAUT value for the library
changes after the create, the new value will not affect any existing objects.

*CHANGE

The public has object operational authority and all the data authorities for
the compiled program. Any user can run, debug,change and perform basic
functions on the program.

*USE

The public can run the compiled program, but cannot debug or change it.

*ALL

The public has complete authority for the program.

*EXCLUDE

The public cannot use the program.

authorization-list name

Name of an authorization list to which the program is added. For a
description of the authorization list and how to create it, see the CL Refer-
ence.

Note: Use the AUT parameter to reflect the security requirements of your
system. The security facilities available are described in detail in the
Security Reference manual.

PHSTRC

Specifies if information about compiler phases is provided on the listing. See

 Chapter 3. Compiling an RPG/400 Program 41

 CRTRPGPGM Command

Appendix A, “RPG Compiler and Auto Report Program Service Information” for
a detailed explanation of this parameter.

*NO

Do not provide information about compiler phases.

*YES

Provide information about compiler phases.

ITDUMP

This parameter specifies if a dynamic listing of intermediate text for one or
more specified phases is to be printed at compile time as each IT record is
being built. This parameter also specifies if a flow of the major routine runs in
one or more specified phases is to be printed. See Appendix A, “RPG Com-
piler and Auto Report Program Service Information” for a detailed explanation
of this parameter.

*NONE

No intermediate text dump is produced.

phase-name

Enter the last two characters of phase name. See Appendix A, “RPG
Compiler and Auto Report Program Service Information” for a detailed
explanation of this parameter.

SNPDUMP

Specifies if the major data areas are to be printed after the running of one or
more specified phases. See Appendix A, “RPG Compiler and Auto Report
Program Service Information” for a detailed explanation of this parameter.

*NONE

No snap dump is produced.

phase-name

Enter the last two characters of phase name. See Appendix A, “RPG
Compiler and Auto Report Program Service Information” for a detailed
explanation of this parameter.

CODELIST

Specifies if a dynamic listing of the IRP is to be printed during compilation of

42 RPG/400 User's Guide

 CRTRPGPGM Command

one or more specified phases of the source program. See Appendix A, “RPG
Compiler and Auto Report Program Service Information” for a detailed explana-
tion of this parameter.

*NONE

Do not produce a code listing for each of the code generating phases run.

*ALL

Produce a code listing for each of the code generating phases run.

phase-name

Enter the last two characters of phase name. See Appendix A, “RPG
Compiler and Auto Report Program Service Information” for a detailed
explanation of this parameter.

The third set of prompt screens shown in Figure 21 provides more values and
keywords that you can enter for the CRTRPGPGM command.

� �
Create RPG/400 Program (CRTRPGPGM)

 Type choices, press Enter.

 Ignore decimal data error . . . *NO_ *NO, *YES
 Allow null values *NO_ *NO, *YES

 Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

� �
Figure 21 (Part 1 of 2). Third Set of CRTRPGPGM Prompt Screens

 Chapter 3. Compiling an RPG/400 Program 43

 CRTRPGPGM Command

� �
Create RPG/400 Program (CRTRPGPGM)

 Type choices, press Enter.

 Ignore decimal data error . . . IGNDECERR *NO_
 Allow null values ALWNULL *NO_

 Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

� �
Figure 21 (Part 2 of 2). Third Set of CRTRPGPGM Prompt Screens

IGNDECERR

Specifies if decimal data errors detected by the system are ignored by the
program.

*NO

Do not ignore decimal data errors. When a numeric operation is attempted
on a numeric field that contains decimal data that is not valid, a program
exception is raised. Decimal data errors will be detected only for fields
defined in packed decimal format. For more information on packed decimal
format, see Chapter 11, “Communicating with Objects in the System” on
page 255.

*YES

Ignore decimal data errors. The effect of decimal data errors on processing
is not readily predicted. The compiler only generates an error message on
the compiler listing to notify the user that this option was specified. When
this option is specified, incorrect results that occur while a program is
running are the user’s responsibility.

ALWNULL

Specifies whether an RPG/400 program will accept null values from null-
capable fields in an externally described input-only file. A severity 0, compile-
time message is issued when a record format contains null-capable fields. See
“Null Value Support” on page 252 for a detailed description of how the
RPG/400 compiler supports null-capable fields.

*NO

Specifies that the RPG/400 program will not process null value fields from
externally-described files. If you attempt to retrieve a record containing null
values, no data in the record is accessible to the RPG/400 program and a
data-mapping error occurs.

*YES

Specifies that an RPG/400 program will accept null value fields for an
externally-described input-only file. When a record containing null values is
retrieved from an externally-described input-only file, no data mapping

44 RPG/400 User's Guide

 Compiling under the System/38 Environment

errors occur and the database default values are placed into any fields
which contain null values.

Compiling under the System/38 Environment
You can also compile an RPG/400 source program from the System/38 environ-
ment. You call the compiler with the same commands as you use in the AS/400
system environment (CRTRPGPGM to call up the RPG/400 compiler, and
CRTRPTPGM to call up the automatic report function). To compile a program from
the System/38 environment, use the CL command CALL QCL to call up the
System/38 environment before you enter the CRTRPGPGM command. You can
also enter System/38 environment commands from the native environment by
library qualifying commands. The QSYS38/CRTRPGPGM command calls the
System/38 environment RPG III compiler.

For more information on the differences between the RPG/400 program in the
AS/400 environment and in the System/38 environment, see Appendix E,
“System/38 Environment Option of the RPG Compiler.”

For further information about programming in the System/38 environment, refer to
the System/38 RPG III Reference Manual and Programmer's Guide.

 Chapter 3. Compiling an RPG/400 Program 45

 Compiling under the System/38 Environment

46 RPG/400 User's Guide

 Using, Displaying, and Printing Messages

Chapter 4. Error Messages, Testing, and Debugging

This chapter describes error messages you may receive from RPG/400 compiler,
explains their meaning, and how you can display and print them. This chapter also
describes testing and debugging an RPG/400 program using functions provided by
the RPG/400 compiler and OS/400 system.

The OS/400 system functions allow you to use CL commands to test programs
while protecting your production files, and let you observe and debug operations as
a program runs. See the CL Reference for more information on using CL com-
mands.

No special source code is required to use the OS/400 system functions. The
RPG/400 compiler functions can be used independently of the OS/400 system func-
tions or in combination with them either to:

¹ Debug a program

¹ Produce a formatted dump of indicator settings and the contents of fields, data
structures, arrays, and tables.

Special source code is required to use the RPG/400 DEBUG and DUMP operation
codes. You can also obtain a formatted dump in response to a run-time message.

A file information data structure and a program status data structure can provide
additional debugging information. These data structures are described later in this
chapter. Following this is information on exception/error handling.

 OS/400 System RPG

¹ Test library ¹ DEBUG operation code
¹ Breakpoints ¹ DUMP operation code
¹ Traces

Using, Displaying, and Printing Messages

 Using Messages
This manual refers to the messages you receive during compilation and run-time.
These messages are displayed on your screen or printed on your compiler listing.
This product has no message manuals.

 Copyright IBM Corp. 1994 47

 Using, Displaying, and Printing Messages

Each message contains a minimum of three parts as illustrated in the following
sample message:

� �
.A/ 10

.B/ Message: Syntax of Program-Identification entry is not valid. Defaults to RPGOBJ.

.C/ Cause: The Program-Identification entry (positions 75-80) of a control
specification has a not valid syntax: the first character is not
alphabetic or it is not left-justified, or it contains embedded blanks
or special characters. Defaults to RPGOBJ.

Recovery: Specify RPGOBJ or a valid entry (positions 75-80) for the
Program-Identification option. Recompile.

� �

.A/ A number indicating the severity of the error. The severity-level value of the
RPG/400 compile-time messages does not exceed 50.

Severity Meaning

00 An informational message displayed during entering, compiling, and
running. No error has been detected and no corrective action is neces-
sary.

10 A warning message displayed during entering, compiling, and running.
This level indicates that an error is detected but is not serious enough to
interfere with the running of the program. The results of the operation
are assumed to be successful.

20 An error message displayed during compiling. This level indicates an
error, but the compiler is attempting a recovery that might yield the
desired code. The program may not work as the author intends.

30 A severe error message displayed during compiling. This level indicates
that an error too severe for automatic recovery is detected. Compilation
is complete, but the program does not run.

40 An abnormal end-of-program or function message displayed during com-
piling or running. This level indicates an error that forces cancelation of
processing. The operation ended either because it could not handle
valid data, or because the user canceled it.

50 An abnormal end-of-job message displayed during compiling or running.
This level indicates an error that forces cancelation of job. The job
ended either because a function failed to perform as required, or
because the user canceled it.

99 A user action to be taken during running. This level indicates that some
manual action is required of the operator, such as entering a reply,
changing diskettes, or changing printer forms.

.B/ The text you see online or on a listing. This text is a brief, generally one-
sentence, description of the problem.

.C/ This text is printed on your listing if you specify *SECLVL in your compile-time
options. It contains an expanded description of the message and a section
detailing the correct user response. The IBM-supplied default for this option is
*NOSECLVL.

48 RPG/400 User's Guide

 How to Run an RPG/400 Program

At run time, you can enter D to obtain an RPG/400 formatted dump, S to obtain
system dump, C to cancel, G to continue processing at *GETIN, or F to obtain a
RPG/400 full-formatted dump.

Systems Application Architecture Flagging Messages
In addition to the messages described above, the RPG/400 compiler also has a set
of messages that flag those RPG/400 compiler features not supported by SAA
RPG. These messages are requested with a compiler option, SAAFLAG, described in
“CRTRPGPGM Command” on page 29. The default value for this option is
*NOFLAG. If you select *FLAG, these messages are printed separately under the
heading SAA Message Summary.

The SAA flagging messages are to help the programmer when writing portable
code. If you are seeking maximum portability, you should eliminate the flagged
codes from your program. A program that has only SAA messages will compile
and run correctly on the AS/400 system. SAA messages are informational mes-
sages only. Severe error messages may suppress SAA messages.

SAA messages are divided in the same way as the other messages described
here. A sample message is:

� �
.A/ 0

.B/ Message: SAA RPG does not support numeric fields with more than 15 digits.

.C/ Cause: Systems Application Architecture
Common Programming
Interface RPG does not support numeric fields with more than 15 digits.

Recovery: If SAA RPG adherence is required, change the program
and recompile.

� �

These messages flag RPG/400 compiler specific functions only.

Displaying and Printing Messages
To display or print particular messages, use the DSPMSGF or DSPMSGD com-
mands. The compile-time messages are stored in a file called QRPGMSG in
library QRPG. The run-time messages are stored in a file called QRPGMSGE in
library QSYS.

In the System/38 environment, all the compile-time messages are in file
QRPG3MSG in library QRPG38. The run-time messages are in file QRPG3MSGE
in library QSYS.

Note: If you have any comments or suggestions concerning the messages, please
use the Reader Comment Form included with this manual to send them to us.

How to Run an RPG/400 Program
There are many ways to run an RPG/400 program, depending on how the program
is written and who is using the program. See the CL Programmer’s Guide for the
various ways to run an RPG/400 program. The three most common ways of
running an RPG/400 program are through:

¹ A high-level language CALL statement or operation

 Chapter 4. Error Messages, Testing, and Debugging 49

 How to Run an RPG/400 Program

¹ An application-oriented menu
¹ A user-created command.

The CL statement CALL can be part of a batch job, be entered interactively by a
work station user, or be included in a CL program. An example is CALL
PAYROLL. PAYROLL is the name of either a CL program or an RPG/400 program
that is called and then run. An RPG/400 program can call another program with
the CALL operation code. See Chapter 11, “Communicating with Objects in the
System.”

Another way to run an RPG/400 program is through an application-oriented menu.
You can request an application-oriented menu and then select an option that will
call the appropriate program. Figure 22 is an example of an application-oriented
menu:

� �
PAYROLL DEPARTMENT MENU

1. Inquire into employee master

2. Change employee master

3. Add new employee

 4. Return

 Option:__

� �

Figure 22. Example of an Application-Oriented Menu

This menu is normally written as a CL program where each option calls a separate
RPG/400 program. When an RPG/400 program ends, the system returns control to
the calling program or to the user. This could be a work station user, a CL
program (such as the menu handling program), or another RPG/400 program.

You can also create a command yourself to run an RPG/400 program by using a
command definition. See the CL Programmer’s Guide for a description of how to
define a command. For example, you can create a PAY command that calls a
PAYROLL program. A user-created command can be entered into a batch job, or it
can be entered interactively by a workstation user.

 Save-While-Active Support
Application programs that change objects or data may run while the objects or data
are being saved. Refer to the Advanced Backup and Recovery Guide for possible
programming considerations related to save-while-active support.

50 RPG/400 User's Guide

 Using a Test Library

Using a Test Library
The basic concept of testing and debugging is that of a separate testing environ-
ment. Programs running in a normal operating environment or in a test environ-
ment can read, update, and write records that are in either test or production
libraries. To prevent database files in production libraries from being changed unin-
tentionally, you can specify the UPDPROD(*NO) option on the CL command STRDBG
(Start Debug).

On the AS/400 system, you can copy production files into the test library or you can
create special files for testing in this library. A test copy of a file and its production
copy can have the same name if the files are in different libraries. You can use the
same file name in the program for either testing or normal processing.

Figure 23 shows an example of using a separate test environment.

 Normal Environment
 ┌───────────────────────┐
 │ │
 Job │ Production Library │
┌────────────┐ ┌───────5│ Production Files │%───┐
│ Program 1 │ │ │ │ │
│ . │ │ └───────────────────────┘ │
│ . │ │ │
│ . │ │ │
│ Program 5 │%───5│ │
│ . │ │ │
│ . │ │ Test Environment │
│ . │ │ ┌────────────────────────┐ │
│ Program 10 │ │ │ │ │
└────────────┘ │ │ Test Library │ │
 └───────5│ Test Files │%──┘
 │ │
 └────────────────────────┘

Figure 23. Using a Separate Test Environment

 Chapter 4. Error Messages, Testing, and Debugging 51

 Using a Test Library

For testing, you must place the test library name ahead of the production library
name in the library list for the job that contains the program to be tested as shown
in Figure 24.

 TESTING
 ENVIRONMENT

 ┌───────────┐
 │ Test │

┌─5│ Library │
 │ │ │

┌────────────┐ │ └───────────┘
 │Library List│ │
 ├────────────┤ │
 │Test Library│ │
┌─────────┐ │ │ │ ┌───────────┐
│ │ │ Production │ │ │Production │
│ Program ├──5│ Library 1 ├──┼─5│ Library 1 │
│ │ │ │ │ │ │
└─────────┘ │ Production │ │ └───────────┘

│ Library 2 │ │
 │ │ │
 │ QTEMP │ │

└────────────┘ │ ┌───────────┐
 │ │Production │

└─5│ Library 2 │
 │ │
 └───────────┘

Figure 24. Testing Environment

52 RPG/400 User's Guide

 Using a Test Library

For normal program running, the production library should be the only library
named in the library list for that job. (That is, the test library should not be named.)
See Figure 25 below.

 NORMAL
 ENVIRONMENT

 ┌───────────┐
 │ │
 ┌────────────┐ │Production │

│Library List│ ┌──5│ Library 1 │
┌─────────┐ ├────────────┤ │ │ │
│ │ │Production │ │ └───────────┘
│ │ │ Library 1 │ │
│Program ├──5│ │ │
│ │ │Production ├─┤
│ │ │ Library 2 │ │
└─────────┘ │ │ │ ┌───────────┐
 │QTEMP │ │ │ │
 │ │ │ │Production │

└────────────┘ └──5│ Library 2 │
 │ │
 │ │
 └───────────┘

Figure 25. Normal Environment

No special statements for testing are contained within the program being tested.
The same program being tested can be run normally without modifications. All
testing functions are specified within the job that contains the program and not
within the program.

 JOB
 ┌─────────────────┐

│Testing Functions│ %────(These functions are specified
│ │ via OS/400 system commands.)

 ├─────────────────┤
 │ │
 │ │
 │ Programs │
 │ │
 │ │
 │ │
 │ │
 └─────────────────┘

Figure 26. Testing Functions

 Chapter 4. Error Messages, Testing, and Debugging 53

 Using Breakpoints

Testing functions apply only to the job in which they are specified. A program can
be used concurrently in two jobs: one job that is in a test environment and another
job that is in a normal processing environment.

The OS/400 system testing functions let you interact with a program while it is
running so as to observe its processing. These functions include using breakpoints
and traces.

 Using Breakpoints
You can use breakpoints to stop your program at a specified point. A breakpoint
can be a statement number or a label in your program. If you use a label as a
breakpoint rather than a statement number, the label can be:

¹ On a TAG statement in the program

¹ Associated with a step in the RPG/400 program cycle. For example, *TOTC
indicates the beginning of total calculations, and *TOTL indicates the beginning
of total output.

¹ Associated with a function done by your RPG/400 program. For example, SQRT
indicates the square root function.

When a breakpoint is encountered in an interactive job, the system displays the
breakpoint at which the program stops and, if requested, the values of program
variables. After getting this information (displayed), you can go to a Command
Entry Screen and enter CL commands to request other functions (such as dis-
playing or changing a variable, adding a breakpoint, or adding a trace).

When a breakpoint is encountered in a batch job, a breakpoint program can be
called. You must create this breakpoint program to handle the breakpoint informa-
tion.

Example of Using Breakpoints
Figure 27 shows a source listing of a sample RPG/400 program, DBGPGM, and
the CL commands that add breakpoints at statements 1200 and 1500. The value
of variable *IN is displayed when the breakpoint at statement 1200 is reached, and
the value of variables FLD1 and PART are displayed when the breakpoint at state-
ment 1500 is reached.

 CL Commands

 STRDBG PGM(EXAMPLES/DBGPGM)

 ADDBKP STMT(1200) PGMVAR((*IN))

ADDBKP STMT(1500) PGMVAR((FLD1) (PART)) OUTFMT(*HEX)

54 RPG/400 User's Guide

 Using Breakpoints

5763RG1 V3R0M5 940125 IBM RPG/400 QGPL/DBGPGM 01/25/94 13:42:19 Page 2

SEQUENCE IND DO LAST PAGE PROGRAM

NUMBER *...1....+....2....+....3....+....4....+....5....+....6....+....7...* USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 H *****

 100 FTESTX IF F 5 DISK 01/01/94

 200 FTESTA UF F 10 DISK 01/01/94

 300 ITESTX NS 01 01/01/94

 400 I 1 5 PART 01/01/94

 500 ITESTA NS 02 01/01/94

 600 I 1 5 FLD1 01/01/94

 700 *** 01/01/94

 800 * MAINLINE 01/01/94

 900 *** 01/01/94

 1000 C LOOP TAG 01/01/94

1100 C READ TESTX 66 3 01/01/94

 1200 C 66 GOTO ENDPGM 01/01/94

1300 C READ TESTA 67 3 01/01/94

1400 C N67 MOVE PART FLD1 01/01/94

1500 C N67 EXCPTMAST 01/01/94

1600 C N66 GOTO LOOP 01/01/94

 1700 C ENDPGM TAG 01/01/94

1800 C SETON LR 1 01/01/94

 1900 OTESTA E MAST 01/01/94

 2000 O FLD1 5 01/01/94

* * * * * E N D O F S O U R C E * * * * *

Figure 27. Sample RPG/400 Program DBGPGM

The first breakpoint shows you where you are in the program. Figure 28 shows
the two displays as a result of reaching the first breakpoint.

 Chapter 4. Error Messages, Testing, and Debugging 55

 Using Breakpoints

� �
 Display Breakpoint

Statement/Instruction : 1200 /004A
Program : DBGPGM
Recursion level : 1
Start position : 1

 Format : *CHAR
 Length : *DCL

 Variable : *IN
Lower/upper bounds : (1:99)
Type : CHARACTER
Length : 1
Element --------------------- Values ------------------- .

 1 '1' '0' '0' '0' '0' '0' '0' '0' '0' '0'
 11 '0' '0' '0' '0' '0' '0' '0' '0' '0' '0'
 21 '0' '0' '0' '0' '0' '0' '0' '0' '0' '0'
 31 '0' '0' '0' '0' '0' '0' '0' '0' '0' '0'

 Press Enter to continue.
 More...
 F3=Exit program F10=Command entry

� �
� �
 Display Breakpoint

Statement/Instruction : 1200 /004A
Program : DBGPGM
Recursion level : 1
Start position : 1

 Format : *CHAR
 Length : *DCL

 41 '0' '0' '0' '0' '0' '0' '0' '0' '0' '0'
 51 '0' '0' '0' '0' '0' '0' '0' '0' '0' '0'
 61 '0' '0' '0' '0' '0' '0' '0' '0' '0' '0'
 71 '0' '0' '0' '0' '0' '0' '0' '0' '0' '0'
 81 '0' '0' '0' '0' '0' '0' '0' '0' '0' '0'
 91 '0' '0' '0' '0' '0' '0' '0' '0' '0'

 Press Enter to continue.

 F3=Exit program F10=Command entry

� �

Figure 28. First Breakpoint Display for DBGPGM

56 RPG/400 User's Guide

 Using Breakpoints

Figure 29 shows the two displays as a result of reaching the second breakpoint.

� �
 Display Breakpoint

Statement/Instruction : 1500 /0060
Program : DBGPGM
Recursion level : 1
Start position : 1

 Format : *HEX
 Length : *DCL

 Variable : FLD1
Type : CHARACTER
Length : 5
* . . . +. . . . 1 + . . *...+....1....+.

 404000063F ' '

 Variable : PART
Type : CHARACTER
Length : 5

 Press Enter to continue.
 More...
 F3=Exit program F10=Command entry

� �
� �
 Display Breakpoint

Statement/Instruction : 1500 /0060
Program : DBGPGM
Recursion level : 1
Start position : 1

 Format : *HEX
 Length : *DCL

* . . . +. . . . 1 + . . *...+....1....+.
 404000063F ' '

 Press Enter to continue.

 F3=Exit program F10=Command entry

� �

Figure 29. Second Breakpoint Display for DBGPGM

At this point, you can change the value of one of these variables to alter how your
program runs. After getting to the Command Entry Screen by pressing F10, you
can use the CL command CHGPGMVAR (Change Program Variable) to change the
value of a variable.

Considerations for Using Breakpoints
You should know the following characteristics of breakpoints before using them:

¹ If a breakpoint is part of a conditional statement, that breakpoint request is
processed even if the condition is not met.

 Chapter 4. Error Messages, Testing, and Debugging 57

 Using a Trace

¹ If a breakpoint is bypassed by a GOTO operation, that breakpoint request is not
processed.

¹ Some statements that are not processed do not represent a definite position in
the logic flow of your program. Avoid putting breakpoints on PLIST, PARM,
KLIST, KFLD, and DEFN operations.

¹ When a breakpoint is requested for a statement, the breakpoint occurs before
that statement is run.

¹ When a breakpoint is requested for a statement that is not processed, such as
a TAG operation, the breakpoint is set on the next statement.

¹ Breakpoint functions are specified using CL commands. You can use CL com-
mands to add breakpoints to programs, display breakpoint information, remove
breakpoints from programs and start a program after a breakpoint has been
displayed. Refer to the CL Reference for descriptions of these commands and
for a further description of breakpoints.

¹ Input fields not used in your program cannot be specified in the PGMVAR
parameter of the debug commands. You can display the entire input or output
buffer for a record by using the variable name ZZnnBIN (input buffer) or
ZZnnBOUT (output buffer). The nn value is the sequence number corresponding
to the order in which the files are defined in your specifications. This number
also appears in the cross reference section of the compiler listing. Thus you
can display the input buffer for the second file in your program by specifying
PGMVAR (ZZ02BIN).

Using a Trace
You can use a trace to record the statements that are run in a program and the
values of the variables used in the statements.

To use a trace, you specify what statements and variables the system should trace.
You can also specify that variables be traced only when their values change. You
can specify a trace of one statement, a group of statements, or an entire program.
You must request a display of the traced information. The display shows the
sequence in which the statements were run and, if requested, the values of vari-
ables used in the statements. Figure 30 on page 59 shows the setup of a trace
for program statements and their order of processing.

58 RPG/400 User's Guide

 Using a Trace

Program Trace
┌──────────────┐ ┌───┐
│ Statement │ │ Order of Processing Variables │
│ │ │ │
│ 1 _______ │ │ 1 ───────────5 _______ │
│ 2 _______ │ │ 6 ───────────5 _______ │
│ 3 _______ │ │ 7 ───────────5 _______ │
│ 4 _______ │ │ 8 ───────────5 _______ │
│ 5 _______ │ │ 6 ───────────5 _______ │
│ 6 _______ │ │ 7 ───────────5 _______ │
│ 7 _______ │ │ 2 ───────────5 _______ │
│ 8 _______ │ │ 6 ───────────5 _______ │
│ . │ │ 7 ───────────5 _______ │
│ . │ │ . │
│ . │ │ . │
│ │ │ │
└──────────────┘ └───┘

Figure 30. Program Statements and Order of Processing

Example of Using a Trace
Figure 27 on page 55 shows a portion of a listing of RPG/400 program DBGPGM.
The CL command that adds a trace of statements 1000 through 1800 in that
program is:

ADDTRC STMT((1000 1800))

Figure 31 is an example of a display of the traced information. The CL command
to display this information is:

 DSPTRCDTA OUTPUT(*)

� �
Display Trace Data

 Statement/
 Program Instruction Recursion Level Sequence Number
 DBGPGM 1000 1 1
 DBGPGM 1200 1 2
 DBGPGM 1300 1 3
 DBGPGM 1400 1 4
 DBGPGM 1500 1 5
 DBGPGM 1600 1 6
 DBGPGM 1000 1 7
 DBGPGM 1200 1 8
 DBGPGM 1800 1 9

 Press Enter to continue.
 F3=Exit F12=Cancel

� �

Figure 31. Trace Data Display for DBGPGM

 Chapter 4. Error Messages, Testing, and Debugging 59

 Using the RPG/400 Formatted Dump

Considerations for Using a Trace
You should know the following characteristics of traces before using them:

¹ A conditional statement is recorded in the trace even if the condition is not met.

¹ Statements bypassed by GOTO operations are not included in the trace.

¹ Trace functions are specified with CL commands in the job that contains the
traced program. These functions include adding trace requests to a program,
removing trace requests from a program, removing data collected from previous
traces, displaying trace information, and displaying the traces that have been
specified for a program.

¹ You cannot display a variable that is not referenced in your RPG/400 program.

Using the DEBUG Operation Codes
You can code one or more DEBUG operation codes among your RPG/400 calcu-
lations to help you debug a program that is not working properly. Whenever the
DEBUG operation is processed, one or two records with debugging information are
provided. The first record contains a list of all indicators that are set on at the time
the DEBUG operation was encountered. The second record is optional and shows
the contents of the result files specified for the DEBUG operation.

The DEBUG operation can be coded at any point or at several points in the calcu-
lation specifications. The output records are written whenever the DEBUG operation
occurs.

You should know the following characteristics of the DEBUG operation code before
using it:

¹ The DEBUG operation runs (are active) only if position 15 of the control specifica-
tion contains a 1.

¹ If the DEBUG operation is conditioned, it occurs only if the condition is met.

¹ If a DEBUG operation is bypassed by a GOTO operation, the DEBUG operation does
not occur.

You can apply the OS/400 system testing and debugging functions to programs
that use DEBUG operations; a breakpoint can be on a DEBUG operation, and a DEBUG
operation can be traced.

Using the RPG/400 Formatted Dump
To obtain an RPG/400 formatted dump (printout of storage) for a program while it is
running, you can code one or more DUMP operation codes in your calculations, or
you can respond to a run-time message with a D or F option. It is also possible to
automatically reply to make a dump available. Refer to the “System Reply List”
discussion in the CL Programmer’s Guide.

The formatted dump includes field contents, data structure contents, array and table
contents, the file information data structure, and the program status data structure.
The dump is written to the file called QPPGMDMP. (A system abnormal dump is
written to the file QPSRVDMP.)

60 RPG/400 User's Guide

 Using the RPG/400 Formatted Dump

If you respond to an RPG/400 run-time message with an F option, the dump also
includes the hexadecimal representation of the open data path (ODP, a data man-
agement control block). If position 15 of the control specification contains a 1, the
F option also provides a list of compiler-generated fields.

Information from the file information data structure (INFDS) is provided for each file
in the program. Not all the information that is contained in the INFDS is printed in
the dump. Remember that, to use any information from the INFDS in your
program, you must define the INFDS in your program.

The same characteristics as described for the DEBUG operation apply to the DUMP
operation.

Figure 32 shows an example of an RPG/400 formatted dump.

 Note

Only selected pages of an RPG/400 formatted dump are presented below.

RPG/400 FORMATTED DUMP
Program Status Area: ───────────────────────┐
Program Name : QGPL/SAMPLE .A/ │
Program Status : 00000 .B/ │
Previous Status : 00000 .C/ │
Statement in Error : 00000000 .D/ │
RPG Routine : *DETC .E/ │
Number of Parameters : 000 │
Message Type : .F/ │
MI Statement Number : .G/ │
Additional Message Info : │ Program
Message Data : │ Status
Last File Used : QSYSPRT %──────┐ │ Information
Last File Status : 01235 │ │

Error in PRTCTL entries occurred in (C G S D). │ .H/ │
Last File Operation : OPEN I │ │
Last File Routine : *INIT │ │
Last File Statement : *INIT │ │
Last File Record Name : %──────┘ │
Job Name : E53 %──────┐ │
User Name : QPGMR │ │
Job Number : 000811 │ │
Date Entered System : 092592 │ │
Date Started : 092592 │ │
Time Started : 111143 │ .I/ │
Compile Date : 052592 │ │
Compile Time : 111125 │ │
Compiler Level : 0001 │ │
Source File : QRPGSRC │ │

Library : QGPL │ │
Member : SAMPLE %──────┘ │

 ───────────────────────┘

Figure 32 (Part 1 of 8). RPG/400 Formatted Dump

 Chapter 4. Error Messages, Testing, and Debugging 61

 Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP

File : FILEIN1
File Open : YES
File at EOF : YES
Commit Active : NO
File Status : 00011

RPG0011 End of file (input).
File Operation : READ R
File Routine : *DETC
Statement Number : 2500
Record Name : FILEA
Message Identifier :
MI Instruction Number :
ODP type : DB
File Name : FILEIN1

Library : QGPL
Member : FILEIN1
Record Format :
Primary Record Length : 45
Secondary Record Length : 0
Input Block Length : 4125
Output Block Length : 0
Device Class : '0000'X
Lines per Page : 0
Columns per Line : 0
Number of Records in File : 0
Access Type : ARRIVAL SEQ
Allow Duplicate Keys : NO
Source File : NO
UFCB Parameters : 'A2000000000000500000'X
UFCB Overrides : '00000000000000000000'X
Records to Transfer : 74
Number of Puts : 0
Number of Gets : 0
Number of Put/Gets : 0
Number of other I/O : 0
Current Operation : '4040'X
Device Class : '4040'X
Device Name :
Length of Last Record : 0
DDS Information :
Relative Record Number : 0
Records Transferred : 0
Current Line Number : 0

 Input Buffer:
0000 80000000 00000000 0007C00D BD000880 0000004A 0037002D 40404040 40404040 * *
0020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0060 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0080 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
00A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
00C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
00E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0100 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0120 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0140 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0160 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

Figure 32 (Part 2 of 8). RPG/400 Formatted Dump

62 RPG/400 User's Guide

 Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP
0180 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
01A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
01C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
01E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0200 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0220 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0240 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0260 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0280 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
02A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
02C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
02E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0300 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0320 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0340 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0360 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0380 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
03A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
03C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
03E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0400 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0420 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0440 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0460 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0480 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
04A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
04C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
04E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0500 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0520 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0540 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0560 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0580 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
05A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
05C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
05E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0600 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0620 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0640 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0660 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0680 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
06A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
06C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
06E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0700 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0720 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0740 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0760 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0780 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
07A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
07C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
07E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0800 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0820 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0840 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0860 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

Figure 32 (Part 3 of 8). RPG/400 Formatted Dump

 Chapter 4. Error Messages, Testing, and Debugging 63

 Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP
File : QSYSPRT
File Open : YES
File at EOF : NO
Commit Active : NO
File Status : 01235

Error in PRTCTL entries occurred in (C G S D). .J/
File Operation : OPEN I
File Routine : *INIT
Statement Number : *INIT
Record Name :
Message Identifier :
MI Instruction Number :
ODP type : SP
File Name : QSYSPRT

Library : QSYS
Member : Q713784701
Record Format : File information.
Spool File : Q04079N001 This information is repeated

Library : QSPL for each file in the program.
Spool File Number : 19 For a detailed description of
Primary Record Length : 132 these entries, see the S/38 RPG.
Secondary Record Length : 0
Input Block Length : 0
Output Block Length : 132
Device Class : PRINTER
Lines per Page : 10
Columns per Line : 132
Number of Records in File : 0
Access Type : 0
Allow Duplicate Keys : NO
Source File : NO
UFCB Parameters : 'A4121000000000000000'X
UFCB Overrides : '00000000000000000000'X
Number of Puts : 0 %──────┐
Number of Gets : 0 │ .K/
Number of Put/Gets : 0 %──────┘
Number of other I/O : 0
Current Operation : '4040'X
Device Class : '4040'X
Device Name :
Length of Last Record : 0
DDS Information :
Relative Record Number : 0
Current Line Number : 0

 Input Buffer:
0000 E2C1D4D7 D3C54040 4040D8C7 D7D34040 40404040 00000000 00000000 00000000 *SAMPLE QGPL *
0020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 0080 00000000 * *
 Output Buffer:

0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 0080 00000000 * *

Figure 32 (Part 4 of 8). RPG/400 Formatted Dump

64 RPG/400 User's Guide

 Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP
Open Data Path: .L/

0000 64800000 000010A4 00001100 000000B0 00000140 000001C6 00000280 000002C0 * F *
0020 00000530 00000000 00000000 00000140 00000000 00000000 00000000 00000000 * *
0040 00000000 00000016 0007C00D BA0019FF 00000000 00000000 00000000 00000000 * *
0060 80000000 00000A80 0007C001 DB001710 00000000 00000000 00000000 00000000 * *
0080 80000000 00000000 0007C00D BA001120 01900000 00010000 00000084 00000000 * *
00A0 08000000 00000000 00000000 00100000 E2D7D8E2 E8E2D7D9 E3404040 D8E2E8E2 * SPQSYSPRT QSYS*
00C0 40404040 4040D8F0 F4F0F7F9 D5F0F0F1 D8E2D7D3 40404040 40400013 00840000 * Q04079N001QSPL *
00E0 D8F7F1F3 F7F8F4F7 F0F10000 00000000 00840002 00000000 0A008400 00000000 *Q713784701 *
0100 0000D5A4 12100000 00000000 00000000 00000000 00000000 00000100 09000000 * N *
0120 0005A000 5CD54040 40404040 40400001 00000000 00000000 00000000 00000000 * N *
0140 00010001 5CD54040 40404040 40400000 06700000 00000000 00450045 00450045 * N *
0160 07A10045 00450045 00700045 00450045 00450045 00450045 002F0030 00040005 * *
0180 5CD54040 40404040 40400208 00000000 20000000 00000000 00000000 00000000 * N *
01A0 00000000 00000001 C2200000 00059A00 00000000 00000000 00000000 00000000 * B *
01C0 00000000 00000090 00000000 00000000 00000000 00000000 00000000 00000000 * *
01E0 00000000 02080000 00000000 00000000 00000084 00000000 00000000 00000000 * *
0200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0220 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0240 00000000 00000000 00000000 00000000 00000000 00000001 00000001 00000000 * *
0260 00000000 00000000 00000000 00000000 00000000 00000000 F0F0F0F0 00000000 * 0000 *
0280 00000001 00300000 00000000 00003000 00000000 0000001C 000502B5 D90019FF * R *
02A0 00000000 00000000 00000000 00000000 41100000 00000000 00000000 00000000 * *
02C0 80000000 0000004F 0007C00D BB001824 80000000 00000000 0007C00D BB000860 * *
02E0 80000000 00000000 0007C00D BB000860 80000000 00000000 0007C00D BB001838 * *
0300 00000000 00000700 000502DB 2700195F 00000000 00000000 0FEF0000 30700000 * *
0320 0FCC00D6 005E0000 0001DEC0 00000000 00000000 00000000 00000000 00010000 * O *
0340 000186A0 C6000000 5CD1D6C2 40404040 40404040 40404040 40404040 5CE2E3C4 * F JOB STD*
0360 40404040 40400000 00000000 000001F0 80000000 000081F0 0007C00D BB0003B0 * 0 0 *
0380 80000000 00000000 0007C00D BB000860 80000000 00000000 0007C00D BB000860 * *
03A0 80000000 00000000 0007C00D BB000460 80000000 00000000 0007C00D BB000576 * *
03C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
03E0 00000000 00000000 00000000 00000000 D8F0F4F0 F7F9D5F0 F0F10048 D8E2D7D3 * Q04079N001 QSPL*
0400 40404040 40400049 00000000 00000000 00004040 40404040 40404040 00010100 * *
0420 F0F1F0F0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *0100 *
0440 00010FEF 7FFF0001 00840004 00010001 D8E2E8E2 D7D9E340 4040FFF5 00000000 * QSYSPRT 5 *
0460 00000000 00000000 00000000 00000000 FFF30000 00000000 00000000 00000000 * 3 *
0480 00000000 0000000C C0000A00 84000E00 06000F00 09001000 00110000 12C04000 * *
04A0 13007FFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
04C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
04E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0500 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0520 00000000 00000000 00000000 00000000 006A0800 00000000 00000650 00000000 * *
0540 00000000 0000008C 000002C0 00005C00 0002FFFF 00010001 00015CC3 C8C1D5C7 * CHANG*
0560 C5404040 00000000 00010000 00000000 00000000 00000000 00000000 00000000 *E *
0580 00000080 00000000 00000000 00000000 D8E2E8E2 D7D9E340 404000AE 0601000A * QSYSPRT *
05A0 00840009 0D405CC4 C5E5C440 40404040 40404040 40404040 40405CD7 D9E3C9D4 * DEVD PRTIM*
05C0 C7404040 40404040 40404040 4040060A 060F100F 00000000 00000000 00000000 *G *
05E0 00000000 009E0000 01001000 00C1D7D7 D3D7C7D4 40000000 00000000 00000000 * APPLPGM *
0600 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0620 00000000 00000000 00000000 00000000 00000000 00000000 00100000 00015CC3 * C*
0640 D7C94040 40404040 00000000 00000000 A4121000 00000000 00000000 40000000 *PI *
0660 00000000 00000000 00000000 00000000 80000000 00000018 0007C00D BB000860 * *
0680 80000000 000001F0 00060382 3B000562 80000000 00000000 00060382 3B000A72 * 0 *
06A0 80000000 00000000 00060382 3B00015C 80000000 00000000 0007C00D BA001000 * *
06C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

Figure 32 (Part 5 of 8). RPG/400 Formatted Dump

 Chapter 4. Error Messages, Testing, and Debugging 65

 Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP
 NAME OFFSET ATTRIBUTES VALUE %──┐
 ..MDFDEV 0009B0 CHAR(10) ' ' '00000000000000000000'X │
 ..MDFDVP 0009A0 POINTER(SPP) │
 SPACE OFFSET 2480 '000009B0'X │
 OBJECT PSSA │
 ..MDFNDI 001990 CHAR(1) '0' │
 .ACTPTR 001A60 POINTER(SYP) │
 CONTEXT QGPL │
 OBJECT SAMPLE │
.ACTPTRC 001A60 CHAR(16) ' ' '0000000000000000000703AA08000238'X │

 .BINF1 000610 BINARY(4) 0 │
 .BINF2 000614 BINARY(4) 0 │
 .BINRF 000618 BINARY(4) 0 │
 .BLANKS 0002B2 CHAR(140) ' ' │
.BPCA 0004B0 CHAR(32767) CANNOT DUMP - SPACE ADDRESSING OR BOUNDARY ALIGNMENT EXCEPTION │

 .BPCAPTR 000A00 POINTER(SPP) │
 SPACE OFFSET 1200 '000004B0'X │
 OBJECT FILEIN2 QGPL FILEIN2 │
 .BUFFER 0004D0 CHAR(148) ' ' │

0004D0 VALUE IN HEX '4000010000'X │
 0004FD +46 '00010000000040'X │
 00052A +91 '40'X │
 000557 +136 '40404040404040404040404040'X │
 .BUFPTR 000980 POINTER(SPP) │
 SPACE OFFSET 1232 '000004D0'X │
 OBJECT FILEIN2 QGPL FILEIN2 │
 .CALLERR 001BF0 POINTER(IP) │ .M/
 INSTR # 14 │
 CONTEXT QGPL │
 OBJECT SAMPLE │
 .CALLSW 001B2D CHAR(1) '1' │
 .CLOSASW 001B5A CHAR(1) '0' │
 .CLOSPTR 0000A0 POINTER(SYP) │
 CONTEXT QSYS │
 OBJECT QDMCLOSE │
 .CO01001 001980 POINTER(SPP) │
 SPACE OFFSET 6480 '00001950'X │
 OBJECT PSSA │
 .CO02002 0019C0 POINTER(SPP) │
 SPACE OFFSET 6545 '00001991'X │
 OBJECT PSSA │
 .CURROP 000598 CHAR(5) 'WRITE' │
 .DBFIND 0003A7 CHAR(2) DIMENSION(4) │
 0003A7 (1) 'OV' │
 0003A9 (2) '1V' │
 0003AB (3) '2V' │
 0003AD (4) 'LR' │
 .DBFINX 0003A7 CHAR(8) 'OV1V2VLR' │
 .DBICNT 0003AF BINARY(2) 4 │
 .DEACTSW 001CC1 CHAR(1) '0' │
 .DMCBF 000190 CHAR(2) DIMENSION(256) │
 000190 (1) ' ' '2000'X │
 000214 (2) ' ' '0000'X │
 000298 (3) ' ' '0005'X │
 00031C (4) ' ' '3070'X │
 0003A0 (5) ' ' '8000'X │
 6

Figure 32 (Part 6 of 8). RPG/400 Formatted Dump

66 RPG/400 User's Guide

 Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP │
 .U03LBLN 00169A BINARY(2) -75 │
 .U03LIBN 00169C CHAR(10) '*LIBL ' │
 .U03NXTU 001660 POINTER(SPP) NULL │
 .U03ODPB 001610 POINTER(SPP) │
 SPACE OFFSET 0 '00000000'X │
 OBJECT QSYSPRT QSYS *N │
 .U03OFBK 001640 POINTER(SPP) │
 SPACE OFFSET 176 '000000B0'X │
 OBJECT QSYSPRT QSYS *N │
 .U03OVFL 001702 BINARY(2) 9 │ .M/
 .U03PCB 001709 CHAR(393) 'SAMPLE QGPL │

001768 +96 4 LINES OF BLANKS SUPPRESSED │
001709 VALUE IN HEX 'E2C1D4D7D3C540404040D8C7D7D340404040404000'X │
001736 +46 8 LINES OF ZEROS SUPPRESSED │

.U03PCBL 001713 CHAR(10) 'QGPL ' │
 .U03PCBP 001709 CHAR(10) 'SAMPLE ' │
 .U03RECL 0016E0 BINARY(2) 1 │
 .U03RLEN 0016E2 BINARY(2) 132 │
 .U03SEQK 0016F0 CHAR(1) ' ' '00'X │
 .U03SIA 001670 POINTER(SPP) NULL │
 .U03SQCK 0016EE BINARY(2) 6 │
 .WCBUIND 001B25 CHAR(8) ' ' │
 .WORK 000520 CHAR(120) ' ' │

000520 VALUE IN HEX '000040'X │
 00054D +46 '40'X │
 00057A +91 '40'X │
 .WORKBC 00051C CHAR(4) ' ' '00000000'X │
 .WORKB2 00051C BINARY(2) 0 │
 .WORKB3 00051E BINARY(2) 0 │
 .WORKB4 00051C BINARY(4) 0 %──┘
 *DATE 012190 ZONED(8,0) 9251992 %──────┐ .S/
 *DAY 012192 ZONED(2,0) 25 %──────┘
 *IN 000344 CHAR(1) DIMENSION(99) %──────┐
 0003A4 (1-97) '0' │ .N/
 0003A5 (98) '1' │
 0003A6 (99) '0' %──────┘
 *INIT 00033E CHAR(1) '1'
 *INLR 000343 CHAR(1) '0'
 *INOV 000340 CHAR(1) '0'
 *INXX 00033F CHAR(1) '1'
 *IN1V 000341 CHAR(1) '0'
 *IN2V 000342 CHAR(1) '0'
 *IN98 0003A5 CHAR(1) '1'
 *IN99 0003A6 CHAR(1) '0' . .
 *MONTH 012190 ZONED(2,0) 9 %──────┐ .S/
 *YEAR 012194 ZONED(4,0) 1992 %──────┘
 ARR 000441 CHAR(1) DIMENSION(45) .O/
 00046D (1-45) ' '
C.NUM 0003B1 CHAR(144) '20 09 35 07 05 02 44 21 17 26 19 43 11 24 41 10 28 49 37 24 16 13 01 16 47 42 18 15 31 27 45 12'

000410 +96 ' 04 03 29 48 39 23 14 08 32 40 06 46 30 22 34 38'
 CURLIN 000516 ZONED(3,0) '404040'X .P/
 FILE1 0004CF CHAR(8) ' '
FIL1DS 000BBC CHAR(45) 'FILEIN1 1100011READ R*DETC 2500 FILEA ' %──────┐ .Q/
FIL2DS 000FCC CHAR(45) 'FILEIN2 1000000READ R*DETC 2900 FILEB ' %──────┘

 NUM 0003B1 CHAR(9) DIMENSION(16)
0003B1 (1) '20 09 35 '
0003BA (2) '07 05 02 '
0003C3 (3) '44 21 17 '
0003CC (4) '26 19 43 '
0003D5 (5) '11 24 41 '
0003DE (6) '10 28 49 '
0003E7 (7) '37 24 16 '

Figure 32 (Part 7 of 8). RPG/400 Formatted Dump

 Chapter 4. Error Messages, Testing, and Debugging 67

 Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP
0003F0 (8) '13 01 16 '
0003F9 (9) '47 42 18 '
000402 (10) '15 31 27 '
00040B (11) '45 12 04 '
000414 (12) '03 29 48 '
00041D (13) '39 23 14 '
000426 (14) '08 32 40 '
00042F (15) '06 46 30 '
000438 (16) '22 34 38 '

NUMX 000470 CHAR(9) '20 09 35 '
 OCCRDS 0004CF CHAR(45) ' '
 OCCRDS.O 0004A2 CHAR(45) DIMENSION(2) %──────┐
 0004A2 (1) ' FILEB ' │ .R/
 0004CF (2) ' ' %──────┘
 OPCDE1 0004DF CHAR(6) ' '

PRNTDS 000510 CHAR(9) ' 3 4 '
 REC 0004CF CHAR(45) ' '
 RECFM1 000BE1 CHAR(8) 'FILEA '
 RECFM2 000FF1 CHAR(8) 'FILEB '
 REC1 0004D7 CHAR(8) ' '
 RTNE1 0004EA CHAR(8) ' '
 SKAFTR 000514 CHAR(2) ' '
 SKBEFR 000512 CHAR(2) ' 4'
 SPAFTR 000511 CHAR(1) '3'
 SPBEFR 000510 CHAR(1) ' '
 STAT 0004E5 CHAR(5) ' '
 UDATE 00061C ZONED(6,0) 92592 %──────┐
 UDAY 00061E ZONED(2,0) 25 │ .S/
 UMONTH 00061C ZONED(2,0) 9 │
 UYEAR 000620 ZONED(2,0) 92 %──────┘
 WORK. 00051C CHAR(124) ' '

00051C VALUE IN HEX '00000000000040'X
 000549 +46 '40'X
 000576 +91 '40'X
 X 00046E PACKED(3,0) 2
 ZIGNDECD 001B51 CHAR(1) '0' .T/
.U/
┌─5 ZPGMSTUS 000622 CHAR(400) 'SAMPLE 000000000000000000*DETC 000 QGPL '
│ 000681 +96 ' 1235 '
│ 0006E0 +191 ' QSYSPRT 01235OPEN I*INIT *INIT E53 QPGMR 0008110115880115881111'
└─5 00073F +286 '430115881111250001QRPGSRC QGPL SAMPLE'

ZZ01BIN 0004B0 CHAR(45) ' ¢ '
0004B0 VALUE IN HEX '80000000000000000007C00DBD0008800000004A0037002D40'X

 ZZ01BOUT 000A30 CHAR(45) ' '
000A30 VALUE IN HEX '00'X

 ┌───.V/
 6

ZZ02BIN 0004D0 CHAR(41) ' '
 ZZ02BOUT 000A30 CHAR(41) ' '

000A30 VALUE IN HEX '00'X
ZZ03BIN 001709 CHAR(132) 'SAMPLE QGPL '

 001768 +96 ' '
001709 VALUE IN HEX 'E2C1D4D7D3C540404040D8C7D7D340404040404000'X
001736 +46 2 LINES OF ZEROS SUPPRESSED

 .W/
 │ ┌───.X/
 6 6
 ZZ03BOUT 001020 CHAR(132) ' '
 00107F +96 ' '

001020 VALUE IN HEX '00'X
00104D +46 2 LINES OF ZEROS SUPPRESSED

STATIC STORAGE FOR PROGRAM SAMPLE BEGINS AT OFFSET 000290 IN THE PROGRAM STATIC STORAGE AREA (PSSA)
AUTOMATIC STORAGE FOR PROGRAM SAMPLE BEGINS AT OFFSET 0015B0 IN THE PROGRAM AUTOMATIC STORAGE AREA (PASA)
RPG/400 FORMATTED DUMP

* * * * * E N D O F R P G D U M P * * * * *

Figure 32 (Part 8 of 8). RPG/400 Formatted Dump

68 RPG/400 User's Guide

 Using the RPG/400 Formatted Dump

.A/ Qualified program name and library.

.B/ Current status code.

.C/ Previous status code.

.D/ RPG/400 source statement in error.

.E/ RPG/400 routine in which the exception or error occurred.

.F/ CPF or MCH for a machine exception.

.G/ Machine instruction number.

.H/ Information about the last file used in the program before an exception or
error (RPG1235) occurred.

.I/ Program information.

.J/ Error in the file.

.K/ The number of times the RPG/400 compiler requested I/O of the system (not
the number of I/O operations requested by the program).

.L/ The open data path is included in the dump if the user responds to an
RPG/400 run-time message with an F option.

.M/ A list of compiler-generated fields is also included in the dump if the user
responds to an RPG/400 run-time message with an F option and if the
program was compiled with a 1 in position 15 of the control specification.

.N/ General indicators 1-99 and their current status (1 is on, 0 is off).

.O/ Beginning of user fields.

.P/ Incorrect zoned field printed in hexadecimal.

.Q/ File information data structures for FILEIN1 and FILEIN2.

.R/ Double-occurrence data structure.

.S/ System date values.

.T/ IGNDECERR(*NO) was specified in the CRTRPGPGM command.

.U/ Program status data area.

.V/ Input buffer for file 02.

.W/ This is the file number. See the cross-reference section of the compiler listing
for the corresponding file name. The files are assigned a sequence number
corresponding to the order in which they are defined in your specifications.
Thus, the file number 03 corresponds to the FILEIN2 file described in this
program.

.X/ Output buffer for file 03.

 Chapter 4. Error Messages, Testing, and Debugging 69

 Exception/Error Handling

 Exception/Error Handling
The RPG/400 compiler handles two types of exception or errors: program exception
or errors and file exception or errors. Some examples of program exception or
errors are division by zero, not valid array index, or SQRT of a negative number.
Some examples of file exception or errors are undefined record type or a device
error.

Figure 33 shows an example of a file information data structure (INFDS) and a file
exception/error subroutine. For further information on exception/error handling by
the RPG/400 compiler, see the RPG/400 Reference manual.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* Three files are defined on the file description specifications.

F* You want to control the program logic if an exception or error

F* occurs on the TRNFIL file or on the MSTFIL file. Therefore, a

F* unique INFDS and a INFSR are defined for each file. They are

F* not defined for the AUDITFIL file.

F*

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FTRNFIL OF E K DISK KINFDS FILDS1

F KINFSR ERRRTN

FMSTFIL UF E K DISK KINFDS FILDS2

F KINFSR MSTERR

FAUDITFILOF E K DISK

Figure 33 (Part 1 of 4). Example of File Exception/Error Handling

70 RPG/400 User's Guide

 Exception/Error Handling

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The location of the subfields in the file information data

I* structures is defined by special keywords in positions 44

I* through 51. To access these predefined subfields, you must

I* assign a name to each subfield in positions 53 through 58.

I* If an exception or error occurs, you can test the information

I* in the data structure to determine, for example, what exception

I* or error occurred (*STATUS) and on which operation it occurred

I* (*OPCODE). You can then use that information within the file

I* exception/error subroutine to determine the action to take.

I*

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IFILDS1 DS

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I *FILE FIL1

I *RECORD REC1

I *OPCODE OP1

I *STATUS STS1

I *ROUTINE RTN1

IFILDS2 DS

I *FILE FIL2

I *RECORD REC2

I *OPCODE OP2

I *STATUS STS2

I *ROUTINE RTN2

Figure 33 (Part 2 of 4). Example of File Exception/Error Handling

 Chapter 4. Error Messages, Testing, and Debugging 71

 Exception/Error Handling

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* On the WRITE operation to the TRNREC record in the TRNFIL file,

C* an exception/error indicator is specified in positions 56 and 57.

C* This indicator is set on if an exception or error occurs on this

C* operation. The ERRRTN subroutine (the file exception or error

C* subroutine for the TRNFIL file) is explicitly called by the EXSR

C* operation when indicator 71 is on. Because factor 2 of the ENDSR

C* operation for the ERRRTN is blank, control returns to the next

C* sequential instruction following the EXSR operation after the

C* subroutine has run.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C WRITETRNREC 71

C 71 EXSR ERRRTN ────────────────┐

C " Calculations

C* ────────────────┘

C*

C* No exception/error indicator is specified in positions 56 and 57

C* of the WRITE operation to the AUDITREC record in the AUDITFIL

C* file. No exception/error subroutine was defined for this file

C* on the file description specifications. Therefore, any exception/

C* errors that occur on this operation to the AUDITFIL file are

C* handled by the default RPG default error handler.

C*

C WRITEAUDITREC ────────────────┐

C " Calculations

C* ────────────────┘

Figure 33 (Part 3 of 4). Example of File Exception/Error Handling

72 RPG/400 User's Guide

 Exception/Error Handling

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* No exception/error indicator is specified in positions 56 and 57
C* of the CHAIN operation to the MSTREC record in the MSTFIL file.
C* However, a file exception/error subroutine (MSTERR) is defined
C* for the file on the file description specifications. Therefore,
C* when an exception or error other than no record found occurs on
C* the CHAIN operation, RPG passes control to the MSTERR subroutine.
C* On the ENDSR operation for this subroutine, factor 2 contains a
C* field name. This allows the programmer to alter the return point
C* from the subroutine within the subroutine based on the exception
C* or error that occurred. The field must contain one of the values
C* described under File Exception/Error Subroutine earlier in
C* this chapter.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C MSTKEY CHAINMSTREC 61
C 61 GOTO NOTFND
C "
C "
C MSTERR BEGSR ┌────────────────┐
C " │ Calculations │
C " └────────────────┘
C ENDSRRTRPNT
C "
C "
C ERRRTN BEGSR ┌────────────────┐
C " │ Calculations │
C " └────────────────┘
C ENDSR

Figure 33 (Part 4 of 4). Example of File Exception/Error Handling

Figure 34 on page 74 shows an example of a program exception/error subroutine.

 Chapter 4. Error Messages, Testing, and Debugging 73

 Exception/Error Handling

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IDsname....NODsExt-file++.............OccrLen+......................*

I SDS

I *ROUTINE LOC

I *STATUS ERR

I *PARMS PARMS

I *PROGRAM NAME

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *PSSR BEGSR

C ERR COMP 102 20 DIV BY ZERO?

C 20 ADD 1 DIVSR

C 20 MOVE '*DETC' RETURN 6

C N20 MOVE '*CANCL' RETURN

C ENDSRRETURN

Figure 34. Example of *PSSR Subroutine

The program-status data structure is defined on the input specifications. The pre-
defined subfields *STATUS, *ROUTINE, *PARMS, and *PROGRAM are specified, and
names are assigned to the subfields.

The *PSSR subroutine is coded on the calculation specifications. If a program
exception/error occurs, the RPG/400 compiler passes control to the *PSSR subrou-
tine. The subroutine checks to determine if the exception or error was caused by a
divide operation in which the divisor is zero. If it was, indicator 20 is set on, 1 is
added to the divisor (DIVSR), and the literal ‘*DETC’. is moved to the field RETURN.
Moving the literal into the RETURN field, which is specified in factor 2 of the ENDSR

operation, allows you to control the return point within the subroutine. In this
example, control returns to the beginning of the detail calculations routine, unless
the exception or error was not a divide by zero. In that case, the literal ‘*CANCL’ is
moved into the RETURN field, and the program is ended.

74 RPG/400 User's Guide

 Device Independence/Device Dependence

Chapter 5. General File Considerations

This chapter describes:

¹ The device-independent and device-dependent characteristics of the RPG/400
program on the AS/400 system

¹ AS/400 spooling functions

¹ The extent to which externally described and program-described files are
defined in the RPG/400 program

¹ Level checking functions

¹ File locking by the RPG/400 program

¹ Record locking by the RPG/400 program

¹ Unblocking and blocking records to improve performance

¹ Sharing an open data path

¹ General information about the use of externally described files and how this
external description can be changed in the RPG/400 program

 ¹ Program-described files

¹ RPG/400 functions that relate specifically to an RPG/400 PRINTER device,
SEQ device, and SPECIAL device.

On the AS/400 system, files are made up of members. These files are organized
into libraries. The convention for naming files is library-name/file-name.

Device Independence/Device Dependence
The key element for all input/output operations is the file. All files used on the
system are defined to the OS/400 system. The OS/400 system maintains a
description of each file that is accessed by a program when it uses the file.

The OS/400 file descriptions are kept online and serve as the connecting link
between a program and the device used for I/O. The data is read from or written to
the device when the file is used for processing. In some instances, this type of I/O
control allows you to change the type of file (and, in some cases, change the
device) used in a program without changing the program.

On the AS/400 system, the file name specified in positions 7 through 14 of the file
description specification is used to point to the file, rather than the device name
specified in positions 40 through 46. The file name points to the OS/400 file
description that contains the specifications for the actual device:

R P G p r o g r a m F I L E X

D e v i c e = W O R K S T N
F i l e n a m e = F I L E X

d e v i c e t y p e =

D I S P L A Y

 Copyright IBM Corp. 1994 75

 Device Independence/Device Dependence

The RPG/400 device name in positions 40 through 46 defines the RPG/400 func-
tions that can be processed on the associated file. At compilation time, certain
RPG/400 functions are valid only for a specific RPG/400 device name. In this
respect, the RPG/400 function is device dependent. One example of device
dependency is that the EXFMT operation code is valid only for a WORKSTN device.

For another example, assume that the file name FILEY is specified in the RPG/400
program with the SEQ device. The device SEQ is an independent device type.
When the program is run, the actual I/O device is specified in the description of
FILEY. For example, the device might be PRINTER.

F I L E YR P G p r o g r a m

F i l e n a m e = F I L E Y
D e v i c e = S E Q

f i l e t y p e =
D E V I C E

d e v i c e t y p e =
P R I N T E R

OS/400 commands can be used to override a parameter in the specified file
description or to redirect a file at compilation time or run time. File redirection
allows you to specify one file at compilation time and another file at run time:

R P G p r o g r a m

F I L E Y

C o m p i l e

T i m e

E x e c u t i o n

T i m e

D i s k e t t e

F i l e n a m e = F I L E Y

D e v i c e = D I S K

f i l e t y p e =

P H Y S I C A L

f i l e t y p e =

D E V I C E

d e v i c e t y p e =

D I S K E T T E

F I L E A

O v e r r i d e C o m m a n d :

O V R D B F F I L E (F I L E Y) T O F I L E (F I L E A)

In the preceding example, the CL command OVRDBF (Override With Database
File) allows the program to run with an entirely different device file than was speci-
fied at compilation time.

Not all file redirections or overrides are valid. At run time, checking ensures that
the specifications within the RPG/400 program are valid for the file being proc-
essed. The OS/400 system allows some file redirections even if device specifics
are contained in the program. For example, if the RPG/400 device name is
PRINTER, and the actual file the program connects to is not a printer, the OS/400
system ignores the RPG/400 print spacing and skipping specifications. There are
other file redirections that the OS/400 system does not allow and that cause the
program to end. For example, if the RPG/400 device name is WORKSTN and the
EXFMT operation is specified in the program, the program is stopped if the actual file
the program connects to is not a display or ICF file.

76 RPG/400 User's Guide

 Spooling

See the Data Management Guide for more detailed information on valid file redi-
rections and file overrides.

 Spooling
Spooling is a system function that puts data into a storage area to wait for proc-
essing. The AS/400 system provides for the use of input and output spooling func-
tions. The RPG/400 program is not aware that spooling is being used. The actual
physical device from which a file is read or to which a file is written is determined
by the spool reader or the spool writer. For more detailed information on spooling,
see the Data Management Guide.

 Output Spool
Output spooling is valid for batch or interactive jobs. The description of the file that
is specified in the RPG/400 program by the file name contains the specification for
spooling as shown in the following diagram:

S p o o l i n gR P G p r o g r a m

Q u e u e

Q P R I N T

Q P R I N T

S P O O L (* Y E S)
Q U E U E (Q P R I N T)

F i l e n a m e = Q P R I N T
D e v i c e = P R I N T E R

S p o o l e d

F i l e

E x e c u t i o n T i m e

D e v i c e

S t a r t P r i n t e r
w r i t e r T i m e

S t a r t
P r i n t e r
w r i t e r

File override commands can be used at run time to override the spooling options
specified in the file description, such as the number of copies to be printed. In
addition, AS/400 spooling support allows you to redirect a file after the program has
run. You can direct the same printed output to a different device such as a
diskette.

 Chapter 5. General File Considerations 77

 Externally Described and Program-Described Files

Externally Described and Program-Described Files
All files on the AS/400 system are defined to the OS/400 system. However, the
extent to which files can be defined differs:

¹ An externally described file is described to the OS/400 system at the field level.
The description includes information about where the data comes from, such as
the database or a specific device, and a description of each field and its attri-
butes.

¹ A program-described file is described at the field level within the RPG/400
program on input/output specifications. The description of the file to the
OS/400 system includes information about where the data comes from and the
length of the records in the file.

An externally described file does not have to be redefined in an RPG/400 program
on input/output specifications. In a program-described file, the fields and their attri-
butes must be described on input/output specifications.

Externally described files offer the following advantages:

¹ Less coding in RPG/400 programs. If the same file is used by many programs,
the fields can be defined once to the OS/400 system and used by all the pro-
grams. This practice eliminates the need to code input and output specifica-
tions for RPG/400 programs that use externally described files.

¹ Less maintenance activity when the file’s record format is changed. You can
often update programs by changing the file’s record format and then recom-
piling the programs that use the files without changing any coding in the
program.

¹ Improved documentation because programs using the same files use consistent
record-format and field names.

If an externally described file (identified by an E in position 19) is specified for the
devices SEQ or SPECIAL, the RPG/400 program uses the field descriptions for the
file, but the interface to the OS/400 system is as though the file were a program-
described file. Externally described files cannot specify device-dependent functions
such as forms control.

You can choose to use an externally described file within the program by specifying
the file as program-described (F in position 19 of the file description specifications).
The compiler does not copy in the external field-level description of the file at com-
pilation time. This approach is used in conversion where existing programs use
program-described files and new programs use externally described files to refer to
the same file.

Figure 35 shows some typical relationships between an RPG/400 program and files
on the AS/400 system.

78 RPG/400 User's Guide

 Externally Described and Program-Described Files

Program and Files on the AS/400 System

 OS/400 OS/400
 ┌──────────────┐ ┌──────────────┐
 │Field-Level │ │Record-Level │ OS/400
 │Description of│ │Description of│ ┌──────────────┐
 │a File │ │a File │ │Field-Level │
 └──────────────┘ └──────────────┘ │Description of│
 │ │ │ │ │a File │
 ┌─────┘ │ │ └─────┐ └──────────────┘

│ │ │ │ │
6 6 6 6 6

.1/ RPG .2/ RPG .3/ RPG .4/ RPG
┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐
│Externally │ │ Program-Described │ │Program-Described │ │Externally │
│Described File │ │ File (F in position│ │File (F in position │ │Described File │
│(E in position 19) │ │ 19) ─ The compiler │ │19) │ │(E in position 19) │
│ │ │ does not copy in │ │ │ │ │
│ │ │ field-level │ │ │ │ │
│ │ │ description │ │ │ │ │
└────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘

Figure 35. Typical Relationships between an RPG/400

.1/ The RPG/400 program uses the field-level description of a file that is defined
to the OS/400 system. An externally described file is identified by an E in
position 19 of the file description specifications. At compilation time, the
compiler copies in the external field-level description.

.2/ An externally described file is used as a program-described file in the
RPG/400 program. A program-described file is identified by an F in position
19 of the file description specifications. This entry tells the compiler not to
copy in the external field-level descriptions. This file does not have to exist
at compilation time.

.3/ A file is described only to the record level to the OS/400 system. The fields
in the record are described within the RPG/400 program; therefore, position
19 of the file description specifications must contain an F. This file does not
have to exist at compilation time.

.4/ A file name can be specified for compilation time, and a different file name
can be specified for run time. The E in position 19 of the file description
specifications indicates that the external description of the file is to be copied
in at compilation time. At run time, a file override command can be used so
that a different file is accessed by the program. To override a file at run
time, you must make sure that record names in both files are the same. The
RPG/400 program uses the record-format name on the input/output oper-
ations, such as a READ operation where it specifies what record type is
expected.

The following example shows the use of a file override at compilation time.
Assume that you want to use an externally described file for a TAPE device that
the system does not support. You must:

¹ Define a physical file named FMT1 with one record format that contains the
description of each field in the record format. The record format is defined on
the data description specifications (DDS). For a tape device, the externally
described file should contain only one record format.

¹ Create the file named FMT1 with a Create Physical File CL command.

 Chapter 5. General File Considerations 79

 Level Checking

¹ Specify the file name of QTAPE (which is the IBM-supplied device file name for
magnetic tape devices) in the RPG/400 program. This identifies the file as
externally described (indicated by an E in position 19 of the file description
specifications), and specifies the device name SEQ in positions 40 through 46.

¹ Use an override command–OVRDBF FILE(QTAPE) TOFILE(FMT1)–at compilation
time to override the QTAPE file name and use the FMT1 file name. This
command causes the compiler to copy in the external description of the FMT1
file, which describes the record format to the RPG/400 compiler.

¹ Create the RPG/400 program using the CRTRPGPGM command.

¹ Call the program at run time. The override to file FMT1 should not be in effect
while the program is running. Use the CL command DLTOVR (Delete Override).

Note: You may need to use the CL command OVRTAPF before you call the
program to provide information necessary for opening the tape file.

R P G p r o g r a m

E x e c u t i o n T i m e :

N o O v e r r i d e

F i l e n a m e = Q T A P E

P o s i t i o n = E

D e v i c e = S E Q

C o m p i l e T i m e :

O v e r r i d e F i l e

Q T A P E t o

F i l e F M T 1

Q T A P E

F M T 1

f i l e t y p e =

D E V I C E

d e v i c e t y p e =

T A P E

 Level Checking
Because RPG/400 programs are dependent on receiving an externally described
file whose format agrees with what was copied into the program at compilation
time, the system provides a level-check function that ensures that the format is the
same.

The RPG/400 program always provides the information required by level checking
when an externally described DISK, WORKSTN, or PRINTER file is used. The
level-check function can be requested on the create, change, and override file com-
mands. The default on the create file command is to request level checking. Level
checking occurs on a record-format basis when the file is opened unless you
specify LVLCHK(*NO) when you issue an override command or create a file. If the
level-check values do not match, the program is notified of the error. The RPG/400
program then handles the OPEN error as described in “Exception/Error Handling” on
page 70.

The RPG/400 program does not provide level checking for program-described files
or for files using the devices SEQ or SPECIAL.

For more information on how to specify level checking, see the Data Management
Guide.

80 RPG/400 User's Guide

 Record Locking by an RPG/400 Program

File Locking by an RPG/400 Program
The OS/400 system allows a lock state (exclusive, exclusive allow read, shared for
update, shared no update, or shared for read) to be placed on a file used during a
job. Programs within a job are not affected by file lock states. A file lock state
applies only when a program in another job tries to use the file concurrently. The
file lock state can be allocated with the CL command ALCOBJ (Allocate Object).
For more information on allocating resources and lock states, see the Data Man-
agement Guide.

The OS/400 system places the following lock states on database files when it
opens the files:

The shared-for-read lock state allows another user to open the file with a lock state
of shared for read, shared for update, shared no update, or exclusive allow read,
but the user cannot specify the exclusive use of the file. The shared-for-update
lock state allows another user to open the file with shared-for-read or shared-for-
update lock state.

The RPG/400 program places an exclusive-allow-read lock state on device files.
Another user can open the file with a shared-for-read lock state.

The lock state placed on the file by the RPG/400 program can be changed if you
use the Allocate Object command.

File Type Lock State

Input Shared for read
Update Shared for update
Add Shared for update
Output Shared for update

Record Locking by an RPG/400 Program
When a record is read by a program, it is read in one of two modes: input or
update. If a program reads a record for update, a lock is placed on that record.
Another program cannot read the same record for update until the first program
releases that lock. If a program reads a record for input, no lock is placed on the
record. A record that is locked by one program can be read for input by another
program.

In RPG/400 programs, you use an update file to read records for update. A record
read from a file with a type other than update can be read for inquiry only. By
default, any record is read from an update file will be read for update. For update
files, you can specify that a record be read for input by using one of the input oper-
ations CHAIN, READ, READE, READP, or REDPE and specifying an N in column 53 of
the calculation specification.

When a record is locked by an RPG/400 program, that lock remains until one of the
following occurs:

¹ the record is updated.

¹ the record is deleted.

¹ another record is read from the file (either for inquiry or update).

 Chapter 5. General File Considerations 81

 Unblocking Input Records and Blocking Output Records

¹ a SETLL or SETGT operation is performed against the file

¹ an UNLCK operation is performed against the file.

¹ an output operation defined by an output specification with no field names
included is performed against the file.

Note: An output operation that adds a record to a file does not result in a
record lock being released.

If your program reads a record for update and that record is locked through another
program in your job or through another job, your read operation will wait until the
record is unlocked. If the wait time exceeds that specified on the WAITRCD param-
eter of the file, an exception occurs. If the default error handler is given control
when a record lock timeout occurs, an RPG1218 error message will be issued.
One of the options listed for this message is to retry the operation on which the
timeout occurred. For programs compiled for version 2 (or higher) this will cause
the operation on which the timeout occurred to be re-issued, allowing the program
to continue essentially as if the record lock timeout had not occurred. Note that if
the file has an INFSR specified in which an I/O operation is performed on the file
before the default error handler is given control, unexpected results can occur if the
input operation that is retried is a sequential operation, since the file cursor may
have been modified.

With programs compiled using version 1 of the RPG/400 compiler, the retry option
is still displayed, but it is not valid. If a retry is requested for a version 1 program,
an additional error message (RPG1918) is issued indicating that a retry is not valid
for programs compiled using version 1. In all cases, if control is returned to the
program by specifying a return to *GETIN, the RPG STATUS value is set to 1218. If a
retry is specified and the subsequent read operation is successful, the STATUS
returns as if the record lock and subsequent retry did not occur.

If no changes are required to a locked record, you can release it from its locked
state using the UNLCK operation or by processing output operations defined by
output specifications with no field names included. These output operations can be
processed by EXCPT output, detail output, or total output.

(There are exceptions to these rules when operating under commitment control.
See Chapter 6, “Commitment Control” on page 107 for more information.)

Unblocking Input Records and Blocking Output Records
The RPG/400 compiler unblocks input records and blocks output records to
improve run-time performance in SEQ or DISK files if:

¹ The file is an output-only file (O is specified in position 15 of the file description
specifications) and contains only one record format if the file is externally
described.

¹ The file is a combined table file. (C is specified in position 15, and T in position
16 of the file description specifications.)

¹ The file is an input-only file. (I is specified in position 15 of the file description
specifications.) It contains only one record format if the file is externally
described, and uses only the OPEN, CLOSE, FEOD, and READ operation codes.

82 RPG/400 User's Guide

 Sharing an Open Data Path

The RPG/400 compiler generates object program code to block and unblock
records for all SEQ or DISK files that satisfy these conditions. Certain OS/400
system restrictions may prevent blocking and unblocking. In those cases, perform-
ance is not improved and the input/output feedback area is updated for each
input/output operation.

The contents of positions 60 through 65 of the RECNO option in the file description
specifications continuation line may not be valid when the RPG/400 compiler blocks
and unblocks records.

The input/output and device-dependent sections of the file information data struc-
ture are not updated after each read or write for files in which the records are
blocked and unblocked by the RPG/400 compiler. The feedback area is updated
each time a block of records is transferred. (See the RPG/400 Reference for more
information.)

Sharing an Open Data Path
An open data path is the path through which all input and output operations for a
file are defined. Usually a separate open data path is defined each time a file is
opened. If you specify SHARE(*YES) for the file creation or on an override, the first
program’s open data path for the file is shared by subsequent programs that open
the file concurrently. The position of the current record is kept in the open data
path for all programs using the file. If you read a record in one program and then
read a record in a called program, the record retrieved by the second read depends
on whether the open data path is shared. If the open data path is shared, the
position of the current record in the called program is determined by the current
position in the calling program. If the open data path is not shared, each program
has an independent position for the current record.

If your program holds a record lock in a shared file and then calls a second
program that reads the shared file for update, you can release the first program's
lock by performing a READ operation on the update file by the second program, or
by using the UNLCK or the read-no-lock operations.

Sharing an open data path improves performance because the OS/400 system
does not have to create a new open data path. However, sharing an open data
path can cause problems. For example, an error is signaled in the following cases:

¹ If a program sharing an open data path attempts file operations other than
those specified by the first open (for example, attempting input operations
although the first open specified only output operations)

¹ If a program sharing an open data path for an externally described file tries to
use a record format that the first program ignored

¹ If a program sharing an open data path for a program described file specifies a
record length that exceeds the length established by the first open.

When several files in one RPG/400 program are overridden to one shared file at
run time, the file opening order is important. In order to control the file opening
order, you should use a programmer-controlled open or use a CL program to open
the files before calling the RPG/400 program.

 Chapter 5. General File Considerations 83

 Specifications for Externally Described Files

If a program shares the open data path for a primary or secondary file, the program
must process the detail calculations for the record being processed before calling
another program that shares that open data path. Otherwise, if lookahead is used
or if the call is at total time, sharing the open data path for a primary or secondary
file may cause the called program to read data from the wrong record in the file.

You must make sure that when the shared file is opened for the first time in a job,
all of the open options that are required for subsequent opens of the file are speci-
fied. If the open options specified for subsequent opens of a shared file are not
included in those specified for the first open of a shared file, an error message is
sent to the program.

Table 3 details the system open options allowed for each of the open options you
can specify.

For additional information about sharing an open data path, see the Database
Guide.

Table 3. System Open Options Allowed with User Open Options

RPG User
Open Options

System
Open Options

INPUT INPUT

OUTPUT OUTPUT (program created file)

UPDATE INPUT, UPDATE

DELETE DELETE

ADD OUTPUT (existing file)

Using the Control Language Command RCLRSC
The Reclaim Resources (RCLRSC) CL command is designed for use in the control-
ling program of an application. It frees the static storage and closes any files that
were left open by other programs in the application that are no longer active. This
command will not always free program static storage or close all files. Using
RCLRSC may close some files but keep their static storage. When this occurs,
static storage indicates that these files are open, but their open data path (ODP)
does not exist. When I/O is attempted with these files, an error occurs. For addi-
tional information, refer to the CL Reference.

Specifications for Externally Described Files
You can use the DDS to describe files to the OS/400 system. Each record type in
an externally described file is identified by a unique record-format name.

The following text describes the special entries that you can use on the file
description, input, and output specifications for externally described files.
Remember that input and output specifications for externally described files are
optional.

84 RPG/400 User's Guide

 Specifications for Externally Described Files

File Description Specifications
An E entry in position 19 of the file description specifications identifies an externally
described file. The E entry indicates to the compiler that it is to retrieve the external
description of the file from the system when the program is compiled.

The information in this external description includes:

¹ File information, such as file type, and file attributes, such as access method
(by key or relative record number)

¹ Record-format description, which includes the record format name and field
descriptions (names, locations, and attributes).

The information the RPG/400 compiler retrieves from the external description is
printed on the compiler listing when the program is compiled.

Renaming Record-Format Names
Many of the functions that you can specify for externally described files (such as
the CHAIN operation) operate on either a file name or a record-format name. Con-
sequently, each file and record-format name in the program must be a unique sym-
bolic name.

To rename a record-format name, use the RENAME option on the file description
specifications continuation line for the externally described file as shown in
Figure 36. You cannot specify the RENAME option on the main file description spec-
ifications line. The RENAME option is generally used if the program contains two
identical record-format names or if the record-format name exceeds eight charac-
ters, which is the maximum length allowed in an RPG/400 program.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FITMMSTL IP E K DISK

F ITEMFORMAT KRENAMEMSTITM

F*

Figure 36. RENAME Option for Record Format Names in an Externally Described File

To rename a record format in an externally described file, use a file description
specifications continuation line to specify the RENAME option. (The RENAME option
cannot be specified on the main file description line because the external name
positions overlap some of the entries on the main file description line.) On the
continuation line, enter the external name of the record format, left-adjusted, in
positions 19 through 28. Specify K in position 53, RENAME in positions 54 through
59, and the program name for the record format, left-adjusted, in positions 60
through 67. The remaining positions of the continuation line must be blank.

In this example, the record format ITEMFORMAT in the externally described file
ITMMSTL is renamed MSTITM for use in this program.

 Chapter 5. General File Considerations 85

 Specifications for Externally Described Files

Ignoring Record Formats
If a record format in an externally described file is not to be used in a program, you
can use the IGNORE option to make the program run as if the record format did not
exist in the file. For logical files, this means that all data associated with that
format is inaccessible to the program. Use the IGNORE option on a file description
specifications continuation line for the externally described file as shown in
Figure 37.

The file must have more than one record format, and not all of them can be
ignored; at least one must remain. Except for that requirement, any number of
record formats can be ignored for a file.

If a record-format name is specified on a continuation line for the IGNORE option, it
cannot be specified on a continuation line for any other option (SFILE, RENAME, or
PLIST), or on a continuation line for another IGNORE.

Ignored record-format names appear on the cross-reference listing, but they are
flagged as ignored.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FITMMSTL UF E K DISK

F NOTUSED KIGNORE

F*

Figure 37. IGNORE Option for Record Formats in an Externally Described File

To ignore a record format from an externally described file, use a file description
specifications continuation line to specify the IGNORE option. (The IGNORE option
cannot be specified on the main file description line because the external name
positions overlap some of the entries on the main file description line.) On the
continuation line, enter the external name of the record format, left-adjusted, in
positions 19 through 28, K in position 53, and IGNORE in positions 54 through 59.
The remaining positions of the continuation line must be blank.

In this example, the record format NOTUSED in the externally described file
ITMMSTL is ignored.

 Floating-Point Fields
The RPG/400 program does not support the use of floating-point fields. If you
process an externally described file with floating-point fields, the following happens:

¹ You cannot access the floating-point fields.

¹ When you create a new record, the floating-point fields in the record have the
value zero.

¹ When you update existing records, the floating-point fields are unchanged.

¹ If you attempt to use a floating-point field as a key field, your program receives
a compile-time error.

86 RPG/400 User's Guide

 Specifications for Externally Described Files

Overriding or Adding RPG/400 Functions to an External Description
You can use the input specifications to override certain information in the external
description of an input file or to add RPG/400 functions to the external description.
On the input specifications, you can:

¹ Assign record identifying indicators to record formats as shown in Figure 38.

¹ Rename a field as shown in Figure 38.

¹ Assign control level indicators to fields as shown in Figure 38.

¹ Assign match-field values to fields for matching record processing as shown in
Figure 39 on page 88.

¹ Assign field indicators as shown in Figure 39 on page 88.

You cannot use the input specifications to override field locations in an externally
described file. The fields in an externally described file are placed in the records in
the order in which they are listed in the data description specifications. Also,
device-dependent functions such as forms control, are not valid in an RPG/400
program for externally described files.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IRcdname+....In...*

IMSTR1IEM 01 .1/
I..............Ext-field+......................Field+L1M1..PlMnZr...*

I ITEMNUMB .2/ ITEM L1 .3/
I*

IMSTRWHSE 02

I ITEMNUMB ITEM L1

I*

I*

Figure 38. Overriding and Adding RPG/400 Functions to an External Description

.1/ To assign a record identifying indicator to a record in an externally described
file, specify the record-format name in positions 7 through 14 of the input
specifications and assign a valid record identifying indicator in positions 19
and 20. A typical use of input specifications with externally described files is
to assign record identifying indicators.

In this example, record identifying indicator 01 is assigned to the record
MSTRITEM and indicator 02 to the record MSTRWHSE.

.2/ To rename a field in an externally described record, specify the external
name of the field, left-adjusted, in positions 21 through 30 of the field-
description line. In positions 53 through 58, specify the name that is to be
used in the program.

In this example, the field ITEMNUMB in both records is renamed ITEM for
this program because ITEMNUMB exceeds the maximum length of six char-
acters that is allowed for an RPG/400 field name.

.3/ To assign a control-level indicator to a field in an externally described record,
specify the name of the field in positions 53 through 58 and specify a control
level indicator in positions 59 and 60.

 Chapter 5. General File Considerations 87

 Specifications for Externally Described Files

In this example, the ITEM field in both records MSTRITEM and MSTRWHSE
is specified to be the L1 control field.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IMSTREC 01 .1/
I....................................PFromTo++DField+L1M1FrPlMnZr...*

I CUSTNO M1 .1/
I*

IWKREC 02

I CUSTNO M1

I BALDUE 98 .2/
I*

Figure 39. Adding RPG/400 Functions to an External Description

.1/ To assign a match value to a field in an externally described record, specify
the record-format name in positions 7 through 14 of the record identification
line. On the field-description line specify the name of the field in positions 53
through 58 and assign a match-level value in positions 61 and 62.

In this example, the CUSTNO field in both records MSTREC and WKREC is
assigned the match-level value M1.

.2/ To assign a field indicator to a field in an externally described record, specify
the record-format name in positions 7 through 14 of the record identification
line. On the field-description line, specify the field name in positions 53
through 58, and specify an indicator in positions 65 through 70.

In this example, the field BALDUE in the record WKREC is tested for zero
when it is read into the program. If the field’s value is zero, indicator 98 is
set on.

 Output Specifications
Output specifications are optional for an externally described file. The RPG/400
program supports file operation codes such as WRITE and UPDAT that use the
external record-format description to describe the output record without requiring
output specifications for the externally described file.

You can use output specification to control when the data is to be written, or to
specify selective fields that are to be written. The valid entries for the field-
description line for an externally described file are output indicators (positions 23
through 31), field name (positions 32 through 37), and blank after (position 39).
Edit words and edit codes for fields written to an externally described file are speci-
fied in the DDS for the file. Device-dependent functions such as fetch overflow
(position 16) or space/skip (positions 17-22) are not valid in an RPG/400 program
for externally described files. The overflow indicator is not valid for externally
described files either. For a description of how to specify editing in the DDS, see
the DDS Reference.

If output specifications are used for an externally described file, the record-format
name is specified in positions 7 through 14 instead of the file name.

88 RPG/400 User's Guide

 Specifications for Externally Described Files

If all the fields in an externally described file are to be placed in the output record,
enter *ALL in positions 32 through 37 of the field-description line. If *ALL is speci-
fied, you cannot specify other field description lines for that record.

If you want to place only certain fields in the output record, enter the field name in
positions 32 through 37. The field names you specify in these positions must be
the field names defined in the external record description, unless the field was
renamed on the input specifications. See Figure 40.

You should know about these considerations for using the output specifications for
an externally described file:

¹ In the output of an update record, only those fields specified in the output field
specifications and meeting the conditions specified by the output indicators are
placed in the output record to be rewritten. Fields not specified in the output
specifications are rewritten using the values that were read. This technique
offers a good method of control as opposed to the UPDAT operation code that
updates all fields.

¹ In the creation of a new record, the fields specified in the output field specifica-
tions are placed in the record. Fields not specified in the output field specifica-
tions or not meeting the conditions specified by the output indicators are written
as zeros or blanks depending on the data format specified in the external
description.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OITMREC D 20

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O *ALL .1/
O*

O*

OSLSREC D 30

O SLSNAM .2/
O COMRAT

O 15 BONUS

O*

O*

Figure 40. Output Specifications for an Externally Described File

.1/ For an update file, all fields in the record are written to the externally
described record ITMREC using the current values in the program for all
fields in the record.

For the creation of a new record, all fields in the record are written to the
externally described record ITMREC using the current values in the program
for the fields in the record.

.2/ To update a record, the fields SLSNAM and COMRAT are written to the
externally described record SLSREC when indicator 30 is on. The field
BONUS is written to the SLSREC record when indicators 30 and 15 are on.
All other fields in the record are written with the values that were read.

 Chapter 5. General File Considerations 89

 Printer Files

To create a new record, the fields SLSNAM and COMRAT are written to the
externally described record SLSREC when indicator 30 is on. The field
BONUS is written when indicators 30 and 15 are on. All other fields in the
record are written as zeros or blanks, depending on whether the field is
numeric or character.

 Program-Described Files
Program-described files are files whose records and fields are described on
input/output specifications in the program that uses the file.

Figure 41 shows how to specify sequence checking when your input data must
contain exactly one record of the first type (01 in positions 15 and 16), followed by
at least one record of another type (02 through 04 in positions 15 and 16) in each
group of records read. When the specifications shown in Figure 41 are used and
two consecutive records of the first type are read, a run-time error occurs.

If each group of input records must contain exactly one record of a particular type,
but that record need not be followed by any records of other types, specify no
sequence checking (alphabetic entry in positions 15 and 16).

Write operations to a program-described file require a data structure name in the
result field.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IINPUT 011 10 1 CA

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 2 60TYPE

I 02NO20 1 CB

I 2 11 KEY

I 03NO30 1 CC

I 2 21 NAME

I 04NO40 1 CD

I 2 6 NUMBER

I*

Figure 41. Input Specifications for Sequence Checking

 Printer Files
The PRINTER file allows you to print the output file. A maximum of eight printer files
is allowed per program. You must assign PRINTER as the device name for the file,
and each file must have a unique file name. You can use the CL command
CRTPRTF (Create Print File) to create a printer file (see the CL Reference for
further information on the CRTPRTF command); or you can also use the
IBM-supplied file names. See the Data Management Guide for more information on
these file names.

90 RPG/400 User's Guide

 Printer Files

The file operation codes that are valid for a PRINTER file are WRITE, OPEN, CLOSE, and
FEOD. For a complete description of these operation codes, see the RPG/400
Reference.

PRINTER files can be either externally described or program described. Overflow
indicators OA-OG and OV, fetch overflow, space/skip entries, and the PRTCTL option
are not allowed for an externally described PRINTER file. See the RPG/400
Reference for the valid output specification entries for an externally described file.
See the DDS Reference for information on the DDS for externally described printer
files.

For an externally described PRINTER file, you can specify the DDS keyword INDARA.
If you try to use this keyword for a program-described PRINTER file, you get a run-
time error.

 Page Overflow
An important consideration when you use a PRINTER file is page overflow. For an
externally described PRINTER file, you are responsible for handling page overflow.
Do one of the following:

¹ Count the number of output lines per page.

¹ Check for a file exception/error by specifying an indicator in positions 56 and 57
of the calculation specifications that specify the output operation, or by speci-
fying an INFSR that can handle the error. The INFDS has detailed information
on the file exception/error. See “Exception/Error Handling” on page 70 for
further information on exception and error handling.

¹ Specify an indicator 01 through 99 as the overflow indicator in positions 33 and
34 of the file description specifications.

¹ Check INFDS for line number and page overflow. Refer to the RPG/400
Reference for more information.

For either a program-described or an externally described file, you can specify an
indicator 01 through 99 in positions 33 and 34 of the file description specifications.
This indicator is set on when a line is printed on the overflow line, or the overflow
line is reached or passed during a space or skip operation. Use the indicator to
condition your response to the overflow condition. The indicator does not condition
the RPG/400 overflow logic as an overflow indicator (OA through OG, OV) does. You
are responsible for setting the indicator off.

For both program-described and externally described files, the line number and
page number are available in the file's INFDS. To access this information, specify
an INFDS for the file using a file continuation specification. On the specification,
define the line number in positions 367-368 and define the page number in posi-
tions 369-372 of the data structure. Both the line number and the page number
fields must be defined as binary with no decimal positions. Because the INFDS will
be updated after every output operation to the printer file, these fields can be used
to determine the current line and page number without having line-count logic in the
program.

For a program-described PRINTER file, the following sections on overflow indicators
and fetch overflow logic apply.

 Chapter 5. General File Considerations 91

 Printer Files

 Overflow Indicators
An overflow indicator (OA through OG, OV) is set on when the last line on a page has
been printed or passed. An overflow indicator can be used to specify the lines to
be printed on the next page. Overflow indicators can be specified only for program-
described PRINTER files and are used primarily to condition the printing of heading
lines. An overflow indicator is defined in positions 33 and 34 of the file description
specifications and can be used to condition operations in the calculation specifica-
tions (positions 9 through 17) and output specifications (positions 23 through 31). If
an overflow indicator is not specified, the RPG/400 compiler assigns the first
unused overflow indicator to the PRINTER file. Overflow indicators can also be spec-
ified as resulting indicators on the calculation specifications (positions 54 through
59).

The RPG/400 compiler sets on an overflow indicator only the first time an overflow
condition occurs on a page. An overflow condition exists whenever one of the fol-
lowing occurs:

¹ A line is printed past the overflow line.
¹ The overflow line is passed during a space operation.
¹ The overflow line is passed during a skip operation.

Table 4 on page 93 shows the results of the presence or absence of an overflow
indicator on the file description and output specifications.

The following considerations apply to overflow indicators used on the output
specifications:

¹ Spacing past the overflow line sets the overflow indicator on.

¹ Skipping past the overflow line to any line on the same page sets the overflow
indicator on.

¹ Skipping past the overflow line to any line on the new page does not set the
overflow indicator on unless a skip-to is specified past the specified overflow
line.

¹ A skip to a new page specified on a line not conditioned by an overflow indi-
cator sets the overflow indicator off after the forms advance to a new page.

¹ If you specify a skip to a new line and the printer is currently on that line, a skip
does not occur. The overflow indicator is set to off, unless the line is past the
overflow line.

¹ When an OR line is specified for an output print record, the space and skip
entries of the preceding line are used. If they differ from the preceding line,
enter space and skip entries on the OR line.

¹ Control level indicators can be used with an overflow indicator so that each
page contains information from only one control group. See Figure 42 on
page 94.

¹ For conditioning an overflow line, an overflow indicator can appear in either an
AND or an OR relationship. For an AND relationship, the overflow indicator must
appear on the main specification line for that line to be considered an overflow
line. For an OR relationship, the overflow indicator can be specified on either
the main specification line or the OR line. Only one overflow indicator can be
associated with one group of output indicators. For an OR relationship, only the

92 RPG/400 User's Guide

 Printer Files

conditioning indicators on the specification line where an overflow indicator is
specified is used for the conditioning of the overflow line.

¹ If an overflow indicator is used on an AND line, the line is not an overflow line.
In this case, the overflow indicator is treated like any other output indicator.

¹ When the overflow indicator is used in an AND relationship with a record identi-
fying indicator, unusual results are often obtained because the record type
might not be the one read when overflow occurred. Therefore, the record iden-
tifying indicator is not on, and all lines conditioned by both overflow and record
identifying indicators do not print.

¹ An overflow indicator conditions an exception line (E in position 15), and condi-
tions fields within the exception record.

The first part of the following figure is an example of the coding necessary for
printing headings on every page: first page, every overflow page, and each new
page to be started because of a change in control fields (L2 is on). The first line
allows the headings to be printed at the top of a new page (skip to 06) only when
an overflow occurs (OA is on and L2 is not on).

The second line allows printing of headings on the new page only at the beginning
of a new control group (L2 is on). This way, duplicate headings caused by both L2
and OA being on at the same time do not occur. The second line allows headings
to be printed on the first page after the first record is read because the first record
always causes a control break (L2 turns on) if control fields are specified on the
record.

The second part of the figure is the necessary coding for the printing of certain
fields on every page; a skip to 06 is done either on an overflow condition or on a
change in control level (L2). The NL2 indicator prevents the line from printing and
skipping twice in the same cycle.

Table 4. Results of the Presence or Absence of an Overflow Indicator

File
Description
Specifications
Positions
33-34

Output
Specifications
Positions
23-31

 Action

No entry No entry First unused overflow indicator used to condition
skip to next page at overflow.

No entry Entry Error at compile time; overflow indicator dropped
from output specifications. First unused over-
flow indicator used to condition skip to next
page at overflow.

Entry No entry Continuous printing; no overflow recognized.

Entry Entry Processes normal overflow.

 Chapter 5. General File Considerations 93

 Printer Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT H 306 OANL2

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O OR L2

O 8 'DATE'

O 18 'ACCOUNT'

O 28 'N A M E'

O 46 'BALANCE'

O*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT D 306 OANL2

O OR L2

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O ACCT 8

O*

Figure 42. Using Control Level Indicators with an Overflow Indicator

 Fetch-Overflow Logic
When there is not enough space left on a page to print the remaining detail, total,
exception, and heading lines conditioned by the overflow indicator, the fetch over-
flow routine can be called. This routine causes an overflow. To determine when to
fetch the overflow routine, study all possible overflow situations. By counting lines
and spaces, you can calculate what happens if overflow occurs on each detail,
total, and exception line.

The fetch-overflow routine allows you to alter the basic RPG/400 overflow logic to
prevent printing over the perforation and to let you use as much of the page as
possible. During the regular program cycle, the RPG/400 compiler checks only
once, immediately after total output, to see if the overflow indicator is on. When the
fetch overflow function is specified, the RPG/400 compiler checks overflow on each
line for which fetch overflow is specified. See Figure 43 on page 95.

Specify fetch overflow with an F in position 16 of the output specifications on any
detail, total, or exception lines for a PRINTER file. The fetch overflow routine does
not automatically cause forms to advance to the next page.

During output, the conditioning indicators on an output line are tested to determine
if the line is to be written. If the line is to be written and an F is specified in position
16, the RPG/400 compiler tests to determine if the overflow indicator is on. If the
overflow indicator is on, the overflow routine is fetched and the following operations
occur:

1. Only the overflow lines for the file with the fetch specified are checked for
output.

2. All total lines conditioned by the overflow indicator are written.

94 RPG/400 User's Guide

 Printer Files

3. Forms advance to a new page when a skip to a line number less than the line
number the printer is currently on is specified in a line conditioned by an over-
flow indicator.

4. Heading, detail, and exception lines conditioned by the overflow indicator are
written.

5. The line that fetched the overflow routine is written.

6. Any detail and total lines left to be written for that program cycle are written.

Position 16 of each OR line must contain an F if the overflow routine is to be used
for each record in the OR relationship. Fetch overflow cannot be used if an overflow
indicator is specified in positions 23 through 31 of the same specification line. If
this is the case, the overflow routine is not fetched.

Figure 44 on page 96 shows the use of fetch overflow.

Overflow

Occurs

During

Get a

Record

Total

Calculations

Total

output

Overflow

Printing

T = Total

H = Heading

D = Detail

E = Exception

Detail

Calculations

Heading

and

Detail

Output

Set Off

Overflow

Indicators

Without Fetch With Fetch

Normal Output Exception Output Exception OutputNormal Output

Detail

Output

Detail

Output

Total

Output

Total

Output

Detail

Calc

Detail

Calc

Total

Calc

Total

Calc

Print Print Print Print

Print

Print

Print

Print

0 A

0 A

0 A

0 A

0 A

0 A

0 A

0 A

Off Off Off Off Off Off Off Off

Overflow printing and Setting of the OA Overflow Indicator

Figure 43. Overflow Printing: Setting of the Overflow Indicator

 Chapter 5. General File Considerations 95

 Printer Files

.A/ When fetch overflow is not specified, the overflow lines print after total
output. No matter when overflow occurs (OA is on), the overflow indicator OA
remains on through overflow output time and is set off after heading and
detail output time.

.B/ When fetch overflow is specified, the overflow lines are written before the
output line for which fetch overflow was specified, if the overflow indicator OA
is on. When OA is set on, it remains on until after heading and detail output
time. The overflow lines are not written a second time at overflow output
time unless overflow is sensed again since the last time the overflow lines
were written.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINTER H 305 OA

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 15 'EMPLOYEE TOTAL'

O TF 1 L1

O EMPLTOT 25

O T 1 L1

O EMPLTOT 35

O T 1 L1

O EMPLTOT 45

O TF 1 L1

O EMPLTOT 55

O T 1 L1

O EMPLTOT 65

O T 1 L1

O EMPLTOT 75

O T 1 L1

O*

Figure 44. Use of Fetch Overflow

The total lines with an F coded in position 16 can fetch the overflow routine. They
only do so if overflow is sensed prior to the printing of one of these lines. Before
fetch overflow is processed, a check is made to determine whether the overflow
indicator is on. If it is on, the overflow routine is fetched, the heading line condi-
tioned by the overflow indicator is printed, and the total operations are processed.

PRTCTL (Printer Control) Option
The PRTCTL (printer control) option allows you to change forms control information
and to access the current line value within the program for a program-described
PRINTER file.

Specify the PRTCTL option on a file description specifications continuation line for the
PRINTER file with the following:

Note: If the file has a share ODP or user-controlled open, the line count value
may be incorrect.

96 RPG/400 User's Guide

 Printer Files

The data structure specified in positions 60 through 65 of the file description specifi-
cations continuation line must be specified on the input specifications and must
contain at least the following five subfields specified in the following order:

The values contained in the first four subfields of the data structure are the same
as those allowed in positions 17 through 22 (space and skip entries) of the output
specifications. If the space/skip entries (positions 17 through 22) of the output
specifications are blank, and if subfields 1 through 4 are also blank, the default is to
space 1 after. If the PRTCTL option is specified, it is used only for the output records
that have blanks in positions 17 through 22. You can control the space and skip
value (subfields 1 through 4) for the PRINTER file by changing the values in these
subfields while the program is running. See Figure 45 on page 98.

Subfield 5 contains the current line count value. The RPG/400 compiler does not
initialize subfield 5 until after the first output line is printed. The RPG/400 compiler
then changes subfield 5 after each output operation to the file.

 Position Entry

6 F

7-52 Blank if the information is specified on a separate continuation line

53 K (indicates a continuation line)

54-59 PRTCTL

60-65 Name of the data structure used to contain the printer control and line
count information

66-74 Blank if the information is specified on a separate continuation line.

Data
Structure
Positions

Subfield
Contents

1 A one-position character field that contains the space-before value

2 A one-position character field that contains the space-after value

3-4 A two-position character field that contains the skip-before value

5-6 A two-position character field that contains the skip-after value

7-9 A three-digit numeric field with zero decimal positions that contains
the current line count value.

 Chapter 5. General File Considerations 97

 Printer Files

Figure 46 on page 99 is a processing chart for PRINTER files.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FPRINT O F 132 PRINTER KPRTCTLLINE

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IDsname....NODsExt-file++.............OccrLen+......................*

ILINE DS

I..............Ext-field+............PFromTo++DField+...............*

I 1 1 SPBEFR

I 2 2 SPAFTR

I 3 4 SKBEFR

I 5 6 SKAFTR

I 7 90CURLIN

I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C 01 CURLIN COMP 10 49

C 01 49 MOVE '3' SPAFTR

C*

C*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT 01

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O DATA 25

O*

Figure 45. Example of the PRTCTL Option

On the file description specifications, the PRTCTL option is specified for the PRINT
file. The name of the associated data structure is LINE.

The LINE data structure is defined on the input specifications as having only those
subfields that are predefined for the PRTCTL data structure. The first four subfields
in positions 1 through 6 are used to supply space and skip information that is gen-
erally specified in positions 17 through 22 of the output specifications. The PRTCTL
option allows you to change these specifications within the program.

In this example, the value in the SPAFTR subfield is changed to 3 when the value in
the CURLIN (current line count value) subfield is equal to 10. (Assume that indicator
01 was set on as a record identifying indicator.)

98 RPG/400 User's Guide

 Sequential File

L i n e

F i le A d d i t io n/ U n ord er e d

D e v i c e
S y m b o l i c

D e v i c e

N a m e o f

L a b e l E x i t

C o n t i n u a t i o n L i n e s

K

E x t e n t E x i t

f o r D A M

S t o r a g e I n d e x

L
a

b
e

ls
S

/
N

/
E

/
M

F i l e n a m e

F

3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4

O p t i o n E n t r yA
/

D

EI/
O

/
U

/
C

/
D

File Description Specifications

F i l e

C o n d i t io n

U 1 - U 8 ,

UC

Number of Tracks

for Cylinder Overf low

N u m b e r o f E x t e n t s

Ta p e R e w i n d

R
/

U
/

N

A
/

U

F i l e T y p e

F i l e D e s i g n a t i o n

E n d o f F i l e

Se qu e n c e

F i l e F o r m a t

M o d e o f P r o c e s s i n g

Length of Key F ie ld or

o f Re cord Addre ss F ie ld

Record Addres s Type

Ove rf low Ind icato r

F
o

rm
T

y
p

e R e c o r d

L e n g t h

P
/

S
/

C
/

R
/

T
/

D
/

F

Key F ield

S t a r t i n g

Loc a t io n E
x

t
e

n
s

io
n

C
o

d
e

E
/

L

I/
X

/
D

/
T

/
R

/
o

r
2

A
/

P
/

I/
K

L
/

R

F
/

V
/

S
/

M
/

D
/

E

B l o c k

L e n g t h

Type o f F i le

O r g a n i za t io n o r

Addi t ion al Are a

E x t e r n a l R e c o r d N a m e

O

O

F

E

P R I N T E R

P R I N T E R

0 2

0 3

0 4

0 5

0 6

F

F

F

F

F

1

1

Figure 46. Processing Chart for PRINTER Files

Valid File Operations:

1. WRITE, OPEN, CLOSE, FEOD

Note: Shaded positions must be blank. Positions without entries are program
dependent.

 Sequential File
A sequential (SEQ) device specification, positions 40 through 46 in the file
description specification, indicates that the input or output is associated with a
sequentially organized file. Refer to Figure 47. The actual device to be associated
with the file while running the RPG/400 program can be specified by a OS/400
override command (see the CL Reference for further information), or by the file
description that is pointed to by the file name.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FTIMECDS IP E DISK

FPAYOTIMEO F 132 SEQ

F*

F*

Figure 47. SEQ Device

A SEQ device is specified for the PAYOTIME file. When the program is run, you can
use a OS/400 override command to specify the actual device (such as printer, tape,
or diskette) to be associated with the file while the program is running. For
example, diskette can be specified for some program runs while printer can be
specified for others. The file description, pointed to by the file name, can specify
the actual device, in which case an override command need not be used.

Any sequentially organized file, such as diskette, tape, database, savefile, or
printer, can be associated with the SEQ device. If SEQ is specified in an RPG/400
program, no device-dependent functions such as space/skip, or CHAIN can be speci-
fied.

Use the SEQ device specifications whenever you write to a tape file. To write
variable-length records to a tape file, also use the RCDBLKFMT parameter of either

 Chapter 5. General File Considerations 99

 Sequential File

the CL command CRTTAPF or OVRTAPF. (See the CL Reference.) When you
use the RCDBLKFMT parameter, the length of each record that your program
writes to the tape file is determined by the highest end position specified in posi-
tions 40 through 43 of the output specifications for that record. If you do not
specify an end position, the RPG/400 compiler calculates the record length from the
length of the fields in the record.

Read variable-length tape records as you would read records from any sequentially
organized file. Be sure the record length specified on the file description specifica-
tion accommodates the longest record in the file.

The following figure shows the operation codes allowed for a SEQ file.

┌──┐
│ File Description │
│ Specifications Calculation Specifications │
│ Positions Positions │
│ 15 16 28-32 │
├──┤
│ I P/S CLOSE, FEOD │
│ │
│ I F READ, OPEN, CLOSE, │
│ FEOD │
│ │
│ O WRITE, OPEN, CLOSE, │
│ FEOD │
│ │
└──┘

Note: No print control specifications are allowed for a
sequential file.

Figure 48. Valid File Operation Codes for a Sequential File

Figure 49 on page 101 is a processing chart for SEQ files.

100 RPG/400 User's Guide

 Special File

L i n e

F i le A d d i t io n /U n o rd er e d

D e v i c e
S y m b o l i c

D e v i c e

N a m e o f

L a b e l E x i t

C o n t i n u a t i o n L i n e s

K

E x t e n t E x i t

f o r D A M

S t o r a g e I n d e x

L
a

b
e

ls
S

/
N

/
E

/
M

F i l e n a m e

F

3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4

O p t i o n E n t r yA
/

D

EI/
O

/
U

/
C

/
D

File Description Specif ications

F i l e

C o n d i t i o n

U 1 - U 8 ,

UC

Number of Tracks

for Cylinder Overf low

N u m b e r o f E x t e n t s

Ta p e R e w i n d

R
/

U
/

N

A
/

U

F i l e T y p e

F i l e D e s i g n a t i o n

E n d o f F i l e

Se qu e n c e

F i l e F o r m a t

M o d e o f P r o c e s s i n g

Length of Key Fie ld or

o f Re cord Addre ss F ie ld

Record Address Type

Ove rf low Ind icato r

F
o

rm
T

y
p

e R e c o r d

L e n g t h

P
/

S
/

C
/

R
/

T
/

D
/

F

Key F ield

S t a r t i n g

Loc a t io n E
x

t
e

n
s

io
n

C
o

d
e

E
/

L

I/
X

/
D

/
T

/
R

/
o

r
2

A
/

P
/

I/
K

L
/

R

F
/

V
/

S
/

M
/

D
/

E

B l o c k

L e n g t h

Type o f F i le

O r g a n i za t io n o r

Addi t ion al Are a

S E Q

S E Q

S E Q

S E Q

S E Q

S E Q

S E Q

S E Q

S E Q

S E Q

S E Q

I P

I S

I F

I R

I R

C T

O

I P

I S

I F

O

F

F

F

F

F

F

F

E

E

E

E

T

E

E

E

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

1

1

2

2

3

3

4

4

E x t e r n a l R e c o r d N a m e

Figure 49. Processing Chart for SEQ Files

Valid File Operations:

 1. CLOSE, FEOD

2. READ, OPEN, CLOSE, FEOD

3. OPEN, CLOSE, FEOD

4. WRITE, OPEN, CLOSE, FEOD

Note: Shaded positions must be blank. Positions without entries are program
dependent.

 Special File
SPECIAL in positions 40 through 46 of the file description specifications allows you
to specify an input and/or output device that is not directly supported by the
RPG/400 functions. The input and output operations for the file are controlled by a
user-written routine. Positions 54 through 59 of the file description specifications
line that contains SPECIAL in positions 40 through 46 must contain the name of the
user-written routine.

 Chapter 5. General File Considerations 101

 Special File

RPG/400 calls this user-written routine to open the file, read and write the records,
and close the file. RPG/400 creates a parameter list for use by the user-written
routine. The parameter list contains an option code parameter (option), a return
status parameter (status), an error-found parameter (error), and a record area
parameter (area). This parameter list is accessed by the RPG/400 program and by
the user-written routine; it cannot be accessed by the RPG/400 program that con-
tains the SPECIAL file.

The following describes the parameters in this RPG-created parameter list:

¹ Option: The option parameter is a one-position character field that indicates the
action the user-written routine is to process. Depending on the operation being
processed on the SPECIAL file (OPEN, CLOSE, READ, WRITE, DELET, UPDAT),
one of the following values is passed to the user-written routine from RPG/400:

¹ Status: The status parameter is a one-position character field that indicates the
status of the user-written routine when control is returned to the RPG/400
program. Status must contain one of the following return values when the
user-written routine returns control to the RPG/400 program:

¹ Error: The error parameter is a five-digit zoned numeric field with zero decimal
positions. If the user-written routine detects an error, the error parameter con-
tains an indication or value representing the type of error. The value is placed
in the first five positions of location *RECORD in the INFDS when the status
parameter contains 2.

¹ Area: The area parameter is a character field whose length is equal to the
record length associated with the SPECIAL file. This field is used to pass the
record to or receive the record from the RPG/400 program.

Value
Passed

Description

O Open the file.

C Close the file.

R Read a record and place it in the area defined by the area parameter.

W The RPG/400 program has placed a record in the area defined by the
area parameter; the record is to be written out.

D Delete the record.

U The record is an update of the last record read.

Return
Value

Description

0 Normal return. The requested action was processed.

1 The input file is at end of file, and no record has been returned. If the
file is an output file, this return value is an error.

2 The requested action was not processed; error condition exists.

102 RPG/400 User's Guide

 Special File

You can add additional parameters to the RPG-created parameter list. Specify
PLIST in positions 54 through 59 and the name of the PLIST in positions 60 through
65 of a file description specifications continuation line for the SPECIAL file. See
Figure 50. Then use the PLIST operation in the calculation specifications to define
the additional parameters.

The user-written routine, the name that is specified in positions 54 through 59 of
the file description specifications for the SPECIAL file, must contain an entry
parameter list that includes both the RPG-created parameters and the user-
specified parameters.

If the SPECIAL file is specified as a primary file, the user-specified parameters
must be initialized before the first primary read. You can initialize these parameters
with a factor 2 entry on the PARM statements or by the specification of a compile-
time array or an array element as a parameter.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FEXCPTN 1 F SPECIAL USERIO

F KPLIST SPCL

F*

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SPCL PLIST

C PARM FLD1

C PARM FLD2

C PARM FLD3

C*

C*

Figure 50. SPECIAL Device

The file EXCPTN is assigned to the device SPECIAL. The I/O operations for the
SPECIAL device are controlled by the user-written routine USERIO. The parameters
specified for the programmer-defined PLIST SPCL are added to the end of the
RPG-created parameter list for the SPECIAL device. The programmer-specified
parameters can be accessed by the user RPG/400 program and the user-written
routine; whereas the RPG-created parameter list can be accessed only by internal
RPG/400 logic and the user-written routine.

 Chapter 5. General File Considerations 103

 Special File

Figure 51 shows the file operation codes that are valid for a SPECIAL file.

┌──┐
│ File Description │
│ Specifications Calculation Specifications │
│ Positions Positions │
│ 15 16 28-32 │
├──┤
│ I P/S CLOSE, FEOD │
│ │
│ C P/S WRITE, CLOSE, FEOD │
│ │
│ U P/S UPDAT, DELET, CLOSE │
│ FEOD │
│ │
│ O WRITE, OPEN, CLOSE, │
│ FEOD │
│ │
│ I F READ, WRITE, OPEN, │
│ CLOSE, FEOD │
│ │
│ C F READ, WRITE, OPEN, │
│ CLOSE, FEOD │
│ │
│ U F READ, UPDAT, DELET, │
│ OPEN, CLOSE, FEOD │
└──┘

Figure 51. Valid File Operations for a SPECIAL File

104 RPG/400 User's Guide

 Special File

Figure 52 is a processing chart for SPECIAL files.

L i n e

F i l e A d d i t io n / U n o r d e r e d

D e v i c e
S y m b o l i c

D e v i c e

N a m e o f

L a b e l E x i t

C o n t i n u a t i o n L i n e s

K

E x t e n t E x i t

f o r D A M

S t o r a g e I n d e x

L
a

b
e

ls
S

/
N

/
E

/
M

F i l e n a m e

F

3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4

O p t i o n E n t r yA
/

D

EI/
O

/
U

/
C

/
D

File Descript ion Specif ications

F i l e

C o n d i t i o n

U 1 - U 8 ,

UC

N um be r of T racks

fo r Cyl inder O verf low

N u m b e r o f E x t e n t s

Ta p e R e w i n d

R
/

U
/

N

A
/

U

F i l e T y p e

F i l e D e s i g n a t i o n

E n d o f F i l e

Se q ue n c e

F i l e F o r m a t

M o d e o f P r o c e s s i n g

Le n g th o f Ke y F ie ld o r

o f R e c o rd A dd re ss F ie ld

R ec o r d A ddr e ss Ty p e

O v e r f lo w I n d ic at o r

F
o

r
m

T
y

p
e R e c o r d

L e n g t h
P

/
S

/
C

/
R

/
T

/
D

/
F

Key F ie ld

S t a r t i n g

L o c a t i o n

E
x

t
e

n
s

io
n

C
o

d
e

E
/

L

I
/

X
/

D
/

T
/

R
/

o
r

2

A
/

P
/

I
/

K

L
/

R

F
/

V
/

S
/

M
/

D
/

E

B l o c k

L e n g t h

Ty pe of F i le

O r g a n i z a t io n o r

Add it iona l Area

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

3 4

3 5

3 6

3 7

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

I P

I S

U P

U S

I F

I S

C F

F

F

F

F

F

F

F

F

F

F

E

E

C S

U F

O

I P

C P

C S

U P

U S

I F

C F

U F

O

E

E

E

E

E

E

E

E

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

S P E C I A L

C P

1

1

2

2

3

3

4

4

5

5

6

6

7

7

E x t e r n a l R e c o r d N a m e

Figure 52. Processing Chart for SPECIAL Files

 Chapter 5. General File Considerations 105

 Special File

Valid File Operations:

 1. CLOSE, FEOD

2. WRITE, CLOSE, FEOD

3. UPDAT, DELET, CLOSE, FEOD

4. READ, OPEN, CLOSE, FEOD

5. READ, WRITE, OPEN, CLOSE, FEOD

6. READ, DELET, UPDAT, OPEN, CLOSE, FEOD

7. WRITE, OPEN, CLOSE, FEOD

Notes:

1. Shaded positions must be blank. Positions without entries are program
dependent.

2. Positions 54 through 59 must contain the name of the user-written routine that
controls the input/output operations for the file.

106 RPG/400 User's Guide

 Using Commitment Control

 Chapter 6. Commitment Control

This chapter describes how to use commitment control to process file operations as
a group. With commitment control, you ensure one of two outcomes for the file
operations: either all of the file operations are successful or none of the file oper-
ations has any effect. In this way, you process a group of operations as a unit.

Using Commitment Control
To use commitment control, you do the following:

¹ Use the CL commands CRTJRN (Create Journal), CRTJRNRCV (Create
Journal Receiver) and STRJRNPF (Journal Physical File) to prepare for using
commitment control, and the CL commands STRCMTCTL (Start Commitment
Control) and ENDCMTCTL (End Commitment Control) to notify the system
when you want to start and end commitment control. See the CL Reference for
information on these commands.

¹ Specify commitment control on the file-description specifications of the files you
want under commitment control.

¹ Use the COMIT (Commit) operation code to apply a group of changes to files
under commitment control, or use the ROLBK (Roll Back) operation code to elim-
inate the pending group of changes to files under commitment control.

Starting and Ending Commitment Control
The CL command STRCMTCTL notifies the system that you want to process files
under commitment control.

The LCKLVL (Lock Level) parameter allows you to select the level at which records
are locked under commitment control. See “Commitment Control Locks” on
page 109 and the CL Programmer’s Guide for further details on lock levels.

When you complete a group of changes with a COMIT operation, you can specify a
label to identify the end of the group. In the event of an abnormal job end, this
identification label is written to a file, message queue, or data area so that you
know which group of changes is the last group to be completed successfully. You
specify this file, message queue, or data area on the STRCMTCTL command.

Before you call any program that processes files specified for commitment control,
issue the STRCMTCTL command. If you call a program that opens a file specified
for commitment control before you issue the STRCMTCTL command, the opening
of the file will fail.

The CL command ENDCMTCTL notifies the system that your routing step has fin-
ished processing files under commitment control. See the CL Reference for further
information on the STRCMTCTL and ENDCMTCTL commands.

 Copyright IBM Corp. 1994 107

 Using Commitment Control

Specifying Files for Commitment Control
On the file-continuation specifications, enter a K in position 53 and the word COMIT

in positions 54 through 59. On the file-description specifications, describe the file
as having device DISK in positions 40 through 46.

When a program specifies commitment control for a file, the specification applies
only to the input and output operations made by this program for this file. Commit-
ment control does not apply to operations other than input and output operations. It
does not apply to files that do not have commitment control specified in the
program doing the input or output operation.

When more than one program accesses a file as a shared file, all or none of the
programs must specify the file to be under commitment control.

Commitment Control Operations
The COMIT (Commit) operation tells the system that you have completed a group of
changes to the files under commitment control. The ROLBK (Roll Back) operation
eliminates the current group of changes to the files under commitment control. For
information on how to specify these operation codes and what each operation does,
see the RPG/400 Reference.

If the system fails, it implicitly issues a ROLBK operation. You can check the identity
of the last successfully completed group of changes using the label you specify in
factor 1 of the COMIT operation code, and the notify-object you specify on the
STRCMTCTL command.

At the end of a routing step, or when you issue the ENDCMTCTL command, the
OS/400 system issues an implicit ROLBK, which eliminates any changes since the
last ROLBK or COMIT operation that you issued. To ensure that all your file oper-
ations have effect, issue a COMIT operation before ending a routing step operating
under commitment control.

The OPEN operation permits input and output operations to be made to a file and the
CLOSE operation stops input and output operations from being made to a file.
However, the OPEN and CLOSE operations do not affect the COMIT and ROLBK oper-
ations. A COMIT or ROLBK operation affects a file, even after the file has been
closed. For example, your program may include the following steps:

1. Issue COMIT (for files already opened under commitment control).

2. Open a file specified for commitment control.

3. Perform some input and output operations to this file.

4. Close the file.

 5. Issue ROLBK.

The changes made at step 3 are rolled back by the ROLBK operation at step 5, even
though the file has been closed at step 4. The ROLBK operation could be issued
from another program in the same routing step.

A program does not have to operate all its files under commitment control, and to
do so may adversely affect performance. The COMIT and ROLBK operations have no
effect on files that are not under commitment control.

108 RPG/400 User's Guide

 Using Commitment Control

Note: When multiple devices are attached to an application program, and commit-
ment control is in effect for the files this program uses, the COMIT or ROLBK oper-
ations continue to work on a file basis and not by device. The database may be
updated with partially completed COMIT blocks or changes that other users have
completed may be eliminated. It is your responsibility to ensure this does not
happen.

Commitment Control Locks
On the STRCMTCTL command, you specify a level of locking, either LCKLVL (*ALL)

or LCKLVL (*CHG). When your program is operating under commitment control and
has processed an input or output operation on a record in a file under commitment
control, the record is locked by commitment control as follows:

¹ Your program can access the record.

¹ Another program in your routing step, with this file under commitment control,
can read the record. If the file is a shared file, the second program can also
update the record.

¹ Another program in your routing step that does not have this file under commit-
ment control cannot read or update the record.

¹ Another program in a separate routing step, with this file under commitment
control, can read the record if you specified LCKLVL (*CHG), but it cannot read
the record if you specified LCKLVL (*ALL). With either lock level, the next
program cannot update the record.

¹ Another program that does not have this file under commitment control and that
is not in your routing step can read but not update the record.

¹ Commitment control locks are different than normal locks, depend on the
LCKLVL specified, and can only be released by the COMIT and ROLBK operations.

The COMIT and ROLBK operations release the locks on the records. The UNLCK oper-
ation will not release records locked using commitment control. See the CL Refer-
ence for details on lock levels.

The number of entries that can be locked under commitment control before the
COMIT or ROLBK operations are required may be limited. For more information, see
the Advanced Backup and Recovery Guide

Note: The SETLL and SETGT operations lock a record where a read operation (not
for update) would lock a record for commitment control.

Commitment Control in the Program Cycle
Commitment control is intended for full procedural files, where the input and output
is under your control. Do not use commitment control with primary and secondary
files, where input and output is under the control of the RPG/400 program cycle.
The following are some of the reasons for this recommendation:

¹ You cannot issue a COMIT operation for the last total output in your program.

¹ It is difficult to program within the cycle for recovery from a locked-record condi-
tion.

¹ Level indicators are not reset by the ROLBK operation.

¹ After a ROLBK operation, processing matching records may produce a sequence
error.

 Chapter 6. Commitment Control 109

 Using Commitment Control

Example of Using Commitment Control
The following is an example of the specifications and CL commands for a program
operating under commitment control.

To prepare for using commitment control, you issue the following CL commands:

¹ CRTJRNRCV JRNRCV (RECEIVER)

The above command creates a journal receiver named RECEIVER.

¹ CRTJRN JRN(JOURNAL) JRNRCV(RECEIVER)

The above command creates a journal named JOURNAL and attaches the journal
receiver named RECEIVER.

¹ STRJRNPF FILE(MASTER) JRN(JOURNAL)

The above command directs journal entries for the file MASTER to the journal
JOURNAL.

In your program, you specify COMIT for the file MASTER:.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FMASTER UF E K DISK KCOMIT

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* In the calculation specifications, use the COMIT operation to

C* complete a group of operations.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C KEY CHAINMASTER 50

C N50 UPDATRECORD 99

C N99 COMIT

C*

C* If an operation within a group fails, use the ROLBK operation

C* to eliminate the entire group of operations.

C*

C 99 ROLBK

C*

Figure 53. Example of Using Commitment Control

To operate your program (named REVISE) under commitment control, you issue the
commands:

 ¹ STRCMTCTL LCKLVL(*ALL)

The above command starts commitment control, with the highest level of
locking.

 ¹ CALL REVISE

The above command calls your program (named REVISE).

110 RPG/400 User's Guide

 Using Commitment Control

 ¹ ENDCMTCTL

The above command ends commitment control, and causes an implicit Roll
Back operation.

 Chapter 6. Commitment Control 111

 Using Commitment Control

112 RPG/400 User's Guide

 Externally Described Disk Files

Chapter 7. Using DISK Files

Database files, which are associated with the RPG/400 device DISK in positions 40
through 46 of the file description specifications, can be:

¹ Externally described files, whose fields are described to the OS/400 system
through the data description specifications (DDS)

¹ Program-described files, whose fields are described on input/output specifica-
tions in the program that uses the file.

All database files are created by the OS/400 create file commands. See the CL
Reference for a description of the OS/400 commands that relate to database files.

Externally Described Disk Files
Externally described DISK files are identified by an E in position 19 of the file
description specifications. The E indicates that the compiler is to retrieve the
external description of the file from the system when the program is compiled.
Therefore, you must create the file before the program is compiled.

The external description for a DISK file includes:

¹ The record-format specifications that contain a description of the fields in a
record

¹ Access path specifications that describe how the records are to be retrieved.

These specifications result from the DDS for the file and the OS/400 create file
command that is used for the file.

Record Format Specifications
The record-format specifications allow you to describe the fields in a record and the
location of the fields in a record. The fields are located in the record in the order
specified in the DDS. The field description generally includes the field name, the
field type (character, binary, zoned decimal, or packed decimal), and the field
length (including the number of decimal positions in a numeric field). Instead of
specifying the field attributes in the record format for a physical or logical file, you
can define them in a field-reference file.

In addition, the DDS keywords can be used to:

¹ Specify that duplicate key values are not allowed for the file (UNIQUE)
¹ Specify a text description for a record format or a field (TEXT).

For a complete list of the DDS keywords that are valid for a database file, see the
Database Guide.

 Copyright IBM Corp. 1994 113

 Externally Described Disk Files

Figure 54 shows an example of the DDS for a database file, and Figure 55 on
page 115 for a field-reference file that defines the attributes for the fields used in
the database file. See the DDS Reference for more information on a field-
reference file.

 Access Path
The description of an externally described file contains the access path that
describes how records are to be retrieved from the file. Records can be retrieved
based on an arrival sequence (non-keyed) access path or on a keyed-sequence
access path.

The arrival sequence access path is based on the order in which the records are
stored in the file. Records are added to the file one after another.

For the keyed-sequence access path, the sequence of records in the file is based
on the contents of the key field that is defined in the DDS for the file. For example,
in the DDS shown in Figure 54, CUST is defined as the key field. The keyed-
sequence access path is updated whenever records are added, deleted, or when
the contents of a key field change.

For a complete description of the access paths for an externally described data-
base file, see the Database Guide.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A** LOGICAL CUSMSTL CUSTOMER MASTER FILE

A UNIQUE

A R CUSREC PFILE(CUSMSTP)

A TEXT('Customer Master Record')

A CUST

A NAME

A ADDR

A CITY

A STATE

A ZIP

A SRHCOD

A CUSTYP

A ARBAL

A ORDBAL

A LSTAMT

A LSTDAT

A CRDLMT

A SLSYR

A SLSLYR

A K CUST

Figure 54. Example of the Data Description Specifications for a Database File

114 RPG/400 User's Guide

 Externally Described Disk Files

The sample DDS are for the customer master logical file CUSMSTL. The file con-
tains one record format CUSREC (customer master record). The data for this file is
contained in the physical file CUSMSTP, which is identified by the keyword PFILE.
The UNIQUE keyword is used to indicate that duplicate key values are not allowed
for this file. The CUST field is identified by a K in position 17 of the last line as the
key field for this record format.

The fields in this record format are listed in the order they are to appear in the
record. The attributes for the fields are obtained from the physical file CUSMSTP.
The physical file, in turn, refers to a field-reference file to obtain the attributes for
the fields. The field-reference file is shown in Figure 55.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A**FLDRED DSTREF DISTRIBUTION APPLICATION FIELD REFERENCE

A R DSTREF TEXT('Distribution Field Ref')

A* COMMON FIELDS USED AS REFERENCE

A BASDAT 6 0 EDTCDE(Y) .1/
A TEXT('Base Date Field')

A* FIELDS USED BY CUSTOMER MASTER FILE

A CUST 5 CHECK(MF) .2/
A COLHDG('Customer' 'Number')

A NAME 20 COLHDG('Customer Name')

A ADDR R REFFLD(NAME) .3/
A COLHDG('Customer Address')

A CITY R REFFLD(NAME) .3/
A COLHDG('Customer City')

A STATE 2 CHECK(MF) .2/
A COLHDG('State')

A SRHCOD 6 CHECK(MF) .2/
A COLHDG('Search' 'Code')

A TEXT('Customer Number Search +

A Code')

A ZIP 5 0 CHECK(MF) .2/
A COLHDG('Zip' 'Code')

A CUSTYP 1 0 RANGE(1 5) .4/
A COLHDG('Cust' 'Type')

A TEXT('Customer Type 1=Gov 2=Sch+

A 3=Bus 4=Pvt 5=Oth')

A ARBAL 8 2 COLHDG('Accts Rec' 'Balance') .5/
A EDTCDE(J) .6/
A ORDBAL R REFFLD(ARBAL)

A COLHDG('A/R Amt in' 'Order +

A File')

Figure 55 (Part 1 of 2). Example of a Field Reference File

 Chapter 7. Using DISK Files 115

 Externally Described Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A LSTAMT R REFFLD(ARBAL)

A COLHDG('Last' 'Amount' 'Paid')

A TEXT('Last Amount Paid in A/R')

A LSTDAT R REFFLD(BASDAT)

A COLHDG('Last' 'Date' 'Paid')

A TEXT('Last Date Paid in A/R')

A CRDLMT R REFFLD(ARBAL)

A COLHDG('Credit' 'Limit')

A TEXT('Customer Credit Limit')

A SLSYR R+ 2 REFFLD(ARBAL)

A COLHDG('Sales' 'This' 'Year')

A TEXT('Customer Sales This Year')

A SLSLYR R+ 2 REFFLD(ARBAL)

A COLHDG('Sales' 'Last' 'Year')

A TEXT('Customer Sales Last Year') .7/

Figure 55 (Part 2 of 2). Example of a Field Reference File

This example of a field-reference file shows the definitions of the fields that are
used by the CUSMSTL (customer master logical) file as shown in Figure 54 on
page 114. The field-reference file normally contains the definitions of fields that
are used by other files. The following text describes some of the entries for this
field-reference file.

.1/ The BASDAT field is edited by the Y edit code, as indicated by the keyword
EDTCDE(Y). If this field is used in an externally described output file for an
RPG/400 program, the edit code used is the one specified in this field-
reference file; it cannot be overridden in the RPG/400 program. If the field is
used in a program-described output file for an RPG/400 program, an edit
code must be specified for the field in the output specifications.

.2/ The CHECK(MF) entry specifies that the field is a mandatory fill field when it is
entered from a display work station. Mandatory fill means that all characters
for the field must be entered from the display work station.

.3/ The ADDR and CITY fields share the same attributes that are specified for the
NAME field, as indicated by the REFFLD keyword.

.4/ The RANGE keyword, which is specified for the CUSTYP field, ensures that the
only valid numbers that can be entered into this field from a display work
station are 1 through 5.

.5/ The COLHDG keyword provides a column head for the field if it is used by the
Interactive Database Utilities (IDU).

.6/ The ARBAL field is edited by the J edit code, as indicated by the keyword
EDTCDE(J).

.7/ A text description (TEXT keyword) is provided for some fields. The TEXT
keyword is used for documentation purposes and appears in various listings.

116 RPG/400 User's Guide

 Externally Described Disk Files

Valid Keys for a Record or File
For a keyed-sequence access path, you can define one or more fields in the DDS
to be used as the key fields for a record format. (These fields must not be floating-
point fields.) All record types in a file do not have to have the same key fields. For
example, an order header record can have the ORDER field defined as the key field,
and the order detail records can have the ORDER and LINE fields defined as the key
fields.

The key for a file is determined by the valid keys for the record types in that file.
The file’s key is determined in the following manner:

¹ If all record types in a file have the same number of key fields defined in the
DDS that are identical in attributes, the key for the file consists of all fields in
the key for the record types. (The corresponding fields do not have to have the
same name.) For example, if the file has three record types and the key for
each record type consists of fields A, B, and C, the file’s key consists of fields
A, B, and C. That is, the file’s key is the same as the records’ key.

¹ If all record types in the file do not have the same key fields, the key for the file
consists of the key fields common to all record types. For example, a file has
three record types and the key fields are defined as follows:

– REC1 contains key field A.
– REC2 contains key fields A and B.
– REC3 contains key fields A, B, and C.

The file’s key is field A–the key field common to all record types.

¹ If no key field is common to all record types, there is no key for the file.

In an RPG/400 program, you can specify a search argument on certain file opera-
tion codes to identify the record you want to process. The RPG/400 program com-
pares the search argument with the key of the file or record, and processes the
specified operation on the record whose key matches the search argument.

Valid Search Arguments
You can specify a search argument in the RPG/400 operations CHAIN, DELET,

READE, REDPE, SETGT, and SETLL that specify a file name or a record name.

For an operation to a file name, the maximum number of fields that you can specify
in a search argument is equal to the total number of key fields valid for the file’s
key. For example, if all record types in a file do not contain all of the same key
fields, you can use a key list (KLIST) to specify a search argument that is composed
only of the number of fields common to all record types in the file. If a file contains
three record types, the key fields are defined as follows:

– REC1 contains key field A.
– REC2 contains key fields A and B.
– REC3 contains key fields A, B, and C.

The search argument can only be a single field with attributes identical to field A
because field A is the only key field common to all record types.

For an operation to a record name, the maximum number of fields that you can
specify in a search argument is equal to the total number of key fields valid for that
record type.

 Chapter 7. Using DISK Files 117

 Externally Described Disk Files

If the search argument consists of one field, you can specify a literal, a field name,
or a KLIST name with one KFLD. If the search argument is composed of more than
one field (a composite key), you must specify a KLIST with multiple KFLDs.

The attributes of each field in the search argument must be identical to the attri-
butes of the corresponding field in the file or record key. The attributes include the
length, the data type (character or numeric), and the number of decimal positions.
The attributes are listed in the key-field-information data table of the compiler
listing. See the example in Chapter 2, “Entering RPG/400 Specifications.”

In all these file operations (CHAIN, DELET, READE, REDPE, SETGT, and SETLL), you
can also specify a search argument that contains fewer than the total number of
fields valid for the file or record. Such a search argument refers to a partial key.

Referring to a Partial Key
The rules for the specification of a search argument that refers to a partial key are
as follows:

¹ The search argument is composed of fields that correspond to the leftmost
(high-order) fields of the key for the file or record.

¹ Only the rightmost fields can be omitted from the key list (KLIST) for a search
argument that refers to a partial key. For example, if the total key for a file or
record is composed of key fields A, B, and C, the valid search arguments that
refer to a partial key are field A, and fields A and B.

¹ Each field in the search argument must be identical in attributes to the corre-
sponding key field in the file or record. The attributes include the length, data
type (character or numeric), the number of decimal positions, and format (for
example, packed or zoned).

¹ A search argument cannot refer to a portion of a key field.

If a search argument refers to a partial key, the file is positioned at the first record
that satisfies the search argument or the record retrieved is the first record that
satisfies the search argument. For example, the SETGT and SETLL operations posi-
tion the file at the first record on the access path that satisfies the operation and
the search argument. The CHAIN operation retrieves the first record on the access
path that satisfies the search argument. The DELET operation deletes the first
record on the access path that satisfies the search argument. The READE operation
retrieves the next record if the portion of the key of that record (or the record of the
specified type) on the access path matches the search argument. The REDPE oper-
ation retrieves the prior record if the portion of the key of that record (or the record
of the specified type) on the access path matches the search argument. For more
information on the above operation codes, see the RPG/400 Reference.

Processing Methods for Externally Described DISK Files
You can process externally described DISK files sequentially by key, randomly by
key, randomly by relative record number, sequentially within limits, or consecutively
(without a key or relative record number). A K in position 31 of the file description
specifications for an externally described file indicates that the file is to be proc-
essed by key. If processing is sequential, records are retrieved in key sequence. If
processing is random, key values are used to identify the records. A blank in posi-
tion 31 indicates that the file is processed by relative record number, sequentially
(arrival sequence) or randomly. Random or sequential processing is determined by
the entries in positions 16 and 28 of the file description specifications and the oper-

118 RPG/400 User's Guide

 Program-Described Disk Files

ation code used on the calculation specifications (for example, CHAIN, SETLL,

READ).

Program-Described Disk Files
Program-described files, which are identified by an F in position 19 of the file
description specifications, can be described as indexed files, as sequential files, or
as record-address files.

 Indexed File
An indexed file is a program-described DISK file whose access path is built on key
values. You must create the access path for an indexed file by using data
description specifications.

An indexed file is identified by an I in position 32 of the file description specifica-
tions.

The key fields identify the records in an indexed file. You specify the length of the
key field in positions 29 and 30, the format of the key field in position 31, and the
starting location of the key field in positions 35 through 38 of the file description
specifications.

An indexed file can be processed sequentially by key, sequentially within limits, or
randomly by key.

Valid Search Arguments
For a program-described file, a search argument must be a single field. For the
CHAIN and DELET operations, the search argument must be the same length as the
key field that is defined on the file description specifications for the indexed file.
For the other file operations, the search argument may be a partial field.

The DDS specifies the fields to be used as a key field. Positions 35 through 38 of
the file description specifications specify the starting position of the first key field.
The entry in positions 29 and 30 of the file description specifications must specify
the total length of the key as defined in the DDS.

Figure 56 and Figure 57 show examples of how to use the DDS to describe the
access path for indexed files.

 Chapter 7. Using DISK Files 119

 Program-Described Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A R FORMATA PFILE(ORDDTLP)

A TEXT('Access Path for Indexed +

A File')

A FLDA 14

A ORDER 5 0

A FLDB 101

A K ORDER

A*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FORDDTLL IP F 118 3PI 15 DISK

F*

Figure 56. Using Data Description Specifications to Define the Access Path for an Indexed File

You must use data description specifications to create the access path for a
program-described indexed file.

In the DDS for the record format FORMATA for the logical file ORDDTLL, the field
ORDER, which is five digits long, is defined as the key field, and is in packed format.
The definition of ORDER as the key field establishes the keyed access for this file.
Two other fields, FLDA and FLDB, describe the remaining positions in this record as
character fields.

The program-described input file ORDDTLL is described on the file description
specifications as an indexed file. Positions 29 and 30 must specify the number of
positions in the record required for the key field as defined in the DDS: three posi-
tions. Positions 35 through 38 specify position 15 as the starting position of the key
field in the record. Because the file is defined as program-described by the F in
position 19, the RPG/400 compiler does not retrieve the external field-level
description of the file at compilation time. Therefore, you must describe the fields
in the record on the input specifications.

120 RPG/400 User's Guide

 Program-Described Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A R FORMAT PFILE(ORDDTLP)

A TEXT('Access Path for Indexed +

A File')

A FLDA 14

A ORDER 5

A ITEM 5

A FLDB 96

A K ORDER

A K ITEM

A*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FORDDTLL IP F 120 10AI 15 DISK

F*

Figure 57. (Part 1 of 2). Using Data Description Specifications to Define the Access Path (Composite Key) for an
Indexed File

In this example, the data description specifications define two key fields for the
record format FORMAT in the logical file ORDDTLL. For the two fields to be used
as a composite key for a program described indexed file, the key fields must be
contiguous in the record.

On the file description specifications, the length of the key field is defined as 10 in
positions 29 and 30 (the combined number of positions required for the ORDER and
ITEM fields). The starting position of the key field is described as 15 in positions 37
and 38. The starting position must specify the first position of the first key field.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IDsname....NODsExt-file++.............OccrLen+......................*

IKEY DS

I..............Ext-field+............PFromTo++DField+...............*

I 1 5 K1

I 6 10 K2

I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C MOVE ORDER K1

C MOVE ITEM K2

C KEY CHAINORDDTLL 99

C*

Figure 58. (Part 2 of 2). Using Data Description Specifications to Define the Access Path (Composite Key) for an
Indexed File

 Chapter 7. Using DISK Files 121

 Program-Described Disk Files

When the DDS specifies a composite key, you must build a search argument in the
program to CHAIN to the file. (A KLIST cannot be used for a program-described file.)
One way is to create a data structure with subfields equal to the key fields defined
in the DDS. Then, in the calculations, set the subfields equal to the value of the
key fields, and use the data-structure name as the search argument in the CHAIN
operation.

In this example, the MOVE operations set the subfields K1 and K2 equal to the value
of ORDER and ITEM, respectively. The data-structure name (KEY) is then used as the
search argument in the CHAIN operation.

 Sequential Files
Sequential files are files where the order of the records in the file is based on the
order the records are placed in the file (that is, in arrival sequence). For example,
the tenth record placed in the file occupies the tenth record position.

Sequential files can be processed randomly by relative record number, consec-
utively, or by a record-address file. You can use either the SETLL or SETGT opera-
tion code to set limits on the file.

Record Address File
You can use a record-address file to process another file. A record-address file
can contain (1) limits records that are used to process a file sequentially within
limits, or (2) relative record numbers that are used to process a file by relative
record numbers. The record-address file itself must be processed sequentially.

A record-address file is identified by an R in position 16 of the file description spec-
ifications. If the record-address file contains relative record numbers, position 32
must contain a T. The name of the record-address file must also be specified in
positions 11 through 18 of the extension specifications, and the name of the file to
be processed by the record-address file must be specified in positions 19 through
26 of the extension specifications.

 Limits Records
For sequential-within-limits processing, the record-address file contains limits
records. A limits record contains the lowest record key and the highest record key
of the records in the file to be read.

The format of the limits records in the record-address file is as follows:

¹ The low key begins in position 1 of the record; the high key immediately follows
the low key. No blanks can appear between the keys.

¹ Each record in the record-address file can contain only one set of limits. The
record length must be greater than or equal to twice the length of the record
key.

¹ The low key and the high key in the limits record must be the same length.
The length of the keys must be equal to the length of the key field of the file to
be processed.

¹ A blank entry equal in length to the record key field causes the RPG/400 com-
piler to read the next record in the record-address file.

122 RPG/400 User's Guide

 Methods for Processing Disk Files

Relative Record Numbers
For relative-record-number processing, the record-address file contains relative
record numbers. Each record retrieved from the file being processed is based on a
relative record number in the record-address file. A record-address file containing
relative record numbers cannot be used for limits processing. Each relative record
number in the record-address file is a multi-byte binary field where each field con-
tains a relative record number. You can specify the record-address file length as 4,
3, or blank, depending on the source of the file. When using a record-address file
from the AS/400 environment, specify the record-address file length as 4, since
each field is 4 bytes in length. When using a record-address file from the
System/36 environment, specify the record-address file length as 3, since each field
is 3 bytes in length. If you specify the record-address file length as blank, the com-
piler will check the primary record length at run time and determine whether to treat
the record-address file as 3 byte or as 4 byte. A minus 1 (-1 or hexadecimal
FFFFFFFF) relative-record-number value stops the use of a relative-record-address
file record. End of file occurs when all records from the record-address file have
been processed.

Externally Described File as Program Described
A file that is externally described can be treated as a program-described file in an
RPG/400 program. Specify an F in position 19 of the file description specifications,
and describe the fields in the records on input and/or output specifications. When
an F is specified in position 19 of the file description specifications for an externally
described file, the compiler does not copy in the external description.

Methods for Processing Disk Files
The methods of disk file processing include:

 ¹ Relative-record-number processing
 ¹ Consecutive processing
 ¹ Sequential-by-key processing
 ¹ Random-by-key processing
 ¹ Sequential-within-limits processing.

 Relative-Record-Number Processing
Random input or update processing by relative record number applies to full proce-
dural files only. The desired record is accessed by the CHAIN operation code.

Relative record numbers identify the positions of the records relative to the begin-
ning of the file. For example, the relative record numbers of the first, fifth, and
seventh records are 1, 5, and 7, respectively.

For an externally described file, input or update processing by relative record
number is determined by a blank in position 31 of the file description specifications
and the use of the CHAIN operation code. Output processing by relative record
number is determined by a blank in position 31 and the use of the RECNO option on
a file description specifications continuation line for the file.

You can use the RECNO option for the file description specifications continuation line
to specify a numeric field that contains the relative record number that specifies
where a new record is to be added to this file. The RECNO field must be defined as
numeric with zero decimal positions. The field length must be large enough to

 Chapter 7. Using DISK Files 123

 Methods for Processing Disk Files

contain the largest record number for the file. A RECNO field must be specified if
new records are to be placed in the file by using output specifications or a WRITE

operation. When you update or add a record to a file by relative record number,
the record must already have a place in the member. For an update, that place
can be a valid existing record; for a new record, that place can be a deleted record.
You can use the CL command INZPFM to initialize records for use by relative
record number. The current relative record number is placed in the RECNO field for
all retrieval operations or operations that reposition the file (for example, SETLL,
CHAIN, READ).

 Consecutive Processing
During consecutive processing, records are read in the order they appear in the file.

For output and input files that do not use random functions (such as SETLL, SETGT,

CHAIN, or ADD), the RPG/400 compiler defaults to or operates as though
SEQONLY(*YES) had been specified on the CL command OVRDBF (Override with
Database File). (The RPG/400 compiler does not operate as though
SEQONLY(*YES) had been specified for update files.) SEQONLY(*YES) allows multiple
records to be placed in internal data management buffers; the records are then
passed to the RPG/400 compiler one at a time on input. If, in the same job, two
logical files use the same physical file, and one file is processed consecutively and
one is processed for random update, a record could be updated that has already
been placed in the buffer that is presented to the program. In this case, when the
record is processed from the consecutive file, the record does not reflect the
updated data. To prevent this problem, use the CL command OVRDBF and
specify the option SEQONLY(*NO), which indicates that you do not want multiple
records transferred for a consecutively processed file.

For more information on sequential only processing, see the Database Guide.

 Sequential-by-Key Processing
For the sequential-by-key method of processing, records are read from the file in
key sequence.

The sequential-by-key method of processing is valid for keyed files used as
primary, secondary, or full procedural files.

For output files and for input files that do not use random functions (such as SETLL,
SETGT, CHAIN, or ADD) and that have only one record format, the RPG/400 compiler
defaults to or operates as though SEQONLY(*YES) had been specified on the CL
command OVRDBF. (The RPG/400 compiler does not operate as though
SEQONLY(*YES) had been specified for update files.) SEQONLY(*YES) allows multiple
records to be placed in internal data management buffers; the records are then
passed to the RPG/400 compiler one at a time on input. If, in the same job, two
files use the same physical file, and one file is processed sequentially and one is
processed for random update, a record could be updated that has already been
placed in the buffer that is presented to the program. In this case, when the record
is processed from the sequential file, the record does not reflect the updated data.
To prevent this problem, use the CL command OVRDBF and specify the option
SEQONLY(*NO), which indicates that you do not want multiple records transferred for
a sequentially processed file.

For more information on sequential only processing, see the Database Guide.

124 RPG/400 User's Guide

 Methods for Processing Disk Files

Figure 59 on page 125 shows different ways a header record and the detail
records associated with the header record can be processed. Part 1 shows an
example of the file being read sequentially by key; parts 2 through 4 show exam-
ples in which the READ operation code is used; part 5 shows the processing of these
records by the matching record technique.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* In this example, the order header record (ORDHDR) and the order

F* detail record (ORDDTL) are contained in the same file (ORDFIL).

F* The ORDFIL file is defined as a primary input file and is read

F* sequentially by key. In the data description specifications for

F* the file, the key for the ORDHDR record is defined as the ORDER

F* field, and the key for the ORDDTL record is defined as the ORDER

F* field plus the LINE (line number) field, which is a composite key.

F*

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FORDFILL IP E K DISK

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* A record-identifying indicator is assigned to each record; these

I* record-identifying indicators are used to control processing for

I* the different record types.

IRcdname+....In...*

IORDHDR 01

I*

IORDDTL 02
.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C *IN01 IFEQ '1'
C " ┌──────────────────┐
C " │ Process header │
C " └──────────────────┘
C END
C*
C *IN02 IFEQ '1'
C " ┌──────────────────┐
C " │ Process detail │
C " └──────────────────┘
C END

Figure 59 (Part 1 of 7). Processing Order Header and Order Detail Records

 Chapter 7. Using DISK Files 125

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* This example is the same as the previous example except that the

F* ORDFIL file is defined as a full-procedural file, and the reading

F* of the file is done by the READ operation code.

F*

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FORDFILL IF E K DISK

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The two records (ORDHDR and ORDDTL) are contained in the same

I* file, and a record-identifying indicator is assigned to each

I* record. The record-identifying indicators are used to control

I* processing for the different record types. No control levels

I* or match fields can be specified for a full-procedural file.

I*

IRcdname+....In...*

IORDHDR 01

I*

IORDDTL 02

I*

Figure 59 (Part 2 of 7). Processing Order Header and Order Detail Records

126 RPG/400 User's Guide

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* The READ operation code reads a record from the ORDFIL file. An
C* end-of-file indicator is specified in positions 58 and 59. If
C* the end-of-file indicator 99 is set on by the READ operation,
C* the program branches to the EOFEND tag and processes the end-of-
C* file routine. The record-identifying indicators control the
C* processing of the different record types.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C READ ORDFIL 99
C 99 GOTO EOFEND
C*
C *IN01 IFEQ '1'
C " ┌──────────────────┐
C " │ Process header │
C " └──────────────────┘
C END
C*
C *IN02 IFEQ '1'
C " ┌──────────────────┐
C " │ Process detail │
C " └──────────────────┘
C END
C*
C EOFEND TAG
C " ┌─────────────────────┐
C " │ End-of-file routine │
C " └─────────────────────┘

Figure 59 (Part 3 of 7). Processing Order Header and Order Detail Records

 Chapter 7. Using DISK Files 127

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* This example is similar to the one shown in Part 2 of this figure.

F* However, the READ operation code is used to read each record

F* (ORDHDR and ORDDTL) instead of reading the file. The program

F* logic controls when each READ occurs. No record-identifying

F* indicators are needed because the program logic knows which

F* record it is working with according to the record format name.

F*

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FORDFILL IF E K DISK

F*
.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C "
C "
C "
C READ ORDHDR 99
C 99 GOTO END
C " ┌──────────────────┐
C " │ Process header │
C " └──────────────────┘
C*
C READ ORDDTL 99
C 99 GOTO END
C " ┌──────────────────┐
C " │ Process detail │
C " └──────────────────┘
C*
C END TAG
C "
C "
C "

Figure 59 (Part 4 of 7). Processing Order Header and Order Detail Records

128 RPG/400 User's Guide

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* In this example, the order header records (ORDHDR) are contained

F* in the ORDHDRL file, and the order detail records (ORDDTL) are

F* contained in the ORDDTLL file. The ORDHDRL is defined as a

F* primary input file, and the reading of records from the file is

F* controlled by the program cycle. The ORDDTLL file is defined as

F* a full-procedural file, and the READE operation is used to read

F* records from the file.

F*

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FORDDTLL IF E K DISK

FORDHDRL IP E K DISK

F*

Figure 59 (Part 5 of 7). Processing Order Header and Order Detail Records

 Chapter 7. Using DISK Files 129

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* The ORDER field in the SETLL operation is used to position the
C* ORDDTLL file at the first ORDDTL record that has a key equal to
C* or greater than the contents of the ORDER field. The ORDER
C* field is used as the search argument for the READE operation.
C* The READE operation retrieves the next ORDDTL record from the
C* file if the key of the record is equal to the search argument
C* specified in factor 1. If the key and the search argument are
C* not equal, the indicator specified in positions 58 and 59 is
C* set on.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C " ┌──────────────────┐
C " │ Process header │
C " └──────────────────┘
C "
C ORDER SETLLORDDTL 20
C N20 GOTO NONE
C LOOP TAG
C ORDER READEORDDTL 21
C 21 GOTO ENDFIL
C "
C " ┌──────────────────┐
C " │ Process detail │
C " └──────────────────┘
C "
C GOTO LOOP
C NONE TAG
C "
C "
C ENDFIL TAG

Figure 59 (Part 6 of 7). Processing Order Header and Order Detail Records

130 RPG/400 User's Guide

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* In this example, the order header records (ORDHDR) are contained

F* in the ORDHDRL file, and the order detail records (ORDDTL) are

F* contained in the ORDDTLL file. The ORDHDRL is defined as a

F* primary input file, and the ORDDTLL file is defined as a

F* secondary input file. The order header and order detail records

F* are processed as matching record, with the ORDER field in both

F* records assigned the match level value of M1. Record-identifying

F* indicators 01 and 02 are assigned to the records to control the

F* processing for the different record types.

F*

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FORDHDRL IP E K DISK

FORDDTLL IS E K DISK

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IRcdname+....In...*

IORDHDR 01

I ORDER M1

IORDDTL 02

I ORDER M1

I*
.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C 01NMR " ┌──────────────────┐
C 01 MR " │ Process header │
C 01 MR " └──────────────────┘
C*
C 02NMR " ┌──────────────────┐
C 02 MR " │ Process detail │
C 02 MR " └──────────────────┘

Figure 59 (Part 7 of 7). Processing Order Header and Order Detail Records

 Chapter 7. Using DISK Files 131

 Methods for Processing Disk Files

 Sequential-within-Limits Processing
Sequential-within-limits processing by a record-address file is specified by an L in
position 28 of the file description specifications and is valid for a file with a keyed
access.

You can specify sequential-within-limits processing for an input or an update file
that is designated as a primary, secondary, or full-procedural file. The file can be
externally described or program-described (indexed). The file should have keys in
ascending sequence.

To process a file sequentially within limits from a record-address file, the program
reads:

¹ A limits record from the record-address file

¹ Records from the file being processed within limits with keys greater than or
equal to the low-record key and less than or equal to the high-record key in the
limits record. If the two limits supplied by the record-address file are equal,
only the records with the specified key are retrieved.

The program repeats this procedure until the end of the record-address file is
reached.

Figure 61 on page 134 shows an example of an indexed file being processed
sequentially within limits. Figure 62 on page 136 shows the same example with
externally described files instead of program-described files.

Keyed Processing Examples
Figure 63 on page 136 shows an example of processing certain records in a
group. Figure 64 on page 139 shows examples of how to process the first record
in a file and the last record in a file.

132 RPG/400 User's Guide

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FCHANGE IP E K DISK

FMASTER UF E K DISK

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IRcdname+....In...*

IMSTREC 01

ICHGREC 02

I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C 02 ACCT CHAINMSTREC 03

C 02N03 MOVE NEW NAMADR

C 02N03 UPDATMSTREC

C*

Figure 60. Random Processing of an Externally Described DISK File by Key

The update file MASTER is to be processed by keys. The DDS for each of the
externally described files (MASTER and CHANGE) identify the ACCT field as the key
field. As each record is read from the primary input file, CHANGE, the account
number field (ACCT) is used as the search argument to chain to the corresponding
record in the MASTER file. Input specifications are used to assign record-
identifying indicators to the records in the CHANGE and MASTER files. The
MASTER file contains one record format MSTREC that contains two fields, ACCT

and NAMADR (name and address). The CHANGE file contains one record format
CHGREC that contains two fields, ACCT and NEW. The data in the NEW field must be
moved into the NAMADR field before the MSTREC can be updated.

 Chapter 7. Using DISK Files 133

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* The input file MASTER, which is a program-described file (F in

F* position 19), is described as an indexed file to be processed

F* by keys. (The access path for an indexed file must be created

F* by data description specifications.)

F*

F* MASTER is processed sequentially within limits (L in position 28)

F* by the record address file LIMITS. Each set of limits from the

F* record-address file consists of the low and high account numbers

F* of the records in the MASTER file to be processed. Because the

F* account number key field (ACCT) is eight positions long, each

F* set of limits consists of two 8-position keys.

F*

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FLIMITS IR F 16 8 EDISK

FMASTER IP F 64L 8AI 1 DISK

FPRINT O F 96 OF PRINTER

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E*

E* The record-address file name LIMITS must be specified in positions

E* 11 through 18 of the extension specifications. The name of the

E* file to be processed by the record address file must be specified

E* in positions 19 through 26 of the extension specifications.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E LIMITS MASTER

E*

Figure 61 (Part 1 of 2). Processing an Indexed File Sequentially within Limits

134 RPG/400 User's Guide

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* Input specifications must be used to describe the records in the

I* program-described file MASTER.

I*

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IMASTER NS 01

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 1 8 ACCT

I 9 64 NAMADR

I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O*

O* As MASTER is processed within each set of limits, the corres-

O* ponding records are printed. Processing of the MASTER file is

O* complete when the record-address file LIMITS reaches end of file.

O*

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT D 1 01

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O ACCT 8

O NAMADR 70

O*

Figure 61 (Part 2 of 2). Processing an Indexed File Sequentially within Limits

 Chapter 7. Using DISK Files 135

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FLIMITS IR F 16 8 EDISK

FMASTER IP E L K DISK

FPRINT O F 96 OF PRINTER

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IRcdname+....In...*

IMSTREC 01

I*

Figure 62. Processing an Externally Described File Sequentially within Limits

If the program shown in Figure 61 on page 134 used externally described files, the
file description specifications would be coded as shown above. The input specifica-
tions are used to assign a record-identifying indicator to the record in the externally
described file. The MASTER file contains the record format MSTREC. The
external descriptions for the file identify the key fields. These keys should be in
ascending sequence.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* This example shows how to retrieve the first record of a group.
C* The SETLL operation is used to position the file at the first
C* ORDDTL record that has a key equal to or greater than the search
C* argument contained in the ORDER field. The READE operation reads
C* the next ORDDTL record from the file if the key of the record is
C* equal to the search argument (the ORDER field) specified in
C* factor 1. If the key is not equal to the search argument, the
C* indicator specified in positions 58 and 59 is set on.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C ORDER SETLLORDDTL
C ORDER READEORDDTL 22
C 22 GOTO ENDFIL
C "
C " ┌──────────────────┐
C " │ Process ORDDTL │
C " └──────────────────┘

Figure 63 (Part 1 of 5). Processing Certain Records in a Group

136 RPG/400 User's Guide

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* This example shows how to retrieve the last record of a group.
C* The SETGT operation is used to position the file at the next
C* ORDDTL record that has a key greater than the search argument
C* contained in the ORDER field. The REDPE operation reads the next
C* prior ORDDTL record from the file if the key of the record is
C* equal to the search argument (the ORDER field) specified in
C* factor 1. If the key is not equal to the search argument, the
C* indicator specified in positions 58 and 59 is set on.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C ORDER SETGTORDDTL
C ORDER REDPEORDDTL 22
C 22 GOTO ENDFIL
C "
C " ┌──────────────────┐
C " │ Process ORDDTL │
C " └──────────────────┘

Figure 63 (Part 2 of 5). Processing Certain Records in a Group

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* This example shows how to retrieve the last record of the previous
C* group. The ORDER field, which contains the key of the current
C* group, is used in the SETLL operation to position the file at the
C* first ORDDTL record that has a key equal to or greater than the
C* search argument contained in the ORDER field. The READP operation
C* then reads the prior record. If there is no prior record in the
C* file, the program branches to the ENDFIL routine.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C ORDER SETLLORDDTL
C READPORDDTL 22
C 22 GOTO ENDFIL
C "
C " ┌──────────────────┐
C " │ Process ORDDTL │
C " └──────────────────┘

Figure 63 (Part 3 of 5). Processing Certain Records in a Group

 Chapter 7. Using DISK Files 137

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* This example retrieves the last record of a group. One or more
C* records for the group exist in the file. The SETGT operation
C* positions the file at the next record that contains a key value
C* greater than the search argument contained in the ORDER field.
C* For example, if the ORDER field contains a value of 10, SETGT
C* positions the file at the record that contains a key value
C* greater than 10:
C* Keys
C* 9
C* 9
C* 10
C* 10
C* SETGT ─────────5
C* 11
C*
C* The READP operation then reads the prior record of the ORDDTL
C* record format, thus reading the last record of the previous group.
C* READP requires an end-of-file indicator in positions 58 and 59;
C* therefore, if the beginning of the file is encountered, the halt
C* indicator H6 is set on and the program ends abnormally.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C ORDER SETGTORDDTL
C READPORDDTL H6
C H6 RETRN
C "
C " ┌──────────────────┐
C " │ Process ORDDTL │
C " └──────────────────┘

Figure 63 (Part 4 of 5). Processing Certain Records in a Group

138 RPG/400 User's Guide

 Methods for Processing Disk Files

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* Reading the first record of the next group requires the SETGT
C* operation to position the file and the READ operation. The ORDER
C* field, which contains the key of the current group, is specified
C* in factor 1 of the SETGT operation. The READ operation is then
C* used to read the first record of the next group. An indicator
C* must be specified in positions 58 and 59 of the READ operation to
C* test for end of file. This technique can be used if the program
C* knows the key value for a group of records or for a specific
C* record and wants the next group. SETGT can be used to eliminate
C* reading unwanted records that would be bypassed.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C ORDER SETGTORDDTL
C READ ORDDTL 22
C 22 GOTO ENDFIL
C "
C " ┌──────────────────┐
C " │ Process ORDDTL │
C " └──────────────────┘

Figure 63 (Part 5 of 5). Processing Certain Records in a Group

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* After the file is opened, the first record is retrieved by a
C* subsequent READ operation. To access the first record in a file
C* after some processing has been done, use the figurative constant
C* *LOVAL (assuming ascending key sequence). Set the lower limits
C* by using the constant with the SETLL operation.
C* Use the READ operation for the next record of the ORDDTL record
C* format. If no records exist, end of file occurs, and the
C* program branches to the NONE routine.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C *LOVAL SETLLORDDTL
C READ ORDDTL 22
C 22 GOTO NONE
C "
C " ┌──────────────────┐
C " │ Process ORDDTL │
C " └──────────────────┘

Figure 64 (Part 1 of 2). Processing Certain Records in a File

 Chapter 7. Using DISK Files 139

 Valid File Operations

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C* Use the figurative constant *HIVAL (assuming ascending key
C* sequence to access the last record in a file. By using *HIVAL
C* with a SETGT operation, the file is positioned at the next
C* record that has a key field value greater than the value
C* specified in factor 1.
C* The READP operation reads the next prior record, which in this
C* example is the last record in the file.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C *HIVAL SETGTORDDTL
C READPORDDTL 22
C 22 GOTO NONE
C "
C " ┌──────────────────┐
C " │ Process ORDDTL │
C " └──────────────────┘

Figure 64 (Part 2 of 2). Processing Certain Records in a File

Valid File Operations
Figure 65 on page 141 shows the valid file operation codes allowed for DISK files
processed by keys and Figure 66 on page 142 for DISK files processed by non-
keyed methods. The operations shown in these figures are valid for externally
described DISK files and program-described DISK files.

Before running your program, you can override a file to another file. In particular,
you can override a sequential file in your program to an externally described, keyed
file. (The file is processed as a sequential file.) You can also override a keyed file
in your program to another keyed file, providing the key fields are compatible. For
example, the overriding file must not have a shorter key field than you specified in
your program.

140 RPG/400 User's Guide

 Valid File Operations

Figure 65. Valid File Operations for Keyed Processing Methods (Random by Key, Sequential by Key, Sequential
within Limits)

File-Description Calculation
Specifications Positions Specifications Positions

15 16 28¹ 31² 66 28-32

I P/S K/A/P CLOSE, FEOD, FORCE

I P/S K/A/P A WRITE, CLOSE, FEOD, FORCE

I P/S L K/A/P CLOSE, FEOD, FORCE

U P/S K/A/P UPDAT, DELET, CLOSE, FEOD, FORCE

U P/S K/A/P A UPDAT, DELET, WRITE, CLOSE, FEOD, FORCE

U P/S L K/A/P UPDAT, CLOSE, FEOD, FORCE

I F K/A/P READ, READE, REDPE, READP, SETLL, SETGT, CHAIN,
OPEN, CLOSE, FEOD

I F K/A/P A WRITE, READ, REDPE, READE, READP, SETLL, SETGT,
CHAIN, OPEN, CLOSE, FEOD

I F L K/A/P READ, OPEN, CLOSE, FEOD

U F K/A/P READ, READE, REDPE, READP, SETLL, SETGT, CHAIN,
UPDAT, DELET, OPEN, CLOSE, FEOD

U F K/A/P A WRITE, UPDAT, DELET, READ, READE, REDPE, READP,
SETLL, SETGT, CHAIN, OPEN, CLOSE, FEOD

U F L K/A/P READ, UPDAT, OPEN, CLOSE, FEOD

O Blank K/A/P A WRITE (add new records to a file), OPEN, CLOSE, FEOD

O Blank K/A/P WRITE (initial load of a new file)³, OPEN, CLOSE, FEOD

Note: ¹An L must be specified in position 28 to specify sequential-within-limits processing by a record-address
file for an input or an update file.

Note: ²Externally described files require a K in position 31; program-described files require an A or P in position
31 and an I in position 32.

Note: ³An A in position 66 is not required for the initial loading of records into a new file. If A is specified in
position 66, ADD must be specified on the output specifications. The file must have been created with the OS/400
CREATE FILE command.

 Chapter 7. Using DISK Files 141

 Valid File Operations

Figure 66. Valid File Operations for Non-keyed Processing Methods (Sequential, Random by Relative Record
Number, and Consecutive)

File-Description Calculation
Specifications Positions Specifications Positions

15 16 31 54-59 66 28-32

I P/S Blank CLOSE, FEOD, FORCE

I P/S Blank RECNO CLOSE, FEOD, FORCE

U P/S Blank UPDAT, DELET, CLOSE, FEOD, FORCE

U P/S Blank RECNO UPDAT, DELET, CLOSE, FEOD, FORCE

I F Blank READ, READP, SETLL, SETGT, CHAIN, OPEN, CLOSE, FEOD

I F Blank RECNO READ, READP, SETLL, SETGT,

U F Blank READ, READP, SETLL, SETGT, CHAIN, UPDAT, DELET, OPEN,
CLOSE, FEOD

U F Blank RECNO READ, READP, SETLL, SETGT, CHAIN, UPDAT, DELET, OPEN,
CLOSE, FEOD

I R A/P/
Blank¹

 OPEN, CLOSE, FEOD

I R Blank² OPEN, CLOSE, FEOD

O Blank Blank RECNO A WRITE³ (add records to a file), OPEN, CLOSE, FEOD

O Blank Blank RECNO WRITE⁴ (initial load of a new file), OPEN, CLOSE, FEOD

O Blank Blank Blank WRITE (sequentially load or extend a file), OPEN, CLOSE, FEOD

Note: ¹If position 31 is blank for a record-address-limits file, the format of the keys in the record-address file is
the same as the format of the keys in the file being processed.

Note: ²A record-address file containing relative record numbers requires a T in position 32.

Note: ³The RECNO field that contains the relative record number must be set prior to the WRITE operation or if ADD
is specified on the output specifications.

Note: ⁴An A in position 66 is not required for the initial loading of the records into a new file; however, if A is
specified in position 66, ADD must be specified on output specifications. The file must have been created with the
OS/400 CREATE FILE command.

142 RPG/400 User's Guide

 Externally Described WORKSTN Files

Chapter 8. Using WORKSTN Files

The WORKSTN file allows an RPG/400 program to communicate interactively with
a work-station user or to use the Intersystem Communications Function (ICF) to
communicate with other programs. This chapter describes:

¹ Intersystem Communications Function (ICF)
¹ Externally described WORKSTN files
¹ Program-described WORKSTN files

 ¹ Multiple-device files.

The chapter also includes a number of examples for using WORKSTN files.

Intersystem Communications Function
You can use the ICF to write programs that communicate with (send data to and
receive data from) other application programs on other systems.

To use the ICF, define a WORKSTN file in your program that refers to an ICF
device file. Use either the system supplied file QICDMF or a file created using the
OS/400 command CRTICFF.

You code for ICF by using the ICF as a file in your program. The ICF is similar to
a display file and it contains the communications formats required for the sending
and receiving of data between systems.

For further information on the ICF, refer to the ICF Programmer’s Guide.

Externally Described WORKSTN Files
An RPG/400 WORKSTN file can use an externally described display-device file or
ICF device file, which contains file information and a description of the fields in the
records to be written.

In addition to the field descriptions (such as field names and attributes), the DDS
for a display-device file are used to:

¹ Format the placement of the record on the screen by specifying the line-
number and position-number entries for each field and constant.

¹ Specify attention functions such as underlining and highlighting fields, reverse
image, or a blinking cursor.

¹ Specify validity checking for data entered at the display work station. Validity-
checking functions include detecting fields where data is required, detecting
mandatory fill fields, detecting incorrect data types, detecting data for a specific
range, checking data for a valid entry, and processing modules 10 or 11 check-
digit verification.

¹ Control screen management functions, such as if fields are to be erased, over-
laid, or kept when new data is displayed.

¹ Associate indicators 01 through 99 with command attention keys or command
function keys. If a function key is described as a command function key (CF),
both the response indicator and the data record (with any modifications entered

 Copyright IBM Corp. 1994 143

 Externally Described WORKSTN Files

on the screen) are returned to the program. If a function key is described as a
command attention key (CA), the response indicator is returned to the program
but the data record remains unmodified. Therefore, input-only character fields
are blank and input-only numeric field are filled with zeros, unless these fields
have been initialized otherwise.

¹ Assign an edit code (EDTCDE) or edit word (EDTWRD) keyword to a field to specify
how the field’s values are to be displayed.

 ¹ Specify subfiles.

A display-device-record format contains three types of fields:

¹ Input fields. Input fields are passed from the device to the program when the
program reads a record. Input fields can be initialized with a default value. If
the default value is not changed, the default value is passed to the program.
Input fields that are not initialized are displayed as blanks into which the work-
station user can enter data.

¹ Output fields. Output fields are passed from the program to the device when
the program writes a record to a display. Output fields can be provided by the
program or by the record format in the device file.

¹ Output/input (both) fields. An output/input field is an output field that can be
changed. It becomes an input field if it is changed. Output/input fields are
passed from the program when the program writes a record to a display and
passed to the program when the program reads a record from the display.
Output/input fields are used when the user is to change or update the data that
is written to the display from the program.

If you specify the keyword INDARA in the DDS for a WORKSTN file, the RPG/400
program passes indicators to the WORKSTN file in a separate indicator area, and
not in the input/output buffer.

For a detailed description of an externally described data-device file and for a list of
valid DDS keywords, see the DDS Reference.

Figure 67 on page 145 shows an example of the DDS for a display-device file.

Processing an Externally Described WORKSTN File
When an externally described WORKSTN file is processed, the OS/400 system
transforms data from the program to the format specified for the file and displays
the data. When data is passed to the program, the data is transformed to the
format used by the program.

144 RPG/400 User's Guide

 Externally Described WORKSTN Files

The OS/400 system provides device-control information for processing input/output
operations for the device. When an input record is requested from the device, the
OS/400 system issues the request, and then removes device-control information
from the data before passing the data to the program. In addition, the OS/400
system can pass indicators to the program indicating which fields, or if any fields, in
the record have been changed.

When the program requests an output operation, it passes the output record to the
OS/400 system. The OS/400 system provides the necessary device-control infor-
mation to display the record. It also adds any constant information specified for the
record format when the record is displayed.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A** ITEM MASTER INQUIRY

A REF(DSTREF) .1/
A R PROMPT TEXT('Item Prompt Format')

A 73N61 OVERLAY .2/
A CA01(98 'End of Program') .3/
A 1 2'Item Inquiry'

A 3 2'Item Number'

A ITEM R I 3 15PUTRETAIN .4/
A 61 ERRMSG('Invalid Item Number' 61).5/
A R RESPONSE TEXT('Response Format')

A OVERLAY .2/
A LOCK .6/
A 5 2'Description'

A DESCRP R 5 15

A 5 37'Price'

A PRICE R 5 44

A 7 2'Warehouse Location' .7/
A WHSLOC R 7 22

A 9 2'On Hand'

A ONHAND R 9 10

A 9 19'Allocated' .8/
A ALLOC R 9 30

A 9 40'Available'

A AVAIL R 9 51

A*

Figure 67. Example of the Data Description Specifications for a Display Device File

This display device file contains two record formats: PROMPT and RESPONSE.

.1/ The attributes for the fields in this file are defined in the DSTREF field refer-
ence file.

.2/ The OVERLAY keyword is used so that both record formats can be used on
the same display.

.3/ Function key 1 is associated with indicator 98, which is used by the pro-
grammer to end the program.

 Chapter 8. Using WORKSTN Files 145

 Externally Described WORKSTN Files

.4/ The PUTRETAIN keyword allows the value that is entered in the ITEM field to
be kept in the display. In addition, the ITEM field is defined as an input field
by the I in position 38. ITEM is the only input field in these record formats.
All of the other fields in the record are output fields since position 38 is blank
for each of them.

.5/ The ERRMSG keyword identifies the error message that is displayed if indicator
61 is set on in the program that uses this record format.

.6/ The LOCK keyword prevents the work-station user from using the keyboard
when the RESPONSE record format is initially displayed.

.7/ The constants such as ‘Description’, ‘Price’, and ‘Warehouse Location’
describe the fields that are written out by the program.

.8/ The line and position entries identify where the fields or constants are written
on the display.

When a record is passed to a program, the fields are arranged in the order in which
they are specified in the DDS. The order in which the fields are displayed is based
on the display positions (line numbers and position) assigned to the fields in the
DDS. The order in which the fields are specified in the DDS and the order in which
they appear on the screen need not be the same.

Function Key Indicators on Display Device Files
The function key indicators, KA through KN and KP through KY are valid for a
program that contains a display device WORKSTN file if the associated function
key is specified in the DDS.

The function key indicators relate to the function keys as follows: function key indi-
cator KA corresponds to function key 1, KB to function key 2 . . . KX to function key
23, and KY to function key 24.

Function keys are specified in the DDS with the CFxx (command function) or CAxx
(command attention) keyword. For example, the keyword CF01 allows function key
1 to be used. When you press function key 1, function key indicator KA is set on in
the RPG/400 program. If you specify the function key as CF01 (99), both function
key indicator KA and indicator 99 are set on in the RPG/400 program. If the work-
station user presses a function key that is not specified in the DDS, the OS/400
system informs the user that an incorrect key was pressed.

If the work-station user presses a specified function key, the associated function
key indicator in the RPG/400 program is set on when fields are extracted from the
record (move fields logic) and all other function key indicators are set off. If a func-
tion key is not pressed, all function key indicators are set off at move fields time.
The function key indicators are set off if the user presses the Enter key.

146 RPG/400 User's Guide

 Processing WORKSTN Files

Command Keys on Display Device Files
You can specify the command keys Help, Roll Up, Roll Down, Print, Clear, and
Home in the DDS for a display device file with the keywords HELP, ROLLUP,

ROLLDOWN, PRINT, CLEAR, and HOME.

Command keys can be processed by an RPG/400 program whenever the RPG/400
compiler processes a READ or an EXFMT operation on a record format for which the
appropriate keywords are specified in the DDS. When the command keys are in
effect and a command key is pressed, the OS/400 system returns control to the
RPG/400 program. If a response indicator is specified in the DDS for the command
selected, that indicator is set on and all other response indicators that are in effect
for the record format and the file are set off.

If a response indicator is not specified in the DDS for a command key, the following
happens:

¹ For the Print key without *PGM specified, the print function is processed.

¹ For the Roll Up and Roll Down keys used with subfiles, the displayed subfile
rolls up or down, within the subfile. If you try to roll beyond the start or end of
a subfile, you get a run-time error.

¹ For the Print Key specified with *PGM, Roll Up and Roll Down keys used
without subfiles, and for the Clear, Help, and Home keys, one of the *STATUS
values 1121-1126 is set, respectively, and processing continues.

Processing WORKSTN Files
This section explains the valid file operation codes for a WORKSTN file.

 EXFMT Operation
The EXFMT operation is a combination of a WRITE followed by a READ to the same
record format. If you define a WORKSTN file on the file description specifications
as a full-procedural (F in position 16) combined file (C in position 15) that uses
externally described data (E in position 19) the EXFMT (execute format) operation
code can be used to write and read from the display.

 READ Operation
The READ operation is valid for a full-procedural combined file or a full-procedural
input file that uses externally described data or program-described data. The READ
operation retrieves a record from the display. However, a format must exist at the
device before any input operations can occur. This requirement can be satisfied on
a display device by conditioning an output record with the 1P indicator, by writing
the first format to the device from another program, or, if the read is by record-
format name, by using the keyword INZRCD on the record description in the DDS.

 WRITE Operation
The WRITE operation writes a new record to a display and is valid for a combined
file or an output file. Output specifications and the EXCPT operation can also be
used to write to a WORKSTN file. See the RPG/400 Reference for a complete
description of each of these operation codes.

Figure 68 on page 148 shows the valid file operation codes for a WORKSTN file.

 Chapter 8. Using WORKSTN Files 147

 Processing WORKSTN Files

Figure 68. Valid File Operation Codes for a WORKSTN File

File-Description Calculation
Specifications Specifications
Positions Positions

15 16 28-32

I P/S CLOSE, ACQ, REL, NEXT, POST, FORCE

I P/S WRITE¹, CLOSE, ACQ, REL, NEXT, POST, FORCE

I F READ, OPEN, CLOSE, ACQ, REL, NEXT, POST

C F READ, WRITE¹, EXFMT², OPEN, CLOSE, ACQ, REL, NEXT, POST, UPDAT³,
CHAIN³, READC³

O Blank WRITE¹, OPEN, CLOSE, ACQ, REL, POST

Note: ¹The WRITE operation is not valid for a program-described file used with a format name.

Note: ²If the EXFMT operation is used, the file must be externally described (an E in position 19 of the file
description specifications).

Note: ³For subfile record formats, the UPDAT, CHAIN, and READC operations are also valid.

 WORKSTN file
Figure 69 on page 149 is a processing chart for WORKSTN files.

148 RPG/400 User's Guide

 Processing WORKSTN Files

L i n e

F i l e A d d i t i o n / U n o r d e r e d

D e v i c e
S y m b o l i c

D e v i c e

N a m e o f

L a b e l E x i t

C o n t i n u a t i o n L i n e s

K

E x t e n t E x i t

f o r D A M

S t o r a g e I n d e x

L
a

b
e

ls
S

/
N

/
E

/
M

F i l e n a m e

F

3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4

O p t i o n E n t r yA
/

D

EI/
O

/
U

/
C

/
D

File Descript ion Specifications

F i l e

C o n d i t i o n

U 1 - U 8 ,

UC

N umber o f T racks

for Cyl inder O verf low

N u m b e r o f E x t e n t s

Ta p e R e w i n d

R
/

U
/

N

A
/

U

F i l e T y p e

F i l e D e s i g n a t i o n

E n d o f F i l e

Se q ue n c e

F i l e F o r m a t

M o d e o f P r o c e s s i n g

Le n gth o f Ke y F ie ld o r

o f R e c o r d A dd re s s F ie ld

R ec o rd A d dre ss Ty pe

O v e r f lo w In d ic a to r

F
o

r
m

T
y

p
e R e co r d

L e n g t h

P
/

S
/

C
/

R
/

T
/

D
/

F

Key F ie ld

S t a r t i n g

L o c a t i o n E
x

t
e

n
s

io
n

C
o

d
e

E
/

L

I/
X

/
D

/
T

/
R

/
o

r
2

A
/

P
/

I/
K

L
/

R

F
/

V
/

S
/

M
/

D
/

E

B l o c k

L e n g t h

Ty pe of F i le

O r g a n i z a t i o n o r

Addi t ion al Area

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

3 4

I P

I S

I F

C F

O

I F

I P

I S

E

E

E

E

E

E

E

F

F

C P

C S

C F

O

I R

F

F

F

F

F

F

E

A

R E C N O K S F I L E

F I E L D

R E C O R D

F O R M A T

N A M E

C S

C P

1

1

2

2

3

3

4

5

5

6

7

8

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

W O R K S T N

E W O R K S T N

E x t e r n a l R e c o r d N a m e

S u b f i l e P r o c e s s i n g

Figure 69. Processing Chart for WORKSTN Files

 Chapter 8. Using WORKSTN Files 149

 Processing WORKSTN Files

Valid File Operations:

 1. CLOSE, FORCE

2. WRITE, CLOSE, FORCE

3. READ, OPEN, CLOSE

4. READ, WRITE, EXFMT, OPEN, CLOSE

5. WRITE, OPEN, CLOSE

6. READ, WRITE, OPEN, CLOSE

 7. OPEN, CLOSE

8. READC, CHAIN, WRITE, UPDAT, (valid only for record defined as a
subfile)

Notes:

1. Shaded positions must be blank, and positions without entries are program
dependent.

2. WRITE operations to a program-described file require a data-structure name in
the result field; WRITE operations to a program-described file that uses a format
name on output specifications are not valid.

3. Subfile processing is valid only for an externally described file.

 Subfiles
Subfiles can be specified in the DDS for a display-device file to allow you to handle
multiple records of the same type on the display. (See Figure 70 on page 151.) A
subfile is a group of records that is read from or written to a display-device file. For
example, a program reads records from a database file and creates a subfile of
output records. When the entire subfile has been written, the program sends the
entire subfile to the display device in one write operation. The work-station user
can change data or enter additional data in the subfile. The program then reads
the entire subfile from the display device into the program and processes each
record in the subfile individually.

Records that you want to be included in a subfile are specified in the DDS for the
file. The number of records that can be included in a subfile must also be specified
in the DDS. One file can contain more than one subfile, and up to 12 subfiles can
be active concurrently. Two subfiles can be displayed at the same time.

The DDS for a subfile consists of two record formats: a subfile-record format and a
subfile control-record format. The subfile-record format contains the field informa-
tion that is transferred to or from the display file under control of the subfile control-
record format. The subfile control-record format causes the physical read, write, or
control operations of a subfile to take place. Figure 71 on page 152 shows an
example of the DDS for a subfile-record format, and Figure 72 on page 153 shows
an example of the DDS for a subfile control-record format.

For a description of how to use subfile keywords, see the DDS Reference.

150 RPG/400 User's Guide

 Processing WORKSTN Files

� �
Customer Name Search

Search Code _______

 Number Name Address City State

 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
 XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

� �

Figure 70. Subfile Display

To use a subfile for a display device file in an RPG/400 program, you must specify
the SFILE keyword in positions 54 through 59 on a file description specifications
continuation line for the WORKSTN file. The SFILE keyword must be specified on a
separate continuation line. The WORKSTN file must be an externally described file
(E in position 19).

You use positions 60 through 67 of the continuation line to specify the name of the
subfile record format (not the control-record format). Positions 47 through 52 must
specify the name of the field that contains the relative record number to be used in
processing the subfile.

In an RPG/400 program, relative record number processing is defined as part of the
SFILE definition. The SFILE definition implies a full-procedural update file with ADD
for the subfile. Therefore, the file operations that are valid for the subfile are not
dependent on the definition of the main WORKSTN file. That is, the WORKSTN
file can be defined as a primary file or a full-procedural file.

Use the CHAIN, READC, UPDAT, or WRITE operation codes with the subfile record
format to transfer data between the program and the subfile. Use the READ, WRITE,
or EXFMT operation codes with the subfile control-record format to transfer data
between the program and the display device or to process subfile control oper-
ations.

 Chapter 8. Using WORKSTN Files 151

 Processing WORKSTN Files

Subfile processing follows the rules for relative-record-number processing. The
RPG/400 program places the relative-record number of any record retrieved by a
READC operation into the field named in positions 47 through 52 of the file
description specifications SFILE continuation line. This field is also used to specify
the record number that the RPG/400 program uses for WRITE operation to the
subfile or for output operations that use ADD. The field name specified in positions
47 through 52 must be defined as numeric with zero decimal positions. The field
must have enough positions to contain the largest record number for the file. (See
the SFLSIZ keyword in the DDS Reference.) The WRITE operation code and the ADD
specification on the output specifications require that a relative-record-number field
be specified in positions 47 through 52 of the file description specifications SFILE
continuation line.

If a WORKSTN file has an associated subfile, all implicit input operations and
explicit calculation operations that refer to the file name are processed against the
main WORKSTN file. Any operations that specify a record format name that is not
designated as a subfile are processed on the main WORKSTN file.

If you press a specified function key during a read of a non-subfile record, subse-
quent reads of a subfile record will cause the corresponding function key indicator
to be set on again, even if the function key indicator has been set off between the
reads. This will continue until a non-subfile record is read from the WORKSTN file.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A** CUSTOMER NAME SEARCH

A REF(DSTREF) .1/
A R SUBFIL SFL .2/
A TEXT('Subfile Record')

A CUST R 7 3

A NAME R 7 10

A ADDR R 7 32 .3/
A CITY R 7 54

A STATE R 7 77

A*

Figure 71. Data Description Specifications for a Subfile Record Format

The data description specifications (DDS) for a subfile record format describe the
records in the subfile:

.1/ The attributes for the fields in the record format are contained in the field
reference file DSTREF as specified by the REF keyword.

.2/ The SFL keyword identifies the record format as a subfile.

.3/ The line and position entries define the location of the fields on the display.

Use of Subfiles
Some typical ways you can make use of subfiles include:

¹ Display only. The work-station user reviews the display.

¹ Display with selection. The user requests more information about one of the
items on the display.

¹ Modification. The user changes one or more of the records.

152 RPG/400 User's Guide

 Processing WORKSTN Files

¹ Input only, with no validity checking. A subfile is used for a data entry function.

¹ Input only, with validity checking. A subfile is used for a data entry function,
but the records are checked.

¹ Combination of tasks. A subfile can be used as a display with modification,
plus the input of new records.

The following figure shows an example of data description specifications for a
subfile control-record format. For an example of using a subfile in an RPG/400
program, see “WORKSTN File Examples” on page 158.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R FILCTL SFLCTL(SUBFIL)

A N70 SFLCLR

A 70 SFLDSPCTL

A 71 SFLDSP

A SFLSIZ(15)

A SFLPAG(15)

A TEXT('Subfile Control Record')

A OVERLAY

A 71 ROLLUP(97 'Continue Search')

A CA01(98 'End of Program')

A HELP(99 'Help Key')

A 1 2'Customer Name Search'

A 3 2'Search Code'

A SRHCOD R I 3 14PUTRETAIN

A 5 2'Number'

A 5 10'Name'

A 5 32'Address'

A 5 54'City'

A 5 76'State'

A*

Figure 72. Data Description Specifications for a Subfile Control-Record Format

The subfile control-record format defines the attributes of the subfile, the search
input field, constants, and function keys. The keywords you can use indicate the
following:

¹ SFLCTL names the associated subfile (SUBFIL).

¹ SFLCLR indicates when the subfile should be cleared (when indicator 70 is off).

¹ SFLDSPCTL indicates when to display the subfile control record (when indicator
70 is on).

¹ SFLDSP indicates when to display the subfile (when indicator 71 is on).

¹ SFLSIZ indicates the total number of records to be included in the subfile (15).

¹ SFLPAG indicates the total number of records in a page (15).

¹ ROLLUP indicates that indicator 97 is set on in the program when the user
presses the Roll Up key.

 Chapter 8. Using WORKSTN Files 153

 Program-Described WORKSTN File

¹ HELP allows the user to press the Help key for a displayed message that
describes the valid function keys.

¹ PUTRETAIN allows the value that is entered in the SRHCOD field to be kept in the
display.

In addition to the control information, the subfile control-record format also defines
the constants to be used as column headings for the subfile record format.

Program-Described WORKSTN File
You can use a program-described WORKSTN file with or without a format name
specified on the output specifications. The format name, if specified, refers to the
name of a data description specifications record format. This record format
describes:

¹ How the data stream sent from an RPG/400 program is formatted on the
screen

¹ What data is sent
¹ What ICF functions to perform.

If a format name is used, input and output specifications must be used to describe
the input and output records.

You can specify the PASS option on the file description specifications continuation
line for a program-described WORKSTN file. Positions 60 through 65 must contain
*NOIND. The PASS *NOIND indicates that the RPG/400 program will not additionally
pass indicators to data management on output or receive them on input. It is your
responsibility to pass indicators by describing them as fields (in the form *INxx, *IN,
or *IN,x) in the input or output record. They must be specified in the sequence
required by the data description specifications (DDS). You can use the DDS listing
to determine this sequence.

Program-Described WORKSTN File with a Format Name
The following specifications apply to using a format name for a program-described
WORKSTN file.

 Output Specifications
On the output specifications, you must specify the WORKSTN file name in positions
7 through 14. The format name, which is the name of the DDS record format, is
specified as a literal or named constant in positions 45 through 54 on the suc-
ceeding field description line. K1 through K8 must be specified (right-adjusted) in
positions 40 through 43 on the line containing the format name. The K identifies
the entry as a length rather than an end position, and the number indicates the
length of the format name. For example, if the format name is CUSPMT, the entry in
positions 40 through 43 is K6. (Leading zeros following the K are allowed.) The
format name cannot be conditioned (indicators in positions 23 through 31 are not
valid).

Output fields must be located in the output record in the same order as defined in
the DDS; however, the field names do not have to be the same. The end position
entries for the fields refer to the end position in the output record passed from the
RPG/400 program to data management, and not to the location of the fields on the
screen.

154 RPG/400 User's Guide

 Program-Described WORKSTN File

To pass indicators on output, do one of the following:

¹ Specify the keyword INDARA in the DDS for the WORKSTN file. Do not use the
PASS *NOIND option on the file specifications continuation line and do not
specify the indicators on the output specifications. The program and file use a
separate indicator area to pass the indicators.

¹ Specify the PASS *NOIND option on the file specifications continuation line.
Specify the indicators in the output specifications as fields in the form *INxx.
The indicator fields must precede other fields in the output record, and they
must appear in the order specified by the WORKSTN file DDS. You can deter-
mine this order from the DDS listing.

 Input Specifications
The input specifications describe the record that the RPG/400 program receives
from the display or ICF device. The WORKSTN file name must be specified in
positions 7 through 14. Input fields must be located in the input record in the same
sequence as defined in the DDS; however, the field names do not have to be the
same. The field location entries refer to the location of the fields in the input
record.

To receive indicators on input, do one of the following:

¹ Specify the keyword INDARA in the DDS for the WORKSTN file. Do not use the
PASS *NOIND option on the file specifications continuation line and do not
specify the indicators on the input specifications. The program and file use a
separate indicator area to pass the indicators.

¹ Specify the PASS *NOIND option on the file specifications continuation line.
Specify the indicators in the input specifications as fields in the form *INxx.
They must appear in the input record in the order specified by the WORKSTN
file DDS. You can determine this order from the DDS listing.

A record identifying indicator should be assigned to each record in the file to iden-
tify the record that has been read from the WORKSTN file. A hidden field with a
default value can be specified in the DDS for the record identification code.

 Calculation Specifications
The operation code READ is valid for a program-described WORKSTN file that is
defined as a combined, full-procedural file. See Figure 68 on page 148. The file
name must be specified in factor 2 for this operation. A format must exist at the
device before any input operations can take place. This requirement can be satis-
fied on a display device by conditioning an output record with 1P or by writing the
first format to the device in another program (for example, in the CL program). The
EXFMT operation is not valid for a program-described WORKSTN file. You can also
use the EXCPT operation to write to a WORKSTN file.

 Chapter 8. Using WORKSTN Files 155

 Program-Described WORKSTN File

 Additional Considerations
When using a format name with a program-described WORKSTN file, you must
also consider the following:

¹ The name specified in positions 45 through 54 of the output specifications is
assumed to be the name of a record format in the DDS that was used to create
the file.

¹ If a Kn specification is present for an output record, it must also be used for
any other output records for that file. If a Kn specification is not used for all
output records to a file, a run-time error will occur.

For an example of using a format name with a program-described display device
WORKSTN file, see “Sample Program 6–Program-Described WORKSTN File with a
FORMAT Name on Output Specifications” on page 206.

Program-Described WORKSTN File without a Format Name
When a record-format name is not used, a program-described display-device file
describes a file containing one record-format description with one field. The fields
in the record must be described within the program that uses the file.

When you create the display file by using the Create Display File command, the file
has the following attributes:

¹ A variable record length can be specified; therefore, the actual record length
must be specified in the using program. (The maximum record length allowed
is the screen size minus one.)

¹ No indicators are passed to or from the program.

¹ No function key indicators are defined.

¹ The record is written to the display beginning in position 2 of the first available
line.

 Input File
For an input file, the input record, which is treated by the OS/400 device support as
a single input field, is initialized to blanks when the file is opened. The cursor is
positioned at the beginning of the field, which is position 2 on the display.

 Output File
For an output file, the OS/400 device support treats the output record as a string of
characters to be sent to the display. Each output record is written as the next
sequential record in the file; that is, each record displayed overlays the previous
record displayed.

 Combined File
For a combined file, the record, which is treated by the OS/400 device support as a
single field, appears on the screen and is both the output record and the input
record. Device support initializes the input record to blanks, and the cursor is
placed in position 2.

For more information on program-described-display-device files, see the Data Man-
agement Guide.

156 RPG/400 User's Guide

 Multiple-Device Files

 Multiple-Device Files
Any RPG/400 WORKSTN file with at least one of the keywords ID, IND, NUM, or
SAVDS specified (on the file specifications continuation line) is a multiple-device file.
Through a multiple-device file, your program may access more than one device.

The RPG/400 program accesses devices through program devices, which are sym-
bolic mechanisms for directing operations to an actual device. When you create a
file (using the DDS and commands such as the create file commands), you con-
sider such things as which device is associated with a program device, whether or
not a file has a requesting program device, which record formats will be used to
invite devices to respond to a READ-by-file-name operation, and how long this READ
operation will wait for a response. For detailed information on the options and
requirements for creating a multiple-device file, see the chapter on display files in
the Data Management Guide, and information on ICF files in the ICF Programmer’s
Guide, and the manuals you are referred to in these two publications.

With multiple-device files, you make particular use of the following operation codes:

¹ In addition to opening a file, the OPEN operation can acquire (at most) one
device for a multiple-device file. You specify which device when you create the
file.

¹ The ACQ (acquire) operation acquires any other devices for your file.

¹ The REL (release) operation releases a device from the file.

¹ The WRITE operation, when used with the DDS keyword INVITE, invites a
program device to respond to subsequent read-from-invited- program-devices
operations. See the section on inviting a program device in the ICF
Programmer’s Guide and the Data Management Guide.

¹ The READ operation either processes a read-from-invited-program-devices oper-
ation or a read-from-one-program-device operation. When no NEXT operation is
in effect, a program-cycle-read or READ-by-file-name operation waits for input
from any of the devices that have been invited to respond (read-from-invited-
program-device). Other input and output operations, including a READ-by-file-
name after a NEXT operation, and a READ-by-format-name, process a
read-from-one-program-device operation using the program device indicated in
a special field. (The field is named in the ID entry of the file specifications
continuation lines.)

This device may be the device used on the last input operation, a device you
specify, or the requesting program device. See the sections on reading from
invited program devices and on reading from one program device in the ICF
Programmer’s Guide and the Data Management Guide.

¹ The NEXT operation specifies which device is to be used in the next READ-by-
file-name operation or program-cycle-read operation.

¹ The POST operation puts information in the INFDS information data structure.
The information may be about a specific device or about the file. (The POST
operation is not restricted to use with multiple-device files.)

See the RPG/400 Reference for details of the RPG/400 operation codes.

On the file specifications continuation line, you can specify several options to
control the processing of multiple-device files.

 Chapter 8. Using WORKSTN Files 157

 WORKSTN File Examples

¹ The NUM entry indicates the maximum number of devices that can be acquired
for a file.

By using a value of 1 for NUM, it is possible to get functions associated with a
multiple-device file for a file that has only one device. For example, Figure 107
on page 211 illustrates the use of the time-out feature of the READ operation for
a multiple-device file.

¹ The ID entry specifies the name of a field. The field can contain the name of a
program device to which some input and output operations are directed.

When a read-from-one-program-device or WRITE operation is issued, the device
used for the operation is the device identified by the field specified in the ID
entry. This field is initialized to blanks and is updated with the name of the
device from which the last successful input operation occurred. It can also be
set explicitly by moving a value to it. The ACQ operation code does not affect
the value of this field. If there is no entry, the operation is performed against
the device from which the last successful input operation occurred. A blank
device name is used if a read operation has not yet been performed success-
fully from a device.

When a read-from-one-program device or WRITE operation is issued with a
blank device name, the RPG/400 compiler implicitly uses the device name of
the requestor device for the program. If you call an RPG/400 program interac-
tively and acquire an ICF device against which you want to perform one of
these operations, you must explicitly move the device name of the ICF device
into the field name specified with the ID entry prior to performing the operation.
If this is not done, the device name used will either be blank (in which case the
interactive requestor device name is used), or the device name used is the one
from the last successful input operation. Once you have performed an I/O
operation to the ICF device, you do not need to modify the value again unless
an input operation completes successfully with a different device.

¹ The SAVDS entry indicates a data structure that is saved and restored for each
device acquired to a file. The IND entry indicates a set of indicators to be
saved and restored for each device acquired to a file. Before an input opera-
tion, the current set of indicators and data structure are saved. After the input
operation, the RPG/400 compiler restores the indicators and data structure for
the device associated with the operation. This may be a different set of indica-
tors or data structure than was available before the input operation.

¹ The INFDS entry specifies the file information data structure for the WORKSTN
file. The RPG/400 *STATUS field and the major/minor return code for the I/O
operation can be accessed through this data structure. Particularly when ICF is
being used, both fields are useful for detecting errors that occurred during I/O
operations to multiple-device files.

Note: When specifying these control options, you must code the NUM option
before the ID, IND or SAVDS options.

WORKSTN File Examples
This section illustrates some common work station applications and their RPG/400
coding.

¹ “Sample Program 1–Inquiry” on page 159 is an example of a basic inquiry
program that uses the WORKSTN file in the RPG/400 compiler.

158 RPG/400 User's Guide

 WORKSTN File Examples

¹ “Sample Program 2–Data Entry with Master Update” on page 166 is an
example of a data entry with master update program.

¹ “Sample Program 3–Maintenance” on page 174 is an example of a mainte-
nance program.

¹ “Sample Program 4–WORKSTN Subfile Processing” on page 187 is an
example of WORKSTN subfile processing.

¹ “Sample Program 5–Inquiry by Zip Code and Search on Name” on page 196 is
an example of an interactive program in which the search of a name field
occurs when the workstation user enters a zip code and a search string in
response to the first display written by the program. This sample program illus-
trates one approach to solving the typical problem of identifying a customer and
determining the correct customer number. In this example, the user knows the
zip code and something about the customer name, such as some of the char-
acters that constitute the name.

¹ “Sample Program 6–Program-Described WORKSTN File with a FORMAT
Name on Output Specifications” on page 206 is an example of a program-
described WORKSTN file with a format name on the output specifications.

¹ “Sample Program 7–Variable Start Line” on page 208 is an example of using
the variable start line to determine where a record format will appear on a
display.

¹ “Sample Program 8–Read Operation with Time-Out” on page 211 shows how
to use READ with a time-out.

Sample Program 1–Inquiry
The following figures illustrate a simple inquiry program using the WORKSTN file:

Table 5. List of Figures for WORKSTN Inquiry Program

Figure Contents

Figure 73 on page 160
below and Figure 74 on
page 161

DDS for database file and display device file

Figure 75 on page 164 File description and calculation specifications

Figure 76 on page 165 Prompt screen

Figure 77 on page 166 Customer information screen

 Chapter 8. Using WORKSTN Files 159

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A* CUSTOMER MASTER FILE -- CUSMSTP

A R CUSREC

A CUST 5 TEXT('CUSTOMER NUMBER')

A NAME 20 TEXT('CUSTOMER NAME')

A ADDR 20 TEXT('CUSTOMER ADDRESS')

A CITY 20 TEXT('CUSTOMER CITY')

A STATE 2 TEXT('CUSTOMER STATE')

A ZIP 5 0 TEXT('CUSTOMER ZIP CODE')

A SRHCOD 3 TEXT('CUSTOMER NAME SEARCH CODE')

A CUSTYP 1 TEXT('CUSTOMER TYPE')

A ARBAL 10 2 TEXT('ACCOUNTS RECEIVABLE BALANCE')

A**

A* FILE NAME : CUSMSTL *

A* DESCRIPTION: LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMSTP) *

A* BY CUSTOMER NUMBER (CUST) *

A**

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A R CUSREC PFILE(CUSMSTP)

A K CUST

Figure 73. DDS for WORKSTN Inquiry-Program File CUSMSTP

The DDS for the database file used by this program describe one record format:
CUSREC. The logical file CUSMSTL keyed by customer number is based on the phys-
ical file CUSMSTP, as indicated by the PFILE keyword. Each field in the record format
is defined in the physical file CUSMSTP.

160 RPG/400 User's Guide

 WORKSTN File Examples

Note: Normally, the field attributes, such as the number of decimal positions and
the data type, are defined in a field-reference file rather than in the DDS for the
record format. The attributes are shown on the DDS so you can see what they are.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* FILE NAME : CUSFMT *

A* DESCRIPTION: DISPLAY FILE FOR CUSTOMER MASTER INQUIRY *

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A DSPSIZ(24 80 *DS3)

A CHGINPDFT(CS)

A CA03(15 'END OF JOB')

A PRINT

A INDARA

A R CUSHDG

A OVERLAY

A 2 4TIME

A DSPATR(HI)

A 2 29'Customer Master Inquiry'

A DSPATR(HI)

A DSPATR(UL)

A 2 70DATE

A EDTCDE(Y)

A DSPATR(HI)

A R CUSFTG

A 23 20'ENTER - Continue'

A DSPATR(HI)

A 23 49'F3 - End Job'

A DSPATR(HI)

A R CUSPMT

A OVERLAY

A CUST 5A I 10 50DSPATR(HI)

A DSPATR(CS)

A 99 ERRMSG('Customer Number not Found'

A 99)

A 10 26'Enter Customer Number:'

A DSPATR(HI)

Figure 74 (Part 1 of 2). DDS for WORKSTN Inquiry-Program Display Device File CUSFMT

 Chapter 8. Using WORKSTN Files 161

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R CUSFLDS

A OVERLAY

A 8 25'Name'

A NAME 20A O 8 35DSPATR(HI)

A 10 25'Address'

A ADDR 20A O 10 35DSPATR(HI)

A 12 25'City'

A CITY 20A O 12 35DSPATR(HI)

A 14 25'State'

A STATE 2A O 14 35DSPATR(HI)

A 14 41'Zip Code'

A ZIP 5S 0O 14 50DSPATR(HI)

A 16 25'A/R Balance'

A ARBAL 10Y 2O 16 42DSPATR(HI)

A EDTCDE(J)

A 6 25'Customer'

A CUST 5A O 6 35DSPATR(HI)

Figure 74 (Part 2 of 2). DDS for WORKSTN Inquiry-Program Display Device File CUSFMT

The DDS for the display device file CUSFMT to be used by this program specify file
level entries and describe four record formats: CUSHDG, CUSFTG, CUSPMT, and
CUSFLDS.

The file level entries define the screen size (DSPSIZ), input defaults (CHGINPDFT),
command attention key used to end the program, print key (PRINT), and a separate
indicator area (INDARA).

The CUSHDG record format contains the constant 'Customer Master Inquiry', which
identifies the display. It also contains the keywords TIME and DATE, which will
display the current date and time on the screen.

The CUSFTG record format contains the constants 'ENTER - Continue' and 'F3 -

End Job', which describe the processing options.

The CUSPMT record format contains the prompt “Enter Customer Number:” and the
input field CUST into which the workstation user enters the customer number.
Column separators define the input field on the screen where the user is to enter
the customer number. The error message “Customer Number not Found” is also
included in this record format. This message is displayed if indicator 99 is set on
by the program.

The CUSFLDS record format contains the constants 'Name', 'Address', 'City',

'State', 'Zip Code', 'A/R Balance', and 'Customer' that identify the fields to be
written out from the program. This record format also describes fields that corre-
spond to these constants. All of these fields are described as output fields because
they are filled in by the program; the user does not enter any data into these fields.
To enter another customer number, the user presses Enter in response to this
record.

162 RPG/400 User's Guide

 WORKSTN File Examples

In addition to describing the constants, fields and attributes for the screen, the
record formats also define the display attributes for the constants and fields and the
line numbers and horizontal positions where the constants and fields are to be dis-
played.

Notice the use of the OVERLAY keyword; the CUSHDG, CUSPMT and CUSFLDS record
formats will overlay the CUSFTG record format. The CUSFTG format will remain on the
screen when any of the other formats are written to the screen.

Note: Normally, the field attributes are defined in a field-reference file instead of
the DDS for a file. However, they are shown here so you can see the field attri-
butes.

 Chapter 8. Using WORKSTN Files 163

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PROGRAM ID - CUSTINQ *

F* PROGRAM NAME - CUSTOMER MASTER INQUIRY *

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FCUSMSTL IF E K DISK

FCUSFMT CF E WORKSTN

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN15 DOWEQ'0'

C*

C* WRITE HEADING AND FOOTING EXCEPT IF ERROR HAS OCCURRED

C* AND PROMPT FOR CUSTOMER NUMBER

C *IN99 CASEQ'0' HEADNG

C END

C EXFMTCUSPMT

C* IF NOT END OF JOB AND VALID CUSTOMER NUMBER

C* DISPLAY CUSTOMER INFORMATION

C *IN15 IFEQ '0'

C CUST CHAINCUSREC 99

C *IN99 IFEQ '0'

C EXFMTCUSFLDS

C END IF

C END IF

C END DO

C MOVE '1' *INLR

C**

C* SUBROUTINE - HEADNG *

C* PURPOSE - DISPLAY HEADING AND FOOTING *

C**

C HEADNG BEGSR

C WRITECUSFTG

C WRITECUSHDG

C ENDSR

Figure 75. File Description and Calculation Specifications for WORKSTN Inquiry Program

For this program, only the RPG/400 file description and calculation specifications
are required. Input and output specifications are not required because both files
are externally described files (as indicated by the E in position 19). Both files are
described as full-procedural files, as indicated by the F in position 16, because the
I/O operations are controlled by programmer-specified operation codes. In addition,
the K in position 31 of the file description specifications for the CUSMSTL file indicates
that the file is processed keys.

164 RPG/400 User's Guide

 WORKSTN File Examples

The DOWEQ operation performs a loop until the user presses F3 to end the job. F3
sets indicator 15 on, as defined in the DDS. If indicator 15 is on, the loop is ended,
the LR indicator is turned on, and the program ends.

The CASEQ operation performs subroutine HEADNG, which writes the heading and
footings to the screen. Headings and footings will not be written to the screen
when an error has occurred.

The EXFMT operation writes the CUSPMT record to the display. This record prompts
the user to enter a customer number. If the user enters a customer number and
presses Enter, the same EXFMT operation then reads the record back into the
program.

If the user does not end the job, the CHAIN operation retrieves a record from the
CUSMSTL file. Note that the record format name CUSREC is specified for the CHAIN
operation rather than the file name. If the record is not found, indicator 99 is set on
and the program loops back to display the CUSPMT record again. The message
Customer Number not Found is displayed, the ERRMSG keyword in the DDS is condi-
tioned by indicator 99, and the keyboard is locked. The user must press the Reset
key in response to this message to unlock the keyboard. The user can then enter
another customer number.

If the CHAIN operation retrieves a record from the CUSMSTL file, the EXFMT operation
writes the record CUSFLDS to the display work station. This record contains the
customer's name, address information, and accounts receivable balance.

The user then presses Enter, and the program loops back to the EXFMT operation
and writes record CUSPMT to the display work station. The user can enter another
customer number or end the program.

Figure 76 is the initial display written to the display WORKSTN by the EXFMT.

� �
10:06:31 Customer Master Inquiry 01/25/94

Enter Customer Number: ___A1

ENTER - Continue F3 - End Job

� �

Figure 76. Customer Inquiry Prompt Screen

 Chapter 8. Using WORKSTN Files 165

 WORKSTN File Examples

The following display appears if a record is found in the CUSTMSTL file with the same
customer number that was entered by the user in response to the first display:

� �
10:06:31 Customer Master Inquiry 01/25/94

 Customer ___A1

 Name COLLINS

Address 12 MILLDON ROAD

 City OLYMPIA

State WA Zip Code 50079

 A/R Balance 11,111,111.00

ENTER - Continue F3 - End Job

� �

Figure 77. Customer Inquiry Information Screen

Sample Program 2–Data Entry with Master Update
The following figures illustrate a data-entry program that prompts the user, updates
a master record, and writes a transaction file:

Table 6. List of Figures for WORKSTN Data Entry Program

Figure Contents

Figure 78 on page 167
below and
Figure 79 on page 168

DDS for master file, transaction file, and display device
file

Figure 80 on page 170 File description and calculation specifications

Figure 81 on page 172 Prompt screen

Figure 82 on page 173 Display of current information

Figure 83 on page 173 Updated screen

166 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A* PARTS MASTER FILE -- PARTMST

A R MSTREC

A PART# 5S 0 TEXT('PART NUMBER')

A DESCRP 20 TEXT('DESCRIPTION')

A ISSUE 7S 0 TEXT('QTY ISSUED')

A RECPT 7S 0 TEXT('QTY RECEIVED')

A ONHAND 9S 0 TEXT('QTY ON HAND')

A DTLUPD 6S 0 TEXT('DATE LAST UPDATE')

A K PART#

A*

A* PARTS TRANSACTION FILE -- TRNFIL

A R TRNREC

A PARTNO 5S 0 TEXT('PART NUMBER')

A QTYISS 7S 0 TEXT('QTY ISSUED')

A QTYREC 7S 0 TEXT('QTY RECEIVED')

A DATE 6S 0 TEXT('CURRENT DATE')

Figure 78. DDS for Data-Entry/Update Master File and Transaction File

The DDS for the database files used by this program describe two record formats:
MSTREC and TRNREC. The master file PARTMST is a keyed physical file; the transaction
file TRNFIL is a sequential file.

Note: Normally, the field attributes, such as the number of decimal positions and
the data type, are defined in a field-reference file rather than in the DDS for the
record format. The attributes are shown on the DDS so you can see what the field
attributes are.

 Chapter 8. Using WORKSTN Files 167

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* FILE NAME : PRTUPD *

A* DESCRIPTION: TRANSACTION AND MASTER FILE UPDATE *

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A CHGINPDFT(CS)

A PRINT(QSYSPRT)

A INDARA

A CA03(03 'END OF JOB')

A R PROMPT

A 2 4TIME DSPATR(HI)

A 2 28'PART TRANSACTION ENTRY'

A DSPATR(HI UL)

A 2 70DATE EDTCDE(Y) DSPATR(HI)

A 6 4'Enter Part Number'

A DSPATR(HI)

A PART# R Y I 6 23REFFLD(PART# PARTMST)

A DSPATR(CS) CHECK(RB)

A 61 ERRMSG('PART # NOT FOUND' +

A 61)

A 23 6'ENTER - Continue'

A DSPATR(HI)

A 23 29'F3 - End Job'

A DSPATR(HI)

A R TRNFMT

A CA12(12 'CANCEL TRANS')

A 2 4TIME DSPATR(HI)

A 2 28'PART TRANSACTION ENTRY'

A DSPATR(HI UL)

A 2 70DATE EDTCDE(Y) DSPATR(HI)

A 6 10'Part Number'

A DSPATR(HI)

Figure 79 (Part 1 of 2). DDS for Data-Entry/Update PRTUPD Display Device File

168 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A PART# R Y O 6 23REFFLD(PART# PARTMST)

A DESCRP R O 7 23REFFLD(DESCRP PARTMST)

A 9 10'Qty On Hand'

A ONHAND R Y O 9 23REFFLD(ONHAND PARTMST)

A DSPATR(HI) EDTCDE(Z)

A 11 10'Qty Issued '

A QTYISS R Y B 11 25REFFLD(QTYISS TRNFIL)

A CHECK(RB)

A DSPATR(HI CS)

A 13 10'Qty Received'

A QTYREC R Y B 13 25REFFLD(QTYREC TRNFIL)

A CHECK(RB) DSPATR(HI CS)

A 23 6'ENTER - Continue'

A DSPATR(HI)

A 23 29'F3 - End Job'

A DSPATR(HI)

A 23 46'F12 - Cancel Transaction'

A DSPATR(HI)

Figure 79 (Part 2 of 2). DDS for Data-Entry/Update PRTUPD Display Device File

The DDS for the PRTUPD display device file contains two record formats: PROMPT and
TRNFMT. The PROMPT record prompts for the part number to be processed. If the
part is not found, an error message is displayed. The TRNFMT record is used to
enter issue and receipt quantities. The fields are defined as output/input (B in posi-
tion 38) and output (O in position 38).

F3 has been defined at the file level and is valid for all record formats. F12 is
defined at the record level for the TRNFMT record format and is not valid for any
other format.

 Chapter 8. Using WORKSTN Files 169

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PROGRAM ID - DTAENT *

F* PROGRAM NAME - TRANSACTION MAINTENANCE *

F* THIS PROGRAM PERFORMS THE FOLLOWING FUNCTIONS: *

F* - ADDS NEW TRANSACTION RECORDS TO THE FILE TRNFIL *

F* - UPDATES PART MASTER FILE PARTMST *

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FPARTMST UF E K DISK

FTRNFIL O E K DISK

FPRTUPD CF E WORKSTN

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* MAINLINE *

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C EXFMTPROMPT

C*

C *IN03 DOWEQ'0'

C*

C PART# CHAINMSTREC 61

C *IN61 CASEQ'0' NXTSCN

C END

C*

C *IN03 IFEQ '0'

C EXFMTPROMPT

C END

C*

C END

C MOVE '1' *INLR

Figure 80 (Part 1 of 2). File Description Specification and Calculation Specification for Data Entry/Update Program

170 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBROUTINE - NXTSCN *

C* PURPOSE - ADD PART TRANSACTIONS *

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C NXTSCN BEGSR

C EXFMTTRNFMT

C *IN03 IFEQ '0'

C *IN12 ANDEQ'0'

C ADD QTYISS ISSUE

C ADD QTYREC RECPT

C ADD QTYREC ONHAND

C SUB QTYISS ONHAND

C Z-ADDUDATE DTLUPD

C Z-ADDUDATE DATE

C UPDATMSTREC

C WRITETRNREC

C Z-ADD*ZERO QTYISS

C Z-ADD*ZERO QTYREC

C ELSE

C EXCPTRLS

C END

C ENDSR

OMSTREC E RLS

Figure 80 (Part 2 of 2). File Description Specification and Calculation Specification for Data Entry/Update Program

This program (data entry with master update) prompts the user for a transaction,
updates a master record, and writes a transaction record.

The program has two disk files (PARTMST and TRNFIL) and one WORKSTN file (PRTUPD).
The program begins by prompting the workstation user for a part number. The
user can press F3, which is associated with indicator 03 in the DDS, to end the
program.

The CHAIN operation retrieves the master record. If the record is not found, an error
message is displayed; otherwise, the record format TRNFMT is displayed. The user
can press F12 to cancel the transaction; the master record is released, and the
PROMPT record format is displayed again. The user can press F3 to end the
program, or the user can process the transaction. When the user presses ENTER
after entering issue or receipt quantities, the master file PARTMST is updated with the
current date, new on hand quantity, issues and receipts, and the transaction is
added to the transaction file TRNFIL.

The workstation user responds to the prompts on the first screen by entering a part
number as shown in Figure 81 on page 172.

 Chapter 8. Using WORKSTN Files 171

 WORKSTN File Examples

� �
10:12:14 PART TRANSACTION ENTRY 01/25/94

Enter Part Number ____1

ENTER - Continue F3 - End Job

� �

Figure 81. Prompt Screen for Data Entry/Update Program

172 RPG/400 User's Guide

 WORKSTN File Examples

Because part number 1 is in the Customer Master File, the program displays the
following record for that part.

� �
10:12:20 PART TRANSACTION ENTRY 01/25/94

 Part Number 00001
 ALPHABC

Qty On Hand 50

 Qty Issued 20

 Qty Received 50

ENTER - Continue F3 - End Job F12 - Cancel Transaction

� �

Figure 82. TRNFMT Screen

The workstation user can press Enter to continue or F12 to cancel the transaction.

� �
10:12:38 PART TRANSACTION ENTRY 01/25/94

 Part Number 00001
 ALPHABC

Qty On Hand 80

 Qty Issued 0000000

 Qty Received 0000000

ENTER - Continue F3 - End Job F12 - Cancel Transaction

� �

Figure 83. TRNFIL Screen

 Chapter 8. Using WORKSTN Files 173

 WORKSTN File Examples

Sample Program 3–Maintenance
The following figures illustrate a simple inquiry program using the WORKSTN file:

Table 7. List of Figures for WORKSTN Inquiry Program

Figure Contents

Figure 84 below and
Figure 85 on page 175

DDS for master file and display device file

Figure 86 on page 179 File description and calculation specifications

Figure 87 on page 184 Display mode prompt screen

Figure 88 on page 185 Add mode prompt screen

Figure 89 on page 186 Update mode prompt screen

Figure 90 on page 186 Delete mode prompt screen

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A* CUSTOMER MASTER FILE -- CUSTMSTR

A R CSTMST

A CUST# 5S 0 TEXT('CUSTOMER NUMBER')

A CSTNAM 20 TEXT('CUSTOMER NAME')

A CSTAD1 20 TEXT('CUSTOMER ADDRESS')

A CSTAD2 20 TEXT('CUSTOMER ADDRESS')

A CSTCTY 20 TEXT('CUSTOMER CITY')

A CSTSTE 2 TEXT('CUSTOMER STATE')

A CSTZIP 5S 0 TEXT('CUSTOMER ZIP CODE')

A K CUST#

Figure 84. DDS for Maintenance Program Master File

The DDS for the database file used by this program describe one record format:
CSTMST. Each field in the record format is described, and the CUST# field is identified
as the key field for the record format.

Note: Normally, the field attributes, such as number of decimal positions and data
type, are defined in a field-reference file rather than in the DDS for the record
format. The attributes are shown on the DDS so you can see what the field attri-
butes are.

174 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* FILE NAME : CSTENT *

A* DESCRIPTION: DISPLAY FILE FOR CUSTOMER MASTER INQUIRY *

A* SELECT OPTION SCREEN *

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A REF(CUSTMSTR)

A CHGINPDFT(CS)

A PRINT(QSYSPRT)

A INDARA

A R HDRSCN

A TEXT('PROMPT FOR CUST NUMBER')

A CA03(03 'END OF INQUIRY')

A CA05(05 'ADD MODE')

A CA06(06 'UPDATE MODE')

A CA07(07 'DELETE MODE')

A CA08(08 'DISPLAY MODE')

A MODE 8A O 1 4DSPATR(HI)

A 1 13'MODE'

A DSPATR(HI)

A 2 4TIME

A DSPATR(HI)

A 2 28'CUSTOMER FILE MAINTENANCE'

A DSPATR(HI RI)

A 2 70DATE

A EDTCDE(Y)

A DSPATR(HI)

A CUST# R Y I 10 25DSPATR(CS)

A CHECK(RZ)

A 51 ERRMSG('CUSTOMER ALREADY ON +

A FILE' 51)

A 52 ERRMSG('CUSTOMER NOT ON FILE' +

A 52)

Figure 85 (Part 1 of 4). DDS for Display Device File for Customer Master Inquiry

 Chapter 8. Using WORKSTN Files 175

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A 10 33'<--Enter Customer Number'

A DSPATR(HI)

A 23 4'F3 End Job'

A 23 21'F5 Add'

A 23 34'F6 Update'

A 23 50'F7 Delete'

A 23 66'F8 Display'

A R CSTINQ TEXT('DISPLAY CUST INFO')

A CA12(12 'PREVIOUS SCREEN')

A MODE 8 O 1 4DSPATR(HI)

A 1 13'MODE'

A DSPATR(HI)

A 2 4TIME

A DSPATR(HI)

A 2 28'CUSTOMER FILE MAINTENANCE'

A DSPATR(HI RI)

A 2 70DATE

A EDTCDE(Y)

A DSPATR(HI)

Figure 85 (Part 2 of 4). DDS for Display Device File for Customer Master Inquiry

176 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A 4 14'Customer:'

A DSPATR(HI UL)

A CUST# R O 4 25DSPATR(HI)

A CSTNAM R B 6 25DSPATR(CS)

A 04 DSPATR(PR)

A CSTAD1 R B 7 25DSPATR(CS)

A 04 DSPATR(PR)

A CSTAD2 R B 8 25DSPATR(CS)

A 04 DSPATR(PR)

A CSTCTY R B 9 25DSPATR(CS)

A 04 DSPATR(PR)

A CSTSTE R B 10 25DSPATR(CS)

A 04 DSPATR(PR)

A CSTZIP R B 10 40DSPATR(CS)

A EDTCDE(Z)

A 04 DSPATR(PR)

A 23 2'F12 Cancel'

A MODE1 8 O 23 20

A R CSTBLD TEXT('ADD CUST RECORD')

A CA12(12 'PREVIOUS SCREEN')

A MODE 8 O 1 4DSPATR(HI)

A 1 13'MODE' DSPATR(HI)

A 2 4TIME

A DSPATR(HI)

A 2 28'CUSTOMER FILE MAINTENANCE'

A DSPATR(HI RI)

A 2 70DATE

A EDTCDE(Y)

A DSPATR(HI)

A 4 14'Customer:' DSPATR(HI UL)

Figure 85 (Part 3 of 4). DDS for Display Device File for Customer Master Inquiry

 Chapter 8. Using WORKSTN Files 177

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A CUST# R O 4 25DSPATR(HI)

A 6 20'Name' DSPATR(HI)

A CSTNAM R I 6 25

A 7 17'Address' DSPATR(HI)

A CSTAD1 R I 7 25

A 8 17'Address' DSPATR(HI)

A CSTAD2 R I 8 25

A 9 20'City' DSPATR(HI)

A CSTCTY R I 9 25

A 10 19'State' DSPATR(HI)

A CSTSTE R I 10 25

A 10 36'Zip' DSPATR(HI)

A CSTZIP R Y I 10 40

A 23 2'F12 Cancel Addition'

Figure 85 (Part 4 of 4). DDS for Display Device File for Customer Master Inquiry

The DDS for the CSTENT display device file contains three record formats: HDRSCN,
CSTINQ, and CSTBLD. The HDRSCN record prompts for the customer number and the
mode of processing. The CSTINQ record is used for the Update, Delete, and
Display modes. The fields are defined as output/input (B in position 38). The fields
are protected when Display or Delete mode is selected (DSPATR(PR)). The CSTBLD
record provides only input fields (I in position 38) for a new record.

The CUSHDG record format contains the constant 'Customer Master Inquiry'; the
ERRMSG keyword defines the messages to be displayed if an error occurs. The CA
keywords define the function keys that can be used and associate the function keys
with indicators in the RPG program.

178 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PROGRAM ID - CUSTMNT *

F* PROGRAM NAME - CUSTOMER MASTER MAINTENANCE *

F* THIS PROGRAM ADDS, UPDATES, DELETES AND DISPLAYS *

F* CUSTOMER RECORDS IN THE CUSTOMER MASTER FILE. *

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FCUSTMSTRUF E K DISK A

FCSTENT CF E WORKSTN

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C CSTKEY KLIST

C KFLD CUST#

C**

C* MAINLINE *

C**

C MOVE 'DISPLAY 'MODE

C EXFMTHDRSCN

C*

C *IN03 DOWEQ'0'

C EXSR SETMOD

C*

C CUST# IFNE *ZERO

C MODE CASEQ'ADD' ADDSUB

C MODE CASEQ'UPDATE' UPDSUB

C MODE CASEQ'DELETE' DELSUB

C MODE CASEQ'DISPLAY' INQSUB

C END

C END

C*

C EXFMTHDRSCN

C END

C MOVE '1' *INLR

Figure 86 (Part 1 of 5). File Description and Calculation Specifications for Maintenance Program

 Chapter 8. Using WORKSTN Files 179

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBROUTINE - ADDSUB *

C* PURPOSE - ADD NEW CUSTOMER TO FILE *

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C ADDSUB BEGSR

C CSTKEY CHAINCSTMST 50

C *IN50 IFEQ '0'

C MOVE '1' *IN51

C ELSE

C MOVE '0' *IN51

C MOVE *BLANK CSTNAM

C MOVE *BLANK CSTAD1

C MOVE *BLANK CSTAD2

C MOVE *BLANK CSTCTY

C MOVE *BLANK CSTSTE

C Z-ADD*ZERO CSTZIP

C EXFMTCSTBLD

C *IN12 IFEQ '0'

C WRITECSTMST

C END

C END

C ENDSR

Figure 86 (Part 2 of 5). File Description and Calculation Specifications for Maintenance Program

180 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBROUTINE - UPDSUB *

C* PURPOSE - UPDATE CUSTOMER MASTER RECORD *

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C UPDSUB BEGSR

C MOVE '0' *IN04

C CSTKEY CHAINCSTMST 52

C *IN52 IFEQ '0'

C EXFMTCSTINQ

C *IN12 IFEQ '0'

C UPDATCSTMST

C ELSE

C EXCPTRLS

C END

C END

C ENDSR

C**

C* SUBROUTINE - DELSUB *

C* PURPOSE - DELETE CUSTOMER MASTER RECORD *

C**

C DELSUB BEGSR

C MOVE '1' *IN04

C CSTKEY CHAINCSTMST 52

C *IN52 IFEQ '0'

C EXFMTCSTINQ

C *IN12 IFEQ '0'

C DELETCSTMST

C ELSE

C EXCPTRLS

C END

C END

C ENDSR

Figure 86 (Part 3 of 5). File Description and Calculation Specifications for Maintenance Program

 Chapter 8. Using WORKSTN Files 181

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBROUTINE - INQSUB *

C* PURPOSE - DISPLAY CUSTOMER MASTER RECORD *

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C INQSUB BEGSR

C MOVE '1' *IN04

C CSTKEY CHAINCSTMST 52

C *IN52 IFEQ '0'

C EXFMTCSTINQ

C EXCPTRLS

C END

C ENDSR

C**

C* SUBROUTINE - SETMOD *

C* PURPOSE - SET MAINTENANCE MODE *

C**

C SETMOD BEGSR

C *IN05 IFEQ '1'

C MOVE 'ADD 'MODE

C MOVE MODE MODE1

C ELSE

C *IN06 IFEQ '1'

C MOVE 'UPDATE 'MODE

C MOVE MODE MODE1

C ELSE

C *IN07 IFEQ '1'

C MOVE 'DELETE 'MODE

C MOVE MODE MODE1

C ELSE

Figure 86 (Part 4 of 5). File Description and Calculation Specifications for Maintenance Program

182 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C*

C *IN08 IFEQ '1'

C MOVE 'DISPLAY 'MODE

C MOVE MODE MODE1

C ELSE

C END

C END

C END

C END

C ENDSR

OCSTMST E RLS

Figure 86 (Part 5 of 5). File Description and Calculation Specifications for Maintenance Program

This program maintains a customer master file for additions, changes, and
deletions. The program can also be used for inquiry.

The program first sets the default (display) mode of processing and displays the
customer maintenance prompt screen. The workstation user can press F3, which
turns on indicator 03, to request end of job. Otherwise, to work with customer infor-
mation, the user enters a customer number and presses Enter. The user can
change the mode of processing by pressing F5 (ADD), F6 (UPDATE), F7 (DELETE), or
F8 (DISPLAY).

To add a new record to the file, the program uses the customer number as the
search argument to chain to the master file. If the record does not exist in the file,
the program displays the CSTBLD screen to allow the user to enter a new customer
record. If the record is already in the file, an error message is displayed. The user
can press F12, which sets on indicator 12, to cancel the add operation and release
the record. Otherwise, to proceed with the add operation, the user enters informa-
tion for the new customer record in the input fields and writes the new record to the
master file.

To update, delete, or display an existing record, the program uses the customer
number as the search argument to chain to the master file. If a record for that
customer exists in the file, the program displays the customer file inquiry screen
CSTINQ. If the record is not in the file, an error message is displayed. If the mode
of processing is display or delete, the input fields are protected from modification.
Otherwise, to proceed with the customer record, the user can enter new information
in the customer record input fields. The user can press F12, which sets on indi-
cator 12, to cancel the update or delete operation, and release the record. Display
mode automatically releases the record when Enter is pressed.

 Chapter 8. Using WORKSTN Files 183

 WORKSTN File Examples

In the following screen, the workstation user responds to the prompt by entering
customer number 00001 to display the customer record.

� �
 DISPLAY MODE

10:09:01 CUSTOMER FILE MAINTENANCE 01/25/94

00001 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

� �

Figure 87 (Part 1 of 2). Display Mode Screens for Maintenance Program

Because the customer record for customer number 00001 exists in the
Master File, the data is displayed as follows:

� �
 DISPLAY MODE

10:09:11 CUSTOMER FILE MAINTENANCE 01/25/94

 Customer: 00001

 SMITH, JOE
 SUITE 20000
 QUEEN STREET
 PORTLAND
 OR 99999

F12 Cancel DISPLAY

� �

Figure 87 (Part 2 of 2). Display Mode Screens for Maintenance Program

184 RPG/400 User's Guide

 WORKSTN File Examples

The workstation user responds to the add prompt by entering a new customer
number as shown in the following screen.

� �
 ADD MODE

10:09:20 CUSTOMER FILE MAINTENANCE 01/25/94

00009 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

� �

Figure 88 (Part 1 of 2). Add Mode Screens for Maintenance Program

In the screen below, a new customer is added to the Customer Master File.

� �
 ADD MODE

10:09:36 CUSTOMER FILE MAINTENANCE 01/25/94

 Customer: 00009

Name LANE, ROBERT
 Address Bellavista

Address 17 Donleavy
 City Ontario
 State CA Zip 15679

F12 Cancel Addition

� �

Figure 88 (Part 2 of 2). Add Mode Screens for Maintenance Program

 Chapter 8. Using WORKSTN Files 185

 WORKSTN File Examples

The workstation user responds to the update prompt by entering a customer
number as shown in the following screen.

� �
 UPDATE MODE

10:10:43 CUSTOMER FILE MAINTENANCE 01/25/94

00006 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

� �

Figure 89. Update Mode Screen for Maintenance Program

The workstation user responds to the delete prompt by entering a new customer
number in the following screen.

� �
 DELETE MODE

10:10:52 CUSTOMER FILE MAINTENANCE 01/25/94

00009 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

� �

Figure 90. Delete Mode Screen for Maintenance Program

186 RPG/400 User's Guide

 WORKSTN File Examples

Sample Program 4–WORKSTN Subfile Processing
The following figures illustrate a WORKSTN file:

Table 8. List of Figures for WORKSTN Subfile Processing

Figure Contents

Figure 91 below and
Figure 92 on page 188

DDS for master file and display device file

Figure 93 on page 191 File description and calculation specifications

Figure 94 on page 194 Prompt screen

Figure 95 on page 195 Display screen

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A* CUSTOMER MASTER FILE -- CUSMSTP

A R CUSREC

A CUST 5 TEXT('CUSTOMER NUMBER')

A NAME 20 TEXT('CUSTOMER NAME')

A ADDR 20 TEXT('CUSTOMER ADDRESS')

A CITY 20 TEXT('CUSTOMER CITY')

A STATE 2 TEXT('CUSTOMER STATE')

A ZIP 5 0 TEXT('CUSTOMER ZIP CODE')

A SRHCOD 3 TEXT('CUSTOMER NAME SEARCH CODE')

A CUSTYP 1 TEXT('CUSTOMER TYPE')

A ARBAL 10 2 TEXT('ACCOUNTS RECEIVABLE BALANCE')

A**

A* FILE NAME : CUSZIPL *

A* DESCRIPTION: LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMSTP) *

A* BY CUSTOMER ZIP CODE (ZIP) *

A**

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A R CUSREC PFILE(CUSMSTP)

A ZIP R

A NAME R

A ARBAL R

A K ZIP

Figure 91. DDS for WORKSTN Subfile-Processing Program Master File

The DDS for the database file used by this program describe one record format:
CUSREC. The logical file CUSZIPL keyed by zip code is based on the physical file
CUSMSTP, as indicated by the PFILE keyword. The record format created by the
logical file will include only those fields specified in the logical file DDS. All other
fields will be excluded.

Note: Normally, the field attributes, such as number of decimal positions and data
type, are defined in a field-reference file rather than in the DDS for the record
format. The attributes are shown on the DDS so you can see what the field attri-
butes are.

 Chapter 8. Using WORKSTN Files 187

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* FILE NAME : CUSSRC *

A* DESCRIPTION: DISPLAY CUSTOMER MASTER BY ZIP CODE *

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A REF(CUSMSTP)

A CHGINPDFT(CS)

A PRINT(QSYSPRT)

A INDARA

A CA03(03 'END OF JOB')

A R HEAD

A OVERLAY

A 2 4TIME

A DSPATR(HI)

A 2 28'CUSTOMER FILE SEARCH'

A DSPATR(HI RI)

A 2 70DATE

A EDTCDE(Y)

A DSPATR(HI)

A R FOOT1

A 23 6'ENTER - Continue'

A DSPATR(HI)

A 23 29'F3 - End Job'

A DSPATR(HI)

A R FOOT2

A 23 6'ENTER - Continue'

A DSPATR(HI)

A 23 29'F3 - End Job'

A DSPATR(HI)

A 23 47'F4 - RESTART ZIP CODE'

A DSPATR(HI)

Figure 92 (Part 1 of 2). DDS for WORKSTN Subfile-Processing Program Display Device File

188 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R PROMPT

A OVERLAY

A 4 4'Enter Zip Code'

A DSPATR(HI)

A ZIP R Y I 4 19DSPATR(CS)

A CHECK(RZ)

A 61 ERRMSG('ZIP CODE NOT FOUND' +

A 61)

A R SUBFILE SFL

A NAME R 9 4

A ARBAL R 9 27EDTCDE(J)

A R SUBCTL SFLCTL(SUBFILE)

A 55 SFLCLR

A N55 SFLDSPCTL

A N55 SFLDSP

A SFLSIZ(13)

A SFLPAG(13)

A ROLLUP(95 'ROLL UP')

A OVERLAY

A CA04(04 'RESTART ZIP CDE')

A 4 4'Zip Code'

A ZIP R O 4 14DSPATR(HI)

A 7 4'Customer Name'

A DSPATR(HI UL)

A 7 27'A/R Balance'

A DSPATR(HI UL)

Figure 92 (Part 2 of 2). DDS for WORKSTN Subfile-Processing Program Display Device File

The DDS for the CUSSRC display device file contains six record formats: HEAD,
FOOT1, FOOT2, PROMPT, SUBFILE, and SUBCTL.

The PROMPT record format requests the user to enter a zip code. If the zip code is
not found in the file, an error message is displayed. The user can press F3, which
sets on indicator 03, to end the program.

The SUBFILE record format must be defined immediately preceding the subfile-
control record format SUBCTL. The subfile record format, which is defined with the
keyword SFL, describes each field in the record, and specifies the location where
the first record is to appear on the display (here, on line 9).

The subfile-control record format contains the following unique keywords:

¹ SFLCTL identifies this format as the control record format and names the associ-
ated subfile record format.

¹ SFLCLR describes when the subfile is to be cleared of existing records (when
indicator 55 is on). This keyword is needed for additional displays.

¹ SFLDSPCTL indicates when to display the subfile-control record format (when
indicator 55 is off).

 Chapter 8. Using WORKSTN Files 189

 WORKSTN File Examples

¹ SFLDSP indicates when to display the subfile (when indicator 55 is off).

¹ SFLSIZ specifies the total size of the subfile. In this example, the subfile size is
13 records that are displayed on lines 9 through 21.

¹ SFLPAG defines the number of records on a page. In this example, the page
size is the same as the subfile size.

¹ ROLLUP indicates that indicator 95 is set on in the program when the roll up
function is used.

The OVERLAY keyword defines this subfile-control record format as an overlay
format. This record format can be written without the OS/400 system erasing the
screen first. F4 is valid for repeating the search with the same zip code. (This use
of F4 allows a form of roll down.)

190 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PROGRAM ID - CUSTSFL *

F* PROGRAM NAME - CUSTOMER MASTER SEARCH *

F* THIS PROGRAM DISPLAYS THE CUSTOMER MASTER FILE BY ZIP CODE *

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FCUSZIPL IF E K DISK

FCUSSRC CF E WORKSTN

F RECNUMKSFILE SUBFILE

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C CSTKEY KLIST

C KFLD ZIP

C**

C* MAINLINE *

C**

C WRITEFOOT1

C WRITEHEAD

C EXFMTPROMPT

C*

C *IN03 DOWEQ'0'

C CSTKEY SETLLCUSREC 20

C *IN20 IFEQ *ZERO

C MOVE '1' *IN61

C ELSE

C EXSR SFLPRC

C END

C *IN03 IFEQ '0'

C *IN04 IFEQ '0'

C *IN61 IFEQ '0'

C WRITEFOOT1

C WRITEHEAD

C END

Figure 93 (Part 1 of 3). File Description Specification and Calculation Specification for WORKSTN Subfile Proc-
essing Program

 Chapter 8. Using WORKSTN Files 191

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C EXFMTPROMPT

C END

C END

C END

C*

C SETON LR

C**

C* SUBROUTINE - SFLPRC *

C* PURPOSE - PROCESS SUBFILE AND DISPLAY *

C**

C SFLPRC BEGSR

C NXTPAG TAG

C EXSR SFLCLR

C EXSR SFLFIL

C SAMPAG TAG

C WRITEFOOT2

C WRITEHEAD

C EXFMTSUBCTL

C *IN95 IFEQ '1'

C *IN71 IFEQ '0'

C GOTO NXTPAG

C ELSE

C GOTO SAMPAG

C END

C END

C ENDSR

Figure 93 (Part 2 of 3). File Description Specification and Calculation Specification for WORKSTN Subfile Proc-
essing Program

192 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBROUTINE - SFLFIL *

C* PURPOSE - FILL SUBFILE *

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SFLFIL BEGSR

C *IN21 DOWEQ'0'

C ZIP READECUSREC 71

C *IN71 IFEQ '1'

C MOVE '1' *IN21

C ELSE

C ADD 1 RECNUM

C WRITESUBFILE 21

C END

C END

C ENDSR

C**

C* SUBROUTINE - SFLCLR *

C* PURPOSE - CLEAR SUBFILE RECORDS *

C**

C SFLCLR BEGSR

C MOVE '1' *IN55

C WRITESUBCTL

C MOVE '0' *IN55

C MOVE '0' *IN21

C Z-ADD*ZERO RECNUM 50

C ENDSR

Figure 93 (Part 3 of 3). File Description Specification and Calculation Specification for WORKSTN Subfile Proc-
essing Program

The file description specifications identify the disk file to be searched and the
display device file to be used (CUSSRC). The continuation line for the WORKSTN file
identifies the record format (SUBFILE) that is to be used as a subfile. The relative-
record-number field (RECNUM) specified in positions 47 through 52 of the continuation
line controls which record within the subfile is being accessed.

The program displays the PROMPT record format and waits for the workstation user's
response. F3 sets on indicator 03, which controls the end of the program. The zip
code (ZIP) is used to position the CUSZIPL file by the SETLL operation. Notice that
the record format name CUSREC is used in the SETLL operation instead of the file
name CUSZIPL. If no record is found, an error message is displayed.

The SFLPRC subroutine handles the processing for the subfile: clearing, filling, and
displaying. The subfile is prepared for additional requests in subroutine SFLCLR. If
indicator 55 is on, no action occurs on the display, but the main storage area for
the subfile records is cleared. The SFLFIL routine fills the subfile with records. A
record is read from the CUSZIPL file. If the zip code is the same, the record count

 Chapter 8. Using WORKSTN Files 193

 WORKSTN File Examples

(RECNUM) is incremented and the record is written to the subfile. This subroutine is
repeated until either the subfile is full (indicator 21 on the WRITE operation) or end of
file occurs on the CUSZIPL file (indicator 71 on the READE operation). When the
subfile is full or end of file occurs, the subfile is written to the display by the EXFMT
operation by the subfile-control record control format. The user reviews the display
and decides whether:

¹ To end the program by pressing F3.
¹ To restart the zip code by pressing F4. The PROMPT record format is not dis-

played, and the subfile is displayed starting over with the same zip code.
¹ To fill another page by pressing ROLL UP. If end of file has occurred on the

CUSZIPL file, the current page is redisplayed; otherwise, the subfile is cleared
and the next page is displayed.

¹ To continue with another zip code by pressing ENTER. The PROMPT record format
is displayed. The user can enter a zip code or end the program.

In the screen below, the user enters a zip code in response to the prompt.

� �
10:11:08 CUSTOMER FILE SEARCH 01/25/94

Enter Zip Code 72901

ENTER - Continue F3 - End Job

� �

Figure 94. Prompt Screen for WORKSTN Subfile-Processing Program

194 RPG/400 User's Guide

 WORKSTN File Examples

The subfile is written to the screen as shown:

� �
10:11:23 CUSTOMER FILE SEARCH 01/25/94

 Zip Code 72901

 Customer Name A/R Balance

 BRADFIELD 11,111,111.00
 LEUNG 22,222,222.00
 ALLEN 33,333,333.00
 BELL 44,444,444.00
 KETCHUM 55,555,555.00
 FRASER 66,666,666.00
 GOODING 77,777,777.00
 LANE 88,888,888.00
 MARSHALL 11,111,111.00
 ROBERTS 11,111,222.00
 EWING 33,333,333.00
 LOGAN 44,444,444.00
 KENT 55,555,555.00

ENTER - Continue F3 - End Job F4 - RESTART ZIP CODE

� �

Figure 95. Display Screen for WORKSTN Subfile-Processing Program

 Chapter 8. Using WORKSTN Files 195

 WORKSTN File Examples

Sample Program 5–Inquiry by Zip Code and Search on Name
The following figures illustrate a simple inquiry program using the WORKSTN file:

Table 9. List of Figures for WORKSTN Inquiry Program

Figure Contents

Figure 96 below and
Figure 97 on page 197

DDS for master file and display device file

Figure 98 on page 200 File description and calculation specifications

Figure 99 on page 204 Prompt screen

Figure 100 on page 205 Information screen

Figure 101 on page 205 Detailed information screen

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A* CUSTOMER MASTER FILE -- CUSMSTP

A R CUSREC

A CUST 5 TEXT('CUSTOMER NUMBER')

A NAME 20 TEXT('CUSTOMER NAME')

A ADDR 20 TEXT('CUSTOMER ADDRESS')

A CITY 20 TEXT('CUSTOMER CITY')

A STATE 2 TEXT('CUSTOMER STATE')

A ZIP 5 0 TEXT('CUSTOMER ZIP CODE')

A SRHCOD 3 TEXT('CUSTOMER NAME SEARCH CODE')

A CUSTYP 1 TEXT('CUSTOMER TYPE')

A ARBAL 10 2 TEXT('ACCOUNTS RECEIVABLE BALANCE')

A**

A* FILE NAME : MLGMSTL1 *

A* DESCRIPTION: LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMSTP) *

A* BY ZIP CODE (ZIP) AND NAME(NAME) *

A**

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A R CUSREC PFILE(CUSMSTP)

A K ZIP

A K NAME

Figure 96. DDS for Inquiry by Zip Code Master File

The DDS for the database file used in this program defines one record format
named CUSREC, and identifies the ZIP and NAME fields as the key fields.

196 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* FILE NAME : MLG265D *

A* DESCRIPTION: DISPLAY CUSTOMER MASTER BY ZIP CODE & NAME *

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A DSPSIZ(24 80 *DS3)

A REF(CUSMSTP)

A CHGINPDFT(CS)

A PRINT(QSYSPRT)

A INDARA

A CA03(03 'END OF JOB')

A R HEAD

A OVERLAY

A 2 4TIME

A DSPATR(HI)

A 2 29'Customer Master Inquiry'

A DSPATR(HI UL)

A 2 70DATE

A EDTCDE(Y)

A DSPATR(HI)

A R FOOT1

A 23 6'ENTER - Continue'

A DSPATR(HI)

A 23 29'F3 - End Job'

A DSPATR(HI)

A R FOOT2

A 23 6'ENTER - Continue'

A DSPATR(HI)

A 23 29'F3 - End Job'

A DSPATR(HI)

A 23 47'F4 - Restart Zip Code'

A DSPATR(HI)

A R PROMPT

A OVERLAY

A 4 4'Enter Zip Code'

A DSPATR(HI)

A ZIPCD R Y I 4 19REFFLD(ZIP CUSMSTP)

A CHECK(RZ) DSPATR(CS)

A 5 7'Search Name'

A DSPATR(HI)

A SRCNAM R I 5 19REFFLD(NAME CUSMSTP)

A DSPATR(CS)

Figure 97 (Part 1 of 3). DDS for Inquiry by Zip Code Display Device File

 Chapter 8. Using WORKSTN Files 197

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R SUBFILE

A CHANGE(99 'FIELD CHANGED')

A SFL

A SEL 1 B 9 8DSPATR(CS)

A VALUES(' ' 'X')

A ZIP R O 9 17

A CUST R O 9 30

A NAME R O 9 43

A R SUBCTL SFLCTL(SUBFILE)

A SFLSIZ(0013)

A SFLPAG(0013)

A 55 SFLCLR

A N55 SFLDSPCTL

A N55 SFLDSP

A ROLLUP(95 'ROLL UP')

A OVERLAY

A CA04(04 'RESTART ZIP CDE')

A 4 4'Zip Code'

A ZIPCD R O 4 17REFFLD(ZIP CUSMSTP)

A DSPATR(HI)

A 5 4'Search Name'

A SRCNAM R O 5 17REFFLD(NAME CUSMSTP)

A DSPATR(HI)

A 7 6'Select'

A DSPATR(HI)

A 8 6' "X" Zip Code Number -

A Customer Name '

A DSPATR(HI)

A DSPATR(UL)

Figure 97 (Part 2 of 3). DDS for Inquiry by Zip Code Display Device File

198 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R CUSDSP

A OVERLAY

A CA04(04 'RESTART ZIP CDE')

A 6 25'Customer'

A CUST 5A O 6 35DSPATR(HI)

A 8 25'Name'

A NAME 20A O 8 35DSPATR(HI)

A 10 25'Address'

A ADDR 20A O 10 35DSPATR(HI)

A 12 25'City'

A CITY 20A O 12 35DSPATR(HI)

A 14 25'State'

A STATE 2A O 14 35DSPATR(HI)

A 14 41'Zip Code'

A ZIP 5S 0O 14 50DSPATR(HI)

A 16 25'A/R Balance'

A ARBAL 10Y 2O 16 42DSPATR(HI)

A EDTCDE(J)

Figure 97 (Part 3 of 3). DDS for Inquiry by Zip Code Display Device File

The DDS for the CUSSRC display device file contains seven record formats: HEAD,
FOOT1, FOOT2, PROMPT, SUBFILE, SUBCTL, and CUSDSP.

The PROMPT record format requests the user to enter a zip code and search name.
If no entry is made, the display starts at the beginning of the file. The user can
press F3, which sets on indicator 03, to end the program.

The SUBFILE record format must be defined immediately preceding the subfile-
control record format SUBCTL. The subfile-record format defined with the keyword
SFL, describes each field in the record, and specifies the location where the first
record is to appear on the display (here, on line 9).

The subfile-control record format SUBCTL contains the following unique keywords:

¹ SFLCTL identifies this format as the control record format and names the associ-
ated subfile record format.

¹ SFLCLR describes when the subfile is to be cleared of existing records (when
indicator 55 is on). This keyword is needed for additional displays.

¹ SFLDSPCTL indicates when to display the subfile-control record format (when
indicator 55 is off).

¹ SFLDSP indicates when to display the subfile (when indicator 55 is off).

¹ SFLSIZ specifies the total size of the subfile. In this example, the subfile size is
15 records that are displayed on lines 9 through 23.

¹ SFLPAG defines the number of records on a page. In this example, the page
size is the same as the subfile size.

¹ ROLLUP indicates that indicator 95 is set on in the program when the roll up
function is used.

 Chapter 8. Using WORKSTN Files 199

 WORKSTN File Examples

The OVERLAY keyword defines this subfile-control record format as an overlay
format. This record format can be written without the OS/400 system erasing the
screen first. F3 is valid for repeating the search with the same zip code. (This use
of F3 allows a form of roll down.)

The CUSDSP record format displays information for the selected customers.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PROGRAM ID - MLG265 *

F* PROGRAM NAME - MAILING LIST SEARC BY ZIP CODE/NAME *

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FMLGMSTL1IF E K DISK

FMLG265D CF E WORKSTN

F RECNUMKSFILE SUBFILE

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C CSTKEY KLIST

C KFLD ZIPCD

C KFLD SRCNAM

C ZIPKEY KLIST

C KFLD ZIP

C KFLD NAME

C**

C* MAINLINE *

C**

C WRITEFOOT1

C WRITEHEAD

C EXFMTPROMPT

C *IN03 DOWEQ'0'

C CSTKEY SETLLCUSREC

C EXSR SFLPRC

C EXSR SFLCHG

C *IN03 IFEQ '0'

C *IN04 ANDEQ'0'

C WRITEFOOT1

C WRITEHEAD

C EXFMTPROMPT

C END

C END

C*

C SETON LR

Figure 98 (Part 1 of 4). File Description Specification and Calculation Specification for Inquiry by Zip Code and
Search on Name Program

200 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBROUTINE - SFLPRC *

C* PURPOSE - PROCESS SUBFILE AND DISPLAY *

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SFLPRC BEGSR

C NXTPAG TAG

C EXSR SFLCLR

C EXSR SFLFIL

C SAMPAG TAG

C WRITEFOOT2

C WRITEHEAD

C EXFMTSUBCTL

C *IN95 IFEQ '1'

C *IN71 IFEQ '0'

C GOTO NXTPAG

C ELSE

C GOTO SAMPAG

C END

C END

C ENDSR

Figure 98 (Part 2 of 4). File Description Specification and Calculation Specification for Inquiry by Zip Code and
Search on Name Program

 Chapter 8. Using WORKSTN Files 201

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBROUTINE - SFLFIL *

C* PURPOSE - FILL SUBFILE *

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SFLFIL BEGSR

C *IN21 DOWEQ'0'

C READ CUSREC 71

C *IN71 IFEQ '1'

C MOVE '1' *IN21

C ELSE

C ADD 1 RECNUM

C MOVE *BLANK SEL

C WRITESUBFILE 21

C END

C END

C ENDSR

C**

C* SUBROUTINE - SFLCLR *

C* PURPOSE - CLEAR SUBFILE RECORDS *

C**

C SFLCLR BEGSR

C MOVE '1' *IN55

C WRITESUBCTL

C MOVE '0' *IN55

C MOVE '0' *IN21

C Z-ADD*ZERO RECNUM 50

C ENDSR

Figure 98 (Part 3 of 4). File Description Specification and Calculation Specification for Inquiry by Zip Code and
Search on Name Program

202 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBROUTINE - SFLCHG *

C* PURPOSE - CUSTOMER RECORD SELECTED *

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SFLCHG BEGSR

C READCSUBFILE 98

C *IN98 IFEQ '0'

C ZIPKEY CHAINCUSREC 71

C EXFMTCUSDSP

C END

C ENDSR

Figure 98 (Part 4 of 4). File Description Specification and Calculation Specification for Inquiry by Zip Code and
Search on Name Program

The file description specifications identify the disk file to be searched and the
display device file to be used (MLG265D). The continuation line for the WORKSTN file
identifies the record format (SUBFILE) to be used as a subfile. The relative-record-
number field (RECNUM) specified in positions 47 through 52 of the continuation line
controls, which record within the subfile is being accessed.

The program displays the PROMPT record format and waits for the workstation user's
response. F3 sets on indicator 03, which controls the end of the program. The zip
code (ZIP) and name (NAME) are used as the key to position the MLGMSTL1 file by
the SETLL operation. Notice that the record format name CUSREC is used in the
SETLL operation instead of the file name MLGMSTL1.

The SFLPRC subroutine handles the processing for the subfile: clearing, filling, and
displaying. The subfile is prepared for additional requests in subroutine SFLCLR. If
indicator 55 is on, no action occurs on the display, but the main storage area for
the subfile records is cleared. The SFLFIL routine fills the subfile with records. A
record is read from the MLGMSTL1 file, the record count (RECNUM) is incremented, and
the record is written to the subfile. This subroutine is repeated until either the
subfile is full (indicator 21 on the WRITE operation) or end of file occurs on the
MLGMSTL1 file (indicator 71 on the READ operation). When the subfile is full or end of
file occurs, the subfile is written to the display by the EXFMT operation by the subfile-
control record control format. The user reviews the display and decides:

¹ To end the program by pressing F3.

¹ To restart the subfile by pressing F4. The PROMPT record format is not dis-
played, and the subfile is displayed starting over with the same zip code.

¹ To fill another page by pressing the ROLL UP keys. If end of file has occurred
on the MLGMST1 file, the current page is displayed again; otherwise, the subfile is
cleared, and the next page is displayed.

¹ To display customer detail by entering X, and pressing ENTER. The user can
then return to the PROMPT screen by pressing ENTER, display the subfile again by
pressing F4, or end the program by pressing F3.

 Chapter 8. Using WORKSTN Files 203

 WORKSTN File Examples

In the following screen, the user responds to the initial prompt by entering a zip
code and name.

� �
11:07:56 Customer Master Inquiry 01/25/94

Enter Zip Code 26903
Search Name CUMMINGS

ENTER - Continue F3 - End Job

� �

Figure 99. Prompt Screen for Zip Code Search

204 RPG/400 User's Guide

 WORKSTN File Examples

The user requests more information by entering X in the following screen.

� �
11:09:20 Customer Master Inquiry 01/25/94

 Zip Code 26903
 Search Name CUMMINGS

 Select
 "X" Zip Code Number Customer Name

26903 00011 CUMMINGS
26903 00012 DONLEAVY
26903 00013 DREYFUS
26903 00014 FREDERICKS
26903 00015 RYERSON

 X 26903 00016 SANDFORD
26903 00017 STEVENS
26903 00018 TALLBOY
26903 00019 TORRENCE
26903 00020 WALTERS
27810 00021 GRAY
27810 00022 GRAYSON
27810 00023 HALIBURTON

ENTER - Continue F3 - End Job F4 - Restart Zip Code

� �

Figure 100. Information Display for Zip Code Search

In the following screen, the user selects the appropriate function key to continue or
end the inquiry.

� �
11:09:20 Customer Master Inquiry 01/25/94

 Customer 00016

 Name SANDFORD

Address 40 YONGE EAST

 City HAMILTON

State WA Zip Code 26903

 A/R Balance 100.00

ENTER - Continue F3 - End Job F4 - Restart Zip Code

� �

Figure 101. Detailed Information Display for Zip Code Search

 Chapter 8. Using WORKSTN Files 205

 WORKSTN File Examples

Sample Program 6–Program-Described WORKSTN File with a FORMAT
Name on Output Specifications

The following figures illustrate the use of a WORKSTN within FORMAT name on output
specifications.

Table 10. List of Figures for FORMAT Name on Output Specifications

Figure Contents

Figure 102 below DDS for display device file

Figure 103 on page 207 File description, input, calculation and output specifica-
tions

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* FILE NAME : CUSINQ *

A* DESCRIPTION: DISPLAY FILE FOR FORMAT NAME ON OUTPUT *

A**

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A R ITMPMT

A TEXT('INVENTORY INQUIRY PROMPT')

A CF01(15 'END OF PROGRAM')

A 1 2'Inventory Inquiry Prompt'

A 2 2'Enter Item Number'

A RECID 1 I 2 23DFT('A') DSPATR(ND PR)

A ITEM 5 I 2 25

A 99 ERRMSG('Item Not Found' 99)

A R ITMDTL TEXT('INVENTORY DETAIL')

A OVERLAY

A 5 2'Item No.'

A 5 14'Description'

A 5 41'Price'

A 5 53'Sold'

A 5 62'On hand'

A ITEM 5 7 2

A DESCRP 20 7 14

A PRICE 8 7 41

A PENDNG 5 7 53

A ONHAND 5 7 62

Figure 102. DDS for Program-Described WORKSTN File within FORMAT Name on Output Specifications

The data description specifications for the display device file CUSINQ describe how
the data sent from the RPG/400 program is displayed on the screen.

206 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FCUSINQ CP F 50 WORKSTN KPASS *NOIND

FINVMSTL IF E K DISK

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IRcdname+....In...*

ICUSINQ NS 03 2 CA

I..............Ext-field+......................Field+L1M1..PlMnZr...*

I 1 1 *IN15

I 2 2 RECID

I 3 7 ITEM

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN03 IFEQ '1'

C ITEM CHAININVDTL 99

C END

C *IN15 IFEQ '1'

C MOVE '1' *INLR

C RETRN

C END

Figure 103 (Part 1 of 2). File Description, Input, Calculation, and Output Specifications for Program-Described
WORKSTN File within FORMAT Name on Output Specifications

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OCUSINQ D 1P

O OR 03

O OR 99

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O K6 'ITMPMT'

O *IN99 1

O D 03N99

O K6 'ITMDTL'

O ITEM 5

O DESCRP 25

O PRICE 33

O PENDNG 38

O ONHAND 43

Figure 103 (Part 2 of 2). File Description, Input, Calculation, and Output Specifications for Program-Described
WORKSTN File within FORMAT Name on Output Specifications

On the output specifications, because the format name ITMPMT is conditioned by 1P,
it is written to the file before any input operations take place. This format is also
written to the file when indicator 03 or indicator 99 is on. If indicator 99 is on, the

 Chapter 8. Using WORKSTN Files 207

 WORKSTN File Examples

error message that is defined in DDS is displayed. To pass indicator 99 on output,
define the field *IN99 in the output record. The format ITMDTL is written to the file
when indicator 03 is on and indicator 99 is not on. The end positions for the fields
must be the same as the end positions defined on the DDS listing.

Sample Program 7–Variable Start Line
The following figures shows the program examples for a variable start line

Table 11. List of Figures for Variable Start Line

Figure Contents

Figure 104 below DDS for display device file

Figure 105 on page 209 File description, extension, and calculation specifica-
tions

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* FILE NAME : INQUIRY *

A* DESCRIPTION: DISPLAY FILE FOR VARIABLE START LINE *

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A PRINT

A R PROMPT SLNO(*VAR)

A MONTH 9A O 6 15DSPATR(HI)

A DAY 2 O 6 26DSPATR(HI)

A YR 2 O 6 30DSPATR(HI)

A 6 45TIME DSPATR(HI)

Figure 104. DDS for Variable Start Line

208 RPG/400 User's Guide

 WORKSTN File Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PROGRAM ID - VARLINE *

F* PROGRAM NAME - VARIABLE START LINE DISPLAY *

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FINQUIRY CF E WORKSTN

F KSLN SLNFLD

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E TABM 1 12 2 0 TABD 9 TABLE OF MONTHS

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C MOVE UDAY DAY

C MOVE UYEAR YR

C UMONTH LOKUPTABM TABD 66

C *IN66 IFEQ '1'

C MOVE TABD MONTH

C END

C Z-ADD6 SLNFLD 20

C*

C EXFMTPROMPT

C*

C MOVE '1' *INLR

**

01JANUARY

02FEBRUARY

03MARCH

04APRIL

05MAY

06JUNE

07JULY

08AUGUST

09SEPTEMBER

10OCTOBER

11NOVEMBER

12DECEMBER

Figure 105. File Description, Extension, and Calculation Specifications for Variable Start Line

A start-line number (SLN) field determines the line number where a record format is
written to a display file. SLN can be specified for both program-described and
externally described files. To use a variable start line for a display file record
format, specify the SLN option on the file continuation specifications. The DDS for
the file must specify SLNO(*VAR) for one or more record formats. Only these record
formats are affected by the value of the SLN field.

On output operations to the file, the value of the SLN field determines the line
number where record formats are actually written. If the SLN field has a value of 1

 Chapter 8. Using WORKSTN Files 209

 WORKSTN File Examples

through 24, 1 is subtracted from the value, and the result is added to the line
numbers specified in the DDS. The resulting values are used as the actual line
numbers for writing the fields and constants specified in the DDS. However, the
start line for the record format is the value of the SLN field. This means that the
record format written occupies all the lines between the start of the format and the
highest actual line number written to the display. If the SLN field has a value of 0, a
format appears on the display as if an SLN field value of 1 were specified. If the
value of the SLN field is negative or greater than 24, an RPG/400 1299 error
message is issued. For more information, see the Data Management Guide and
the DDS Reference.

In this example, the EXFMT operation uses a start-line number field (SLNFLD) with a
value of 6. This causes the record format to be displayed starting at line 06, the
output fields are written to line 11:

(6(SLNFLD) - 1 + 6(DDS start-line number)).

Figure 106 shows a display format specified with a variable start line.

� �

JANUARY 25 94 14:28:10

� �

Figure 106. Prompt Screen for Variable Start Line

210 RPG/400 User's Guide

 WORKSTN File Examples

Sample Program 8–Read Operation with Time-Out
The following figures illustrate the program examples for READ operation with
time-out.

Table 12. List of Figures for READ Operation with Time-Out

Figure Contents

Figure 107 below DDS for display device file

Figure 109 on page 212 File description, input, and calculation specifications

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* FILE NAME : HOTELDSP *

A* DESCRIPTION: DISPLAY FILE FOR TIME OUT EXAMPLE *

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A INVITE

A R REQUEST

A OVERLAY

A ROOM 5A I 10 46DSPATR(HI)

A 10 26'Enter Room Number:'

A DSPATR(HI)

Figure 107. DDS Read Operation with Time-Out

� �

Enter Room Number: 10025

� �

Figure 108. Sample Screen for Time-out

 Chapter 8. Using WORKSTN Files 211

 WORKSTN File Examples

Figure 109 shows an example of file description, input, and calculation specifica-
tions for READ operation with time-out.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PROGRAM ID - TIMEOUT *

F* PROGRAM NAME - TIME OUT ON READ *

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FHOTELDSPCF E WORKSTN

F KNUM 1

F KINFDS FEEDBK

IDsname....NODsExt-file++.............OccrLen+......................*

IFEEDBK DS

I..............Ext-field+............PFromTo++DField+...............*

I *STATUS STATUS

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C WRITEREQUEST

C READ HOTELDSP 9950

C EXSR ERRCHK

C MOVE '1' *INLR

C**

C* SUBROUTINE - ERRCHK *

C* PURPOSE - CHECK STATUS FOR MAX WAIT *

C**

C ERRCHK BEGSR

C STATUS IFEQ 1331

C MOVE 'SIGNOFF' CMD 7

C Z-ADD7 LEN 155

C CALL 'QCMDEXC'

C PARM CMD

C PARM LEN

C END

C ENDSR

Figure 109. File Description, Input, and Calculation Specifications for Read Operation with Time-Out

212 RPG/400 User's Guide

 WORKSTN File Examples

This program causes the work station to be signed off, when no workstation activity
has occurred during a specified length of time.

¹ In the DDS for the display file HOTELDSP, the keyword INVITE is specified for all
formats. You specify a length of time to wait with the WAITRCD parameter on
the CRTDSPF (or CHGDSPF) command to create (or change) this file.

¹ In the file specifications, the file HOTELDSP is specified as a WORKSTN file with the
option NUM. RPG treats the file as a multiple-device file.

¹ In the input specifications, the *STATUS subfield of the file information data
structure is named STATUS.

¹ The WRITE operation puts format REQUEST on the work station and, because of
the keyword INVITE, makes the work station an invited device.

¹ The READ-by-file-name operation to the file HOTELDSP waits for the length of
time specified on the WAITRCD parameter for a response from the invited
device.

¹ If no response comes in time, error indicator 99 is set on and the program con-
tinues with the next operation.

¹ The next operation performs the ERRCHK subroutine. This subroutine checks the
STATUS subfield of the file information data structure. Status code 1331 indi-
cates the READ operation timed out, and the ERRCHK subroutine signs the work
station off. Other status codes produce other results.

Note: This example is not a complete program.

 Chapter 8. Using WORKSTN Files 213

 WORKSTN File Examples

214 RPG/400 User's Guide

 Format of Fields in Files

Chapter 9. Data Field Formats and Data Structures

This chapter describes how the RPG/400 program works with data that is stored in
fields in data files. Within these files, the fields can be grouped together into data
structures.

Format of Fields in Files
The input and output fields of an RPG/400 program can be in character, zoned-
decimal, packed-decimal, or binary format. A leading or trailing sign can be speci-
fied with zoned-decimal format only. All numeric input fields (unless they are in a
data structure) are converted by the compiler to packed-decimal format for internal
processing. The program runs in the same way whether numeric data is in packed-
decimal format, zoned-decimal format, or binary format. However, the system proc-
esses arithmetic calculations more efficiently if the data is in packed-decimal
format. Subfields within a data structure are always carried in the format specified
by the subfield specification.

 Packed-Decimal Format
Packed-decimal format means that each byte of storage (except for the low-order
byte) can contain two decimal numbers. Each byte (except the low-order byte) is
divided into two 4-bit digit portions. The low-order byte contains one digit in the
leftmost portion and the sign (+ or −) in the rightmost portion. The standard signs
are used: hexadecimal F for positive numbers and hexadecimal D for negative
numbers. The packed-decimal format looks like this:

D i g i t D i g i t D i g i t S i g n

0 7 70

B y t e

The sign portion of the low-order byte indicates whether the numeric value repres-
ented in the digit portions is positive or negative. Figure 110 on page 219 shows
what the decimal number 8191 looks like in packed-decimal format.

For a program-described file, you specify packed-decimal input, output, and array
or table fields with the following entries:

Packed-decimal input field: Specify P in position 43 of the input specifications.

Packed-decimal output field: Specify P in position 44 of the output specifications.
This position must be blank if editing is specified.

Packed-decimal array or table field: Specify P in position 43 or position 55 of the
extension specifications. Arrays and tables loaded at compile time cannot be in
packed-decimal format.

For an externally described file, the data format is specified in position 35 of the
data description specifications.

 Copyright IBM Corp. 1994 215

 Format of Fields in Files

Use the following formula to find the length in digits of a packed-decimal field:

Number of digits = 2n – 1,

...where n = number of packed input record positions used.

This formula gives you the maximum number of bytes you can represent in packed-
decimal format; the upper limit is 30.

Packed fields can be up to 16 bytes long. The chart in Table 13 shows the packed
equivalents for zoned-decimal fields up to 16 digits long:

For example, an input field read in packed-decimal format has a length of five posi-
tions (as specified on the input or data description specifications). The number of
digits in this field equals 2(5) − 1 or 9. Therefore, when the field is used in the
calculation specifications, the result field must be nine positions long.

When a packed-decimal field in one program is converted to a zoned-decimal field
in another program, the zoned-decimal field always contains an odd number of
bytes. If a field is in packed-decimal format in one program and then is unpacked
in another program, the field length can increase by 1. If a field is packed and then
unpacked in the same program, the field length does not change. This must be
considered when fields are packed for storage on an intermediate device and then
used by another program.

Table 13. Packed Equivalents for Zoned-
Decimal Fields up to 16 Digits Long

Zoned-Decimal
Length in Digits

Number of Bytes
Used in Packed-
Decimal Field

 1 1

 3 2

 5 3

 .
 .
 .

 .
 .
 .

 29 15

 30 16

 Zoned-Decimal Format
Zoned-decimal format means that each byte of storage can contain one digit or one
character. Any character or numeric field can be read in zoned-decimal format. In
the zoned-decimal format, each byte of storage is divided into two portions: a 4-bit
zone portion and a 4-bit digit portion.

216 RPG/400 User's Guide

 Format of Fields in Files

The zoned-decimal format looks like this:

70 70 70 7 0 7

Z o n e D i g i tZ o n e D i g i tZ o n e D i g i tZ o n e D i g i t Z o n e D i g i t

B y t e

0

1 1 0 1 = M i n u s s i g n (h e x D)
1 1 1 1 = P l u s s i g n (h e x F)

The zone portion of the low-order byte indicates the sign (+ or −) of the decimal
number. The standard signs are used: hexadecimal F for positive numbers and
hexadecimal D for negative numbers. In zoned-decimal format, each digit in a
decimal number includes a zone portion; however, only the low-order zone portion
serves as the sign. Figure 110 on page 219 shows what the number 8191 looks
like in zoned-decimal format.

You must also consider the change in field length when coding the end position in
positions 40 through 43 of the output specifications. To find the length of the field
after it has been packed, use the following formula:

 n
 Field length = ─── + 1
 2

 ...where n = number of digits in the zoned decimal field.

 (Any remainder from the division is ignored.)

For a program-described file, zoned-decimal format is specified by a blank in posi-
tion 43 of the input specifications, in position 44 of the output specifications, or in
position 43 or 55 of the extension specifications. For an externally described file,
the data format is specified in position 35 of the data description specifications.

RPG/400 internally converts zoned decimal data into character data. During this
conversion, errors from decimal data are automatically corrected. Decimal data
errors can only be detected for fields defined in packed decimal format.

 Binary Format
Binary format means that the sign (+ or −) is in the leftmost bit of the field and the
integer value is in the remaining bits of the field. Positive numbers have a zero in
the sign bit; negative numbers have a one in the sign bit and are in twos comple-
ment form. In binary format, each field must be either 2 or 4 bytes long.

 Program-Described File
Every input field read in binary format is assigned a field length (number of digits)
by the compiler. A length of 4 is assigned to a 2-byte binary field; a length of 9 is
assigned to a 4-byte binary field. Because of these length restrictions, the highest
decimal value that can be assigned to a 2-byte binary field is 9999 and the highest
decimal value that can be assigned to a 4-byte binary field is 999 999 999.

 Chapter 9. Data Field Formats and Data Structures 217

 Format of Fields in Files

For program-described files, specify binary input, binary output, and binary array or
table fields with the following entries:

¹ Binary input field: Specify B in position 43 of the input specifications.

¹ Binary output field: Specify B in position 44 of the output specifications. This
position must be blank if editing is specified.

The length of a field to be written in binary format cannot exceed nine digits. If
the length of the field is from one to four digits, the compiler assumes a binary
field length of 2 bytes. If the length of the field is from five to nine digits, the
compiler assumes a binary field length of 4 bytes.

Because 2-byte input field in binary format is converted by the compiler to a
four-digit decimal field, the input value may be too large. If it is, the leftmost
digit of the number is dropped. For example, an input field has a binary value
of hex 7000. The compiler converts this to 28 672 in decimal. The 2 is
dropped and the result is 8672.

¹ Binary array or table field: Specify B in position 43 and/or position 55 of the
extension specifications. Arrays and tables loaded at compile time cannot be in
binary format.

Externally Described File
For an externally described file, the data format is specified in position 35 of the
data description specifications. The number of digits in the field is exactly the same
as the length in the DDS description. For example, if you define a binary field in
your DDS specification as having 7 digits and 0 decimal positions, the RPG/400
compiler handles the data like this:

1. The field is defined as a 4-byte binary field in the input specification

2. A Packed(7,0) field is generated for the field in the RPG/400 program.

If you want to retain the complete binary field information, redefine the field as a
binary subfield in a data structure.

Figure 110 on page 219 shows what the decimal number 8191 looks like in
various formats.

218 RPG/400 User's Guide

 Format of Fields in Files

Packed Decimal Format:

Zoned Decimal Format:

Positive Sign

Positive Sign

0 8 1 9 1

0000 1000 0001 1001 0001 1111

3 bytes

Zone Zone Zone Zone

8 1 9 1

1111 1111 1111 1111 11110000 1000 0001 1001 0001

5 bytes

Positive Sign
4096 2048 1024 5 1 2 2 5 6 1 2 8 6 4 3 2 1 6 8 4 2 1 8 1 9 1+ + + + + + + + + + + + =

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

2 bytes

1

2Binary Format:

Figure 110. Binary, Packed, and Zoned-Decimal Representation of the Number 8191

¹ If 8191 is read into storage as a zoned-decimal field, it occupies 4 bytes. If it is
converted to packed-decimal format, it occupies 3 bytes. When it is converted back
to zoned-decimal format, it occupies 5 bytes.

| ² To obtain the numeric value of a positive binary number add the values of the bits
that are on (1), do not include the sign bit. To obtain the numeric value of a nega-
tive binary number, add the values of the bits that are off (0) plus one (the sign bit
is not included).

 Signs
The RPG/400 program ensures that a consistent plus or minus sign is present for
all numeric fields. The standard signs for all packed and zoned numeric fields are
hexadecimal F for plus and hexadecimal D for minus.

 Chapter 9. Data Field Formats and Data Structures 219

 Data Structures

 External Formats
When a sign is written out for numeric fields, the sign (+ or −) is included in the
units position of the data field unless editing has been done. See the RPG/400
Reference.

You can specify an alternative sign format for zoned-decimal format. In the alterna-
tive sign format, the numeric field is immediately preceded or followed by a + or −
sign. A plus sign is a hexadecimal 4E, and a minus sign is a hexadecimal 60.

For program-described files, specify preceding (L entry) or following (R entry) plus
or minus signs in the following positions:

Input field: Position 43 of the input specifications

Output field: Position 44 of the output specifications

Array or table field: Position 43 and/or position 55 of the extension specifi-
cations.

When an alternative sign format is specified, the field length must include an addi-
tional position for the sign. For example, if a field is 5 digits long and the alterna-
tive sign format is specified, a field length of 6 positions must be specified.

 Internal Format
All numeric fields, except subfields of a data structure, are stored in packed-decimal
format for internal processing. In packed-decimal format, the sign is stored in the
last 4 bits of the rightmost byte of the field. See Figure 110 on page 219.

 Data Structures
The RPG/400 program allows you to define an area in storage and the layout of the
fields, called subfields, within the area. This area in storage is called a data struc-
ture. You can use a data structure to:

¹ Define the same internal area multiple times using different data formats

¹ Operate on a field and change its contents

¹ Divide a field into subfields without using the MOVE or MOVEL operation codes

¹ Define a data structure and its subfields in the same way a record is defined

¹ Define multiple occurrences of a set of data

¹ Group non-contiguous data into contiguous internal storage locations.

In addition, there are three special data structures, each with a specific purpose:

¹ A data area data structure (identified by a U in position 18 of the data structure
statement)

¹ A file information data structure (referred to by the keyword INFDS on a file
description specifications continuation line)

¹ A program-status data structure (identified by an S in position 18 of the data
structure statement).

Data structures can be program-described or externally described.

220 RPG/400 User's Guide

 Data Structures

A program-described data structure is identified by a blank in position 17 of the
data structure statement. The subfield specifications for a program-described data
structure must immediately follow the data structure statement.

An externally described data structure, identified by an E in position 17 of the data
structure statement, has subfield descriptions contained in an externally described
file with one record format. At compile time, the RPG/400 program uses the
external name to locate and extract the external description of the data structure
subfields. An external subfield name can be renamed in the program, and addi-
tional subfields can be added to an externally described data structure in the
program.

For examples of data structures, see “Data Structure Examples” on page 226.

Format of Data Structure Subfields in Storage
Subfields in a data structure are stored in the format specified in position 43 of the
data structure subfield specifications. The possible entries for a program-described
data structure are:

Because the subfields of a data structure are maintained in the format specified,
the compiler generates the necessary conversions to process the required function.
These conversions can occur at the following times:

¹ When a record is being read
¹ At detail or total calculation time
¹ At detail or total output time.

The rules for determining the length of a subfield in packed-decimal format, zoned-
decimal format, and binary format are the same as those for determining the length
of a field in packed-decimal format, zoned-decimal format, and binary format. (See
“Packed-Decimal Format” on page 215, “Zoned-Decimal Format” on page 216, and
“Binary Format” on page 217.)

Entry Explanation

Blank Subfield is in zoned-decimal format or is character data, depending
on the entry in position 52 of the subfield specifications.

P Subfield is in packed-decimal format.

B Subfield is in binary format.

Data Structure Statement Specifications
Data structure statements are defined on the input specifications and must follow all
input specifications for records. The specifications for data structure statements
are:

Table 14 (Page 1 of 2). Specifications For Data Structure Statements

Position Entry

6 I

7-12 Name of the data structure being defined. This entry is optional for a
program-described data structure, and is required for an externally
described data structure, a file information data structure (INFDS),
and a data area data structure.

 Chapter 9. Data Field Formats and Data Structures 221

 Data Structures

Table 14 (Page 2 of 2). Specifications For Data Structure Statements

Position Entry

13-16 Blank

17 Blank: Program-described data structure.

E: Externally described data structure. The data structure subfield
definitions are retrieved from an externally described record format.

18 Blank: Other than a program status, data area or initialized data
structure.

I: Globally initialized data structure.

S: Program-status data structure.

U: Data area data structure.

19-20 DS

21-30 Blank: The data structure is program described.

Entry: This is the name of the file whose first record format contains
the field descriptions used as the subfield descriptions for this data
structure.

31-43 Blank

44-47 Blank: A single occurrence data structure.

nnnn: A number (right-adjusted) indicating the number of occur-
rences of the data structure.

Note: This entry must be blank for a data area data structure, a file
information data structure, and a program-status data structure.

48-51 Length of data structure (optional). This entry must be right-
adjusted.

52-74 Blank

Rules for Specifying Data Structure Statements
Remember the following when you specify data structure statements:

¹ The data structure name must be a symbolic name with a maximum of six
characters. The name can appear on only one data structure specification,
cannot be a lookahead field, and can be specified anywhere a character field is
allowed.

¹ All entries for one data structure and its subfields must appear together; they
cannot be mixed with entries for other data structures.

¹ The data structure length is determined by the first specification in the program
that defines a length in one of the preceding ways. Subsequent conflicting
lengths are incorrect. The length of a data structure is one of the following:

– The length specified in the input-field specifications if the data structure
name is an input field

– The length specified in positions 48 through 51 of the data structure state-
ment

– The highest To position of a subfield within a data structure if the data
structure name is not an input field.

¹ A compile-time or prerun-time array cannot be used in a data area data struc-
ture or in a multiple-occurrence data structure.

222 RPG/400 User's Guide

 Special Data Structures

¹ Data structures are character data and can be from 1 to 9999 characters in
length.

¹ A data structure and a subfield of a data structure cannot have the same name.

Multiple Occurrence Data Structure
A multiple-occurrence data structure is a data structure whose definition is repeated
in a program to form a series of data structures with identical formats. You specify
the number of occurrences of a data structure in positions 44 through 47 of the
data structure statement. When positions 44 through 47 do not contain an entry,
the data structure is not a multiple-occurrence data structure. All occurrences of a
data structure have the same attributes and can be referred to individually. The
OCUR operation code, which can only be used with a multiple-occurrence data struc-
ture, allows you to specify which occurrence of a data structure is used for subse-
quent operations within the program.

Note: Multiple occurrences are not allowed for a data area, file information, or
program-status data structure.

For examples on multiple-occurrence data structures, see “Data Structure
Examples” on page 226.

Special Data Structures
Special data structures include:

¹ Data area data structures
¹ File information data structures (INFDS)
¹ Program-status data structures.

Data Area Data Structure
A data area data structure, identified by a U in position 18 of the data structure
statement, indicates to the RPG/400 program that it should read in and lock the
data area of the same name at program initialization and should write out and
unlock the same data area at the end of the program. Data area data structures,
as in all other data structures, have the type character. A data area read into a
data area data structure must also be character. The data area and data area data
structure must have the same name unless you rename the data area within the
RPG/400 program by using the *NAMVAR DEFN statement.

You can specify the data area operations (IN, OUT, and UNLCK) and have the type
for a data area that is implicitly read in and written out. Before you use a data area
data structure with these operations, you must specify that data area in the result
field of the *NAMVAR DEFN statement.

A data area data structure cannot be specified in the result field of a PARM opera-
tion.

If you specify blanks for the data area data structure (positions 7 through 12 of the
input specifications line that contains a U in position 18), the RPG/400 program
uses a local data area. To provide a name for a local data area, use the *NAMVAR
DEFN operation, with *LDA in factor 2 and the name in the result field.

 Chapter 9. Data Field Formats and Data Structures 223

 Data Structure Subfield Specifications

For general information on data areas, see Chapter 11, “Communicating with
Objects in the System.”

File Information Data Structure
You can specify a file information data structure (defined by the keyword INFDS on
a file description specifications continuation line) for each file in the program. This
provides you with status information on the file exception/error that occurred. The
file information data structure name must be unique for each file. A file information
data structure contains predefined subfields that provide information on the file
exception/error that occurred. For a discussion of file information data structures
and their subfields, see “Exception/Error Handling” on page 70.

Define and name a file information data structure on a file description specifications
continuation line with the following entries:

Table 15. Entries to Define and Name a File Information Data Structure

Position Entry

6 F

7-52 Blank (if the information is specified on a separate continuation line)

53 K (indicates a continuation line)

54-59 INFDS (identifies this data structure as the file information data struc-
ture)

60-65 Name of the file information data structure.

Program-Status Data Structure
A program-status data structure, identified by an S in position 18 of the data struc-
ture statement, provides program exception/error information to the program. For a
discussion of program-status data structures and their predefined subfields, see
“Exception/Error Handling” on page 70.

Data Structure-Subfield Specifications
The subfields of a program-described data structure must immediately follow the
data structure specification statement to which they apply. The subfields of an
externally described data structure are described externally to the RPG/400
program. The subfield specifications are brought into the RPG/400 program at
compilation. The subfields of an externally described data structure can be
renamed or additional subfield specifications can appear following the data struc-
ture statement. All renamed and initialized external subfields must precede any
additional subfield specifications. To add subfields to an externally described data
structure, follow the same rules as for subfields for a program-described data struc-
ture. The internally described subfields are added to the retrieved descriptions.

The specifications for subfields are as follows:

Table 16 (Page 1 of 2). Specifications for Subfields

Position Entry

6 I

7 Blank

224 RPG/400 User's Guide

 Data Structure Subfield Specifications

Table 16 (Page 2 of 2). Specifications for Subfields

Position Entry

8 I: Indicates an initialized subfield. (Specify the initialization value in
positions 21-42 or leave blank for default initialization value.)

9-20 Blank

21-42 positions 21-26: Named constant initialization value if position 8 con-
tains an I. Leave any remaining positions blank.

or

positions 21-42: Literal initialization value if position 8 contains an I.

or

positions 21-42: Blank for default initialization value if position 8 con-
tains an I.

or

positions 21-30: External name to rename a subfield in an externally
described data structure. (Specify the name to be used in the
program in positions 53 through 58.) Leave any remaining positions
blank.

43 P: Indicates that the subfield is in packed-decimal format.

B: Indicates that the subfield is in binary format.

Blank: Indicates that the subfield is in zoned-decimal format, or is
character data.

44-47
48-51

1- to 4-digit numbers: Positions 44 through 47 contain the beginning
position, and positions 48 through 51 contain the end position of the
subfield. These entries must be right-adjusted; leading zeros can be
omitted.

or

Keywords: For a program-status data structure or a file information
data structure (INFDS), place a special keyword (left-adjusted) in this
position. A keyword can start at position 44 and extend through to
position 51. See “Exception/Error Handling” on page 70 for the
keywords and their descriptions.

52 0-9: Indicates the number of decimal positions in a numeric field or
an array.

Blank: Indicates a character field.

Note: This position must contain an entry for a numeric subfield.
However, an entry is not required for an array. If an entry is made
for an array, the entry must be the same as that specified in the
extension specifications.

53-58 The subfield name.

Note: If an array is specified as a subfield name, the length indi-
cated in positions 44 through 51 must equal the entire amount of
storage required to store the array (for example, 10 binary half-word
elements require 20 bytes of storage).

59-74 Blank

 Chapter 9. Data Field Formats and Data Structures 225

 Data Structure Examples

Rules for Subfield Specifications
Remember the following when you specify subfield specifications:

¹ If the length (positions 44 through 51) or decimal positions (position 52) for the
subfield differ from prior definitions in the program, the first definition is used
and subsequent conflicting definitions are incorrect.

¹ If the To position (48 through 51) specified for a subfield is larger than the
defined length of an input field of the same name or the defined length of the
data structure, the subfield specification is incorrect.

¹ To redefine subfields, specify the same or part of the same From and To posi-
tions (44 through 51) for another subfield in the same data structure.

¹ To define a single position subfield, enter the same number in both positions 44
through 47 and positions 48 through 51.

¹ Overlapping subfields cannot be used in the same calculation specification.

¹ If an array or array element with a variable index is specified in the calculation
specifications in factor 1, factor 2, or the result field, the entire array is used to
determine whether overlap exists.

¹ Before packed, zoned, or binary numeric subfields are used in arithmetic or
editing operations, you must ensure that they are initialized with numeric data.

¹ An input field name cannot:

– Appear as both a subfield name and a data structure name
– Appear more than once as a subfield name.

¹ The following calculation operations are checked for overlapping subfields:

– Factor 1 and the result field, and factor 2 and the result field of the ADD,
SUB, MULT, DIV, Z-ADD, and Z-SUB operations. Factor 1 and factor 2 of the
preceding operations may overlap.

– Factor 2 and the result field of a MOVE, MOVEL, or MOVEA operation are
checked for overlap.

– Factor 2 and the result field and factor 1 and the result field of a PARM oper-
ation are checked for overlap.

Data Structure Examples
Figure 111 on page 227 through Figure 116 on page 236 show some typical uses
for data structures.

226 RPG/400 User's Guide

 Data Structure Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IFILEIN NS 01 1 CA 2 CB

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 3 18 PARTNO

I 19 29 NAME

I 30 40 PATNO

I 41 61 DR

IDsname....NODsExt-file++.............OccrLen+......................*

IPARTNO DS

I..............Ext-field+............PFromTo++DField+...............*

I 1 4 MFG

I 5 10 DRUG

I 11 13 STRNTH

I 14 160COUNT

I*

Figure 111. Using a Data Structure to Define Subfields within a Field

The data structure subfields can be referred to by the PARTNO name or by the sub-
fields MFG, DRUG, STRNTH, or COUNT.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

ITRANSACTNS 01 1 C1 2 C2

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 3 10 PARTNO

I 11 160QTY

I 17 20 TYPE

I 21 21 CODE

I 22 25 LOCATN

IDsname....NODsExt-file++.............OccrLen+......................*

IPRTKEY DS

I..............Ext-field+............PFromTo++DField+...............*

I 1 4 LOCATN

I 5 12 PARTNO

I 13 16 TYPE

I*

Figure 112. Using a Data Structure to Group Fields

When you use a data structure to group fields, fields from non-adjacent locations
on the input record can be made to occupy adjacent internal locations. The area
can then be referred to by the data structure name or individual subfield name.

 Chapter 9. Data Field Formats and Data Structures 227

 Data Structure Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* A multiple-occurrence data structure is used to accumulate a

I* series of totals for specific codes, and the totals of each of

I* the occurrences of the data structure are written.

I* The program-described data structure, TOTDS, has 99 occurrences

I* (positions 46 and 47). The length of the data structure can be

I* specified in positions 48 through 51.

I*

IDsname....NODsExt-file++.............OccrLen+......................*

ITOTDS DS 99

I..............Ext-field+............PFromTo++DField+...............*

I 1 50TOTCNT

I 6 120TOT1

I 13 202TOT2

I*

Figure 113 (Part 1 of 4). Using a Multiple Occurrence Data Structure to Accumulate Totals–Example 1

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* A numeric code field, CODE, contains a value of 01 though 99.
C* This value is different each time the OCUR operation is processed.
C* When the OCUR operation is processed, the CODE field is used to
C* set the current occurrence of TOTDS. If the OCUR operation is
C* successful, the program branches to the ADDRTN subroutine where
C* a record count is made and input values are added to the data
C* structure subfields. If the CODE field contains a value other
C* than 01 through 99, indicator 25 is set on and the program
C* branches to BADCOD.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C CODE OCUR TOTDS 25
C 25 GOTO BADCOD
C EXSR ADDRTN ┌────────────────┐
C " │ Calculations │
C " └────────────────┘
C BADCOD TAG
C " ┌────────────────┐
C " │ Calculations │
C └────────────────┘

Figure 113 (Part 2 of 4). Using a Multiple Occurrence Data Structure to Accumulate Totals–Example 1

228 RPG/400 User's Guide

 Data Structure Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* When the totals for the specific codes in the multiple-occurrence
C* data structure are to be written out, exception output is used.
C* The EXCPT PRTHDG operation causes all exception lines in the
C* output specifications with the name PRTHDG to be written. The
C* do group initially sets field X to 1. The value in X sets the
C* current occurrence of TOTDS. The Z-ADD operation adds TOTCNT to
C* a field of zeros and places the sum in the result field TOTCNT.
C* If TOTCNT contains a plus value, indicator 27 is set on.
C* The EXCPT PRTDS operation causes the current occurrence of the
C* data structure to be written. If overflow occurs while the
C* current occurrence of the data structure is being written, the
C* OF indicator is set on, a page skip occurs, and all exception
C* lines in the output specifications with the name PRTHDG are
C* written. The SETOF operation sets off the OF indicator.
C*
C* The Do group continues processing until field X is greater than
C* 99, the maximum number of occurrences for the multiple-occurrence
C* data structure. When X is greater then 99, control passes to the
C* next statement following the END statement.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C*
C EXCPTPRTHDG
C DO 99 X 30
C X OCUR TOTDS
C Z-ADDTOTCNT TOTCNT 27
C 27 EXCPTPRTDS
C OF EXCPTPRTHDG
C OF SETOF OF
C END
C " ┌────────────────┐
C " │ Calculations │
C └────────────────┘

Figure 113 (Part 3 of 4). Using a Multiple Occurrence Data Structure to Accumulate Totals–Example 1

 Chapter 9. Data Field Formats and Data Structures 229

 Data Structure Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The ADDRTN subroutine updates the current occurrence of the

C* multiple-occurrence data structure subfields.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C ADDRTN BEGSR

C ADD 1 TOTCNT

C ADD FLD1 TOT1

C ADD FLD2 TOT2

C*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
OName++++DFBASbSaN01N02N03Excnam....................................*
OPRINT E 206 PRTHDG
O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*
O " ┌────────────────────────┐
O " │Entries for Report Title│
O " └────────────────────────┘
O "
O E 2 PRTHDG
O " ┌──────────────────────────────────┐
O " │Entries for Report Column Headings│
O " └──────────────────────────────────┘
O "
O E PRTDS
O X 10
O TOTCNTZ 20
O TOT1 J 35
O TOT2 J 50
O*

Figure 113 (Part 4 of 4). Using a Multiple Occurrence Data Structure to Accumulate Totals–Example 1

230 RPG/400 User's Guide

 Data Structure Examples

In the following example, a multiple-occurrence data structure, TOTDS, is again used
to accumulate a series of totals for specific codes and the totals of each of the
occurrences of the data structure are written. There are 70 codes.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E*

E* A compile-time array, ARC, is specified in the extension

E* specifications. It has 70 entries. There are 10 entries in

E* each record, and each array element is 6 positions long. The

E* relative location of the alphanumeric code in the array (for

E* example the 37th entry) sets the current occurrence of the data

E* structure.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E ARC 10 70 6 ARRAY OF CODES

Figure 114 (Part 1 of 3). Using a Multiple Occurrence Data Structure to Accumulate Totals–Example 2

 Chapter 9. Data Field Formats and Data Structures 231

 Data Structure Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* The Z-ADD operation sets field X to one. The LOKUP operation
C* starts at the first element of ARC and searches until it finds
C* the first element equal to the code in ACODE. The ACODE field
C* is a character field of 6 characters. The index value, X, is
C* set to the position number of the element located. If the LOKUP
C* does not find an element equal to ACODE, indicator 20 is not set
C* on and the GOTO operation conditioned by N20 branches to the
C* BADCOD TAG. If LOKUP does find an element equal to ACODE, the
C* OCUR operation uses the value in X to set the current occurrence
C* of TOTDS and the program branches to the ADDRTN subroutine, where
C* a record count is made and input values are added to the data
C* structure subfields. The ADDRTN subroutine is not shown. If the
C* occurrence is outside the valid range for the data structure,
C* indicator 26 is set on, and the program branches to the ENDPRT TAG.
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C Z-ADD1 X 30
C ACODE LOKUPARC,X 20
C N20 GOTO BADCOD
C X OCUR TOTDS 26
C 26 GOTO ENDPRT
C EXSR ADDRTN
C " ┌────────────────┐
C " │ Calculations │
C BADCOD TAG └────────────────┘
C "
C "
C ENDPRT TAG ┌────────────────┐
C " │ Calculations │
C " └────────────────┘

Figure 114 (Part 2 of 3). Using a Multiple Occurrence Data Structure to Accumulate Totals–Example 2

232 RPG/400 User's Guide

 Data Structure Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O*

O* The calculations to print the data structure are not shown.

O* Only part of the output specifications is shown. The PRTDS

O* statement uses the value of field X, which contains the current

O* occurrence of the data structure, as an index to print the

O* corresponding alphanumeric code.

O*

OName++++DFBASbSaN01N02N03Excnam....................................*

O E PRTDS

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O ARC,X 10

O TOTCNTZ 20

O TOT1 J 35

O TOT2 J 50

Figure 114 (Part 3 of 3). Using a Multiple Occurrence Data Structure to Accumulate Totals–Example 2

 Chapter 9. Data Field Formats and Data Structures 233

 Data Structure Examples

Both programs (1 and 2) shown in Figure 115 below use data area data structures
(defined by the U in position 18 of the input specifications). Program 1 uses the
subfields of the data structure to accumulate a series of totals. Program 2 then
uses the totals in the subfields to do calculations.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
I* PROGRAM 1
I*
IDsname....NODsExt-file++.............OccrLen+......................*
ITOTALS UDS
I..............Ext-field+............PFromTo++DField+...............*
I 1 82TOTAMT
I 9 182TOTGRS
I 19 282TOTNET
I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C " ┌──────────────┐
C " │ Calculations │
C " └──────────────┘
C ADD AMOUNT TOTAMT
C ADD GROSS TOTGRS
C ADD NET TOTNET
C*

Figure 115 (Part 1 of 2). Data Area Data Structures

234 RPG/400 User's Guide

 Data Structure Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
I* PROGRAM 2
I*
IDsname....NODsExt-file++.............OccrLen+......................*
ITOTALS UDS
I..............Ext-field+............PFromTo++DField+...............*
I 1 82TOTAMT
I 9 182TOTGRS
I 19 282TOTNET
I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C " ┌──────────────┐
C " │ Calculations │
C " └──────────────┘
C AMOUNT2 COMP TOTAMT 9191
C GROSS2 COMP TOTGRS 9292
C NET2 COMP TOTNET 9393
C "
C "
C*

Figure 115 (Part 2 of 2). Data Area Data Structures

 Chapter 9. Data Field Formats and Data Structures 235

 Data Structure Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IDsname....NODsExt-file++.............OccrLen+......................*

IDSONE E DSEXTREC

I..............Ext-field+............PFromTo++DField+...............*

I CHARACTER CHAR

I 1 16 CHZON

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A R RECORD TEXT('EXTERNALLY DESCRIBED RECORD')

A CHARACTER 10

A ZONED 6S 2

A PACKED 4P 0

A BINARY 4B 0

A*

Figure 116. Renaming Subfields in an Externally Described Data Structure

On the data structure statement shown in Figure 116, positions 7 through 12
contain the name of the data structure being defined (DSONE), position 17 contains
an E to denote externally described, and positions 19 and 20 contain DS to denote
data structure. Positions 21 through 30 contain the name of the file (EXTREC) whose
first record format contains the field descriptions used as the subfield descriptions
for this data structure (RECORD).

On the first data description specification, position 17 contains an R to denote
record format and positions 19 through 28 contain the name of the record format
(RECORD). On subsequent data description specifications, positions 19 through 28
contain the names of the fields (CHARACTER, ZONED, PACKED, and BINARY).

Fields in a data structure can also be redefined for program use. Fields CHARACTER
and ZONED are also described as one field (CHZON) in the input specifications.

In the RPG/400 program, a field name can contain no more than 6 characters.
Therefore, the field name CHARACTER is renamed CHAR in the input specifications.
The data structure then uses CHAR as the subfield name.

236 RPG/400 User's Guide

 Named Constants

Chapter 10. Named Constants, Initialization, and SAA Data
Types

This chapter describes how you can use named constants and SAA data types in
your RPG/400 program. The chapter also addresses initialization of an RPG/400
program.

 Named Constants
You can give a name to a constant. This name represents a specific value which
cannot be changed when the program is running.

Rules for Named Constants
¹ Named constants can be specified in Factor 1 and Factor 2 in the calculation

specifications and in the Field Name, Constant, or Edit Word fields in the output
specifications. They can also be used as array indexes and as the format
name in a WORKSTN output specification or as initialization values in an input
specification.

¹ The named constant has no inherent type. That is, no precision is implied by
the definition. Actual precision is defined by the context that is specified.

¹ The named constant can be defined anywhere in the input specifications.

¹ Character named constants must begin and end with a single quotation mark
(').

¹ If an alphanumeric constant, transparent or hexadecimal literal is specified,
then it can be continued to the constant field of the next line by coding a
hyphen (-) at the end of the constant instead of an apostrophe. If a numeric
constant is specified, then it can be continued to the constant field of the next
line by coding a hyphen (-) at the end of the constant immediately following the
last digit.

– The hyphen can be specified in any position on the field.

– The hyphen works the same way as the minus sign when continuing com-
mands in CL programs. Any blanks in the next input record that follow the
leading apostrophe, and precede the first non-blank character, are included
in the named constant.

– Hyphens are permitted in the first position of a named constant literal to
allow double-byte data to be moved. See “Moving Bracketed Double-byte
Data and Deleting Control Characters (SUBR40R3)” on page 263 for more
information on moving double-byte data.

– For hexadecimal constants, the number of hexadecimal digits in a continua-
tion line does not have to be even. However, the total number of
hexadecimal digits in the entire constant must be even. (Hexadecimal
literals must begin with an uppercase X, followed by a single quotation
mark (X'). Hexadecimal literals, like character constants, end with a single
quotation mark (').)

– The next input specification must contain an entry in the constant entry
alone (apart from an I in position 6). If an alphanumeric, transparent literal

 Copyright IBM Corp. 1994 237

 Named Constants

constant, or hexadecimal literal is continued, the first character of each con-
tinuation (position 21) must contain an apostrophe.

– The constant can be continued as many times as desired so long as the
total length of the constant does not exceed 256 single-byte characters. A
numeric constant cannot be longer than 30 digits, with a maximum of nine
positions to the right of the decimal point. A hexadecimal literal cannot be
longer than 512 hexadecimal digits representing 256 bytes and must
contain an even number of digits.

– The named constant represents the constant that is the concatenation of all
constants on the main named constant specification and continuation lines.

...1....+....2....+....3....+....4....+....5....+....6....+....7...

I*

I* The following is an example of a character named constant:

I*

I..............Namedconstant+++++++++C.........Fldnme.............

I*

I 'ABCDEFG' C CHAR

I*

...1....+....2....+....3....+....4....+....5....+....6....+....7...

I*

I* The following is an example of a continued transparent

I* constant. The Shift Out (SO) and Shift In (SI) characters

I* are represented by o and i.

I*

I..............Namedconstant+++++++++C.........Fldnme.............

I*

I 'oK1K2K3i- C TRANS

I 'oK4K5i'

I*

Figure 117 (Part 1 of 3). The Use of Named Constants

238 RPG/400 User's Guide

 Named Constants

...1....+....2....+....3....+....4....+....5....+....6....+....7...

I*

I* The following is an example of a continued character named

I* constant. The blank immediately preceding the hyphen in each

I* line, and the 3 blanks on the last line of the constant

I* will be included in the constant. The value of the constant

I* LONGNC will be the string:

I* THIS IS A LONG CONSTANT THAT HAS THREE BLANKS HERE

I*

I..............Namedconstant+++++++++C.........Fldnme.............

I*

I 'THIS IS A LONG - C LONGNC

I 'CONSTANT THAT -

I 'HAS THREE BLANKS-

I ' HERE'

I*

...1....+....2....+....3....+....4....+....5....+....6....+....7...

I*

I* The following is an example of a continued numeric

I* constant.

I*

I..............Namedconstant+++++++++C.........Fldnme.............

I*

I 123456- C CHAR

I 789

I*

Figure 117 (Part 2 of 3). The Use of Named Constants

 Chapter 10. Named Constants, Initialization, and SAA Data Types 239

 Initialization

...1....+....2....+....3....+....4....+....5....+....6....+....7...

I*

I* The following is an example of a hexadecimal literal.

I*

I..............Namedconstant+++++++++C.........Fldnme.............

I*

I X'C1F2C3' C HEX1

I*

...1....+....2....+....3....+....4....+....5....+....6....+....7...

I*

I* The following is an example of a continued hexadecimal

I* literal.

I*

I..............Namedconstant+++++++++C.........Fldnme.............

I*

I X'c1- C HEX2

I 'c2c3'

I*

Figure 117 (Part 3 of 3). The Use of Named Constants

 Initialization
The initialization support provided by the RPG/400 compiler consists of three parts:
the initialization subroutine, the CLEAR and RESET operation codes, and data struc-
ture initialization.

Initialization Subroutine (*INZSR)
The initialization subroutine allows you to process calculation specifications before
1P output. It is declared like any other subroutine, but with the special name *INZSR
in factor 1. This subroutine will be automatically invoked at the end of the initializa-
tion step in the RPG/400 program before 1P output. You can enter any calculations
that you want in this subroutine, and it can also be called explicitly by using an EXSR
or CASxx operation code.

CLEAR and RESET Operation Codes
The CLEAR operation code sets a variable or all variables in a structure to blank,
zero or '0' depending on the type (character, numeric or indicator). If you specify a
structure (record format, data structure or array) all fields in that structure are
cleared in the order which they are declared.

The RESET operation code sets a variable or all variables in a structure to their initial
value. The initial value for a variable is the value it had at the end of the initializa-
tion step in the RPG/400 cycle, after the initialization subroutine has been invoked.
You can use data structure initialization to assign initial values to subfields, and
then change the values during the running of the program, and use the RESET oper-
ation code to set the field values back to their initial values. Because the initial
value is the value the variable had after the initialization subroutine is executed, you

240 RPG/400 User's Guide

can use the initialization subroutine to assign initial values to a variable and then
later use RESET to set the variable back to this initial value. This applies only to the
initialization subroutine when it is run automatically as a part of the initialization
step.

For more information on the initialization subroutine and the CLEAR and RESET opera-
tion codes see the RPG/400 Reference.

Data Structure Initialization
Data structure initialization allows you to initialize data structures and subfields
either to blank, zero or a specific value.

By default, a data structure is considered to be a character field, and unless speci-
fied, it is initialized to blanks. However, if numeric subfields are not initialized with
numeric data before they are used in arithmetic or editing operations, decimal data
errors result. Data structure initialization provides a means by which data structure
subfields can be initialized at compile-time, at the beginning of the *INIT step,
before any other program initialization is performed.

Data structures can be initialized both globally and on a subfield basis.

A globally initialized data structure, identified by an I in column 18 of the data
structure specification, is initialized with all characters set to blanks and all
numerics set to zeros. Because each subfield is initialized in the order that it
appears, you must ensure that overlapping fields are declared in such an order that
they are initialized correctly.

A data structure initialized on a subfield basis is identified by an I in column 8 and
an initialization value for the subfield in columns 21-42 of the data structure subfield
specification. If columns 21-42 contain blanks, the subfield will be initialized to
blanks or zeros, depending on whether the subfield is character or numeric. You
can specify either a literal value or a named constant name as the initialization
value in a format similar to named constants. If columns 21-42 contain a named
constant or a literal, the subfield will be initialized to the initialization value specified.

A data structure can be globally initialized, and subfields individually initialized
within the structure, by specifying an I in column 18 of the data structure specifica-
tion and an I in column 8 of each data structure subfield specification. The sub-
fields are initialized in the same order as they are declared in the data structure.

Special Considerations for Initializing Data Structures
You initialize a multiple-occurrence data structure by subfield value, or if you
globally initialize the structure, occurrences of the structure are initialized to the
same value.

The following rules apply to initializing arrays:

¹ If an initialization value for a run-time array is specified, each array element is
initialized with the same value. To specify different values for each array
element, you must use a compile-time or prerun-time array.

¹ Since compile and prerun-time arrays are initialized by definition, they cannot
be initialized using subfield initialization support. When a compile-time or
prerun-time array appears as part of a globally initialized data structure, it is not

 Chapter 10. Named Constants, Initialization, and SAA Data Types 241

 Initialization

included as part of the global initialization. Compile-time arrays are initialized in
the same order that their data is declared after the program and prerun-time
arrays in the order which the array input data files are declared.

¹ If a subfield initialization overlaps a compile-time or prerun-time array, initializa-
tion of the array is done last, regardless of the order of the definitions.

¹ If a subfield and a run-time array definition overlap in a data structure, they will
be initialized in the order which they are defined.

The following rules apply to initializing special data structures:

¹ Data area data structures, by definition, are initialized by being read in at
program initialization time, so initialization support is not required for these data
structures.

¹ Other data structures, such as the local data area and the PIP data area, can
be initialized.

¹ Because most of the fields in file information data structures and program-
status data structures are initialized by the compiler at initialization time, initial-
ization is not supported for these structures.

Rules for Initializing Subfields
The following rules apply to initializing subfields:

¹ An initialization value must match the subfield's type, and may not exceed the
length or number of decimal positions.

¹ To continue a literal over more than one line, the initialization value indicator (I
in column 8) is specified only on the first line of the literal. All other rules for
line continuation follow the conventions used for continuing named constants.
See “Named Constants” on page 237.

¹ A named constant used as an initialization value can be declared either before
or after the subfield where it is used. The named constant must be left-justified
in columns 21-26 of the subfield specification.

¹ For externally described data structures:

– An initialization value for a subfield may only be specified once. If more
than one initialization value is found, the first value specified is used. All
other specifications are ignored and error messages issued.

– If the initialization specification for a renamed subfield directly follows the
rename specification, the subfield name does not need to be specified on
the initialization specification.

– If a subfield is to be both renamed and initialized, you must rename the
subfield before initializing it. If the initialization specification precedes the
rename specification, the compiler considers the field as undefined and an
error results.

¹ For program described subfields, if more than one initialization specification
appears for a subfield, the specifications are treated as duplicate definitions of
the field.

Note: Since compile-time initialization is part of the initialization step of the
program, if the program ends with LR off, the subfields will not be automatically
initialized during the next call to the program. The program must first be deacti-
vated using the FREE operation.

242 RPG/400 User's Guide

 Initialization Examples

Initialization and the Program Cycle
Figure 118 shows the order of initialization in an RPG/400 program. The initial
value for a field is whatever value the field has at the point after the *INZSR is run.

 ┌─────────────────────────┐
│ Global Data Structure │

 │ Initialization │
 └────────────┬────────────┘
 6
 ┌─────────────────────────┐
 │ Subfield Value │
 │ Initialization │
 └────────────┬────────────┘
 6
 ┌─────────────────────────┐
 │ Compile-time Array │
 │ Initialization │
 └────────────┬────────────┘
 6
 ┌─────────────────────────┐
 │ Prerun-time Array │
 │ Initialization │
 └────────────┬────────────┘
 6
 ┌─────────────────────────┐
 │ run *INZSR │
 └────────────┬────────────┘
 6
 ┌─────────────────────────┐

│ current value of │
│ field at this point │
│ is initial value │

 └─────────────────────────┘

Figure 118. Order of Initialization in an RPG/400 Program.

 Initialization Examples
Figure 119 on page 244 through Figure 123 on page 247 show some typical
initializations of data structures.

 Chapter 10. Named Constants, Initialization, and SAA Data Types 243

 Initialization Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The I in column 18 globally initializes the data structure.

I* Numeric subfields are initialized to 0. Character subfields

I* are initialized to blanks.

I*

IDsname....NODSExt-file++.............OccrLen+......................*

IDS1 IDS

I.I............Init-value++++++++++++PFromTo++DField+...............*

I 1 52DS1S1

I 6 10 DS1S2

I 11 15 DS1S3

I 12 162DS1S4

I*

Figure 119. Globally Initialized Data Structure

...1....+....2....+....3....+....4....+....5....+....6....+....7...

I*

I* In the following example, global data structure initialization

I* is specified for DS1, so the field AMOUNT will be initialized

I* to zero. AMNTCH has been initialized to '1' using subfield

I* value initialization, but because AMOUNT is declared later

I* in the data structure and overlays AMNTCH, both fields will

I* contain zero. If you wanted AMNTCH to be initialized to '1',

I* place it after AMOUNT in the data structure.

I*

I..............Namedconstant+++++++++C.........Fldnme.............

I*

IDS1 IDS

I I '1' 1 6 AMNTCH

I 1 60AMOUNT

I*

Figure 120. Initializing Data Structures to 0 or 1

244 RPG/400 User's Guide

 Initialization Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The data structure below is initialized by subfield. Each

I* subfield is initialized only if an I is specified in column 8 of

I* the subfield specification. Notice that the subfield DS2S2 will

I* not be explicitly initialized to a value. The subfield DS2S4 is

I* initialized to a long literal value continued over several

I* lines. Subfields DS2S5 and DS2S6 are initialized to named constant

I* character and numeric fields respectively. Subfield DS2S7 is

I* initialized to a transparent literal value.

I*

I..............Ext-field+............PFromTo++DField+...............*

I -1234567890.234- C NUM2

I 56

I 'CHAR-CONST' C ALPH1

I*

IDsname....NODSExt-file++.............OccrLen+......................*

IDS2 DS

I.I............Init-Value++++++++++++PFromTo++DField+...............*

I I 123 1 30DS2S1

I 4 5 DS2S2

I I '5CHAR' 6 10 DS2S3

I I 'THIS IS A LONG INIT- 11 70 DS2S4

I 'VALUE CONTINUED-

I 'OVER 3 LINES'

I I ALPH1 71 80 DS2S5

I I NUM2 81 915DS2S6

I I 'oAABBCCDDEEi- 92 118 DS2S7

I 'oFFGGHHi'

I*

Figure 121. Data Structure Initialized by Subfield

 Chapter 10. Named Constants, Initialization, and SAA Data Types 245

 Initialization Examples

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The data structure DS3 is a globally initialized externally

I* described data structure. Notice that subfield initialization

I* values have been specified for the subfields shown. The subfields

I* not shown, DS3S2 and DS3S5, are not initialized to specific values

I* but will be initialized to blanks or 0. LONGEXTNM is renamed

I* to DS3S6 using a rename specification and then initialized to the

I* named constant value NUM1.

I*

I..............Ext-field+............PFromTo++DField+...............*

I 123 C NUM1

I 'CHAR-CONST' C ALPH1

I*

IDsname....NODSExt-file++.............OccrLen+......................*

IDS3 EIDS

I.I............Init-value++++++++++++PFromTo++DField+...............*

I I 123 DS3S1

I I '5CHAR' DS3S3

I I ALPH1 DS3S4

I LONGEXTNM DS3S6

I I NUM1

Figure 122. Initializing an Externally Described Data Structure

246 RPG/400 User's Guide

 SAA Data Types

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E*

E* DS4 is a globally initialized multiple occurrence data structure

E* containing an array. Here, every element of array ARR1

E* will be initialized to the string '10CHAR STR' and all

E* occurrences of the subfield DS4S2 will be initialized to 0.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E*

E ARR1 15 10

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IDsname....NODSExt-file++.............OccrLen+......................*

IDS4 IDS 5

I.I............Init-value++++++++++++PFromTo++DField+...............*

I I '10CHAR STR' 1 150 ARR1

I 151 1610DS4S2

Figure 123. A Globally Initialized Multiple Occurrence Data Structure

SAA Data Types
The RPG/400 compiler allows you to use SAA database data types date, time, and
timestamp, and variable-length fields and null-capable fields.

 Variable-Length Fields
By specifying the *VARCHAR value on the CVTOPT keyword of the CRTRPGPGM
or CRTRPTPGM commands, the RPG/400 compiler will internally define variable-
length fields from an externally described file or data structure as an RPG/400
fixed-length character field. When *VARCHAR is not specified, variable-length
fields are ignored and inaccessible in RPG/400 programs. For more information,
see the CVTOPT keyword on page 38.

The following conditions apply when *VARCHAR is specified on the CRTRPGPGM or
CRTRPTPGM command:

¹ If a variable-length field is extracted from an externally described file or an
externally described data structure, it is declared in an RPG/400 program as a
fixed-length character field.

¹ For single-byte character fields, the length of the declared RPG/400 field is the
length of the DDS field plus 2 bytes.

¹ For DBCS-graphic data fields, the length of the declared RPG/400 field is two
times the length of the DDS field plus 2 bytes. For more information on
DBCS-graphic data types, see “DBCS-Graphic Data Type Support” on
page 251. The two extra bytes in the RPG/400 field contain a binary number
which represents the current length (measured in double bytes) of the variable-
length field. Figure 124 on page 248 shows the RPG/400 field length of
variable-length fields.

 Chapter 10. Named Constants, Initialization, and SAA Data Types 247

 SAA Data Types

Single-byte character fields:

 ───┬────────┬────────────────┬──────
───5 │ length │ character-data │ ───5

 ───┴────────┴────────────────┴──────
 BIN(2) CHAR(N)
 &
 │

N = declared length in DDS

2 + N = RPG/400 field length

Graphic data type fields:

 ───┬────────┬────────────────┬──────
───5 │ length │ character-data │ ───5

 ───┴────────┴────────────────┴──────
 BIN(2) CHAR(2(N))
 &
 │

N = declared length in DDS = number of double bytes

2 + 2(N) = RPG/400 field length

Figure 124. RPG/400 Field Length of Variable-Length Fields

¹ Your RPG/400 program can perform any valid character calculation operations
on the declared fixed-length field. However, because of the structure of the
field, the first two bytes of the field must contain valid binary data. An I/O
exception error will occur for an output operation if the first two bytes of the
field contain invalid field length data.

¹ Control-level indicators, match field entries, and field indicators are not allowed
on an input specification if the input field is a variable-length field from an
externally described input file.

¹ Sequential-within-limits processing is not allowed when a file contains variable-
length key fields.

¹ Keyed operations are not allowed when factor 1 of a keyed operation corre-
sponds to a variable-length key field in an externally described file.

¹ If you choose to selectively output certain fields in a record and the variable-
length field is not specified on the output specification, or if the variable-length
field is ignored in the RPG/400 program, the RPG/400 compiler will place a
default value in the output buffer of the newly-added record. The default is 0 in
the first two bytes and blanks in all of the remaining bytes.

¹ If you want to change variable-length fields, ensure that the current field length
is correct. One way to do this is:

1. Define a data structure with the variable-length field name as a subfield
name.

2. Define a 2-byte binary subfield at the beginning of the field to retrieve the
current field length.

3. Update the field.

248 RPG/400 User's Guide

 SAA Data Types

Alternatively, you can move another variable-length field left-aligned into the
field. An example of how to change a variable-length field in an RPG/400
program follows.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A*

A* File MASTER contains a variable length field

A*

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions+++++++++++++++++++++

A*

A R REC

A FLDVAR 100 VARLEN

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* Externally described file name is MASTER.

F* Compile the RPG/400 program with CVTOPT(*VARCHAR).

F*

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

F*

FMASTER UF E DISK

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* FLDVAR is a variable-length field defined in DDS with

I* a DDS length of 100. Notice that the RPG field length

I* is 102.

I*

I..............Ext-field+............PFromTo++DField+L1M1FrPlMnZr...*

I*

I DS

I 1 102 FLDVAR

I B 1 20FLDLEN

I 3 102 FLDCHR

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C*

C READ MASTER LR

C MOVEL'SALES' FLDCHR

C Z-ADD5 FLDLEN

C NLR UPDATREC

Figure 125. Changing a Variable-Length Field in an RPG/400 Program

If variable-length graphic fields are required, you can code a 2-byte binary field to
hold the length, and a 2(N) length subfield to hold the data portion of the field.

 Chapter 10. Named Constants, Initialization, and SAA Data Types 249

 SAA Data Types

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The variable-length graphic field VGRAPH is declared in the

I* DDS as length 3. This means the maximum length of the field

I* is 3 double bytes, or 6 bytes. The total length of the field,

I* counting the length portion, is 8 bytes.

I*

I* Compile the RPG/400 program with CVTOPT(*VARCHAR *GRAPHIC).

I*

I..............Ext-field+............PFromTo++DField+L1M1FrPlMnZr...*

I*

IVGRAPH DS 8

I B 1 20VLEN

I 3 8 VDATA

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* Assume GRPH is a fixed length graphic field of length 2

C* double bytes. Copy GRPH into VGRAPH and set the length of

C* VGRAPH to 2.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C*

C MOVELGRPH VDATA

C Z-ADD2 VLEN

Figure 126. Using a Variable-Length Graphic Field in an RPG/400 Program

Date, Time, and Timestamp Fields
Date, time and timestamp fields are brought into your RPG/400 program only if you
specify the *DATETIME value on the CVTOPT keyword of the CRTRPGPGM or
CRTRPTPGM commands. If *DATETIME is not specified, date, time, and
timestamp fields are ignored and inaccessible in your RPG/400 program. For a
description and the syntax of CVTOPT, see the CVTOPT parameter on page 38.

Date, time or timestamp fields are brought into an RPG/400 program as fixed-
length character fields. Your RPG/400 program can perform any valid character
operations on the fixed-length fields.

Since date, time, and timestamp data types each have their own format, if a field
containing date, time or timestamp information is output to your database file, the
format and separators in the field must be exactly as required by the declared
format. If the same format or separators are not used, an exception/error will
occur. For more information on the formats of these database data types, see the
DDS Reference.

If you add a record to the database file and date, time, and timestamp fields are not
specified for output, the RPG/400 compiler will place default values in the fields for

250 RPG/400 User's Guide

 SAA Data Types

output. The default value of date for any format is year 1, month 1, and day 1.
The default value of time for any format is hour 0, minute 0, and second 0. The
proper separators will be placed into the field according to the declared format.

Keyed operations are not allowed when factor 1 of a keyed operation corresponds
to an ignored date, time, or timestamp key field.

Sequential-within-limits processing is not allowed if there is an ignored date, time or
timestamp key field in the file.

DBCS-Graphic Data Type Support
The DBCS-graphic data type is a character string where each character is repres-
ented by 2 bytes. The graphic data type does not contain shift-out (SO) or shift-in
(SI) characters. The difference between single byte and DBCS-graphic data is
shown in the following figure:

 ┌────────┬────────┬────────┬────────┐
│ 1 byte │ 1 byte │ 1 byte │ 1 byte │ Single-byte

 └────────┴────────┴────────┴────────┘ data
│ │ │ │ │

 └────────┴────────┴────────┴────────┘
 1 char 1 char 1 char 1 char

 ┌────────┬────────┬────────┬────────┐
│ 1 byte │ 1 byte │ 1 byte │ 1 byte │ DBCS-graphic

 └────────┴────────┴────────┴────────┘ data
│ │ │

 └─────────────────┴─────────────────┘
 1 character 1 character

Figure 127. Comparing Single-byte and DBCS-graphic Data

DBCS-graphic data is brought into your RPG/400 program only if you specify the
*GRAPHIC value on the CVTOPT keyword of the CRTRPGPGM or CRTRPTPGM
commands. If *GRAPHIC is not specified, graphic data is ignored and inaccessible
in your RPG/400 program. For a description and the syntax of the CVTOPT, see the
CVTOPT parameter on page 38.

The following conditions apply when *GRAPHIC is specified on the CRTRPGPGM
or CRTRPTPGM command:

¹ Graphic data is brought into an RPG/400 program as fixed-length character
fields.

¹ Every DBCS-graphic data character has a length of 2 bytes.

¹ Every fixed-length graphic data field has a length of 2 bytes times the number
of characters in the field. For a description of the field length of variable-length
graphic data fields, see “Variable-Length Fields” on page 247.

¹ Your RPG/400 program can perform any valid character operations on the
fixed-length fields.

¹ If you add a record to the database file and graphic fields are not specified for
output, the RPG/400 compiler will place double-byte blanks in the fields for
output. If variable-graphic fields are not specified for output, the RPG/400 com-

 Chapter 10. Named Constants, Initialization, and SAA Data Types 251

 SAA Data Types

piler will place binary zero followed by double-byte blanks in the fields for
output. The following conditions will result in blanks being placed in your
output fields:

– The fields are not specified for output on the output specification.

– Conditioning indicators are not satisfied for the field.

– The required values are not specified on the CVTOPT keyword.

¹ Keyed operations are not allowed when factor 1 of a keyed operation corre-
sponds to an ignored graphic field.

¹ Sequential-within-limits processing is not allowed if there is an ignored graphic
key field in the file.

Null Value Support
Null-capable fields containing null values in a database file can be read into your
RPG/400 program if you specify the *YES value on the ALWNULL keyword of the
CRTRPGPGM or CRTRPTPGM commands. Currently, null value support only
applies to externally described input-only files (files with no addition specified on the
file specification). For more information, see the ALWNULL parameter on page 44.

When an externally described file contains null-capable fields and *NO is specified
on the ALWNULL keyword, the following conditions apply:

¹ A record containing null values retrieved from an input or update file will cause
a data mapping error and an error message will be issued.

¹ Data in the record is not accessible and none of the RPG/400 fields in the
record can be updated with the values from the input record containing null
values.

¹ The RPG/400 compiler is not able to place null values in null-capable fields for
updating or adding a record. If you want to place null values in null-capable
fields, you can use SQL/400 or other products which have full support of null
values.

When an externally described input-only file contains null-capable fields and *YES is
specified on the ALWNULL keyword, the following conditions apply:

¹ When a record is retrieved from a database file and there are some fields con-
taining null values in the record, database default values for the null-capable
fields will be placed into those fields containing null values. The default value
will be the user defined DDS defaults or system defaults.

¹ Control-level indicators, match-field entries and field indicators are not allowed
on an input specification if the input field is a null-capable field from an
externally described input-only file.

¹ Keyed operations are not allowed when factor 1 on a keyed input calculation
operation corresponds to a null-capable key field in an externally described
input-only file.

¹ Sequential-within-limits processing is not allowed when a file contains null-
capable key fields.

¹ Programs created with null-processing files use a run-time routine that can only
be used with V2R1M1 or a later release.

252 RPG/400 User's Guide

 SAA Data Types

Note: For a program-described file, a null value in the record always causes a
data mapping error, regardless of the value specified on the ALWNULL keyword.

Error Handling for SAA Data Types
For any input or output operation, a data mapping error will cause a severe error
message to be issued. For blocked output, if one or more of the records in the
block contains data mapping errors and the file is closed before reaching the end of
the block, a severe error message is issued and a system dump is created.

 Chapter 10. Named Constants, Initialization, and SAA Data Types 253

 SAA Data Types

254 RPG/400 User's Guide

 Calling Other Programs

Chapter 11. Communicating with Objects in the System

This chapter describes how an RPG/400 program communicates with other pro-
grams in the system. The call function available in an RPG/400 program allows it
to call other programs or special subroutines. The RPG/400 program also provides
the return function to allow control to return from a called program.

Calling Other Programs
The RPG/400 program provides for communication with other programs.

The CALL (call a program) operation code and the RETRN (return to calling program)
operation code allow an RPG/400 program to call other programs (for example,
another RPG/400 program or a CL program) and to return to the calling program.
The PLIST (identify a parameter list) and PARM (identify parameters) operations allow
the same data to be accessed by a calling and a called program.

Figure 128 shows a conceptual view of RPG/400 programs calling other programs
(RPG/400 and CL) and CL programs calling other programs (RPG/400 and CL).

C A L L P G M B

C A L L P G M C

C A L L P G M D

R E T U R N

P G M A (C L) P G M B (R P G) P G M C (C L)

P G M D (R P G)

L R

Figure 128. Calling RPG/400 programs and CL programs

See Figure 129 on page 256 for a coding example of an RPG/400 program calling
another RPG/400 program using the CALL/RETRN function. See the CL
Programmer’s Guide for information about passing parameters between an
RPG/400 program and a CL program.

 Copyright IBM Corp. 1994 255

 Calling Other Programs

The CALL/RETRN function provides the following capabilities:

¹ PLIST and PARM(s) operation codes can be specified with the CALL operation to
allow the same data to be accessed by a calling and a called program.

When an RPG/400 program is called for the first time, the program is located,
the fields are set up, and the program is given control. On each succeeding
call, if the called program has not ended, all fields, indicators, and files in the
called program are the same as they were when the program returned on the
preceding call. On each succeeding call, if the called program has ended or if
FREE was specified, a fresh copy of the program is made available.

¹ The FREE operation code can be specified to remove a called program from the
list of activated programs. If the program is called again, it functions as though
it were being called for the first time. However, any files that are opened or
any data areas that are locked by the called program are not affected by the
FREE operation; the files or data areas are still allocated to the called program.

¹ The CALL operation can be dynamic; that is, the name of the program to be
called can be supplied at run time.

¹ An explicit return is provided through the RETRN operation code.

¹ An implicit return is provided if the LR, RT, or H1 through H9 indicators are set
on, or if the RPG/400 exception/error handling routine receives control when
exception/errors occur.

...1....+....2....+....3....+....4....+....5....+....6....+....7...

C*

C* This example shows an RPG program (MAIN) using the CALL/RETRN

C* function to call another RPG program (TRANS). The EXFMT operation

C* in the MAIN program writes the DSPLAY record to the display screen.

C* TOTRNS and FRTRNS are fields in the record. The work station user

C* can key data into the TOTRNS field. The information in the TOTRNS

C* field is to be translated by the TRANS program.

C*

C* Return from the TRANS program is to the statement immediately

C* following the last PARM statement in the MAIN program. The MAIN

C* program completes the transaction. When the GOTO operation is

C* processed, the program branches back to the beginning of

C* calculations. This loop continues until the work station user

C* presses a command attention key that sets on indicator 98 to end

C* the program. (On the DDS for the record format DSPLAY, a command

C* attention key is associated with indicator 98.)

C*

C* When indicator 98 is on, the program branches to the ENDPGM TAG

C* statement and the FREE operation frees the TRANS program. The

C* MAIN program ends when LR is set on.

C*

Figure 129 (Part 1 of 3). CALL/RETRN Function

256 RPG/400 User's Guide

 Calling Other Programs

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
C*
C* MAIN LINE PROGRAM
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C BEGIN TAG
C EXFMTDSPLAY
C 98 GOTO ENDPGM
C "
C "
C CALL 'TRANS'
C PARM TOTRNS
C PARM FRTRNS
C " ┌────────────────┐
C " │ Calculations │
C " └────────────────┘
C "
C GOTO BEGIN
C ENDPGM TAG
C FREE 'TRANS'
C SETON LR

Figure 129 (Part 2 of 3). CALL/RETRN Function

 Chapter 11. Communicating with Objects in the System 257

 Calling Other Programs

...1....+....2....+....3....+....4....+....5....+....6....+....7...
C*
C* When the CALL 'TRANS' operation in the MAIN program is processed,
C* the FLDY and FLDX names in the TRANS program are used to access
C* the data in the TOTRNS and FRTRNS fields in the parameter list
C* specified in the MAIN program. Using this data, the TRANS
C* program translates the TOTRNS field, which is called FLDY in the
C* TRANS program, and places the result of the operation in the FLDX
C* field. The RETRN operation in the TRANS program is then processed.
C* (The translated field is called FRTRNS in the MAIN program.)
C* A RETRN operation without the LR indicator on is specified to
C* keep the program and all its work areas intact.
C*
C* TRANSLATE PROGRAM
C*
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C *ENTRY PLIST
C PARM FLDY
C PARM FLDX
C START TAG
C " ┌────────────────┐
C " │ Calculations │
C " └────────────────┘
C "
C RETRN

Figure 129 (Part 3 of 3). CALL/RETRN Function

CALL (Call a Program)
The CALL operation transfers control from the calling to the called program. A PLIST
name is optional in the result field. If specified, it names a list of data that can be
communicated between the calling program and the called program. If the called
program accesses data in the calling program, and if the result field is blank, the
CALL operation must be immediately followed by PARM operations.

When the CALL operation is processed, the calling program passes control to the
called program. After the called program is run, control returns to the first state-
ment that can be processed after the CALL operation in the calling program. If an
error occurs during processing of the CALL operation (for example, the called
program is not found), the RPG/400 exception/error handling routine receives
control. See “Exception/Error Handling” on page 70 for detailed information on the
RPG/400 exception/error handling routine.

You can query the names of programs called by way of a named constant or literal
in an RPG/400 program using the CL command DSPPGMREF. If you call a program
via a variable using the CALL operation code, you will see a program entry with the
program name *VARIABLE (and no library name) to indicate that a call by variable
name is in the program.

258 RPG/400 User's Guide

 Calling Other Programs

Remember the following when specifying CALL:.

¹ A program can contain multiple CALLs to the same program with the same or
different PLISTs specified.

¹ The first CALL to a program causes program initialization. On subsequent
CALLs to the same program, program initialization is bypassed unless the FREE

operation was specified or the program was ended on a previous CALL.

¹ The addressing of parameters is limited to data formats common to the calling
and called programs.

| ¹ When a calling program ends in error or issues a return code greater than 1,
| the indicators in positions 56 and 57 are set on.

¹ An RPG/400 program cannot call itself or a program higher in the program
stack. For example, if program A calls program B, program B can call neither
program A nor B. If program B returns, with or without LR set on, and if
program A then calls program C, program C can call program B but not
program A or C.

¹ There are restrictions that apply when using the CALL operation code. For a
detailed description of these restrictions, see the RPG/400 Reference.

PLIST (Identify a Parameter List) and PARM (Identify Parameters)
The PLIST and PARM operations are calculation operations that can be used with
CALL. The PLIST operation:

¹ Defines a name by which the following list of parameters (PARMs) can be speci-
fied in a CALL operation

¹ Defines the entry parameter list (*ENTRY PLIST) in a called program.

Factor 1 of the PLIST statement must contain the PLIST name. This name can be
specified in the result field of one or more CALL operations. If the parameter list is
the entry parameter list of a called program, factor 1 must contain *ENTRY. Only
one *ENTRY PLIST can be specified in a program.

The *PARMS field in the program status data structure (PSDS) can be used to deter-
mine the number of parameters passed to a program from a calling program. By
using this field, references to the parameters that are not passed from the calling
program can be avoided and the called program can support additional parameters
without forcing recompilation or changes to the calling program.

The parameters comprising the PLIST are defined by the immediately following
PARM operations. The result field of a PARM statement identifies the data that the
called program can address. Connection between the calling and called program is
by address; therefore, the parameters are name independent.

Rules for Specifying PLIST
Remember the following when specifying a PLIST statement:

¹ If PLIST is specified, it must immediately be followed by the PARMs that apply to
it. If no PARM statements follow a PLIST statement, the PLIST statement is not
permitted.

¹ Multiple PLIST statements can appear in a program.

 Chapter 11. Communicating with Objects in the System 259

 Calling Other Programs

¹ Only one *ENTRY PLIST can occur in a program.

¹ A PLIST and its associated PARMs can appear anywhere in calculations.

Rules for Specifying PARM
Remember the following when specifying a PARM statement:

¹ One or more PARM statements must immediately follow a PLIST statement.

¹ One or more PARM statements can immediately follow a CALL operation.

¹ If there are more parameters in the calling program than in the called program,
the called program does not run.

¹ If there are more parameters in the called program than in the calling program,
an error occurs when an unresolved parameter is used.

¹ Fields specified as parameters in an *ENTRY PLIST can be used at first-page
(1P) time.

¹ When a multiple occurrence data structure is specified in the result field of a
PARM statement, all occurrences of the data structure are passed as a single
field.

¹ The result field of a PARM statement cannot contain:

 – *IN

 – *INxx

 – *IN,xx

– A data-area name
– A data area data structure name

 – A label
 – A literal

– A look-ahead field
– A named constant
– A table name
– A user-date reserved word.

In addition, an array element, a data structure subfield name, the name of a
compile-time array, and the name of a program status or file-information data
structure (INFDS) or a data structure specified in a *NAMVAR DEFN are not
allowed in the result field of PARMs specified for an *ENTRY PLIST. A field name
can be specified only once in an *ENTRY PLIST.

¹ When parameters are passed to an RPG/400 program that is called through
CL, the parameters can be specified on the command that calls the program.

¹ Factor 1 of a PARM statement cannot contain a literal, a look-ahead field, a
named constant, or a user-date reserved word.

¹ Factor 1 and factor 2 must be blank if the result field contains the name of a
multiple occurrence data structure.

OS/400 Graphics Support
The RPG/400 program allows you to use the CALL operation to call OS/400
Graphics, which includes the Graphical Data Display Manager (GDDM, a set of
graphics primitives for drawing pictures), and Presentation Graphics Routines (a set
of business charting routines). Factor 2 must contain the literal or named constant
'GDDM' (not a field name or array element).

260 RPG/400 User's Guide

 Calling Special Subroutines

Use the PLIST and PARM operations to pass the following parameters:

¹ The name of the graphics routine you want to run.

¹ The appropriate parameters for the specified graphics routine. These parame-
ters must be of the data type required by the graphics routine.

The RPG/400 program does not implicitly start or end OS/400 graphics routines.

For more information on OS/400 Graphics, graphics routines and parameters, see
the GDDM Programming Guide and the Graphical Data Display Manager Program-
ming.

FREE (Deactivate a Program)
The FREE operation code:

¹ Removes a program from the list of activated programs
¹ Frees static storage if you no longer require the program
¹ Ensures program initialization (first cycle processing) when a program is called.

FREE neither closes files nor unlocks data areas. You are responsible for closing
files and unlocking data areas in your own program. In an interactive environment,
you can close files and unlock data areas by using the CL command RETURN
(from level 1 of the command entry display) or SIGNOFF. (See the CL Reference
for the use of RETURN and SIGNOFF commands.)

When the FREE operation is specified, the program named in factor 2 is released
from the list of activated programs. If the program is called by the CALL operation
again, it functions as though it were being called for the first time (first-cycle proc-
essing). If the FREE operation is not successful, the RPG/400 exception/error han-
dling routine receives control. See “Exception/Error Handling” on page 70 for
detailed information on the RPG/400 exception/error handling routine.

General-Use Programming Interface

Calling Special Subroutines
The three special subroutines that are available in an RPG/400 program are:

¹ Message-Retrieving Subroutine (SUBR23R3)
¹ Moving Bracketed Double-byte Data and Deleting Control Characters

(SUBR40R3)
¹ Moving Bracketed Double-byte Data and Adding Control Characters (SUBR41R3).

Note: For detailed information on the use of CALL and PARM operation codes, see
the RPG/400 Reference.

Message-Retrieving Subroutine (SUBR23R3)
The message-retrieving subroutine (SUBR23R3) allows you to retrieve messages from
a user message member QUSERMSG. If you want to use other message files, you
can use the CL command OVRMSGF to override the message file. After the
message has been retrieved, it can be changed and written to an output file.

Connection to SUBR23R3 is by the CALL operation code, and input parameters are
passed to SUBR23R3 by PARM operation codes. To use SUBR23R3, specify CALL in

 Chapter 11. Communicating with Objects in the System 261

 Calling Special Subroutines

columns 28 to 32 and ‘SUBR23R3’ in columns 33 to 42. Five PARM operation codes
must be specified after the CALL operation with the following result-field entries:

The text area, which is specified by the second PARM operation, is blanked before
each attempt to retrieve a message; therefore, for some conditions, a blank text
area is returned to the user program when the return code value is 2 or greater. A
total of 132 (for level-2 messages) positions in the text area are blanked unless the
text area is less than 132 (3000 for level-2 messages) characters in length.

Result Field Description

Message
Identity
(MSGID)

If LEVEL = 1 or 2, name of a 4-digit numeric field that will be prefixed
with 'USR' to form the message identity of the message to be
retrieved.

or

If LEVEL = 3 or 4, name of a 7-position character field that contains
the message identifier to be retrieved. The format of this field is
aaannnn where a is any value from A to Z or characters #,@, or $
and n is any value from 0 to 9 or A to F.

Text area

Name of the alphanumeric field or data structure into which the
message text is read. The maximum length of a level-1 message is
132 characters and of a level-2 message is 3000 characters. (Data
structures must be used when the message is more than 256 charac-
ters.)

Level

Name of a 1-digit numeric field that designates the user message
member level. A value of 1 or 3 in this field indicates a message
level of 1; a value of 2 or 4 indicates a message level of 2. (Data
structures must be used when the message is more than 256 charac-
ters.) The value of 1 or 2 indicates the MSGID field is a 4-digit numeric
field, and the value of 3 or 4 indicates the MSGID is a 7-digit alphanu-
meric field.

Return Code

Name of a 1-digit numeric field that contains the return codes. The
return codes and their meanings are as follows:

Return Code Meaning

0 Message was successfully retrieved with no trun-
cation. The message may or may not contain text.

1 Message was successfully retrieved; but it was trun-
cated because the length of the text area was less
than the message length.

2 Message was not found.

3 Message level was incorrect. (Not 1,2,3, or 4)

4 An incorrect MSGID value was diagnosed. (The
value was not 0000 to FFFF.)

5 Message file was not found, or you didn’t have the
right authority, or message text length exceeds the
level-1 maximum length.

6 A not valid TXTL value was diagnosed.

Text
Length
(TXTL)

Name of a 4-digit numeric field that contains the length of the text
area defined in the calling program.

262 RPG/400 User's Guide

 Calling Special Subroutines

Note: You should make sure that the text area you specify does not exceed the
text area provided. If the text area does exceed the area provided, unexpected
results could occur as the data in your program may be overwritten when the
message is retrieved.

SAA Common Programming Interface Support
Source file QIRGINC in the QRPG and QRPGP libraries contains members which hold
the includes for multiple SAA Common Programming Interfaces. These includes
describe the argument or parameter interfaces. The files are IBM-owned and
should not be changed. If you want to tailor one or more of the includes, copy the
the member or members you want to change to a source file in one of your
libraries.

Note: Because the product libraries QRPG and QRPGP are added to your product
library list when you compile, the library that holds your tailored includes must be
expicitly defined. Otherwise, the IBM-supplied includes will be used.

If you copy includes to your library, you must refresh these copies when a new
release is installed or when changes are made via a PTF. IBM will only provide
maintenance to the includes which reside in the QRPG and QRPGP libraries.

Moving Bracketed Double-byte Data and Deleting Control Characters
(SUBR40R3)

The SUBR40R3 move and edit routine moves the contents of one field to another
field. If the S/O and S/I control characters are found as the first and last characters
in the field, SUBR40R3 deletes them. SUBR40R3 is called as shown in Figure 130.

...1....+....2....+....3....+....4....+....5....+....6....+....7...

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C CALL 'SUBR40R3'

C PARM EMPNO 10 SENDING FIELD

C PARM SOCSEC 8 RECEIVING FIELD

C PARM RETCDE 1 RETURN CODES

C PARM RECLEN 30 RECEIVING LEN

C*

Figure 130. Calling SUBR40R3

If you want the receiving field to contain all the data that is present in the sending
field, you must specify a length for the receiving field that is two positions less than
the length of the sending field. This allows two positions for each double-byte char-
acter (or one for each EBCDIC character) while the S/O and S/I control characters
(and the two positions they occupied) are deleted. If you specify a receiving field
longer than the sending field minus two positions, all the data from the sending field
is moved and the receiving field is padded on the left with blanks (1-byte EBCDIC
blanks). If the receiving field is shorter than the sending field minus two positions,
the data being moved is truncated on the left.

Five PARM fields must be specified when SUBR40R3 is called. The first two specify
the sending and receiving fields for the move. The third field is where the return
codes are written to indicate the status of the move operation. The fourth and fifth
fields must be loaded with the lengths of the sending and receiving fields. These

 Chapter 11. Communicating with Objects in the System 263

 Calling Special Subroutines

are the lengths of the fields specified on the first two PARMs for the call to SUBR40R3
(in Figure 130, you would need to load the lengths of EMPNO and SOCSEC). The
return code field must be defined as a 1-position alphanumeric field; the length
fields must be defined as 3-position numeric fields with zero decimal positions.

For information on DBCS-graphic data (DBCS data that doesn't use the S/O
(shift-out) and S/I (shift-in) control characters), see “DBCS-Graphic Data Type
Support” on page 251.

SUBR40R3 produces return codes to indicate the status of the move operation. The
following list contains these return codes and their meanings:

If more than one return code can be issued, only the highest return code is
returned.

Return
Code

Explanation

0 Data moved; no errors.

1 Data moved; padding occurred.

2 Data moved; truncation occurred.

3 Data moved; S/O and S/I control characters were not found.

4 Data not moved. Either an odd field length was found, a length of zero
was found, the length was greater than 256, or a not valid character was
found in the field length. Length specified in fourth and fifth parameters
is greater than the field length of the first and second parameters
respectively.

Moving Bracketed Double-byte Data and Adding Control Characters
(SUBR41R3)

The SUBR41R3 move and edit routine moves the contents of one field into another
field. If the S/O and S/I control characters are not found in the first and last posi-
tions of the field, SUBR41R3 adds them to the field when it is moved.

SUBR41R3 is called as shown in Figure 131.

...1....+....2....+....3....+....4....+....5....+....6....+....7...

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C CALL 'SUBR41R3'

C PARM SOCSEC 8

C PARM EMPNO 10

C PARM RETCDE 1

C PARM SNDLEN 30

C PARM RECLEN 30

C*

Figure 131. Calling SUBR41R3

If you want the receiving field to contain all the data that is in the sending field, you
must specify the length of the receiving field to be two positions longer than the
length of the sending field (to hold the S/O and S/I control characters). If you
specify a receiving field that is longer than the sending field plus two, the data is

264 RPG/400 User's Guide

 Returning from a Called Program

padded on the left when it is moved into the receiving field. If the receiving field is
shorter than the sending field plus two, the data is truncated on the left when it is
moved. If the receiving field is specified either longer or shorter than the sending
field plus two positions, the S/I control character is still placed in the correct position
(the rightmost position).

Five PARM fields must be specified when SUBR41R3 is called. The first two specify
the sending and receiving fields for the move. The third field is where the return
codes are written to indicate the status of the move operation. The fourth and fifth
fields must be loaded with the lengths of the sending and receiving fields. These
are the lengths of the fields specified on the first two PARMs for the call to SUBR41R3
(in Figure 131 on page 264, you would need to load the lengths of SOCSEC and
EMPNO). The return code field must be defined as a 1-position alphanumeric field;
the length fields must be defined as 3-position numeric fields with zero decimal
positions.

For information on DBCS-graphic data (DBCS data that doesn't use the S/O
(shift-out) and S/I (shift-in) control characters), see “DBCS-Graphic Data Type
Support” on page 251.

SUBR41R3 produces return codes to indicate the status of the move. The following
list contains these return codes and their meanings:

If more than one return code can be issued, only the highest return code is issued.

Return
Code

Explanation

0 Data moved; no errors.

1 Data moved; padding occurred to left of S/I control character.

2 data moved; data truncated to left of S/I control character.

3 Data moved; S/O and S/I already present.

4 Data not moved. Either odd field length found, length of zero found,
length greater than 256, or not valid character found in field length.
Length is specified in fourth and fifth parameters is greater than the field
length of the first and second parameters respectively.

End of General-Use Programming Interface

Returning from a Called Program
An RPG/400 called program returns control to the calling program in one of the
following ways:

¹ With a normal end
¹ With an abnormal end
¹ Without an end.

A description of the ways to return from a called program follows.

For a detailed description of where the LR, H1 through H9, and RT indicators, and
the RETRN operation are tested in the RPG/400 program cycle, see the section on
the RPG/400 program cycle in the RPG/400 Reference.

 Chapter 11. Communicating with Objects in the System 265

 Returning from a Called Program

A Normal End
A program ends normally and control returns to the calling program when the LR
indicator is on and the H1 through H9 indicators are not on. (For further information
on the LR indicator, see the RPG/400 Reference.) The LR indicator can be set on
by:

¹ The last record processed from a primary or secondary file during the RPG/400
program cycle

 ¹ The programmer.

A program also ends normally if:

¹ The RETRN operation is processed, the H1 through H9 indicators are not on, and
the LR indicator is on

¹ The RT indicator is on, the H1 through H9 indicators are not on, and the LR indi-
cator is on.

When a program ends normally, the following occurs:

¹ Parameters are moved from factor 2 to the result field.

¹ All arrays and tables with a 'To file name' specified on the extension specifica-
tions, and all locked data area data structures are written out.

¹ Any data areas locked by the program are unlocked.

¹ All files that are open are closed.

¹ A return code is set to indicate to the calling program that the program has
ended normally, and control then returns to the calling program.

On the next call to the program, a fresh copy is available for processing.

An Abnormal End
A program ends abnormally and control returns to the calling program when one of
the following occurs:

¹ An H1 through H9 indicator is on, and the cancel option is taken when a
message is issued.

¹ The cancel option is taken when an RPG/400 error message is issued.

¹ An *CANCL ENDSR statement in an *PSSR or INFSR subroutine is processed (for
further information on the *CANCL return point for the *PSSR and INFSR subrou-
tines, see “Exception/Error Handling” on page 70).

¹ An H1 through H9 indicator is on when a RETRN operation is processed.

¹ An H1 through H9 indicator is on when last record (LR) processing occurs in the
RPG/400 cycle.

When a program ends abnormally, the following occurs:

¹ All files that are open are closed.

¹ Any data areas locked by the program are unlocked.

¹ An error return code in the program status data structure is set to indicate to
the calling program that the called program has ended abnormally.

¹ Escape message RPG9001 is issued, and control returns to the calling program.

266 RPG/400 User's Guide

 Data Areas

On the next call to the program, a fresh copy is available for processing. (For more
information on the program status data structure, see “Exception/Error Handling” on
page 70.)

Return without an End
A program can return control to the calling program without ending when either the
RETRN operation is processed or the RT indicator is set on, and the LR or H1 through
H9 indicators are not on. The RETRN operation causes control to return immediately
to the calling program. The RT indicator causes control to return to the calling
program after the H1 through H9 indicators and the LR indicator are tested. (For
further information on the RT indicator, see the RPG/400 Reference.)

A program also returns without ending when something outside the program ends
its activation. For example:

¹ RPG/400 program A calls another program (such as a CL program) that issues
an escape message directly to the program calling A.

¹ A COBOL program calls an RPG/400 program that calls another COBOL
program that ends using a STOP RUN. STOP RUN ends the COBOL run unit,
which includes the RPG/400 program.

If you call a program and it is returned without an end, when you call the program
again, all fields, indicators, and files in the program will hold the same values they
did when you left the program, unless another program is called first.

You can use either the RETRN operation code or the RT indicator in conjunction with
the LR indicator and the H1 through H9 indicators. Be aware of the testing sequence
in the RPG/400 program cycle for the RETRN operation, the RT indicator, the LR indi-
cator, and the H1 through L9 indicators.

 Data Areas
A data area is an object used to communicate data such as variable values
between programs within a job and between jobs. A data area can be created and
declared to a program before it is used in that program or job. For information on
how to create and declare a data area, see the CL Programmer’s Guide. An
RPG/400 program does not support data areas defined by the CL command

| CRTDTAARA in which *LGL is specified as the TYPE parameter. In addition, data
| areas with type *DEC are not supported for data area data structures. The
| *NAMVAR DEFN statement can be used to access a data area with type *DEC.

The library that contains the data area must be specified in the library list.

The RPG/400 program provides access to a data area through a data area data
structure, the data-area operations IN and OUT, or a combination of the two. For
information on how to specify a data area data structure, see “Data Structures” on
page 220.

For a data area data structure, if the data area exists in a library that is specified in
the library list, the data area is copied into the program. If the data area does not
exist in a library that is specified in the library list, the name and length of the data
structure are used to generate a data area in the job’s temporary library (QTEMP).

 Chapter 11. Communicating with Objects in the System 267

 Data Areas

The RPG/400 program retrieves and locks the contents of a data area at program
initialization when a data area data structure is defined in the program. At the end
of program, the RPG/400 program writes the data area data structure to the data
area from which it came (temporary or permanent library) and unlocks the data
area data structure. If a data area data structure is unlocked at the time the
RPG/400 program does the update, the RPG/400 program does not write it at the
end of program. At the end of job, the job’s temporary library, QTEMP, is deleted.

The IN and OUT operations retrieve and write a data area. The lock capability is
optional with these operations.

If the program calls another program that uses the same data area that the calling
program uses, you must unlock the data area (with the UNLCK operation) before the
other program is called. Two programs cannot simultaneously use the same data
area for output.

A data area can be locked only once. An RPG/400 program cannot retrieve and
lock a data area that has already been locked. Programs that attempt to retrieve
and lock data areas include:

¹ Programs that use a data area as a data area data structure
¹ Programs that use an IN operation with *LOCK specified in factor 1.

The currently running program cannot lock the data area if:

¹ The data area was used in a CL command ALCOBJ in the same or another
routing step

¹ The data area was locked by a program that calls the current program.

To access a data area that has been locked with read allowed, retrieve it by using
an IN operation with blanks in factor 1. In this case, the program can retrieve the
data area but cannot change the data area by using the OUT operation.

The RPG/400 program uses the following lock states:

¹ An IN operation with *LOCK specified has an exclusive-allow-read (*EXCLRD) lock
state.

¹ An IN operation without *LOCK specified has a shared-for-read (*SHRRD) lock
state while transferring data. When the transfer is complete, the RPG/400
program releases the lock state.

¹ An OUT operation has an exclusive (*EXCL) lock state during the transfer of data
and then that lock state is released. The RPG/400 program then releases the
exclusive-allow-read (*EXCLRD) lock state established by the IN operation.

Another program’s lock state on a data area may interfere with the operation of
some or all of the RPG/400 program’s lock states. See the discussion of allocating
resources in the CL Programmer’s Guide for further information on the compatibility
among locks.

Figure 132 on page 269 shows a data area data structure and the IN and OUT
operations (within the same program) accessing the same data area.

268 RPG/400 User's Guide

 Program Initialization Parameters Data Area

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
I*
I* In this example, the data area data structure, TOTALS, is
I* implicitly read and written by RPG and explicitly updated. At
I* program initialization, RPG implicitly retrieves and locks TOTALS
I* After calculations are performed on TOTALS, the *LOCK OUT state-
I* ment updates and maintains the lock status of TOTALS. At end of
I* program, RPG implicitly writes and unlocks TOTALS.
I* TOTAL PROGRAM
I*
IDsname....NODsExt-file++.............OccrLen+......................*
ITOTALS UDS
I..............Ext-field+............PFromTo++DField+...............*
I 1 82TOTAMT
I 9 182TOTGRS
I 19 282TOTNET
...1....+....2....+....3....+....4....+....5....+....6....+....7...
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C " ┌──────────────┐
C " │ Calculations │
C " └──────────────┘
C ADD AMOUNT TOTAMT
C ADD GROSS TOTGRS
C ADD NET TOTNET
C *LOCK OUT TOTALS
C " ┌──────────────┐
C " │ Calculations │
C " └──────────────┘
C ADD AMOUNT TOTAMT
C ADD GROSS TOTGRS
C ADD NET TOTNET
C " ┌──────────────┐
C " │ Calculations │
C " └──────────────┘
C *NAMVAR DEFN TOTALS

Figure 132. Data Area Data Structure and Data-Area Operations

Program Initialization Parameters (PIP) Data Area
If the RPG/400 program is a pre-started job that is to receive program initialization
parameter (PIP) data, the PIP Data Area (PDA) can be used to retrieve the data.
To define the PDA, use the *NAMVAR DEFN operation code, and after acquiring the
requesting program device, issue an IN operation code with factor 2 specifying the
name of the PDA you defined in the DEFN operation code.

Unlike other data areas, you cannot LOCK, UNLOCK, or write data to a PDA using the
OUT operation code. For more information on how to define PDAs see the RPG/400
Reference.

For more information on pre-started jobs, see the ICF Programmer’s Guide.

 Chapter 11. Communicating with Objects in the System 269

 Program Initialization Parameters Data Area

270 RPG/400 User's Guide

 Group Printing

Chapter 12. Auto Report Feature

This chapter contains information on the RPG/400 automatic report function. It is a
program that operates before the RPG/400 compiler. Automatic report on the
AS/400 system is for conversion of existing automatic report programs. The use of
automatic report with AS/400 RPG/400 enhancements such as externally described
files or the DEFN operation code may supply undesirable results.

 Group Printing
In group printing, data is summarized for a group of input records and only totals
are printed on the report. Totals can have subtotals with a final total or only a final
total.

 Specifications
To specify group printing using automatic report, enter a T in position 15 and *AUTO

in positions 32 through 36. A control-level indicator can be specified in positions 23
through 31. When a T-*AUTO specification is used, a line is not printed for each
individual record that is read, but only after a complete control group is read.

Fields and constants defined by field description specifications that have a blank or
B in position 39 and follow a T-*AUTO record description are printed on the lowest
level total line. Fields defined with an A in position 39 are not printed on the total
lines, but the total fields created by automatic report are. Generated calculations
are printed on their associated total lines. Continued column headings (C in posi-
tion 39) and total-indicated fields (1 through 9 or R in position 39) can also be spec-
ified by field descriptions following a T-*AUTO record description.

Output indicators can be entered in positions 23 through 31 of a field description
specification following a T-*AUTO record description if position 39 of the field-
description specifications contains a blank or a B. If output indicators are used in a
field description that has an A in position 39 following a T-*AUTO specification, those
indicators are ignored by automatic report. Output indicators cannot be used in a
field description that contains C, 1 through 9, or R in position 39.

 Examples
Figure 133 on page 272 shows the file description and input specifications for the
group printed reports shown in Figure 135 on page 274 and Figure 137 on
page 275. BRANCH and REGION are defined as control fields.

 Copyright IBM Corp. 1994 271

 Group Printing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FSALES IP F 43 DISK

FPRINT O F 120 PRINTER

FDISKSUM O F 25 DISK

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*
ISALES AA 01
I....................................PFromTo++DField+L1M1FrPlMnZr...*
I 1 7 ITEMNO ┌───────────────┐
I 8 9 BRANCHL1 │L1 and L2 are │
I 10 10 REGIONL2 │the defined │
I 11 25 DESC │control levels.│
I 26 270SOLDQY └───────────────┘
I 28 342SOLDVA
I 35 360ONHAND
I 37 432VALUE
I*

Figure 133. File Description and Input Specifications for Group Printed Reports

A summary file, DISKSUM, is also produced by this program. The summary file con-
tains a summary record of the sales data for each branch. The output specifica-
tions for DISKSUM illustrate the use of standard RPG/400 output specifications in the
same program with *AUTO specifications. The output record described is written on
the file, DISKSUM, when there is an L1 control break (BRANCH field changes).
Because the T-*AUTO specification is conditioned by L2, automatic report does not
generate fields for the L1 control level. Therefore, standard RPG/400 calculation
specifications must be used to calculate the L1 totals. The L1 total fields that are
written on the DISKSUM file (SOLDQ1, SOLDV1, and VALUE1) must be defined in the
calculations.

272 RPG/400 User's Guide

 Group Printing

Figure 134 shows the output specifications and the group printed report showing
sales totals for a company. Because the T-*AUTO specification is conditioned by L2,
only the totals for REGION (L2) and for the entire company (LR) are printed on the
report. The totals for BRANCH (L1) are not printed.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C 01 SOLDQ1 ADD SOLDQY SOLDQ1 40

C 01 SOLDV1 ADD SOLDVA SOLDV1 92

C 01 VALUE1 ADD VALUE VALUE 92

C*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT H *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 'SALES FOR ANY COMPANY'

O ' BY BRANCH AND REGION'

O*

O .1/ T .2/ L2 *AUTO

O BRANCH 'BRANCH'

O SOLDQY A 'NUMBER OF SALES'

O SOLDVA A 'VALUE'

O VALUE A 'VALUE OF STOCK'

O C ' ON HAND'

O R 'REGION'

O REGION 2

O 2 'TOTALS'

O R 'COMPANY TOTAL'

O

ODISKSUM T L1

O REGION 1

O BRANCH 3

O SOLDQ1 B 7

O SOLDV1 B 16

O VALUE1 B 25

O*

Figure 134. Using *AUTO to Produce a Group Printed Report Showing Data Structure to Accumulate Totals–Example
2

.1/ T in position 15 with *AUTO in positions 32 through 37 specifies a group printed
report.

.2/ Because L2 is entered under output indicators, total lines are printed only for
L2 and LR, although L1 is also a defined control level. In group printing, the
lowest level total lines printed (L2, in this case) are single-spaced, like detail
lines.

 Chapter 12. Auto Report Feature 273

 Group Printing

11/11/87 SALES FOR ANY COMPANY BY REGION PAGE 1

REGION NUMBER OF SALES VALUE VALUE OF STOCK
ON HAND

1 23 71 ,000.00 19 ,000.00 *
3 30 70 ,000.00 29 ,000.00 *

COMPANY TOTAL 53 141 ,000.00 48 ,000.00 **

Figure 135. Group Printed Report Showing Region and Final Totals

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT H *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 'SALES FOR ANY COMPANY'

O ' BY BRANCH AND REGION'

O*

O T *AUTO

O BRANCH 'BRANCH'

O SOLDQY A 'NUMBER OF SALES'

O SOLDVA A 'VALUE'

O VALUE A 'VALUE OF STOCK'

O C ' ON HAND'

O 2 'REGION'

O REGION 2

O 2 'TOTALS'

O R 'COMPANY TOTALS'

O*

Figure 136. Using *AUTO to Produce a Group Printed Report Showing Region, Data Structure to Accumulate
Totals–Example 2

When no control-level indicators are entered under output indicators, a total line is
generated for each defined control-level indicator (L1 and L2, in this case) and for
LR.

Figure 137 shows a group printed report similar to the one shown in Figure 135.
However, the T-*AUTO specifications are not conditioned by a control-level indicator,
so totals are printed for all defined control levels and for LR.

274 RPG/400 User's Guide

 /COPY Statement Specifications

L1

L2

L2

L1

LR

SALES FOR ANY COMPANY BY BRANCH AND REGION PAGE 1

BRANCH NUMBER OF SALES VALUE VALUE OF STOCK
ON HAND

17 17 53 ,000.00 12,000.00 *
22 6 18 ,000.00 7,000.00 *

REGION 1 TOTALS 23 71 ,000.00 19 ,000.00 **

25 30 70 ,000.00 29 ,000.00 *

REGION 3 TOTALS 30 70 ,000.00 29 ,000.00 **

COMPANY TOTALS 55 141 ,000.00 48 ,000.00 ***

Figure 137. Group Printed Report Showing Region, Branch, and Final Totals

/COPY Statement Specifications
The automatic report copy function provides a way to include RPG/400 source
specifications from a source-file member in an RPG/400 program. Use the copy
function to include source specifications that are identical or nearly identical in
several different programs, thereby reducing the need to repeatedly code specifica-
tions that are used in several programs. For example, if file description and input
specifications for a particular file are similar in different programs, these specifica-
tions can be placed in a source-file member and included in any program by the
copy function.

Automatic report specifications and any valid RPG/400 specifications, including
arrays and tables can be copied in this manner. When compile-time arrays or
tables are contained in /COPY members, you must ensure that the data is encount-
ered in the same order as the extension specifications which declare the arrays or
tables. The automatic report option specifications and other copy statements
cannot be copied. See “Examples of Using Automatic Report” on page 299 for an
example of using the copy function.

The specifications included in an automatic report program by the copy function are
initially placed in the program immediately following the /COPY statement. When all
specifications are copied from the source-file member, the entire automatic report
program is sorted into the order required by the RPG/400 compiler.

To request the copy function, use the /COPY statement. This statement identifies
the source-file member containing the RPG/400 specifications to be included in the
source program generated by automatic report. /COPY statements must follow the
automatic report option specifications, and they must precede source arrays and
tables (file translation tables, alternative collating sequence tables, and compile-
time arrays and tables).

 Chapter 12. Auto Report Feature 275

 /COPY Statement Specifications

The file name specified on a /COPY statement must not be changed by a control
language override command. No inline data file can be specified as the file on a
/COPY statement.

The automatic report /COPY specification is similar in syntax to the compiler /COPY
directive.

The format of the /COPY statement is:

Figure 138 shows an example of the /COPY statement.

Position Entry

1-5 Page and line number indicating the placement of the statement in the
sequence of automatic report source specifications.

6 This position can contain any entry except H or U, or can be blank.

7-11 Enter the characters /COPY.

12 Blank.

13-44 Enter the qualified file name (library-name/file-name on the AS/400 system, or
file-name.library-name in the System/38 environment), followed by a comma,
followed by the member name. If the library name is not specified, the library
list (*LIBL) is used to locate the file. If F1, F2, R1, or R2 is specified as the file
name, the file name QRPGSRC is assumed, and the library list is used to locate
the file. If only one entry appears, it is the member name; the file name
QRPGSRC is assumed and the library list is used to locate the file. The member
name must exist in QRPGSRC.

45-49 Blank.

50-80 Enter any information or comments. The contents of these positions are not
read by automatic report.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
I/COPY QGPL/SALES,SALETR
I* & &
I* │ │
I* qualified member
I* name name

Figure 138. Example of the /COPY Auto Report Statement

Note: It is convenient to code the /COPY statement on the input specifications if
input specifications are to be changed as they are copied.

Changing Copied Specifications
Statements can be included in the automatic report specifications to change file
description and input-field specifications as they are copied from the source-file
member. No other types of specification can be change. /COPY modifier statements
from the source program that add, change, or delete entries on input field specifica-
tions are identified by an X in print position 6 of the automatic report listing.

276 RPG/400 User's Guide

 /COPY Statement Specifications

Changing File Description Specifications
To change a file description specification that is copied from a source-file member,
enter the file name in positions 7 through 14 of a file description specification (F in
position 6). Then make only those entries on the line that are to replace existing
entries in the copied specification or that are to be included as new entries. Blank
entries in the modifier statement do not affect the copied statement.

For example, the file description specifications for a frequently used file named
SALES is to be copied from a source-file member. The original specification con-
tains an I in file type (position 15), defining SALES as an input file. (See Figure 139
on page 278.) To update the sales file, change position 15 to a U by including a
modifier file description specification in the automatic report source program. The
modifier statement must contain the file name, SALES, and the new file type entry, U.
As a result of the modifier statement, the file type on the copied file description
specification is changed from I to U.

To set an entry to blanks, enter an ampersand (&) in the first position of that entry
of the modifier statement, and leave the remaining positions blank. For example, to
remove the overflow indicator (positions 33 and 34) from the specification shown in
Figure 139 on page 278, add an ampersand to the modifier statement in position
33, as shown in Figure 140 on page 278, and leave position 34 blank.

Modifier statements for file description specifications do not have to be in any par-
ticular order in the automatic report source program, except that they cannot imme-
diately follow the /COPY statement if input field specifications are also being
changed.

No modifications are allowed to the file description continuation specifications that
accompany a copied file description. To add new continuation specifications, place
them after a file description modifier statement for the file. A maximum of five con-
tinuation specifications are allowed to follow a file description specification (com-
bined total of original and added continuation specifications).

Changing Input-Field Specifications
Only input-field specifications (those describing individual fields on the input record)
can be changed. To change a copied input field specification, enter the field name
in positions 53 through 58 of an input-field modifier statement (I in position 6).
Modifier statements for input-field specifications must immediately follow the /COPY
statement in the automatic report program that copies those specifications. The
first specification following the /COPY statement that is not an input-field specification
is considered the end of the input-field modifier statements for the /COPY statement.
(A comment statement with an I in position 6 is not considered the end of the input
field modifier statements.)

 Chapter 12. Auto Report Feature 277

 /COPY Statement Specifications

The fields that can be changed are:

¹ Position 43 (packed/binary)
¹ Positions 44-51 (field location)
¹ Position 52 (decimal positions)
¹ Positions 59-60 (control levels)
¹ Positions 61-62 (matching fields)
¹ Positions 63-64 (field record relationship)
¹ Positions 65-70 (field indicators).

The method of replacing, adding, or blanking entries is similar to the method used
to change file description specifications. To replace or add entries, code the new
entry in the proper location in the modifier statement; to set an entry to blank, place
an ampersand (&) in the first position of that entry in the modifier statement.
Figure 139 shows an example of changing a copied file description specification.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* /COPY statement to copy specifications for SALES file from the

I* library QGPL. The member name is SALETR.

I/COPY QGPL/SALES,SALETR

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* File description specification as it is stored in the source-file

F* member.

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FSALES IP F 43 OF DISK

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* Copy function modifier statement.

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FSALES U

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* Resulting file description specification that is included in the

F* RPG/400 source program.

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FSALES UP F 43 OF DISK

Figure 139. Changing a Copied File Description Specification

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FSALES &

F*

Figure 140. Setting a Copied File Description Entry to Blank

278 RPG/400 User's Guide

 /COPY Statement Specifications

The modifier statement changes all copied input-field specifications that have the
same field name. If there is no input field by the same name, the modifier state-
ment is added to the program as a new input-field specification. Modifier statements
with duplicate field names are allowed (length and number of decimal positions
must also be the same), but only the first is used to change a copied specification.
Other field names are added as new input-field specifications. Up to 20 input-field
modifier statements are allowed per /COPY statement.

For best results, first place those statements that change existing input field specifi-
cations; then place those that are to be added as new input-field specifications.
This procedure is suggested because input field modifier statements that do not fit
into the special main storage table for modifier statements are added to the
RPG/400 source program as new input-field specifications. This order of specifying
modifier statements increases the likelihood that excess statements, if any, will be
valid field descriptions. Figure 141 shows examples of changing input specifica-
tions.

Input specifications as stored in a source file.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

ISALES AA 01

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 1 7 ITEMNO

I 8 9 BRANCH

I 10 10 REGION

I 11 25 DESC

I 26 270SOLDQY

I 28 342SOLDVA 13

I 35 360ONHAND

I 37 432VALUE

I*

Figure 141 (Part 1 of 2). Changing Copied Input-Field Specifications

/COPY statement and modifier statements:

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I/COPY SALETR

I BRANCHL1 .1/
I SOLDVA & .2/
I 1 43 RECORD .3/
I*

Figure 141 (Part 2 of 2). Changing Copied Input-Field Specifications

.1/ Add an entry to BRANCH field description.

.2/ Blank out minus field indicator on SOLDVA description.

.3/ Add a new field description.

Resulting input specifications for SALES file showing:

 Chapter 12. Auto Report Feature 279

 Report Format

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

ISALES AA 01

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 1 7 ITEMNO

I 8 9 BRANCHL1 .1/
I 10 10 REGION

I 11 25 DESC

I 26 270SOLDQY

I 28 342SOLDVA .2/
I 35 360ONHAND

I 37 432VALUE

I 1 43 RECORD .3/
Figure 142. Changing Copied Input-Field Specifications

.1/ Added L1 indicator.

.2/ Blanks in place of minus field indicator (positions 67 and 68).

.3/ Added field description.

 Report Format
One of the advantages of automatic report is that it frees the programmer from the
task of specifying the format of his report on the output specifications form. Auto-
matic report can completely format the report by spacing, skipping, centering lines,
and calculating end positions for fields and constants.

Spacing and Skipping
Spacing and skipping can be either left to automatic report or specified by you.
Figure 143 on page 282 shows spacing and skipping generated by automatic
report. For the specifications used to produce the report, see “Generated
Specifications” on page 284. If positions 17 through 22 are blank on an H-*AUTO
specification, a skip to line 06 is done before the first heading line is printed and
space-two-after is done for the last heading line. If more than one heading line is
specified, space-one-after is done for the first and all succeeding lines except the
last. To specify spacing and skipping, follow the standard RPG/400 rules for
spacing and skipping.

Column heading lines are spaced like page headings. Space-one-after is done for
all except the last. Space-two-after is done for a single heading line, or for the last
heading line if more than one is specified. Spacing and skipping entries cannot be
specified for column headings. If spacing and skipping entries are made on a
D-*AUTO record description specification, the entries apply to the detail line gener-
ated. The entries do not apply to column headings or total lines generated by auto-
matic report from the D-*AUTO specification. Standard RPG/400 rules for spacing
and skipping must be followed. Space-one-after is assumed for the generated
detail line if spacing and skipping entries are not made.

280 RPG/400 User's Guide

 Report Format

Space-two-after is generated for all total lines produced by automatic report from a
D-*AUTO specification. In addition, the lowest level total line and the final total line
are also generated with a space-one-before.

If spacing and skipping entries are made on a T-*AUTO specification, the entries
apply to the lowest level total line generated, but not to column headings or higher-
level total lines. If spacing and skipping are not made, the lowest level total lines
are generated with space-one-after; all higher levels are generated with space-two-
after. Space-one-before is always generated for the second-to-the-lowest level total
and the final total (see Figure 136 on page 274 for an example).

Placement of Headings and Fields
Automatic report generates end positions for fields and constants and centers
column headings, columns, and report lines. (See Figure 143 on page 282 for an
example.) If an end position is specified for a field or constant on a D/T-*AUTO field
description line, that end position is used on all column heading, detail, and total
specifications generated from the field description. (The specified end position may
be altered slightly by automatic report when the line is centered or when the
column heading and field are positioned relative to each other.) If the specified end
position causes an overlay with a previous field or constant, automatic report gener-
ates a new end position.

Specify end positions only to eliminate the automatic spacing between fields or to
spread out or expand a report on the page.

 Page Headings
If the date and page number are printed on the first *AUTO page heading line (that
is, if they are not suppressed by an N in position 27 of the option specifications or
by the *NODATE option of the RPTOPT parameter in the CRTRPTPGM command),
the date is always printed in positions 1 through 8. The page number is printed
with an end position equal to the highest end position of the longest line in the
report. When the first *AUTO page heading (including date, title, and page number)
is the longest line in the report, one blank space separates the title from the date
and the word PAGE from the title. If the resulting line exceeds the record length of
the printer file, the excess information on the right of the line is not printed.

If a line generated from a D/T-*AUTO specification is the longest report line, that line
is printed starting in print position 1, and the title portion of the first page heading
line is centered relative to that line.

Additional *AUTO page headings are then centered on the first *AUTO page heading
line.

If an *AUTO page heading is the longest line in the report and a D/T-*AUTO specifi-
cation is present, any other *AUTO page heading lines and the line generated from
the D/T-*AUTO specification are centered on the longest page heading.

Fields and constants appear in the order specified in the *AUTO output specifications
from left to right. Automatic report provides one blank space before and after fields
on the heading line. No spacing is provided between constants.

 Chapter 12. Auto Report Feature 281

 Report Format

Reformatting *AUTO Page Headings
You can reformat an *AUTO page heading line if you do not want to use the end
positions for fields and constants that are generated by automatic report. If you
want to find what end positions are generated for page, date, and title information,
see the listing of the generated source program that is produced by the RPG/400
compiler. See “Generated Specifications” on page 284.

1/15/80

25,000.00

20,000.00

8,000.00

53,000.00

10,000.00

8,000.00

18,000.00

71,000.00

40,000.00

30,000.00

70,000.00

70,000.00

141,000.00

10,000.00

2,000.00

12,000.00

5,000.00

2,000.00

7,000.00

19,000.00

20,000.00

9,000.00

29,000.00

29,000.00

48,000.00

2-TON TRUCK

PICK-UP

CAMPER

2-TON TRUCK

PICK-UP

CAMPER

1/4 TON TRUCK

17

22

25

1

3

5

10

2

2

4

10

20

*

*

**

*

**

PAGE 1

FINAL TOTALS

2

1

1

1

5

6

Skip to line 06 occurs before printing of the first line. Highest end position in the report.

Auto report generates a blank line (space-two-after)

following the last page heading line (in this case,

there is only one page heading line) and following

the last column heading line.

Auto report generates a blank line before

the lowest level total (in this case, there

is only the L1 total) and before the final

total (space-one-before).

Auto report generates a blank line following

each total line (space-two-after).

AG7701T

AG77055

AP6545B

AG7701T

AG77055

AP6545B

AP6549P

Figure 143. Report Illustrating Format Generated by Automatic report

282 RPG/400 User's Guide

 Report Format

Body of the Report
Placement of column headings above columns depends on which is longer, the
heading or the associated field (including edit characters). If any column heading is
longer than the associated field, the field is centered under the longest column
heading constant. If, however, the field is longer than the longest-column heading
constant, the column heading is left-adjusted over a character field and right-
adjusted over a numeric field. When more than one column heading line is speci-
fied, shorter column headings are always centered on the longest column heading.

Fields and constants appear from left to right on a line in the order they are speci-
fied by the output specifications. At least two blank spaces appear before each
field on the line. No spaces are provided before a constant; the programmer must
incorporate blanks within constants to provide for additional spacing.

Total indication information (fields and constants specified with 1 through 9 or R in
position 39) is placed to the left of the first total field (A in position 39) on the corre-
sponding total line, followed by two spaces. If two or more such fields or constants
are specified for a total line, they appear from left to right in the order specified on
the left of the first total on the line. Each field is preceded and followed by one
space. No spacing is provided for constants.

Overflow of the D/T-*AUTO Print Lines
If the lines generated from a D/T-*AUTO specification are longer than the record
length specified for the printer file, a second print line (overflow line) is generated
for each column heading line, detail (or group print) line, and total line.
(Remember, a second print line is not generated for *AUTO page heading lines.)
The excess information is placed on the overflow line in the order specified, right-
adjusted.

Figure 144 on page 284 shows the result of an overflow condition.

In the output specifications for the report shown in Figure 144 on page 284, no
spacing or skipping is specified. If spacing and skipping were specified, however,
automatic report spaces the report as follows:

¹ Column heading lines and total lines are spaced as shown in Figure 144 on
page 284.

¹ The space-before and skip-before entries specified are for the original detail (or
group print) line. Automatic report generates space-one-after for this line.

¹ The space-after and skip-after entries specified are for the overflow line. Auto-
matic report generates blanks for space-before and skip-before for the overflow
line.

 Chapter 12. Auto Report Feature 283

 Generated Specifications

AMOUNT BAL ANCE EXCESS

PA I D DUE D I SCOUNT

CASH RECE I P TS REG I S TER8 / 1 5 / 8 0 PAGE 1

A u t o re p o r t p r i n t s t h o se c o lu m n s t h a t

c a n n o t b e c o m p l e t e l y c o n t a i n e d o n

th e o r i g i n a l l i n e o n o v e r f l o w l i n e s .

1 1 1 2 4 3 JONES HARDWARE 2 7 5 4 1 7 / 1 1 / 8 0 7 / 2 1 / 8 0

2 3 . 2 8

1 1 1 3 5 2 NU - S TYL E CLOTH I ERS 2 7 9 8 7 7 / 1 4 / 8 0 7 / 2 6 / 8 0

4 0 . 0 0

1 1 1 8 8 6 M I D I F ASH I ONS I NC 1 57 7 1 7 / 0 4 / 8 0 7 / 1 4 / 8 0

1 0 5 . 0 8

1 1 2 8 7 4 ULOOK I NTER I ORS 2 5 6 2 2 7 / 0 9 / 8 0 7 / 2 3 / 8 0

6 7 . 9 5

1 1 8 2 7 4 S TREAML I NE PAPER I NC 2 9 7 0 3 7 / 2 1 / 8 0 7 / 3 0 / 8 0

17 0 . 5 5

REG I ON TOTAL S

4 0 6 . 8 6

2 2 3 3 4 7 R I TE - BES T PENS CO 2 0 8 4 2 7 / 1 8 / 8 0 7 / 2 0 / 8 0

1 0 . 0 0

2 2 5 5 2 1 I MPORTS OF NM 2 9 2 7 3 7 / 2 0 / 8 0 7 / 2 7 / 8 0

5 8 5 . 4 7

2 2 6 7 2 3 AL R I GHT CL EANERS 1 9 4 7 3 7 / 0 7 / 8 0 7 / 2 3 / 8 0

4 6 2 . 0 0

2 2 8 6 2 2 NORTH CENTRAL SUPPL Y 17 8 1 6 7 / 0 5 / 8 0 7 / 2 2 / 8 0

7 5 . 9 7

2 2 9 8 7 1 F ERGUSON DEAL ERS 2 7 2 2 9 7 / 1 0 / 8 0 7 / 2 2 / 8 0

6 1 . 9 1

REG I ON TOTAL S

1 , 1 9 5 . 3 5

3 3 0 7 5 5 F AS TWAY A I RL I NES 2 6 1 5 8 7 / 0 6 / 8 0 7 / 1 9 / 8 0

7 2 5 . 8 7

3 3 1 2 7 5 ENV I RONMENT CONCERNS 2 0 4 5 1 7 / 0 6 / 8 0 7 / 3 0 / 8 0

1 5 . 0 0

3 3 2 4 5 7 B SOL E S I LOS 2 7 4 2 5 7 / 1 0 / 8 0 7 / 2 0 / 8 0

1 1 0 . 0 5

3 3 7 9 4 5 HOF F TA BREAKS I NC . 1 8 2 7 6 7 / 0 6 / 8 0 7 / 2 3 / 8 0

4 7 . 2 3

REG I ON TOTAL S

8 9 8 . 1 5

4 4 2 6 2 2 EAS TLAKE GRAVEL CO 1 6 4 2 9 7 / 0 5 / 8 0 7 / 2 3 / 8 0

2 9 . 3 7

REG I ON TOTAL S

2 9 . 3 7

COMPANY TOTAL S

2 , 5 2 9 . 7 3

2 3 . 7 5 . 4 7

8 7 . 0 7

4 7 . 0 7

1 0 7 . 2 2 2 . 1 4

6 7 . 9 5

2 7 4 . 0 3 2 . 3 8

1 0 1 . 1 0

5 6 0 . 0 2 4 . 9 9

1 4 8 . 17 *

1 5 . 8 0

5 . 8 0

7 9 7 . 4 0 1 1 . 9 3

2 0 0 . 0 0

4 6 2 . 0 0

7 5 . 9 7

6 1 . 9 1

1 , 4 1 3 . 0 8 1 1 . 9 3

2 0 5 . 8 0 *

7 4 2 . 7 2 1 6 . 8 5

1 . 9 0

2 9 . 4 3

1 4 . 4 3

1 1 0 . 0 5

4 7 . 2 3

9 2 9 . 4 3 1 6 . 8 5

1 4 . 4 3 1 . 9 0 *

2 9 . 37

2 9 . 37

*

2 , 9 3 1 . 9 0 3 3 . 7 7

3 6 8 . 4 0 1 . 9 0 * *

DATE PAID

Figure 144. Report Illustrating Overflow of D-*AUTO Print Lines

 Generated Specifications
Standard RPG/400 specifications are generated by automatic report and are com-
bined with RPG/400 specifications included in the input to automatic report and
specifications copied from the source-file member to produce the final RPG/400
source program. This section describes the generated RPG/400 specifications and
the order of those specifications in the RPG/400 source program.

284 RPG/400 User's Guide

 Generated Specifications

Figure 145 on page 286 and Figure 146 on page 287 show automatic report
specifications for a sales report and the resulting RPG/400 source specifications
that are generated for the report. Numbers are inserted in the figures to identify the
automatic report functions and to show the specifications that are generated by
each function.

 Generated Calculations
Calculations are generated to accumulate totals for fields named on *AUTO field
description specifications that have an A in position 39. (See Figure 147 on
page 288.)

An RPG/400 subroutine is generated to accumulate the values from these fields
into the lowest-level generated total fields. The name of the subroutine is always
A$$SUM. The subroutine specifications are conditioned differently, depending on
whether detail or group printing is specified:

¹ If detail printing is specified, as in Figure 147 on page 288, the EXSR statement
is conditioned by the same indicator(s) that conditions the D-*AUTO specification
(01 in this example). Each ADD statement in the subroutine is conditioned by
the field indicator(s) specified with the field in its field description specification
(none in this example).

¹ If group printing is specified, the EXSR statement and all ADD statements in the
subroutine are unconditioned.

Total calculations are generated to roll the total from the lowest-level defined total
field through the higher-level defined total fields and the final total. The total calcu-
lation to add the total from one level to that of the next higher level is conditioned
by the control-level indicator corresponding to the field name of the lower level. As
shown in Figure 147 on page 288, total calculations to accumulate L2 and LR totals
are followed by the subroutine to accumulate the lowest level total, L1.

Generated total fields are defined (given length and number of decimal positions)
when the total field is the result field in a generated calculation. In the input specifi-
cations, SOLDVA and VALUE are numeric fields defined with a length of seven and
two decimal positions. Figure 147 on page 288 shows that the total fields gener-
ated from SOLDVA and VALUE are defined as two positions longer than the original
fields, with the same number of decimal positions.

When group printing is specified (T-*AUTO specification), auto report generates total
calculations to reset each of the accumulated fields (A in position 39) on the lowest
level total line to zero on each cycle. A Z-ADD calculation, conditioned by L0, is
generated for each accumulated field. These calculations are the first total calcu-
lations in the generated RPG/400 source program.

Generated Output Specifications
Figure 148 on page 289 shows the output specifications generated by automatic
report. To identify specifications supplied by automatic report (column heading
specifications, total specifications, conditioning indicators, spacing and skipping
values, end position values, blank after), compare the listing with the automatic
report specifications.

Automatic report generates specifications to reset accumulated fields to zero after
they are printed. In this example, blank after is generated for accumulated fields.

 Chapter 12. Auto Report Feature 285

 Generated Specifications

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FPRINT O F 120 OA PRINTER .1/
F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* File description and input specifications for SALES file

I* are stored in the source-file member SALETR.

I/COPY SALETR .2/
I*

I* Modifier statements follow the /COPY statement to add

I* control-level indicators.

IRcdname+....In...*

I BRANCHL1

I REGIONL2

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*
OPRINT H *AUTO ────┐
O 'SALES REPORT' │ .3/
O 'FOR ANY CO. │
O D 01 *AUTO ────┘
O L2 REGION 'REGION' ────┐
O L1 BRANCH 'BRANCH' │
O ITEMNO 'ITEM' │
O C 'NUMBER' │
O DESC 'DESCRIPTION' │ .4/
O SOLDQV 'SALES' │
O ┌───SOLDVA A 'AMOUNT' │
O │ ONHAND 'ON-HAND' │
O ├───VALUE A 'VALUE' │
O │ R 'FINAL TOTALS' │
O* │ ────┘
 .5/
Figure 145. Automatic Report Specifications for a Sales Transaction Report

Note: The following keys also refer to the corresponding numbers in the gener-
ated source program shown in Figure 146 on page 287.

.1/ Printer file description

.2/ Copy function and modifier statements

.3/ *AUTO page headings function

.4/ *AUTO output function

.5/ Accumulated fields

286 RPG/400 User's Guide

 Generated Specifications

If you do not specify a control specification, automatic report generates a blank one
for you.

1 H

2 F P R I N T O F 1 2 0 O A P R I N T E R

3 F S A L E S I P F 4 3 D I S K

4 I * / C O P Y S A L E T R

5 I S A L E S A A 0 1

6 I 1 7 I T E M N O

7 I 8 9 B R A N C H L 1

8 I 1 0 1 0 R E G I O N L 2

9 I 1 1 2 5 D E S C

1 0 I 2 6 2 7 O S O L D O Y

1 1 I 2 8 3 4 2 S O L D V A

1 2 I 3 5 3 5 O O N H A N D

1 3 I 3 7 4 3 2 V A L U E

1 4 C 0 1 E X S R A $ $ S U M

1 5 C L I S O L D V 2 A D D S O L D V 1 S O L D V 2 9 2

1 6 C L 1 V A L U E 2 A D D V A L U E 1 V A L U E 2 9 2

1 7 C L 2 S O L D V R A D D S O L D V 2 S O L D V R 9 2

1 8 C L 2 V A L U E R A D D V A L U E 2 V A L U E R 9 2

1 9 C S R A $ $ S U M B E G S R

2 0 C S R S O L D V 1 A D D S O L D V A S O L D V 1 9 2

2 1 C S R V A L U E 1 A D D V A L U E V A L U E 1 9 2

2 2 C S R E N D S R

2 3 O P R I N T H 2 0 6 1 P

2 4 O O R O A

2 5 O U D A T E Y 8

2 6 O 4 5 ' S A L E S R E P O R T '

2 7 O 5 6 ' F O R A N Y C O . '

2 8 O 8 5 ' P A G E '

2 9 O P A G E Z 8 9

3 0 O P R I N T H 1 1 P

3 1 O O R O A

3 2 O 6 ' R E G I O N '

3 3 O 1 4 ' B R A N C H '

3 4 O 2 1 ' I T E M '

3 5 O 3 6 ' D E S C R I P T I O N '

3 6 O 4 7 ' S A L E S '

3 7 O 6 2 ' A M O U N T '

3 8 O 7 1 ' O N - H A N D '

3 9 O 8 6 ' V A L U E '

4 0 O P R I N T H 2 1 P

4 1 O O R O A

4 2 O 2 2 ' N U M B E R '

4 3 O P R I N T D 1 O 1

4 4 O L 2 R E G I O N 3

4 5 O L 1 B R A N C H 1 2

4 6 O I T E M N O 2 3

4 7 O D E S C 4 0

4 8 O S O L D O Y K 4 6

4 9 O S O L D V A K B 6 2

5 0 O O N H A N D K 6 9

5 1 O V A L U E K B 8 6

5 2 O P R I N T T 1 2 L 1

5 3 O S O L D V 1 K B 6 2

5 4 O V A L U E 1 K B 8 6

5 5 O 8 7 ' * '

5 6 O P R I N T T 2 L 2

5 7 O S O L D V 2 K B 6 2

5 8 O V A L U E 2 K B 8 6

5 9 O 8 8 ' * * '

6 0 O P R I N T T 1 2 L R

6 1 O S O L D V R K B 6 2

6 2 O V A L U E R K B 8 6

6 3 O 4 7 ' F I N A L T O T A L S '

6 4 O 8 9 ' * * * '

Figure 146. RPG/400 Source Program Generated from Automatic Report Specifications

 Chapter 12. Auto Report Feature 287

 Generated Specifications

Note: These numbers refer to the corresponding numbers shown on the automatic
report specifications shown in Figure 145 on page 286.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

OPRINT H *AUTO

O 'SALES REPORT '

O 'FOR ANY CO.'

O D 01 *AUTO

O L2 REGION 'REGION'

O L1 BRANCH 'BRANCH'

O ITEMNO 'ITEM'

O C 'NUMBER'

O DESC 'DESCRIPTION'

O SOLDQY 'SALES'

O SOLDVA A 'AMOUNT'

O ONHAND 'ON-HAND'

O VALUE A 'VALUE'

O R 'FINAL TOTALS'

O*

O* Calculations are generated for fields with an A in position 39.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C──┐01 EXSR A$$SUM
CL1│ SOLDV2 ADD SOLDV1 SOLDV2 92
CL1│ .1/ VALUE2 ADD VALUE1 VALUE2 92
CL2│ SOLDVR ADD SOLDV2 SOLDVR 92
CL2┘ VALUER ADD VALUE2 VALUER 92
CSR┐ A$$SUM BEGSR
CSR│ .2/ SOLDV1 ADD SOLDVA SOLDV1 92 .3/
CSR│ VALUE1 ADD VALUE VALUE1 92
CSR┘ ENDSR

Figure 147. Calculations Generated from Automatic Data Structure to Accumulate Totals–Example 2

.1/ Total calculations roll higher-level totals.

.2/ Subroutine accumulates the lowest level totals (L1 in this example).

.3/ Length and decimal position of generated total fields.

288 RPG/400 User's Guide

 Generated Specifications

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

OPRINT H *AUTO

O 'SALES REPORT '

O 'FOR ANY CO.'

O D 01 *AUTO

O L2 REGION 'REGION'

O L1 BRANCH 'BRANCH'

O ITEMNO 'ITEM'

O C 'NUMBER'

O DESC 'DESCRIPTION'

O SOLDQY 'SALES'

O SOLDVA A 'AMOUNT'

O ONHAND 'ON-HAND'

O VALUE A 'VALUE'

O R 'FINAL TOTALS'

O*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

OPRINT H 206 1P

O OR OA

O UPDATE Y 8

O 45 'SALES REPORT '

O 56 'FOR ANY CO.'

O 85 'PAGE'

O PAGE Z 89

Figure 148 (Part 1 of 3). Output Specifications Generated Data Structure to Accumulate Totals–Example 2

 Chapter 12. Auto Report Feature 289

 Generated Specifications

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*
OPRINT H 1 1P
O OR OA ───────┐
O 6 'REGION' │
O 14 'BRANCH' │
O 21 'ITEM' │
O 36 'DESCRIPTION' │ .1/
O 47 'SALES' │
O 62 'AMOUNT' │
O 71 'ON-HAND' │
O 86 'VALUE'───────┘
OPRINT H 2 1P
O OR OA
O 22 'NUMBER'
OPRINT D 1 01
O L2 REGION 3
O L1 BRANCH 12
O ITEMNO 12
O DESC 12
O SOLDQYK 46
O SOLDVAKB 62
O ONHANDK 69
O VALUE KB 86

Figure 148 (Part 2 of 3). Output Specifications Generated Data Structure to Accumulate Totals–Example 2

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*
OPRINT T 12 L1 ───────────────┐
O SQLDV1KB 62 │
O VALUE1KB 86 │
O 87 '*' │
OPRINT T 2 L2 │
O SQLDV2KB 62 │
O VALUE2KB 86 │ .2/
O 88 '**' │
OPRINT T 12 LR │
O SQLDVRKB 62 │
O VALUERKB 86 │
O 47 'FINAL TOTALS' │
O 89 '***' ──────────┘

Figure 148 (Part 3 of 3). Output Specifications Generated Data Structure to Accumulate Totals–Example 2

.1/ Two heading specifications are generated for column headings because ITEM
NUMBER is a two-line heading.

.2/ Automatic report generates total specifications to print accumulated totals for
SOLDVA and VALUE fields.

290 RPG/400 User's Guide

 Programming Aids

 Programming Aids
The chart shown in Table 17 on page 292 should be helpful in determining valid
*AUTO output entries depending on the contents of position 39.

The following programming suggestions may be helpful in specific programming
situations:

¹ One column heading can be printed over two or more fields if automatic column
spacing is taken into consideration. For example, if the heading DATE is to
print over a month field and a day field as follows:

 ┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
│ │ │ │ │ │ │ │ │ │ │ │ │

 ├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ │D│ │ │A│ │ │T│ │ │E│ │

 ├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ │ │M│O│N│ │ │ │D│A│Y│ │

 ├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ │ │ │ │ │ │ │ │ │ │ │ │

 ├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ │ │ │X│X│ │ │ │ │X│X│ │

 ├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ │ │ │X│X│ │ │ │ │X│X│ │

 ├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ │ │ │ │ │ │ │ │ │ │ │ │

 └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

Code the output specifications as follows:

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O MONTH 'D A'

O C 'MON'

O DAY 'T E'

O C 'DAY'

O*

¹ To print a constant on only the first detail line under a column heading, move
the constant to a field in calculation specifications and print that field as shown
in Figure 149 on page 292.

¹ If group printing is being done and more than one record type is present in the
input file, certain precautions must be taken. If a field to be accumulated is
present in all record types, but only one record type is to be processed, the
correct total is not generated unless additional coding is used. The specifica-
tions shown in Figure 150 on page 293 give incorrect results because the
T-*AUTO specification causes an unconditioned ADD subroutine to be generated
if a field is to be added. Therefore, QTY is added when indicator 10 is on and
when indicator 11 or 12 is on. Figure 151 on page 293 shows a method of
obtaining the correct results.

¹ Figure 152 on page 294 shows the specifications for counting records. This
method is especially applicable when you want to print a detail list, to take
totals by control level, or to eliminate 1’s from being listed down the page.

 Chapter 12. Auto Report Feature 291

 Programming Aids

Table 17. Valid *AUTO Entries Depending on the Contents of Position 39

39 7-22 23-31 32-37 38 40-43 44 45-70

Blank Blank

Blank

Blank or
indicators

Blank or
indicators

Field
name

Blank

Blank or
edit code

Blank

Blank or end
position

Blank or end
position

Blank

Blank

Blank or
column
heading

Constant

B Blank Blank or
indicators

Field
name

Blank or
edit code

Blank or end
position

Blank Blank or
column
heading

A Blank Blank or
indicators

Field
name

Blank or
edit code

Blank or end
position

Blank Blank or
column
heading

C Blank Blank Blank Blank Blank Blank Column
heading

1-9, R Blank

Blank

Blank

Blank

Field
name

Blank

Blank or
edit code

Blank

Blank

Blank

Blank

Blank

Blank or
edit word

Constant

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* Assume L1 is defined in positions 59 and 60 on input specifications.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C L1 MOVE 'CONSTANT'FLDA 8

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O D *AUTO

O FLDA B 'COLUMN HEADING'

O*

Figure 149. Printing a Constant Only on the Detail Line

292 RPG/400 User's Guide

 Programming Aids

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IINPUT AA 10 1 CA

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 2 27 NAME L1

I BB 11 1 C1

I OR 12 1 CN

I 2 18 DESC

I 19 210QTY

I 22 262SALES

I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT T L1 *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O DESC 'DESCRIPTION'

O QTY A 'QUANTITY'

O SALES A 'AMOUNT'

O*

Figure 150. Incorrect *AUTO Specifications for More Than One Record Type

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C 11 Z-ADDQTY QTYA 30

C 11 Z-ADDSALES SALESA 52

C*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT T L1 *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O DESC 'DESCRIPTION'

O QTYA A 'QUANTITY'

O SALESA A 'AMOUNT'

O*

Figure 151. Correct *AUTO Specifications for More Than One Record Type

 Chapter 12. Auto Report Feature 293

 Using CRTRPTPGM to Compile an Auto Report Program

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C .1/ Z-ADD0 COUNT 30

C .2/ 1 ADD COUNT1 COUNT1

C*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

O D *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O .3/ LR COUNT A 'RECORD'

O C 'COUNT'

O*

Figure 152. Method of Using *AUTO for Counting Records

Calculation Specifications

.1/ This instruction is needed only to define the field COUNT for accumulation.

.2/ This instruction accumulates the total for the first control level.

Output Specifications

.3/ This instruction causes the generation of calculation and output specifications
for the detail and total lines. The LR conditioning indicator prevents the gener-
ated detail calculation from occurring. It also prevents printing at detail time.

Note: If no control levels are specified in the program, a 1 is added to COUNTR
rather than to COUNT1 on the calculation specifications.

Using CRTRPTPGM to Compile an Auto Report Program
To compile an RPG/400 source program that includes automatic report specifica-
tions, you must use the CL command CRTRPTPGM (Create Automatic Report
Program). RPG/400 program objects are created with the public authority of
*CHANGE. You may want to change this authority to maintain greater security on
your system.

Automatic report does not diagnose all error conditions in the source program.
Test results that are produced by the RPG/400 compiler are not duplicated by auto-
matic report. If a program cannot be successfully generated because of errors in
the automatic report specifications, automatic report ends. If automatic report
stops, the escape message RPT 9001 is issued. A CL program can monitor for the
escape message by using the CL command MONMSG (Monitor Message).

If an RPG/400 source program is successfully generated and the *NOCOMPILE option
is not specified on the CRTRPTPGM command, automatic report calls the RPG/400
compiler.

All object names specified on the CRTRPTPGM command use the full naming con-
vention. The length of the name cannot exceed ten characters. See the CL Refer-

294 RPG/400 User's Guide

 Using CRTRPTPGM to Compile an Auto Report Program

ence for a detailed description of the OS/400 object naming rules and for a
complete description of the OS/400 command syntax.

Using the CRTRPTPGM Command
You call the CRTRPTPGM compiler in three ways:

¹ Interactively from a display. Type the command CRTRPTPGM and then press
F4

¹ Using keyword parameters
¹ Using positional parameters.

See the description of these features of the CRTRPGPGM command in Chapter 3,
“Compiling an RPG/400 Program” on page 25 for details.

 CRTRPTPGM Command
The CRTRPTPGM command is similar to the CRTRPGPGM command described in
Chapter 3, “Compiling an RPG/400 Program” on page 25. All object names must
consist of alphanumeric characters. The first character must always be alphabetic,
and the length of the name cannot exceed 10 characters.

The CRTRPTPGM command recognizes all the parameters that the CRTRPGPGM
command does. Some of these parameters, however, are not used by automatic
report itself, but are passed on to the RPG/400 compiler. These are the PGM,
OPTION, GENOPT, GENLVL, USRPRF, AUT, TEXT, PHSTRC, TGTRLS, INDENT,
and REPLACE parameters. The PRTFILE parameter specifies a file that automatic
report itself uses, and then passes on to the RPG/400 compiler.

The CRTRPTPGM command has the same parameters as the CRTRPGPGM
command plus three others: RPTOPT, OUTFILE, and OUTMBR. The description
of these parameters follows the syntax diagram for the CRTRPTPGM command.
The defaults are explained first and are underlined. See “Create RPG400 Program
(CRTRPGPGM) Command” on page 26 for the definition of the other parameters.

The CRTRPTPGM command can be submitted in a batch input stream, entered
interactively at a work station, or in a CL or REXX program.

For information on how to read syntax diagrams, see “How to Interpret Syntax
Diagrams” on page xiv.

 Chapter 12. Auto Report Feature 295

 Using CRTRPTPGM to Compile an Auto Report Program

Job: B,I Pgm: B,I REXX: B,I Exec

55──CRTRPTPGM─ ──┬ ┬── ──┬ ┬── ─────5
 │ │┌ ┐─*CURLIB/────── ┌ ┐─*CTLSPEC───── │ │┌ ┐─*LIBL/──────── ┌ ┐─QRPGSRC──────────
 └ ┘ ─PGM──(─ ──┼ ┼─────────────── ──┼ ┼────────────── ─)─ └ ┘ ─SRCFILE──(─ ──┼ ┼─────────────── ──┼ ┼────────────────── ─)─
 └ ┘─library-name/─ └ ┘─program-name─ ├ ┤─*CURLIB/────── └ ┘─source-file-name─
 └ ┘─library-name/─

5─ ───(P)──┬ ┬─── ──┬ ┬── ───────────────────────────────────5
 │ │┌ ┐─*PGM──────────────────── │ │┌ ┐─9────────────────────
 └ ┘ ─SRCMBR──(─ ──┴ ┴─source-file-member-name─ ─)─ └ ┘ ─GENLVL──(─ ──┴ ┴─severity-level-value─ ─)─

5─ ──┬ ┬─────────────────────────────── ──┬ ┬────────────────────────────────── ──┬ ┬────────────────────────────────── ──────────────────5
 │ │┌ ┐─*SRCMBRTXT──── └ ┘─OPTION──(──┤ OPTION Details ├──)─ └ ┘─GENOPT──(──┤ GENOPT Details ├──)─
 └ ┘ ─TEXT──(─ ──┼ ┼─*BLANK──────── ─)─
 └ ┘─'description'─

5─ ──┬ ┬─────────────────────────────────── ──┬ ┬────────────────────────────────────── ──5
 │ │┌ ┐─*NONE─────────── │ │┌ ┐─*NONE──────────────
 └ ┘ ─INDENT──(─ ──┴ ┴─character-value─ ─)─ └ ┘─CVTOPT──(─ ──┴ ┴─┤ CVTOPT Details ├─ ─)─

5─ ──┬ ┬─── ──┬ ┬────────────────────────────────── ──────────────────────────────────────5
 │ │┌ ┐─*LIBL/──────── ┌ ┐─QSYSPRT─── └ ┘─RPTOPT──(──┤ RPTOPT Details ├──)─
 └ ┘ ─PRTFILE──(─ ──┼ ┼─────────────── ──┼ ┼─────────── ─)─
 ├ ┤─*CURLIB/────── └ ┘─file-name─
 └ ┘─library-name/─

5─ ──┬ ┬─── ──┬ ┬─── ─────────────────────────────5
 │ │┌ ┐─*LIBL/──────── ┌ ┐─*NONE───── │ │┌ ┐─*NONE───────────────────
 └ ┘ ─OUTFILE──(─ ──┼ ┼─────────────── ──┼ ┼─────────── ─)─ └ ┘ ─OUTMBR──(─ ──┴ ┴─source-file-member-name─ ─)─
 ├ ┤─*CURLIB/────── └ ┘─file-name─
 └ ┘─library-name/─

5─ ──┬ ┬───────────────────────── ──┬ ┬───────────────────────────────── ──┬ ┬────────────────────────── ─────────────────────────────────5
 │ │┌ ┐─*YES─ │ │┌ ┐─*CURRENT────── │ │┌ ┐─*USER──
 └ ┘ ─REPLACE──(─ ──┴ ┴─*NO── ─)─ └ ┘ ─TGTRLS──(─ ──┼ ┼─*PRV────────── ─)─ └ ┘ ─USRPRF──(─ ──┴ ┴─*OWNER─ ─)─
 └ ┘─release-level─

5─ ──┬ ┬── ──┬ ┬──────────────────────── ──┬ ┬───────────────────────────────────── ────────────────5
 │ │┌ ┐─*LIBCRTAUT────────────── │ │┌ ┐─*NO── │ │┌ ┐─*NONE─────────────
 └ ┘ ─AUT──(─ ──┼ ┼─*CHANGE───────────────── ─)─ └ ┘ ─PHSTRC──(─ ──┴ ┴─*YES─ ─)─ │ ││ │┌ ┐──────────────
 ├ ┤─*USE──────────────────── └ ┘ ─ITDUMP──(─ ──┴ ┴───(1) ───6 ┴─phase-name─ ─)─
 ├ ┤─*ALL────────────────────
 ├ ┤─*EXCLUDE────────────────
 └ ┘─authorization-list-name─

5─ ──┬ ┬────────────────────────────────────── ──┬ ┬─────────────────────────────────────── ──┬ ┬─────────────────────────── ─────────────5
 │ │┌ ┐─*NONE───────────── │ │┌ ┐─*NONE───────────── │ │┌ ┐─*NO──
 │ ││ │┌ ┐────────────── └ ┘ ─CODELIST──(─ ──┼ ┼─*ALL────────────── ─)─ └ ┘ ─IGNDECERR──(─ ──┴ ┴─*YES─ ─)─
 └ ┘ ─SNPDUMP──(─ ──┴ ┴───(1) ───6 ┴─phase-name─ ─)─ │ │┌ ┐──────────────
 └ ┘───(1) ───6 ┴─phase-name─

5─ ──┬ ┬───────────────────────── ───5%
 │ │┌ ┐─*NO──
 └ ┘ ─ALWNULL──(─ ──┴ ┴─*YES─ ─)─

Notes:
1 A maximum of 25 repetitions
P All parameters preceding this point can be specified by position.

OPTION Details:
 ┌ ┐─*SRC──────
 ├ ┤─*SOURCE─── ┌ ┐─*XREF─── ┌ ┐─*GEN─── ┌ ┐─*NODUMP─ ┌ ┐─*NOSECLVL─
├─ ──┼ ┼─────────── ──┼ ┼───────── ──┼ ┼──────── ──┼ ┼───────── ──┼ ┼─────────── ───┤
 ├ ┤─*NOSRC──── └ ┘─*NOXREF─ └ ┘─*NOGEN─ └ ┘─*DUMP─── └ ┘─*SECLVL───
 └ ┘─*NOSOURCE─

GENOPT Details:
 ┌ ┐─*NOLIST─ ┌ ┐─*NOXREF─ ┌ ┐─*NOATR─ ┌ ┐─*NODUMP─ ┌ ┐─*NOPATCH─ ┌ ┐─*NOOPTIMZE─
├─ ──┼ ┼───────── ──┼ ┼───────── ──┼ ┼──────── ──┼ ┼───────── ──┼ ┼────────── ──┼ ┼──────────── ──┤
 └ ┘─*LIST─── └ ┘─*XREF─── └ ┘─*ATR─── └ ┘─*DUMP─── └ ┘─*PATCH─── └ ┘─*OPTIMIZE──

RPTOPT Details:
 ┌ ┐─*NOSOURCE─
 ├ ┤─*NOSRC──── ┌ ┐─*NOFLOW─ ┌ ┐─*COMPILE─── ┌ ┐─*DATE─── ┌ ┐─*NOAST─ ┌ ┐─*NOSECLVL─
├─ ──┼ ┼─────────── ──┼ ┼───────── ──┼ ┼──────────── ──┼ ┼───────── ──┼ ┼──────── ──┼ ┼─────────── ───┤
 ├ ┤─*SOURCE─── └ ┘─*FLOW─── └ ┘─*NOCOMPILE─ └ ┘─*NODATE─ └ ┘─*AST─── └ ┘─*SECLVL───
 └ ┘─*SRC──────

CVTOPT Details:
├─ ──┬ ┬─────────── ──┬ ┬────────── ──┬ ┬────────── ──┤
 └ ┘─*DATETIME─ └ ┘─*VARCHAR─ └ ┘─*GRAPHIC─

Figure 153. Syntax of the CRTRPTPGM Command

RPTOPT
Specifies the options to use when the source program is compiled. Any or all
of the following keyword options can be specified in any order. Separate the
keywords with a delimiter. The possible values are:

296 RPG/400 User's Guide

 Using CRTRPTPGM to Compile an Auto Report Program

*NOSOURCE

Do not produce a listing of the automatic report source program compile-
time errors.

*SOURCE

Produce a listing of the automatic report source program compile-time
errors. The acceptable abbreviation for *NOSOURCE is *NOSRC and for
*SOURCE is *SRC.

*NOFLOW

Do not write a flow of the major routines run while the automatic report
source program is compiled.

*FLOW

Write a flow of the major routines run while the automatic report source
program is compiled.

*COMPILE

Call the RPG/400 compiler after the automatic report source statements are
processed, and the complete RPG/400 source program is generated.

*NOCOMPILE

Do not call the RPG/400 compiler after the automatic report source state-
ments are processed.

*DATE

Include the page number and date on the first *AUTO page heading line.

*NODATE

Do not include the page number and date on the first *AUTO page heading
line.

*NOAST

Do not generate asterisk indication for total output lines.

*AST

Generate asterisk indication for total output lines.

*NOSECLVL

Do not print second-level text on the line following the first level message
text.

*SECLVL

Print second-level text on the line following the first level message text.

OUTFILE
Specifies the name of the file where the complete RPG/400 source program is
to be placed and the library in which the file is located. The file is also used as
the source input file to the RPG/400 compiler unless the RPTOPT parameter
value *NOCOMPILE is specified.

*LIBL

The library list is used to locate the file.

*CURLIB

The name of the current library. If a current library is not specified, QGPL
is the current library.

 Chapter 12. Auto Report Feature 297

 Using CRTRPTPGM to Compile an Auto Report Program

library-name

Enter the name of the library in which the file is located.

*NONE

Create a file in QTEMP to pass the generated RPG/400 source to the
RPG/400 compiler.

file-name

Enter the name of the file to contain the complete RPG/400 source
program.

OUTMBR
Specifies the name of the member of the file that will contain the output from
automatic report.

*NONE

Use the first member created in or added to the file as the member name.

file-member-name

Enter the name of the member that is to contain the output of automatic
report.

298 RPG/400 User's Guide

 Examples of Using Auto Report

Examples of Using Automatic Report
Examples 1 through 4 explain how automatic report is used to generate report page
headings and such output specifications as column headings, detail lines, and total
lines. Examples 5 and 6 illustrate the use of the automatic report copy function to
copy specifications from a source-file member and to change copied specifications
for a particular job.

EXAMPLE 1 - Sales Report

 ┌───────────────────┐ ┌────────────┐
│*AUTO Page Headings│ │*AUTO Output│

 └───────┬───────────┘ └─────┬──────┘
 ┌─────────┐ 6 ┌───────────┐ 6
┌─────────────┤ Problem ├───────────────────┐ ┌───────────────┤ Procedure ├─────────────────┐
│ └─────────┘ │ │ └───────────┘ │
│ │ │ │
│ Produce the sales report shown below │ │ .1/ Code normal RPG file description and │
│ using the *AUTO page headings and *AUTO │ │ input specifications for the job. │
│ output functions of automatic report. │ │ │
└───┘ │ .2/ Code *AUTO page headings to produce │

│ a one-line page heading that includes │
│ date and page number. │

 │ │
│ .3/ Code *AUTO output to produce one-line │
│ column headings, detail report lines │
│ and final totals. │

 └───┘

10 , 0 0 0 . 0 0
2 , 0 0 0 . 0 0

5 , 0 0 0 . 0 0
2 , 0 0 0 . 0 0

2 0 , 0 0 0 . 0 0
9 , 0 0 0 . 0 0

REG I ON BRANCH I TEM DESCR I PT I ON SALES AMOUNT ON - HAND VALUE

14 1 , 0 0 0 . 0 0 4 8 , 0 0 0 . 0 0 *

10 / 2 6 / 8 0 SALES REPORT FOR ANY CO . PAGE 1

Letters refer to fields
on the following page.

1 17 AG7 7 0 1T 2 - TON TRUCK 5 2 5 , 0 0 0 . 0 0 2
1 17 AG7 7 0 5 5 P I CK - UP 10 2 0 , 0 0 0 . 0 0 1
1 17 AP6 5 4 5B CAMPER 2 8 , 0 0 0 . 0 0
1 2 2 AG7 7 0 1T 2 - TON TRUCK 2 10 , 0 0 0 . 0 0 1
1 2 2 AG7 7 0 5 5 P I CK - UP 4 8 , 0 0 0 . 0 0 1
3 2 5 AG6 5 4 5B CAMPER 10 4 0 , 0 0 0 . 0 0 5
3 2 5 AP6 5 4 9P 1 / 4 TON TRUCK 2 0 3 0 , 0 0 0 . 0 0 6

 Chapter 12. Auto Report Feature 299

 Examples of Using Auto Report

.1/ RPG/400 file description and input specifications.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FSALES IP F 43 DISK

FPRINT O F 120 PRINTER

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

ISALES AA 01

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 1 7 ITEMNO

I 8 9 BRANCH

I 10 10 REGION

I 11 25 DESC

I 26 270SOLDQY

I 28 342SOLDVA

I 35 360ONHAND

I 37 432VALUE

I*

 Field Name Contents

 .A/ ITEMNO Item number

 .B/ BRANCH Number of the branch office where the item was sold

 .C/ REGION Sales region in which the branch office is located

 .D/ DESC Description of the sales item

 .E/ SOLDQY Quantity of the item sold

 .F/ SOLDVA Total value of the items sold

 .G/ ONHAND Quantity of the item remaining on hand

 .H/ VALUE Total value of the items remaining on hand.

300 RPG/400 User's Guide

 Examples of Using Auto Report

.2/ *AUTO page heading specifications.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT H .A/ .C/ .D/ *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 'SALES REPORT ' .B/
O 'FOR ANY CO.'

O*
.A/ Enter an H in position 15 and *AUTO in positions 32 through 36 to request an

automatic report page heading. Up to five page heading lines can be
described. The system date is printed on the left and the page number on
the right of the first heading line on each page. To suppress the date and
page, enter an N in position 27 of the automatic report option specifications
or use the *NODATE option on the RPTOPT parameter in the CRTRPTPGM
command.

.B/ The title information is centered by automatic report; do not enter end posi-
tions in positions 40 through 43. Fields and array/table elements can also
be used.

.C/ When space and skip entries (positions 17 through 22) are left blank, skip
to line 06 is assumed for the first heading line; single spacing is done
between heading lines, double spacing after the last heading line. (See
“Example 4” for an example of multiple page heading lines.)

.D/ When output indicators (positions 23 through 31) are left blank, automatic
report page headings are printed on each page (conditioned by 1P or over-
flow). If no overflow indicator is defined for the printer file, automatic report
assigns an unused overflow indicator to the printer line.

 Chapter 12. Auto Report Feature 301

 Examples of Using Auto Report

.3/ Code *AUTO output specifications to produce:

10 , 0 0 0 . 0 0

2 , 0 0 0 . 0 0

5 , 0 0 0 . 0 0

2 , 0 0 0 . 0 0

2 0 , 0 0 0 . 0 0

9 , 0 0 0 . 0 0

REG I ON BRANCH I TEM DESCR I PT I ON SALES AMOUNT ON - HAND VALUE

14 1 , 0 0 0 . 0 0 4 8 , 0 0 0 . 0 0 *

10 / 2 6 / 8 0 SALES REPORT FOR ANY CO . PAGE 1

Blank line

Line 06

1 17 AG7 7 0 1T 2 - TON TRUCK 5 2 5 , 0 0 0 . 0 0 2

1 17 AG7 7 0 5 5 P I CK - UP 10 2 0 , 0 0 0 . 0 0 1

1 17 AP6 5 4 5B CAMPER 2 8 , 0 0 0 . 0 0

1 2 2 AG7 7 0 1T 2 - TON TRUCK 2 10 , 0 0 0 . 0 0 1

1 2 2 AG7 7 0 5 5 P I CK - UP 4 8 , 0 0 0 . 0 0 1

3 2 5 AG6 5 4 5B CAMPER 10 4 0 , 0 0 0 . 0 0 5

3 2 5 AP6 5 4 9P 1 / 4 TON TRUCK 2 0 3 0 , 0 0 0 . 0 0 6

.A/ Detail report lines

.B/ Column headings

.C/ Final totals

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
OName++++DFBASbSaN01N02N03Excnam....................................*
OPRINT H *AUTO
O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*
O 'SALES REPORT '
O 'FOR ANY CO.'
O .A/ D 01 *AUTO ─────┐
O REGION 'REGION' │
O BRANCH 'BRANCH' │
O ITEMNO 'ITEM' │
O DESC 'DESCRIPTION' │ .B/
O SOLDQY 'SALES' │
O SOLDVA A 'AMOUNT' │
O ONHAND 'ON-HAND' │
O VALUE A.C/ 'VALUE' ─────┘
O*

.A/ Enter D in position 15 and *AUTO in positions 32 through 36 to describe an
automatic report with detail lines. The record-identifying indicator 01 condi-
tions printing of the detail lines.

.B/ Column headings are entered on the same line as the fields over which
they appear in the report.

.C/ Enter an A in position 39 to cause fields to be accumulated. Automatic
report generates (1) total fields and calculations to accumulate the totals,
and (2) total output specifications to print the totals.

302 RPG/400 User's Guide

 Examples of Using Auto Report

10 , 0 0 0 . 0 0

2 , 0 0 0 . 0 0

5 , 0 0 0 . 0 0

2 , 0 0 0 . 0 0

2 0 , 0 0 0 . 0 0

9 , 0 0 0 . 0 0

REG I ON BRANCH I TEM DESCR I PT I ON SALES AMOUNT ON - HAND VALUE

14 1 , 0 0 0 . 0 0 4 8 , 0 0 0 . 0 0 *

10 / 2 6 / 8 0 SALES REPORT FOR ANY CO . PAGE 1

1 17 AG7 7 0 1T 2 - TON TRUCK 5 2 5 , 0 0 0 . 0 0 2

1 17 AG7 7 0 5 5 P I CK - UP 10 2 0 , 0 0 0 . 0 0 1

1 17 AP6 5 4 5B CAMPER 2 8 , 0 0 0 . 0 0

1 2 2 AG7 7 0 1T 2 - TON TRUCK 2 10 , 0 0 0 . 0 0 1

1 2 2 AG7 7 0 5 5 P I CK - UP 4 8 , 0 0 0 . 0 0 1

3 2 5 AG6 5 4 5B CAMPER 10 4 0 , 0 0 0 . 0 0 5

3 2 5 AP6 5 4 9P 1 / 4 TON TRUCK 2 0 3 0 , 0 0 0 . 0 0 6

Automatic report formats the report so that column headings and data are neatly
spaced and centered on each other.

All numeric fields for which a blank, B, or A is specified in position 39 are edited by
the K edit code unless a different edit code is specified.

 Chapter 12. Auto Report Feature 303

 Examples of Using Auto Report

EXAMPLE 2 - Sales Report with Three Levels of Totals

 ┌─────────────┐
│*AUTO Output │

 └───────┬─────┘
 ┌─────────┐ 6 ┌───────────┐
┌─────────────┤ Problem ├───────────────────┐ ┌───────────────┤ Procedure ├─────────────────┐
│ └─────────┘ │ │ └───────────┘ │
│ │ │ │
│ Expand sales report from Example 1 to │ │ .1/ Code file description and input │
│ include three levels of totals: │ │ specifications as in Example 1. │
│ │ │ │
│ 1. Total for each branch │ │ .2/ Add control level indicators to the │
│ 2. Total for each region │ │ input-fields BRANCH and REGION. │
│ 3. Final total │ │ │
└───┘ └───┘

Note: The *AUTO output function can also be used to produce a group printed
report. See “Group Printing” on page 271 for a discussion and examples of group
printing.

.1/ RPG/400 file description and input specifications.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

ISALES AA 01

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 1 7 ITEMNO

I 8 9 BRANCHL1 .2/
I 10 10 REGIONL2

I 11 25 DESC

I 26 270SOLDQY

I 28 342SOLDVA .A/
I 35 360ONHAND

I 37 432VALUE

I*

.A/ Because two control levels are defined, the SOLDVA and VALUE fields (see
following page) are accumulated to two levels of totals (branch and region)
and a final total (LR).

304 RPG/400 User's Guide

 Examples of Using Auto Report

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT H *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 'SALES REPORT '

O 'FOR ANY CO.'

O D .A/ 01 *AUTO

O REGION 'REGION'

O BRANCH 'BRANCH'

O ITEMNO 'ITEM'

O DESC 'DESCRIPTION'

O SOLDQY 'SALES'

O SOLDVA A .B/ 'AMOUNT'
O ONHAND 'ON-HAND'

O VALUE A 'VALUE'

O*

.A/ Automatic report places a blank line after each total line and an additional
blank line before the lowest level total and before the final total. If you
enter spacing and skipping values on the D-*AUTO specification, they apply
to the detail print line only.

.B/ As in “EXAMPLE 1 - Sales Report,” an A in position 39 of the output spec-
ification causes SOLDVA and VALUE to be accumulated.

.C/ Total fields are always two positions longer with the same number of
decimal positions as the original fields.

.D/ Automatic report prints asterisks (*) to the right of the generated total lines
to aid in identifying them. If you want to suppress the asterisks, enter N in
position 28 of the automatic report option specifications or use the *NOAST
option on the RPTOPT parameter in the CRTRPTPGM command.

 Chapter 12. Auto Report Feature 305

 Examples of Using Auto Report

AG7701T

AG77055

A P 6 5 4 5 B

2 - T O N T R U C K

P IC K -U P

C A M PE R

5

10

2

2 5 ,0 0 0 .0 0

2 0 ,0 0 0 .0 0

8 ,0 0 0 .0 0

2

1

1 0 ,0 00 .00

2 , 0 0 0 .0 0

171

5 3 ,0 0 0 .0 0

1 0 ,0 00 .00

8 ,0 0 0 .0 0

1 8 ,0 00 .00

71,000.00

4 0 ,0 0 0 .0 0

3 0 ,0 0 0 .0 0

7 0 ,0 0 0 .0 0

7 0 ,0 0 0 .0 0

141,000.00

1

1

AG7701T

AG77055

2 - T O N T R U C K

P IC K -U P

C A M PE R

1 /4 TO N T RU C K

10

2 0

2

4

A G 6 5 4 5 B

A P 6 5 4 9 P

2 2

2 53 5

6

5 ,0 0 0 .0 0

2 , 0 0 0 .0 0

1 2 , 0 0 0 . 0 0 *

7 , 0 0 0 . 0 0 *

PAGE

1 9 , 0 0 0 . 0 0 * *

2 0 ,0 0 0 .0 0

9 ,0 0 0 .0 0

2 9 , 0 0 0 . 0 0 *

2 9 , 0 0 0 . 0 0 * *

4 8 , 0 0 0 . 0 0 * * *

1

1

1

1 2 2

17

17

3 2 5

L 1

L 2

L 1

L 2

LR

L 1

306 RPG/400 User's Guide

 Examples of Using Auto Report

EXAMPLE 3 - Sales Report with Group Indication

 ┌─────────────┐
│*AUTO Output │

 └───────┬─────┘
 ┌─────────┐ 6 ┌───────────┐
┌─────────────┤ Problem ├───────────────────┐ ┌───────────────┤ Procedure ├─────────────────┐
│ └─────────┘ │ │ └───────────┘ │
│ │ │ │
│ Expand sales report from Example 1 │ │ .1/ Code file description and input │
│ and 2 to contain: │ │ specifications as in Example 2. │
│ │ │ │
│ .A/ Group indication for REGION and │ │ .2/ Code *AUTO output with: │
│ BRANCH fields. │ │ .A/ Output indicator on field │
│ .B/ Second column heading line. │ │ description specifications. │
│ .C/ Literal (constant) on the final │ │ .B/ C in position 39 and a constant │
│ total line. │ │ in positions 45 through 70. │
└───┘ │ .C/ R in position 39 and a constant │

│ in positions 45 through 70. │
 └───┘

.1/ RPG/400 file description and input specifications.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FSALES IP F 43 DISK

FPRINT O F 120 PRINTER

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

ISALES AA 01

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 1 7 ITEMNO

I 8 9 BRANDHL1

I 10 10 REGIONL2

I 11 25 DESC

I 26 270SOLDQY

I 28 342SOLDVA

I 35 360ONHAND

I 37 432VALUE

I*

 Chapter 12. Auto Report Feature 307

 Examples of Using Auto Report

.2/ *AUTO output.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT H *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 'SALES REPORT '

O 'FOR ANY CO.'

O D 01 *AUTO

O .A/ L2 REGION 'REGION'

O L1 BRANCH 'BRANCH'

O ITEMNO 'ITEM'

O .B/ C 'NUMBER'

O DESC 'DESCRIPTION'

O SOLDQY 'SALES'

O SOLDVA A 'AMOUNT'

O ONHAND 'ON-HAND'

O VALUE A 'VALUE'

O .C/ R 'FINAL TOTALS'

O*

.A/ Output indicators can be used on field description specifications. In this
example, control-level indicators condition BRANCH and REGION so that they
are printed only for the first record of the corresponding control group. This
print suppressing of common fields (group indication) reduces repetitive
information.

.B/ One or two additional column heading lines can be specified by a C entry in
position 39 with the heading information in positions 45 through 70.

.C/ The literal FINAL TOTALS makes that line easy to find. To specify informa-
tion to appear on the final total line, enter R in position 39 with a constant in
positions 45 through 70 or a field name/table name/indexed array name in
positions 32 through 37. The information is printed two spaces to the left of
the leftmost total on the line. If more than one such specification is used,
the constants and fields are printed from left to right in the order they are
specified in the program.

308 RPG/400 User's Guide

 Examples of Using Auto Report

AG7701T

AG77055

A P 6 5 4 5 B

2 - T O N T R U C K

PIC K -U P

CAMPER

5

10

2

2 5 , 0 0 0 . 0 0

2 0 , 0 0 0 . 0 0

8 , 0 0 0 .0 0

2

1

10,000 .00

2 , 0 0 0 .0 0

171

5 3 , 0 0 0 . 0 0

10,000 .00

8 , 0 0 0 .0 0

18,000 .00

71,000.00

4 0 ,0 0 0 .0 0

3 0 , 0 0 0 .0 0

7 0 ,0 00 .0 0

7 0 ,0 00 .0 0

141,000.00

1

1

AG7701T

AG77055

2 - T O N T R U C K

PIC K -U P

CAMPER

1 /4 TO N TRUCK

10

2 0

2

4

F IN A L TO TA L S

A G 65 45 B

A P 6 5 4 9 P

2 2

2 53 5

6

5 , 0 0 0 .0 0

2 , 0 0 0 .0 0

1 2 , 0 0 0 . 0 0 *

7 , 0 0 0 . 0 0 *

PAGE

1 9 , 0 0 0 . 0 0 * *

2 0 , 0 0 0 . 0 0

9 ,0 0 0 .0 0

2 9 , 0 0 0 . 0 0 *

2 9 , 0 0 0 . 0 0 * *

4 8 , 0 0 0 . 0 0 * * *

 Chapter 12. Auto Report Feature 309

 Examples of Using Auto Report

EXAMPLE 4 - Sales Report with Cross-Column Totals

 ┌───────────────────┐ ┌────────────┐
│*AUTO Page Headings│ │*AUTO Output│

 └───────┬───────────┘ └─────┬──────┘
 ┌─────────┐ 6 ┌───────────┐ 6
┌─────────────┤ Problem ├────────────────────┐ ┌───────────────┤ Procedure ├───────────────────┐
│ └─────────┘ │ │ └───────────┘ │
│ │ │ │
│ Expand the sales report from Examples 1, │ │ .1/ Code file description and input speci- │
│ 2 and 3 to include a cross-totals column │ │ fication as in Example 3, add an │
│ and: │ │ overflow indicator to the printer │
│ │ │ file. │
│ .A/ A new report page for each region. │ │ │
│ │ │ .2/ Code RPG calculation specifications │
│ .B/ Two heading lines on each page. │ │ for cross-total. │
│ │ │ │
│ .C/ A field in a page heading line. │ │ .3/ Code *AUTO specifications: │
│ │ │ │
│ .D/ Identification of branch and region │ │ .A/ Output indicators on page heading │
│ totals. │ │ specifications. │
└──┘ │ │

│ .B/ Two heading lines per page. │
 │ │

│ .C/ Use of a field in an *Auto page │
 │ heading specification. │
 │ │

│ .D/ Fields and constants on L1 through │
│ L9 total lines (1 through 9 in │

 │ position 39). │
 └───┘

310 RPG/400 User's Guide

 Examples of Using Auto Report

1 1 / 1 1 / 8 0 SAL ES REPORT FOR ANY CO . PAGE 2

REG I ON 3

BRANCH I TEM DE SCR I P T I ON SAL ES SAL ES VALUE ON ON - HAND VALUE TOTAL

NUMBER QUANT I TY HAND

2 5 AG6 5 4 5B CAMPER 1 0 4 0 , 0 0 0 . 0 0 5 2 0 , 0 0 0 . 0 0 6 0 , 0 0 0 . 0 0

AG6 5 4 9P 1 / 4 TON TRUCK 2 0 3 0 , 0 0 0 . 0 0 6 9 , 0 0 0 . 0 0 3 9 , 0 0 0 . 0 0

BRANCH 2 5 TOTAL S 7 0 , 0 0 0 . 0 0 2 9 , 0 0 0 . 0 0 9 9 , 0 0 0 . 0 0 *

REG I ON 3 TOTAL S 7 0 , 0 0 0 . 0 0 2 9 , 0 0 0 . 0 0 9 9 , 0 0 0 . 0 0 * *

COMPANY TOTAL S 1 4 1 , 0 0 0 . 0 0 4 8 , 0 0 0 . 0 0 1 8 9 , 0 0 0 . 0 0 * * *

1 1 / 1 1 / 8 0 SAL ES REPORT FOR ANY CO . PAGE 1

REG I ON 1

BRANCH I TEM DE SCR I P T I ON SAL ES SAL ES VALUE ON ON - HAND VALUE TOTAL

NUMBER QUANT I TY HAND

17 AG7 7O1 T 2 - TON TRUCK 5 2 5 , 0 0 0 . 0 0 2 1 0 , 0 0 0 . 0 0 3 5 , 0 0 0 . 0 0

AG7 7 0 5 5 P I CK - UP 1 0 2 0 , 0 0 0 . 0 0 1 2 , 0 0 0 . 0 0 2 2 , 0 0 0 . 0 0

AP 6 5 4 5B CAMPER 2 8 , 0 0 0 . 0 0 8 , 0 0 0 . 0 0

BRANCH 17 TOTAL S 5 3 , 0 0 0 . 0 0 1 2 , 0 0 0 . 0 0 6 5 , 0 0 0 . 0 0 *

2 2 AG7 7 0 1 T 2 - TON TRUCK 2 1 0 , 0 0 0 . 0 0 1 5 , 0 0 0 . 0 0 1 5 , 0 0 0 . 0 0

AG7 7 0 5 5 P I CK - UP 4 8 , 0 0 0 . 0 0 1 2 , 0 0 0 . 0 0 1 0 , 0 0 0 . 0 0

BRANCH 2 2 TOTAL S 1 8 , 0 0 0 . 0 0 7 , 0 0 0 . 0 0 2 5 , 0 0 0 . 0 0 *

REG I ON 1 TOTAL S 7 1 , 0 0 0 . 0 0 1 9 , 0 0 0 . 0 0 9 0 , 0 0 0 . 0 0 * *

Note: Compare matching letters (.B/) on this and the following pages to see the
automatic report coding to obtain this report.

.2/ RPG/400 calculations can be among the input statements for automatic report. This specification

calculates a cross-total of the sales and on-hand values. The placement of the calculation relative to
calculations generated by automatic report is described under “Generated Specifications” on
page 284.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C 01 SOLDVA ADD VALUE TOTVAL 82

C*

 Chapter 12. Auto Report Feature 311

 Examples of Using Auto Report

.3/ *AUTO specifications.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
OName++++DFBASbSaN01N02N03Excnam....................................*
OPRINT H .A/ L2 *AUTO
O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*
O OR OFNL2
O 'SALES REPORT '
O 'FOR ANY CO.'
O H *AUTO
O .B/ 'REGION'
O REGION .C/
O D 01 *AUTO
O L1 BRANCH 'BRANCH'
O ITEMNO 'ITEM'
O C 'NUMBER'
O DESC 'DESCRIPTION'
O SOLDQY 'SALES'
O C 'QUANTITY'
O SOLDVA A 'SALES VALUE'
O ONHAND 'ON'
O C 'HAND'
O VALUE A 'ON-HAND VALUE'
O TOTVAL A 'TOTAL' ───┐
O 1 'BRANCH' │
O BRANCH 1 │ .D/
O 1 'TOTALS' │
O 2 'REGION'───┘
O REGION 2
O 2 'TOTALS
O R 'COMPANY TOTALS'
O*

312 RPG/400 User's Guide

 Examples of Using Auto Report

.A/ The headings are printed on a new page when the region number changes
(L2) or when overflow occurs (OF). (OF must be defined for the printer file in
file description specifications).

.B/ A second automatic report page heading is specified. Because spacing is
not specified, space-one is done after the first and space-two after the
second. Because no output indicators are specified, the second heading is
conditioned like the first.

.C/ The contents of the REGION field are printed on the second page heading.

.D/ Fields and constants can be printed on generated total lines if you enter the
number of the control level in position 39.

 Chapter 12. Auto Report Feature 313

 Examples of Using Auto Report

EXAMPLE 5 - Sales Report Using Copied Specifications

10 , 0 0 0 . 0 0

2 , 0 0 0 . 0 0

5 , 0 0 0 . 0 0

2 , 0 0 0 . 0 0

2 0 , 0 0 0 . 0 0

9 , 0 0 0 . 0 0

REG I ON BRANCH I TEM DESCR I PT I ON SALES AMOUNT ON - HAND VALUE

14 1 , 0 0 0 . 0 0 4 8 , 0 0 0 . 0 0 *

10 / 2 6 / 8 0 SALES REPORT FOR ANY CO . PAGE 1

1 17 AG7 7 0 1T 2 - TON TRUCK 5 2 5 , 0 0 0 . 0 0 2

1 17 AG7 7 0 5 5 P I CK - UP 10 2 0 , 0 0 0 . 0 0 1

1 17 AP 6 5 4 5B CAMPER 2 8 , 0 0 0 . 0 0

1 2 2 AG7 7 0 1T 2 - TON TRUCK 2 10 , 0 0 0 . 0 0 1

1 2 2 AG7 7 0 5 5 P I CK - UP 4 8 , 0 0 0 . 0 0 1

3 2 5 AG6 5 4 5B CAMPER 10 4 0 , 0 0 0 . 0 0 5

3 2 5 AP 6 5 4 9P 1 / 4 TON TRUCK 2 0 3 0 , 0 0 0 . 0 0 6

COPY

Problem Procedure

Save the file descr iption and input

specifications for the SALES file in a

source file member.

Code the /COPY statement in the specifi-

cations for auto report.

Use the copy function to obtain specifications

for the sales report below (same as in

Exam ple 1).

.1/ Specifications for the SALES file are stored in a source-file member.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FSALES IP F 43 DISK .A/
FPRINT O F 120 PRINTER

.A/ These specifications could be replaced by a single statement as shown on
the following page.

314 RPG/400 User's Guide

 Examples of Using Auto Report

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*
ISALES AA 01
I....................................PFromTo++DField+L1M1FrPlMnZr...*
I 1 7 ITEMNO ──┐
I 8 9 BRANCH │
I 10 10 REGION │
I 11 25 DESC │ .A/
I 26 270SOLDQY │
I 28 342SOLDVA │
I 35 360ONHAND │
I 37 432VALUE ──┘
I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT H *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 'SALES REPORT '

O 'FOR ANY CO.'

O D 01 *AUTO

O REGION 'REGION'

O BRANCH 'BRANCH'

O ITEMNO 'ITEM'

O DESC 'DESCRIPTION'

O SOLDQY 'SALES'

O SOLDVA A 'AMOUNT'

O ONHAND 'ON-HAND'

O VALUE A 'VALUE'

O*

 Chapter 12. Auto Report Feature 315

 Examples of Using Auto Report

.2/ Code the /COPY statement to include the file description and input specifications. (For a detailed
description of the copy function, see “/COPY Statement Specifications” on page 275.)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FPRINT O F 120 PRINTER

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O/COPY SALETR .B/
O*

.A/ Position 6 of a /COPY statement must not contain a U or an H.

.B/ The /COPY statement copies file description and input specifications for the
SALES file from the member named SALETR.

The /COPY statement can appear anywhere among the automatic report
specifications following the automatic report option statement and preceding
array and table input records. It is convenient to code the /COPY on the
input specifications when you want to override copied input specifications,
as in “Example 6”. After specifications are copied, all specifications are
sorted into the order required by the RPG/400 compiler.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT H *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 'SALES REPORT '

O 'FOR ANY CO.'

O D 01 *AUTO

O REGION 'REGION'

O BRANCH 'BRANCH'

O ITEMNO 'ITEM'

O DESC 'DESCRIPTION'

O SOLDQY 'SALES'

O SOLDVA A 'AMOUNT'

O ONHAND 'ON-HAND'

O VALUE A 'VALUE'

O*

316 RPG/400 User's Guide

 Examples of Using Auto Report

EXAMPLE 6 - Override Copied Input Specifications

Prob lem P r o c e d u re

COPY

S a ve s p e c i f i c a t i o n s f o r t h e S A L E S f i l e ,
as in Example 5.

C o d e th e /C O P Y s ta te m en t .

C o d e / C O P Y m o d i f i e r s t a t e m e n t s t o a d d
c o n t ro l l e v e l i n d ic a t o r s to B R A N C H a n d
R E G IO N f ie ld s o n c o p i e d s p e c i f i c a t io n s .

O v e r r i d e c o p ie d i n p u t s p e c i f i c a t i o n s t o p r o d u c e
a re p o r t (b e lo w) t h a t i n c l u d e s s u b t o t a l s f o r
b ra n c h a n d re g io n .

1 17 AG7 7 0 1 T 2 - TON TRUCK 5 2 5 , 0 0 0 . 0 0 2 1 0 , 0 0 0 . 0 0

1 17 AG7 7 0 5 5 P I CK - UP 1 0 2 0 , 0 0 0 . 0 0 1 2 , 0 0 0 . 0 0

1 17 AP 6 5 4 5B CAMPER 2 8 , 0 0 0 . 0 0

5 3 , 0 0 0 . 0 0 1 2 , 0 0 0 . 0 0 *

1 2 2 AG7 7 0 1 T 2 - TON TRUCK 2 1 0 , 0 0 0 . 0 0 1 5 , 0 0 0 . 0 0

1 2 2 AG7 7 0 5 5 P I CK - UP 4 8 , 0 0 0 . 0 0 1 2 , 0 0 0 . 0 0

1 8 , 0 0 0 . 0 0 7 , 0 0 0 . 0 0 *

7 1 , 0 0 0 . 0 0 1 9 , 0 0 0 . 0 0 * *

3 2 5 AG6 5 4 5B CAMPER 1 0 4 0 , 0 0 0 . 0 0 5 2 0 , 0 0 0 . 0 0

3 2 5 AP 6 5 4 9P 1 / 4 TON TRUCK 2 0 3 0 , 0 0 0 . 0 0 6 9 , 0 0 0 . 0 0

1 0 / 2 6 / 8 0 SAL ES REPORT FOR ANY CO .

REG I ON BRANCH I TEM DESCR I P T I ON SAL ES AMOUNT 0N - HAND VALUE

1PAGE

 .

 Chapter 12. Auto Report Feature 317

 Examples of Using Auto Report

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

ISALES AA 01

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 1 7 ITEMNO

I 8 9 BRANCH .A/
I 10 10 REGION

I 11 25 DESC

I 26 270SOLDQY

I 28 342SOLDVA

I 35 360ONHAND

I 37 432VALUE

I*

.A/ To produce a report that has subtotals for branch and region, L1 must be
assigned to BRANCH and L2 to REGION as the specifications are copied from
the source-file member.

318 RPG/400 User's Guide

 Examples of Using Auto Report

.2/ and .3/ Code /COPY and modifier statements. As a result of the modifier statements, three levels of
totals are accumulated for the SOLDVA and VALUE fields (L1, L2 and LR).

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FPRINT O F 120 PRINTER

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I/COPY SALETR

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I BRANCHL1 .A/
I REGIONL2 .B/
I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRINT H *AUTO

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 'SALES REPORT '

O 'FOR ANY CO.'

O D 01 *AUTO

O REGION 'REGION'

O BRANCH 'BRANCH'

O ITEMNO 'ITEM'

O DESC 'DESCRIPTION'

O SOLDQY 'SALES'

O SOLDVA A 'AMOUNT'

O ONHAND 'ON-HAND'

O VALUE A 'VALUE'

O*

.A/ Entries on the modifier statements override the corresponding entries in the
copied specifications.

.B/ The field names, BRANCH and REGION, identify the input-field specifications
that are to be changed.

Saved file description or input specifications are overridden as follows (see
“/COPY Statement Specifications” on page 275 for examples):

¹ Entries in a modifier statement override corresponding entries in a
copied file description or input field specification.

¹ Blank entries in a modifier statement remain unchanged in a copied
specification.

¹ Ampersand (&) in the leftmost position of an entry in the modifier state-
ment sets the entry to blanks in the copied specification.

 Chapter 12. Auto Report Feature 319

 Examples of Using Auto Report

¹ New fields can be added to input specifications by new input-field spec-
ifications added as modifier statements.

¹ Modifier statements do not change the saved specifications. The mod-
ification is only for the program into which the specifications are copied.

320 RPG/400 User's Guide

 Checklist of Program Examples

Chapter 13. RPG/400 Sample Programs

This chapter contains a sample application consisting of a series of RPG/400 pro-
grams that could run on the OS/400 system. The sample programs are scaled in
such a way that you can use the RPG Debugging Template, GX21-9129 to check
the coding in the programs.

A time reporting application has been chosen for the sample programs. The design
does not attempt to provide a complete time reporting system, but is designed to
illustrate RPG/400 programs. The chapter consists of:

¹ Application scope and objectives
 ¹ System Overview
 ¹ Database design
¹ Technical design including:

– Master file maintenance
– Data area control file maintenance

 – Transaction entry
 – Weekly processing
 – Monthly processing

– Year end processing.

The following sample programs are cited throughout this guide and the RPG/400
Reference.

Note: Before the sample application will run successfully, the physical files must
contain initial data and the data area CTLFIL must be created and initialized.

Checklist of Program Examples
All RPG/400 functions, operation codes, and features that are included in the
program examples are shown in Table 18. Beside each function or operation code
are the program names. Where a function is used in more than one program, all
occurrences are listed.

Note: Refer to Table 19 on page 324 for a list of the programs in the order they
appear in this chapter.

Table 18 (Page 1 of 3). Functions, Operation Codes, and Features of RPG/400
Sample Programs

Specification
Form

Function/Operation
Code Description

Programs

File
Description

Program-described files
Externally described files

Disk files

Work station files
Printer files
Table files

PRG02 PRG09
PRG01 PRG03 PRG04 PRG05
PRG06 PRG07 PRG08
PRG01 PRG03 PRG04 PRG05
PRG06 PRG07 PRG08 PRG09
PRG01 PRG02 PRG03
PRG06 PRG07 PRG08 PRG09
PRG09

Extension Array

Table

PRG01 PRG02 PRG03 PRG05
PRG06 PRG07 PRG08
PRG09

 Copyright IBM Corp. 1994 321

 Checklist of Program Examples

Table 18 (Page 2 of 3). Functions, Operation Codes, and Features of RPG/400
Sample Programs

Specification
Form

Function/Operation
Code Description

Programs

Input Program-described
Externally described

Data structures

Named constants

PRG02 PRG09
PRG01 PRG03 PRG04 PRG05
PRG06 PRG07 PRG08
PRG02 PRG03 PRG05 PRG06
PRG07 PRG08 PRG09
PRG02 PRG03 PRG09

Calculation Operation codes:
ADD

ANDXX
BEGSR

CABXX
CALL
CASXX
CAT
CHAIN

CLEAR
CLOSE
COMP
DEFN
DELET
DIV
DOUXX
DOWXX
DSPLY
ELSE

END

ENDSR

EXCPT
EXFMT
EXSR

FREE
GOTO
IFXX

IN
KFLD
KLIST
LOKUP

PRG03 PRG04 PRG06 PRG07
PRG08 PRG09
PRG01 PRG02 PRG03 PRG09
PRG01 PRG02 PRG03 PRG04
PRG06 PRG07 PRG08 PRG09
PRG01
PRG05
PRG04
PRG08
PRG01 PRG03 PRG06 PRG07
PRG08 PRG09
PRG08
PRG05
PRG02
PRG05
PRG03
PRG02 PRG06 PRG07
PRG04
PRG03
PRG05
PRG01 PRG02 PRG03 PRG05
PRG06
PRG01 PRG02 PRG03 PRG04
PRG05 PRG06 PRG07 PRG08
PRG09
PRG01 PRG02 PRG03 PRG04
PRG06 PRG07 PRG08 PRG09
PRG09
PRG01 PRG03
PRG01 PRG02 PRG03 PRG04
PRG06 PRG07 PRG08 PRG09
PRG05
PRG01 PRG03
PRG01 PRG02 PRG03 PRG05
PRG06 PRG07 PRG08 PRG09
PRG05
PRG03
PRG03
PRG09

322 RPG/400 User's Guide

 Checklist of Program Examples

Table 18 (Page 3 of 3). Functions, Operation Codes, and Features of RPG/400
Sample Programs

Specification
Form

Function/Operation
Code Description

Programs

Calculation Operation codes:
MOVE

MOVEL
MULT
MVR
OPEN
ORXX
OUT
PARM
PLIST
READ
READC
READE
REDPE
RESET
RETRN
SCAN
SETGT
SETLL
SETOF
SETON
SUB
SUBST
TAG
TIME
UNLCK
UPDAT
WRITE

XFOOT
Z-ADD

Z-SUB

PRG01 PRG02 PRG03 PRG04
PRG05 PRG06 PRG09
PRG09
PRG06 PRG07
PRG02
PRG05
PRG02 PRG03
PRG05
PRG05
PRG05
PRG04
PRG03
PRG03
PRG05
PRG08
PRG03
PRG08
PRG05
PRG03
PRG03 PRG09
PRG03 PRG09
PRG07
PRG08
PRG01 PRG03
PRG06
PRG05
PRG01 PRG03 PRG04
PRG01 PRG03 PRG06 PRG07
PRG08
PRG06 PRG07 PRG08
PRG01 PRG02 PRG03 PRG04
PRG06 PRG07 PRG08 PRG09
PRG07

Output Printer files
Program-described
Externally described

Exception output

PRG06 PRG07 PRG09
PRG02 PRG09
PRG01 PRG03 PRG04 PRG05
PRG06 PRG07
PRG09

Other Features
Matching
Record

Structured programming
techniques

Level breaks
SAA compatible
Function keys
Subfile processing
External indicators
Initialization subroutine

PRG01 PRG02 PRG03 PRG04
PRG05 PRG06 PRG07 PRG08
PRG09
PRG06 PRG09
PRG09
PRG01 PRG02 PRG03
PRG03
PRG04 PRG05
PRG08

 Chapter 13. RPG/400 Sample Programs 323

 Sample Programs Design

Table 19 is a list of the sample programs in the order they appear in this chapter.

Table 19. List of Sample Programs

Program Refer to

PRG01 Figure 172 on page 364

PRG02 Figure 176 on page 386

PRG03 Figure 181 on page 401

PRG05 Figure 186 on page 421

PRG09 Figure 188 on page 428

PRG06 Figure 194 on page 453

PRG07 Figure 197 on page 468

PRG08 Figure 200 on page 479

PRG04 Figure 201 on page 487

 Database Design
The time reporting application consists of three master files, two transaction history
files, and a data area control file. The design of each of the files is listed below:

Employee Master File
The employee master file contains information about employees enrolled in the time
reporting system. Data elements include:

ACREC Active record code

EMPNO Employee number

ENAME Employee name

EMCAT Employee Category

EDEPT Employee department

ELOCN Employee location

EUSRI Employee USRID (user identification)

ENHRS Employee normal week hours

EPHRC Employee project hours current month

EPHRY Employee project hours year-to-date

EPHRP Employee project prior year

ENHRC Employee non-project hours current month

ENHRY Employee non-project hours year-to-date

ENHRP Employee non-project hours prior year.

Project Master File
The project master file contains information on projects that are used in the time
reporting system. Data elements include:

ACREC Active record code

PRCDE Project code

324 RPG/400 User's Guide

 Sample Programs Design

PRDSC Project description

PRRSP Project responsibility

PRSTR Project start date

PREND Project estimated end date

PRCMP Project completion date

PREST Project estimated total hours

PRHRC Project hours current month

PRHRY Project hours year-to-date

PRHRP Project hours prior year.

Reason-Code Master File
The reason-code master file contains information on non-project-related tasks, such
as statutory holidays and personal time off. Data elements include:

ACREC Active record code

RSCDE Reason code

RSDSC Reason-code description

RSHRC Reason-code hours current month

RSHRY Reason-code hours year-to-date

RSHRP Reason-code hours prior year

Transaction History Files
The transaction history files contain detail information entered by the user in a time
entry display. The weekly transaction file contains all entries for the current week.
When weekly reports are produced, this file is rolled into the monthly file. Both files
have identical layouts. Data elements include:

ACREC Active record code

EMPNO Employee number

EUSRI Employee USRID (user identification)

ACDAT Actual date worked (optional)

CWKDT Week ending date

CMTDT Month ending date

PRCDE Project code

RSCDE Reason code

EHWRK Hours worked

TFRRN Transaction file relative record number.

 Chapter 13. RPG/400 Sample Programs 325

 System Overview

Data Area Control File
This data area control file contains control information for the time reporting system.
Data elements include:

ACREC Active record code

CWKDT Week ending date

CMTDT Month ending date

CALLE All entries made flag.

Master File Maintenance
The master files are all maintained using workstation programs. All screens are
designed using Screen Design Aid (SDA) and are externally defined. Flowcharts
for the master file maintenance process follow:

The master file maintenance process allows additions, changes and deletions to the
employee master file, project master file and reason-code master file.

 ┌─────────────┐
 │ Employee │

│ maintenance │%───5┐
 │ displays │ │
 └─────────────┘ │
 ┌─────────────┐ │

│ Project │ │
│ maintenance │%───5┤

 │ displays │ │
 └─────────────┘ │

┌─────────────┐ │ ┌─────────────┐
│ Reason-code │ │ │ │
│ maintenance │%───5┼─────┤ Program │
│ displays │ │ │ │
└─────────────┘ │ └─────────────┘

 │
 ┌─────────────┐ │
 │ Employee │ │
 │ master │%───5┤
 │ file │ │
 └─────────────┘ │
 ┌─────────────┐ │

│ Project │ │
 │ master │%───5┤
 │ file │ │
 └─────────────┘ │
 ┌─────────────┐ │

│ Reason-code │ │
 │ master │%───5┘
 │ file │
 └─────────────┘

Data Area Control File Maintenance
The data area control file maintenance process allows update to the data area
control file. A program-described workstation program maintains the data area
control file.

326 RPG/400 User's Guide

 System Overview

 ┌─────────────┐ ┌─────────────┐
 │ Control-file│ │ │

│ maintenance │%────┬────5│ Program │
│ displays │ │ │ │
└─────────────┘ │ └─────────────┘

 │
 │
 ┌─────────────┐ │
 │ Control-file│ │
 │ data area │%───5┘
 │ │
 └─────────────┘

 Time-File Entry
The time-file entry process is performed using workstation subfile processing. The
screens are designed using SDA and are externally defined. Verification of data
entered is done to the master files. The time-file entry process allows additions,
changes and deletions to the transaction file with all fields maintainable. The data
entry file is used for the weekly reporting and file update process. The time-file
entry flowchart follows:

 ┌─────────────┐
│ Time-file │
│ entry │%───5┐

 │ displays │ │
 └─────────────┘ │
 │
 │ ┌─────────────┐
 ┌─────────────┐ │ │ │

│ Employee │ ├──────┤ Program │
 │ master ├────5│ │ │
 │ file │ │ └─────────────┘
 └─────────────┘ │
 ┌─────────────┐ │

│ Project │ │
 │ master ├────5│

│ file │ │
 └─────────────┘ │
 ┌─────────────┐ │

│ Reason-code │ │
 │ master ├────5│

│ file │ │
 └─────────────┘ │
 ┌─────────────┐ │
 │ Control-file│ │
 │ data area ├────5│
 │ │ │
 └─────────────┘ │
 │
 ┌─────────────┐ │
 │ Time-entry │ │

│ transaction │%────┘
 │ file │
 └─────────────┘

 Chapter 13. RPG/400 Sample Programs 327

 System Overview

Weekly Time-File Update
On a weekly basis the time-entry transaction file is processed to produce time-
sheet reports and to update the master files with time-entry hours. The weekly
time-file update process determines whether or not all required time entries have
been made. If entries are missing, the employee is notified that his or her time
entries are missing and the person who asked for the update is also notified. The
person can cancel the update or continue. After all entries have been made or the
person who asked for the update elects to continue, the reports are produced and
the files updated. The weekly transaction file is added to the monthly file and then
cleared. The following flowchart illustrates this process.

E m p l o y e e

m a s t e r

f i l e

T i m e e n t r y

t r a n s a c t i o n

f i l e

N o

Y e s

E n d o f j o b

S u b m i t u p d a t e

t o b a t c h

P r o m p t t h e

o p e r a t o r f o r

r e s p o n s e t o

c o n t i n u e

C h e c k t h e t i m e

e n t r y f i l e f o r

m i s s i n g e n t r i e s

C o m m a n d

C o m m a n d

U s e r

m e s s a g e

q u e u e

O p e r a t o r

m e s s a g e

C o n t i n u e

P r o g r a m

328 RPG/400 User's Guide

 System Overview

 ┌─────────────┐
 │ Time-entry │

│ transaction ├────5┐
│ file │ │

 └─────────────┘ │
 │ ┌─────────────┐
 ┌─────────────┐ │ │ │ Update master

│ Employee │ ├──────┤ Program │ files and
 │ master │%───5│ │ │ create reports

│ file │ │ └──────┬──────┘
 └─────────────┘ │ │
 ┌─────────────┐ │ 6

│ Project │ │ ┌─────────────┐
 │ master │%───5│ │ Time-entry │

│ file │ │ │ reports │
 └─────────────┘ │ │ │
 ┌─────────────┐ │ └─────────────┘

│ Reason-code │ │
 │ master │%───5│

│ file │ │
 └─────────────┘ │
 ┌─────────────┐ │
 │ Control-file│ │
 │ data area │%───5┘
 │ │
 └─────────────┘

 ┌─────────────┐
 │ Time-entry │

│ transaction │────5┐ ┌─────────────┐
│ file │ │ │ │ Add the weekly
└─────────────┘ │──────┤ Command │ file to the

 ┌─────────────┐ │ │ │ monthly file
│ Monthly │ │ └─────────────┘

 │ time-entry │%────┘
 │ file │
 └─────────────┘

 ┌─────────────┐ ┌─────────────┐
│ Time-entry │ │ │ Clear the time
│ transaction │%──────────5│ Command │ entry transaction

 │ file │ │ │ file
 └─────────────┘ └─────────────┘

 Chapter 13. RPG/400 Sample Programs 329

 System Overview

Monthly Time-Entry File Reporting and Update
After the final weekly run for the month, the monthly time-entry transaction file is
processed to produce month end reports and to update the master files in prepara-
tion for new monthly data. The following flowchart illustrates this process.

 ┌─────────────┐
│ Monthly │

 │ time-entry ├────5┐
 │transactions │ │
 └─────────────┘ │
 │ ┌─────────────┐
 ┌─────────────┐ │ │ │ Create monthly

│ Employee │ ├──────┤ Program │ employee time-
 │ master ├────5│ │ │ entry report
 │ file │ │ └──────┬──────┘
 └─────────────┘ │ │
 ┌─────────────┐ │ 6

│ Project │ │ ┌─────────────┐
 │ master ├────5│ │ Employee │

│ file │ │ │ time-entry │
 └─────────────┘ │ │ report │
 ┌─────────────┐ │ └─────────────┘

│ Reason-code │ │
 │ master ├────5│

│ file │ │
 └─────────────┘ │
 ┌─────────────┐ │
 │ Control-file│ │
 │ data area ├────5┘
 │ │
 └─────────────┘

330 RPG/400 User's Guide

 System Overview

 ┌─────────────┐
│ Monthly │

 │ time-entry ├────5┐
│ file │ │

 └─────────────┘ │
 ┌─────────────┐ │ ┌─────────────┐

│ Project │ │ │ │ Create project
│ master ├────5┼─────5│ Program │ master analysis

 │ file │ │ │ │ report
 └─────────────┘ │ └──────┬──────┘
 ┌─────────────┐ │ │
 │ Employee │ │ 6
 │ master ├────5┘ ┌─────────────┐

│ file │ │ Project │
 └─────────────┘ │ master │
 │ report │
 └─────────────┘

 ┌─────────────┐
│ Monthly │

 │ time-entry ├────5┐
│ file │ │

 └─────────────┘ │
 ┌─────────────┐ │ ┌─────────────┐

│ Reason-code │ │ │ │ Create reason-
│ master ├────5┼─────5│ Program │ code master
│ file │ │ │ │ analysis report

 └─────────────┘ │ └──────┬──────┘
 ┌─────────────┐ │ │
 │ Employee │ │ 6
 │ master ├────5┘ ┌─────────────┐

│ file │ │ Reason-code │
 └─────────────┘ │ master │
 │ report │
 └─────────────┘

 Chapter 13. RPG/400 Sample Programs 331

 Technical Design

┌─────────────┐ ┌─────────────┐ Add current month
 │ Employee │ │ │ to year-to-date

│ master │%──────────5│ Program │ and clear. Roll
 │ file │ │ │ year-to-date to

└─────────────┘ └─────────────┘ prior at year end.

┌─────────────┐ ┌─────────────┐ Add current month
│ Project │ │ │ to year-to-date
│ master │%──────────5│ Program │ and clear. Roll

 │ file │ │ │ year-to-date to
└─────────────┘ └─────────────┘ prior at year end.

┌─────────────┐ ┌─────────────┐ Add current month
│ Reason-code │ │ │ to year-to-date
│ master │%──────────5│ Program │ and clear. Roll

 │ file │ │ │ year-to-date to
└─────────────┘ └─────────────┘ prior at year end.

 ┌─────────────┐ ┌─────────────┐
│ Monthly │ │ Command │ Clear the monthly

 │ time-entry │%──────────5│ CLRPFM │ time-entry
 │transactions │ │ │ transaction file
 └─────────────┘ └─────────────┘

Database Field Definition
This section contains the database field definition and field attributes for the time
reporting system. A database reference file, REFMST, has been created that con-
tains all detailed field definitions for all files. We could have defined the fields in
each file as part of its own data description specifications (DDS), however, when a
field is used in more than one file, the field ends up being defined multiple times. If
a change is required to the definition of that field, it must be done for every occur-
rence. By defining a field reference file, we eliminate multiple definitions and sim-
plify the task of redefining the field in the future. See Figure 154 on page 333.

332 RPG/400 User's Guide

 Technical Design

Database Reference Master File - REFMST

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* REFMST - Database Reference Master File

A* DESCRIPTION - A file containing field-level information for the

A* time reporting system files. This field-level

A* information is referenced when the specific

A* physical and logical files are created. The field-

A* level information is also referenced by SDA when

A* display formats are created.

A**

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A R RCREF TEXT('DATA BASE REFERENCE')

A* COMMON FIELDS

A ACREC 1 TEXT('ACTIVE RECORD CODE')

A COLHDG('ACREC')

A DATFL 6 0 TEXT('DATE FIELD')

A COLHDG('DATE' 'MMDDYY')

A* EMPLOYEE MASTER RELATED FIELDS

A EMPNO 6 0 TEXT('EMPLOYEE NUMBER')

A COLHDG('EMPLOYEE' 'NUMBER')

A ENAME 30 TEXT('EMPLOYEE NAME')

A COLHDG('EMPLOYEE' 'NAME')

A EMCAT 1 TEXT('EMPLOYEE CATEGORY')

A COLHDG('EMP' 'CAT')

A EDEPT 5 TEXT('EMPLOYEE DEPARTMENT')

A COLHDG('EMPL' 'DEPT')

A ELOCN 30 TEXT('EMPLOYEE LOCATION')

A COLHDG('EMPLOYEE' 'LOCATION')

A EUSRI 8 TEXT('EMPLOYEE USRID')

A COLHDG('EMPLOYEE' 'USRID')

A ENHRS 3 1 TEXT('EMPLOYEE NORMAL WEEK HOURS')

A COLHDG('NORMAL' 'WK HRS')

A EPHRC 5 1 TEXT('PROJECT HOURS CURRENT MONTH')

A COLHDG('PRJ HRS' 'CUR MTH')

A EPNRC 5 1 TEXT('NON PROJECT HOURS CURR MONTH')

A COLHDG('NON PRJ HRS' 'CUR MTH')

Figure 154 (Part 1 of 3). Database Reference Master File

 Chapter 13. RPG/400 Sample Programs 333

 Technical Design

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A EPHRY 7 1 TEXT('PROJECT HOURS YEAR TO DATE')

A COLHDG('PRJ HRS' 'YTD')

A EPHRP 7 1 TEXT('PROJECT HOURS PRIOR YEAR')

A COLHDG('PRJ HRS' 'PRIOR YR')

A EPNRY 7 1 TEXT('NON PROJECT HOURS YTD')

A COLHDG('NON PRJ' 'HRS YTD')

A EPNRP 7 1 TEXT('NON PROJECT HOURS PRIOR YEAR')

A COLHDG('NON PRJ HRS' 'PRIOR YR')

A EHWRK 5 1 TEXT('EMPLOYEE HOURS WORKED')

A COLHDG('EMP HRS' 'WORKED')

A* PROJECT MASTER RELATED FIELDS

A PRCDE 8 TEXT('PROJECT CODE')

A COLHDG('PROJECT' 'CODE')

A PRDSC 50 TEXT('PROJECT DESCRIPTION')

A COLHDG('PROJECT' 'DESCRIPTION')

A PRRSP 30 TEXT('PROJECT RESPONSIBILITY')

A COLHDG('PROJECT' 'RESPONSIBILITY')

A PRSTR R REFFLD(DATFL)

A TEXT('PROJECT START DATE')

A COLHDG('PRJ START' 'DATE')

A PREND R REFFLD(DATFL)

A TEXT('PROJECT ESTIMATED END DATE')

A COLHDG('PRJ EST' 'END DATE')

A PRCMP R REFFLD(DATFL)

A TEXT('PROJECT COMPLETION DATE')

A COLHDG('PRJ CMP' 'DATE')

A PREST 9 1 TEXT('PROJECT ESTIMATED TOTAL HRS')

A COLHDG('PRJ EST' 'TOT HRS')

A PRHRC 7 1 TEXT('PROJECT HOURS CURRENT MONTH')

Figure 154 (Part 2 of 3). Database Reference Master File

334 RPG/400 User's Guide

 Technical Design

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A COLHDG('PRJ HRS' 'CUR MTH')

A PRHRY 9 1 TEXT('PROJECT HOURS YEAR TO DATE')

A COLHDG('PRJ HRS' 'YTD')

A PRHRP 9 1 TEXT('PROJECT HOURS PRIOR YEAR')

A COLHDG('PRJ HRS' 'PRIOR YR')

A* REASON CODE MASTER RELATED FIELDS

A RSCDE 8 TEXT('REASON CODE')

A COLHDG('REASON' 'CODE')

A RSDSC 50 TEXT('REASON CODE DESCRIPTION')

A COLHDG('REASON CODE' 'DESCRIPTION')

A RSHRC 7 1 TEXT('REASON CODE HRS CURR MONTH')

A COLHDG('RSN CDE HRS' 'CUR MTH')

A RSHRY 9 1 TEXT('REASON CODE HRS YEAR TO DATE')

A COLHDG('RSN CDE' 'HRS YTD')

A RSHRP 9 1 TEXT('REASON CODE HOURS PRIOR YEAR')

A COLHDG('RSN CDE HRS' 'PRIOR YR')

A* CONTROL FILE RELATED FIELDS

A CTCDE 6 TEXT('CONTROL RECORD CODE')

A COLHDG('CTL REC' 'CODE')

A CWKDT 6S 0 TEXT('WEEK ENDING DATE')

A COLHDG('WEEK END' 'DATE')

A CMTDT 6S 0 TEXT('MONTH ENDING DATE')

A COLHDG('MTH END' 'DATE')

A CALLE 1 TEXT('ALL ENTRIES MADE FLAG')

A COLHDG('ENTRIES' 'FLAG')

Figure 154 (Part 3 of 3). Database Reference Master File

 Chapter 13. RPG/400 Sample Programs 335

 Technical Design

Data Area Control File - CTLFIL

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* CTLFIL - Data Area Control File

A* DESCRIPTION - A data area control file containing control-level

A* information for the time reporting system. The

A* data area contains one record format.

A**

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A REF(REFMST)

A R RCCTL TEXT('CONTROL FILE')

A CTCDE R

A CWKDT R

A CMTDT R

A CALLE R

A K CTCDE

Figure 155. Data Area Control File

336 RPG/400 User's Guide

 Technical Design

Employee Master File - EMPMST

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* EMPMST - Employee Master File

A* DESCRIPTION - A file containing one record for each employee

A* enrolled in the time reporting system. Current

A* month, year-to-date, prior year project, and

A* non-project-related activity are maintained.

A**

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A UNIQUE

A REF(REFMST)

A R RCEMP TEXT('EMPLOYEE MASTER')

A ACREC R

A EMPNO R

A ENAME R

A EMCAT R

A EDEPT R

A ELOCN R

A EUSRI R

A ENHRS R

A EPHRC R

A EPHRY R

A EPHRP R

A EPNRC R

A EPNRY R

A EPNRP R

A K EMPNO

Figure 156. Employee Master File

 Chapter 13. RPG/400 Sample Programs 337

 Technical Design

Project Master File - PRJMST

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* PRJMST - Project Master File

A* DESCRIPTION - A file containing information related to project

A* activity. Current month, year-to-date, and prior

A* year activity are maintained. One record exists

A* for each project code.

A**

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A UNIQUE

A REF(REFMST)

A R RCPRJ TEXT('PROJECT MASTER')

A ACREC R

A PRCDE R

A PRDSC R

A PRRSP R

A PRSTR R

A PREND R

A PRCMP R

A PREST R

A PRHRC R

A PRHRY R

A PRHRP R

A K PRCDE

Figure 157. Project Master File

338 RPG/400 User's Guide

 Technical Design

Reason-Code Master File - RSNMST

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* RSNMST - Reason-Code Master File

A* DESCRIPTION - A file containing information related to non-project

A* activity. Current month, year-to-date, and prior

A* year activity are maintained. One record exists

A* for each reason code.

A**

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A UNIQUE

A REF(REFMST)

A R RCRSN TEXT('REASON CODE MASTER')

A ACREC R

A RSCDE R

A RSDSC R

A RSHRC R

A RSHRY R

A RSHRP R

A K RSCDE

Figure 158. Reason-Code Master File

 Chapter 13. RPG/400 Sample Programs 339

 Technical Design

Weekly Transaction Entry File - TRWEEK

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* TRWEEK - Weekly Transaction Entry File

A* DESCRIPTION - A file containing all entries made to the time

A* reporting system for the week.

A**

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A REF(REFMST)

A R RCWEEK TEXT('TRANSACTION ENTRY WEEKLY')

A ACREC R

A EMPNO R

A EUSRI R

A ACDAT 6S 0

A CWKDT R

A CMTDT R

A PRCDE R

A RSCDE R

A EHWRK R

A TFRRN 3 0

A**

A* TRWEEKL - Logical View of Weekly Transaction Entry File

A* DESCRIPTION - The transaction entry program uses this file to

A* allow redisplay of existing employee entries and

A* update records added or changed in the subfile

A* entry.

A**

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A R RCWEEK PFILE(TRWEEK)

A K EMPNO

A K TFRRN

Figure 159. Weekly Transaction Entry File

340 RPG/400 User's Guide

 Technical Design

Monthly Transaction Entry File - TRMNTH

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* TRMNTH - Monthly Transaction Entry File

A* DESCRIPTION - A file containing all entries made to the time

A* reporting system for the month.

A**

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*

A REF(REFMST)

A R RCMNTH TEXT('TRANSACTION ENTRY MONTHLY')

A ACREC R

A EMPNO R

A EUSRI R

A CWKDT R

A CMTDT R

A PRCDE R

A RSCDE R

A EHWRK R

A**

A* TRMNTHL - Logical View of Monthly Transaction Entry File

A* DESCRIPTION - This file is used by the time-entry employee

A* monthly reporting system.

A**

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A R RCMNTH PFILE(TRMNTH)

A K CWKDT

A K EMPNO

Figure 160 (Part 1 of 2). Monthly Transaction Entry File

 Chapter 13. RPG/400 Sample Programs 341

 Technical Design

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* TRMNTHR - Logical View of Monthly Transaction Entry File

A* DESCRIPTION - This file is used by the time-entry project

A* monthly reporting system.

A**

A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*

A R RCMNTH PFILE(TRMNTH)

A K PRCDE

A K CWKDT

A K EMPNO

A O PRCDE COMP(EQ ' ')

A**

A* TRMNTHN - Logical View of Monthly Transaction Entry File

A* DESCRIPTION - This file is used by the time-entry reason-code

A* monthly reporting system.

A**

A R RCMNTH PFILE(TRMNTH)

A K RSCDE

A K CWKDT

A K EMPNO

A O RSCDE COMP(EQ ' ')

Figure 160 (Part 2 of 2). Monthly Transaction Entry File

342 RPG/400 User's Guide

 Time Reporting Menu Design

Time Reporting Menu Design
Figure 161 shows the Time Reporting System Main Menu. The Main Menu allows
you to perform file maintenance, control-file maintenance, transaction entry, weekly
update, and monthly update. See Figure 162 on page 344 for the DDS for the
TMENU.

Each menu option is described in detail in the remainder of this chapter. The Main
Menu is repeated for each option, and the option being described is highlighted.
An explanation of each option includes the control-level program called, the
RPG/400 program called, or the command processed.

� �
 TMENU Time Reporting System
 Main Menu

1. Master file maintenance (PRG01)
2. Control file maintenance (PRG02)
3. Time file transaction entry (PRG03)
4. Weekly time file update (PROC1)
5. Monthly time file update & reporting (PROC3)

 8. Display messages (DSPMSG)
 9. Sign off (SIGNOFF)

 Selection or command
 ===>
F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 F13=User support F16=System main menu

� �

Figure 161. Time Reporting System Main Menu Layout

 Chapter 13. RPG/400 Sample Programs 343

 Time Reporting Menu Design

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A***

A* TMENU - Time Reporting System Main Menu Data Descriptions

A* DESCRIPTION - A display file describing the formats that the

A* program uses to allow workstation maintenance

A* of the time reporting system.

A***

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A DSPSIZ(24 80 *DS3 -

A 27 132 *DS4)

A CHGINPDFT

A INDARA

A PRINT(*LIBL/QSYSPRT)

A R TMENU

A DSPMOD(*DS3)

A LOCK

A SLNO(01)

A CLRL(*ALL)

A ALWROL

A CF03

A HELP

A HOME

A HLPRTN

A 1 2'TMENU'

A COLOR(BLU)

Figure 162 (Part 1 of 3). TMENU Data Description Specifications

344 RPG/400 User's Guide

 Time Reporting Menu Design

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A 019 2'Selection or command -

A '

A 5 7'1. Master file maintenance'

A 6 7'2. Control file maintenance'

A 7 7'3. Time file transaction entry'

A 8 7'4. Weekly time file update'

A 9 7'5. Monthly time file update &-

A reporting'

A 12 7'8. Display messages'

A 13 7'9. Sign off'

A 1 28'Time Reporting System'

A 2 34'Main Menu'

A 5 63'(PRG01)'

A 6 63'(PRG02)'

A 7 63'(PRG03)'

A 8 63'(PROC1)'

A 9 63'(PROC3)'

A 12 63'(DSPMSG)'

A 13 63'(SIGNOFF)'

A*

Figure 162 (Part 2 of 3). TMENU Data Description Specifications

* ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 TMENUQQ,1

 0001 CALL PGM(PRG01)

 0002 CALL PGM(PRG02)

 0003 CALL PGM(PRG03)

 0004 CALL PGM(PROC1)

 0005 CALL PGM(PROC3)

 0008 DSPMSG

 0009 SIGNOFF

Figure 162 (Part 3 of 3). TMENU Data Description Specifications

Note: The TMENUQQ,1 portion of the DDS above begins in column 1.

 Chapter 13. RPG/400 Sample Programs 345

 Master File Maintenance

Master File Maintenance
You select option 1 (Master file maintenance) on the Time Reporting System Main
Menu to perform additions, changes, or deletions in the employee master file,
project master file, or reason-code master file. You make these changes to the
master file before doing your time entry transactions. The time entry process veri-
fies the data you enter against these three master files. Figure 163 shows the
Time Reporting System Main Menu. Option 1 calls program PRG01 by using the
CALL PGM(PRG01) command.

� �
 TMENU Time Reporting System
 Main Menu

1. Master file maintenance (PRG01)
2. Control file maintenance (PRG02)
3. Time file transaction entry (PRG03)
4. Weekly time file update (PROC1)
5. Monthly time file update & reporting (PROC3)

 8. Display messages (DSPMSG)
 9. Sign off (SIGNOFF)

 Selection or command
 ===>
F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 F13=User support F16=System main menu

� �

Figure 163. Time Reporting System Main Menu

346 RPG/400 User's Guide

 PRG01FM (Master File Maintenance)

Master File Maintenance Display - PRG01FM
The initial format, in the time reporting maintenance application, allows you to
choose which master file you want to maintain. Figure 164 shows the display for
the Maintenance Selection format. Each master file maintenance application con-
sists of two formats (see Figure 165 on page 348 through Figure 170 on
page 353).

SELECT Format - Maintenance Selection

� �
PRG01 Time Reporting System .1/ MM/DD/YY

 Maintenance Selection .2/ TT:TT:TT

Enter an X beside the application you want to maintain

B Employee Master Maintenance
 .3/ B Project Master Maintenance

B Reason Code Master Maintenance

 .4/
 OO

F3-End of Job

� �

Figure 164. Maintenance Selection - SELECT Format

The date .1/ and time of day .2/ are updated each time you press Enter. You
must enter an X beside the application .3/ you want to maintain. If you select
Employee Master Maintenance, employee selection format EMPSEL appears. If you
select Project Master Maintenance, project selection format PRJSEL appears. If you
select Reason Code Master Maintenance, reason code selection format RSNSEL
appears. If you press F3, the job ends. When you press Enter, the program veri-
fies entries and, if errors are found, the program returns the SELECT format with an
error message .4/.

Possible error messages are:

¹ Maintenance selection code not equal to X.

¹ More than one application selected for maintenance.

¹ No application selected for maintenance.

 Chapter 13. RPG/400 Sample Programs 347

 PRG01FM (Master File Maintenance)

Employee Master Selection - EMPSEL Format
Figure 165 shows the display for the Employee Master Maintenance selection.

� �
PRG01 Time Reporting System MM/DD/YY

Employee Master Maintenance TT:TT:TT

 Employee Number 999999- .1/
 Action Code B A-Add .2/
 C-Change
 D-Delete

 .3/
 OO

F3-End of Job F4-Maintenance Selection

� �

Figure 165. Employee Master Selection - EMPSEL Format

You must enter an employee number .1/ and an action code .2/. When you press
Enter, the program verifies the combination of the employee number and the action
code. If no errors are found, the employee master maintenance entry format
EMPMNT appears (see Figure 166 on page 349). If errors are found, the program
returns the EMPSEL format with an error message .3/. You can press F3 to end the
job, or F4 to return to the maintenance selection format SELECT.

Possible error messages are:

¹ Action code not equal to A, C or D.

¹ Add requested, but record already exists in file.

¹ Change requested, but record does not exist.

¹ Change requested, but record is flagged for deletion.

¹ Delete requested, but record does not exist.

¹ Delete requested, but record already deleted.

348 RPG/400 User's Guide

 PRG01FM (Master File Maintenance)

Employee Master Maintenance - EMPMNT Format
Figure 166 shows the display for the Employee Master Maintenance entry.

� �
PRG01 Time Reporting System MM/DD/YY

Employee Master Maintenance TT:TT:TT

 Number 666666 Name BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB .1/

 Category B .2/
 Department BBBBB .3/
 Location BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB .4/
 USRID BBBBBBBB .5/

Normal week hours 999- .6/

Time Reporting History

 Current Year To Prior
Month Date Year

 Project Related 66666 6666666 6666666 .7/
Non Project Related 66666 6666666 6666666

 OO .8/

F3-End of Job F4-Maintenance Selection F5-Employee Selection

� �

Figure 166. Employee Master Maintenance - EMPMNT Format

The current values from the employee master are displayed on a change request or
delete request. All fields are blank on an add request. On a delete request, all
fields are protected. You can type the information for employee name .1/, cate-
gory .2/, department .3/, location .4/, user identification .5/, and normal week
hours .6/. The time reporting history .7/ is not maintainable.

When you press Enter, the employee master file is updated and the employee
maintenance selection format EMPSEL appears. You can press F3 to end the job,
F4 to return to the maintenance selection format SELECT, or F5 to return to the
employee maintenance selection format EMPSEL. The program does not update the
employee master file when you use these function keys. The program does not
validate data entered on this format. If an Add is requested and the employee
master record was previously deleted, the program displays a warning message
.8/.

Possible error message:

Warning - Record was previously deleted.

 Chapter 13. RPG/400 Sample Programs 349

 PRG01FM (Master File Maintenance)

Project Master Selection - PRJSEL Format
Figure 167 shows the display for the Project Master Maintenance selection.

� �
PRG01 Time Reporting System MM/DD/YY

Project Master Maintenance TT:TT:TT

 Project Code BBBBBBBB .1/
 Action Code B A-Add .2/
 C-Change
 D-Delete

 .3/
 OO

F3-End of Job F4-Maintenance Selection

� �

Figure 167. Project Master Selection - PRJSEL Format

You must enter a project code .1/ and an action code .2/. When you press Enter,
the program verifies the combination of the project code and the action code. If no
errors are found, the project master maintenance entry format PRJMNT appears (see
Figure 168 on page 351). If errors are found, the program returns the PRJSEL
format with an error message .3/. You can press F3 to end the job, or F4 to return
to the maintenance selection format SELECT.

Possible error messages are:

¹ Action code not equal to A, C or D.

¹ Add requested but record already exists in file.

¹ Change requested but record does not exist.

¹ Change requested but record is flagged for deletion.

¹ Delete requested but record does not exist.

¹ Delete requested but record already deleted.

350 RPG/400 User's Guide

 PRG01FM (Master File Maintenance)

Project Master Maintenance - PRJMNT Format
Figure 168 shows the display for the Project Master Maintenance entry.

� �
PRG01 Time Reporting System MM/DD/YY

Project Master Maintenance TT:TT:TT

 Project Code OOOOOOOO .1/
 Description BB
 .2/
 Responsibility BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

Project Start Date 999999- .3/
Project Estimated End Date 999999- .4/
Project Completion Date 999999- .5/
Project Estimated Hours 999999999- .6/

 Project History
 Current Year To Prior
 Month Date Year

 6666666 666666666 666666666 .7/

 OO .8/

F3-End of Job F4-Maintenance Selection F6-Project Code Selection

� �

Figure 168. Project Master Maintenance - PRJMNT Format

The current values from the project master are displayed on a change request or
delete request. All fields are blank on an add request. On a delete request, all
fields are protected. You can type information for project description .1/, responsi-
bility .2/, start date .3/, estimated end date .4/, completion date .5/, and esti-
mated hours .6/. The time reporting history .7/ is not maintainable.

When you press Enter, the project master file is updated and the project mainte-
nance selection format PRJSEL appears. You can press F3 to end the job, F4 to
return to the maintenance selection format SELECT, or F6 to return to the project
maintenance selection format PRJSEL. The program does not update the project
master file if you use these function keys. The program does not validate any data
entered on this format. If an Add is requested and the project master record was
previously deleted, the program displays a warning message .8/.

Possible error message:

Warning - Record was previously deleted.

 Chapter 13. RPG/400 Sample Programs 351

 PRG01FM (Master File Maintenance)

Reason Code Master Selection - RSNSEL Format
Figure 169 shows the display for the Reason Code Master Maintenance selection.

� �
PRG01 Time Reporting System MM/DD/YY

Reason Code Master Maintenance TT:TT:TT

 Reason Code BBBBBBBB .1/
 Action Code B A-Add .2/
 C-Change
 D-Delete

 .3/
 OO

F3-End of Job F4-Maintenance Selection

� �

Figure 169. Reason Code Master Selection - RSNSEL Format

You must enter a reason code .1/ and an action code .2/. When you press Enter,
the program verifies the combination of the reason code and the action code. If no
errors are found, the reason code master maintenance entry format RSNMNT appears
(see Figure 170 on page 353). If errors are found, the program returns the RSNSEL
format with an error message .3/. You can press F3 to end the job, or F4 to return
to the maintenance selection format SELECT.

Possible error messages are:

¹ Action code not equal to A, C or D.

¹ Add requested but record already exists in file.

¹ Change requested but record does not exist.

¹ Change requested but record is flagged for deletion.

¹ Delete requested but record does not exist.

¹ Delete requested but record already deleted.

352 RPG/400 User's Guide

 PRG01FM (Master File Maintenance)

Reason Code Master Maintenance - RSNMNT Format
Figure 170 shows the display for the Reason Code Master Maintenance entry.

� �
PRG01 Time Reporting System MM/DD/YY

Reason Code Master Maintenance TT:TT:TT

 Reason Code OOOOOOOO .1/
 Description BB

Reason Code History
 Current Year To Prior
 Month Date Year

 6666666 666666666 666666666 .2/

 OO .3/

F3-End of Job F4-Maintenance Selection F7-Reason Code Selection

� �

Figure 170. Reason Code Master Maintenance - RSNMNT Format

The current values from the reason code master are displayed on a change request
or delete request. All fields are blank on an add request. On a delete request, all
fields are protected. You can type information for the reason code description .1/.
The time reporting history .2/ is not maintainable.

When you press Enter, the reason code master file is updated and the reason code
maintenance selection format RSNSEL appears. You can press F3 to end the job,
F4 to return to the maintenance selection format SELECT, or F7 to return to the
reason code maintenance selection format RSNSEL. The program does not update
the reason codes master file if you use these function keys. The program does not
validate any data entered on this format. If an Add is requested and the reason
code master record was previously deleted, the program displays a warning
message .3/.

Possible error message:

Warning - Record was previously deleted.

 Chapter 13. RPG/400 Sample Programs 353

 PRG01FM (Master File Maintenance)

Master File Maintenance Data Descriptions - PRG01FM
Figure 171 on page 355 shows the DDS for the PRG01FM Master File Mainte-
nance display file. There are seven record formats, identified by R in position 17
followed by the format name in positions 19 through 28. The following keywords
have been used:

ALARM Activates the audible alarm.
BLINK Blinks the cursor.
CAnn Makes the function key specified in the keyword available for use.
DATE Displays the current job date as a constant.
DSPATR Specifies a display attribute for the field.
DSPSIZ Specifies the display size to which the program can open this file.
EDTCDE Specifies editing on an output capable numeric field.
INDARA Removes option and response indicators from the buffer and places them

in a 99-byte separate indicator area.
REFFLD References the attributes of a previously defined field.
TIME Displays the current system time as a constant.

354 RPG/400 User's Guide

 PRG01FM (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* PRG01FM - Master File Maintenance Data Descriptions

A* DESCRIPTION - A display file describing the formats that the

A* RPG/400 program PRG01 uses to allow work station

A* maintenance of the following time reporting master

A* files: EMPMST - Employee master file

A* PRJMST - Project master file

A* RSNMST - Reason code master file

A**

A* The following code contains keywords that describe the overall

A* display file.

A*

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A DSPSIZ(24 80 *DS3)

A PRINT

A INDARA

A CA03(03 'end of job')

A CA04(04 'return to maintenance sele-

A ction')

A R SELECT

A*

A* The SELECT format describes the literals and fields that you

A* use to enter the maintenance selection code to determine which

A* time reporting master file you want to maintain.

A*

A BLINK

A 60 ALARM

A 2 5'PRG01'

A 2 30'Time Reporting System'

A 2 70DATE

A EDTCDE(Y)

A 3 30'Maintenance Selection'

A 3 70TIME

A 6 14'Enter an X beside the application -

A you want to maintain'

Figure 171 (Part 1 of 9). Master File Maintenance Data Descriptions - PRG01FM

 Chapter 13. RPG/400 Sample Programs 355

 PRG01FM (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A EMPAPL 1A B 9 25

A 9 28'Employee Master Maintenance'

A PRJAPL 1A B 10 25

A 10 28'Project Master Maintenance'

A RSNAPL 1A B 11 25

A 11 28'Reason Code Master Maintenance'

A EMESS 50A O 21 16

A 60 DSPATR(HI)

A 23 7'F3-End of Job'

A R EMPSEL

A*

A* The EMPSEL format describes the literals and fields that you

A* use to enter the employee number and the maintenance action code

A* for selecting an employee master record.

A*

A BLINK

A 60 ALARM

A 2 5'PRG01'

A 2 30'Time Reporting System'

A 2 70DATE

A EDTCDE(Y)

A 3 27'Employee Master Maintenance'

A 3 70TIME

A 6 27'Employee Number'

A EMPNO R B 6 44REFFLD(RCEMP/EMPNO *LIBL/EMPMST)

A 8 27'Action Code'

A ACODE 1A B 8 44

A 8 48'A-Add'

A 9 48'C-Change'

A 10 48'D-Delete'

Figure 171 (Part 2 of 9). Master File Maintenance Data Descriptions - PRG01FM

356 RPG/400 User's Guide

 PRG01FM (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A EMESS 50A O 21 16

A 60 DSPATR(HI)

A 23 7'F3-End of Job'

A 23 25'F4-Maintenance Selection'

A R EMPMNT

A*

A* The EMPMNT format describes the literals and fields that you

A* use to enter employee master maintenance.

A*

A BLINK

A 61 ALARM

A CA05(05 'return to employee selecti-

A on')

A 2 5'PRG01'

A 2 30'Time Reporting System'

A 2 70DATE

A EDTCDE(Y)

A 3 70TIME

A 3 27'Employee Master Maintenance'

A 5 14'Number'

A EMPNO R O 5 22REFFLD(RCEMP/EMPNO *LIBL/EMPMST)

A 5 31'Name'

A ENAME R B 5 37REFFLD(RCEMP/ENAME *LIBL/EMPMST)

A 90 DSPATR(PR)

A 7 18'Category'

A EMCAT R B 7 37REFFLD(RCEMP/EMCAT *LIBL/EMPMST)

A 90 DSPATR(PR)

A 8 18'Department'

A EDEPT R B 8 37REFFLD(RCEMP/EDEPT *LIBL/EMPMST)

A 90 DSPATR(PR)

A 9 18'Location'

A ELOCN R B 9 37REFFLD(RCEMP/ELOCN *LIBL/EMPMST)

Figure 171 (Part 3 of 9). Master File Maintenance Data Descriptions - PRG01FM

 Chapter 13. RPG/400 Sample Programs 357

 PRG01FM (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A 90 DSPATR(PR)

A 10 18'USRID'

A EUSRI R B 10 37REFFLD(RCEMP/EUSRI *LIBL/EMPMST)

A 90 DSPATR(PR)

A 11 18'Normal week hours'

A ENHRS R B 11 37REFFLD(RCEMP/ENHRS *LIBL/EMPMST)

A 90 DSPATR(PR)

A 13 30'Time Reporting History'

A 15 40'Current Year To Prior'

A 16 40' Month Date Year'

A 17 19'Project Related'

A EPHRC R O 17 41REFFLD(RCEMP/EPHRC *LIBL/EMPMST)

A EPHRY R O 17 49REFFLD(RCEMP/EPHRY *LIBL/EMPMST)

A EPHRP R O 17 58REFFLD(RCEMP/EPHRP *LIBL/EMPMST)

A 18 19'Non Project Related'

A EPNRC R O 18 41REFFLD(RCEMP/EPNRC *LIBL/EMPMST)

A EPNRY R O 18 49REFFLD(RCEMP/EPNRY *LIBL/EMPMST)

A EPNRP R O 18 58REFFLD(RCEMP/EPNRP *LIBL/EMPMST)

A EMESS 50 O 21 16

A 61 DSPATR(HI)

A 23 7'F3-End of Job'

A 23 25'F4-Maintenance Selection'

A 23 55'F5-Employee Selection'

A 11 44'(eg. 40.0 enter 400)'

Figure 171 (Part 4 of 9). Master File Maintenance Data Descriptions - PRG01FM

358 RPG/400 User's Guide

 PRG01FM (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A R PRJSEL

A*

A* The PRJSEL format describes the literals and fields that you use

A* to enter the project code and the maintenance action code for

A* selecting a project master record.

A*

A BLINK

A 60 ALARM

A 2 5'PRG01'

A 2 30'Time Reporting System'

A 2 70DATE

A EDTCDE(Y)

A 3 27'Project Master Maintenance'

A 3 70TIME

A 6 27'Project Code'

A PRCDE R B 6 44REFFLD(RCPRJ/PRCDE *LIBL/PRJMST)

A 8 27'Action Code'

A ACODE 1A B 8 44

A 8 48'A-Add'

A 9 48'C-Change'

A 10 48'D-Delete'

A EMESS 50 O 21 16

A 60 DSPATR(HI)

A 23 7'F3-End of Job'

A 23 25'F4-Maintenance Selection'

Figure 171 (Part 5 of 9). Master File Maintenance Data Descriptions - PRG01FM

 Chapter 13. RPG/400 Sample Programs 359

 PRG01FM (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A R PRJMNT

A*

A* The PRJMNT format describes the literals and fields that you

A* use to enter project master maintenance.

A*

A BLINK

A 61 ALARM

A CA06(06 'return to project selectio-

A n')

A 2 5'PRG01'

A 2 30'Time Reporting System'

A 2 70DATE

A EDTCDE(Y)

A 3 70TIME

A 3 27'Project Master Maintenance'

A 5 29'Project Code'

A PRCDE R O 5 43REFFLD(RCPRJ/PRCDE *LIBL/PRJMST)

A 7 10'Description'

A PRDSC R B 7 23REFFLD(RCPRJ/PRDSC *LIBL/PRJMST)

A 90 DSPATR(PR)

A 9 13'Responsibility'

A PRRSP R B 9 41REFFLD(RCPRJ/PRRSP *LIBL/PRJMST)

A 90 DSPATR(PR)

A 10 13'Project Start Date'

A PRSTR R B 10 41REFFLD(RCPRJ/PRSTR *LIBL/PRJMST)

A 90 DSPATR(PR)

A 10 53'(MMDDYY)'

A 11 13'Project Estimated End Date'

A PREND R B 11 41REFFLD(RCPRJ/PREND *LIBL/PRJMST)

A 90 DSPATR(PR)

A 11 53'(MMDDYY)'

Figure 171 (Part 6 of 9). Master File Maintenance Data Descriptions - PRG01FM

360 RPG/400 User's Guide

 PRG01FM (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A 12 13'Project Completion Date'

A PRCMP R B 12 41REFFLD(RCPRJ/PRCMP *LIBL/PRJMST)

A 90 DSPATR(PR)

A 12 53'(MMDDYY)'

A 13 13'Project Estimated Hours'

A PREST R B 13 41REFFLD(RCPRJ/PREST *LIBL/PRJMST)

A 90 DSPATR(PR)

A 15 33'Project History'

A 17 27'Current'

A 17 37'Year To Prior'

A 18 28'Month'

A 18 39'Date Year'

A PRHRC R O 19 27REFFLD(RCPRJ/PRHRC *LIBL/PRJMST)

A PRHRY R O 19 36REFFLD(RCPRJ/PRHRY *LIBL/PRJMST)

A PRHRP R O 19 47REFFLD(RCPRJ/PRHRP *LIBL/PRJMST)

A EMESS 50 O 21 16

A 61 DSPATR(HI)

A 23 7'F3-End of Job'

A 23 25'F4-Maintenance Selection'

A 23 54'F6-Project Code Selection'

Figure 171 (Part 7 of 9). Master File Maintenance Data Descriptions - PRG01FM

 Chapter 13. RPG/400 Sample Programs 361

 PRG01FM (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A R RSNSEL

A* The RSNSEL format describes the literals and fields that you

A* use to enter the reason code and maintenance action code for

A* selecting a reason code master record.

A BLINK

A 60 ALARM

A 2 5'PRG01'

A 2 30'Time Reporting System'

A 2 70DATE

A EDTCDE(Y)

A 3 26'Reason Code Master Maintenance'

A 3 70TIME

A 6 27'Reason Code'

A RSCDE R B 6 44REFFLD(RCRSN/RSCDE *LIBL/RSNMST)

A 8 27'Action Code'

A ACODE 1A B 8 44

A 8 48'A-Add'

A 9 48'C-Change'

A 10 48'D-Delete'

A EMESS 50 O 21 16

A 60 DSPATR(HI)

A 23 7'F3-End of Job'

A 23 25'F4-Maintenance Selection'

A R RSNMNT

A* The RSNMNT format describes the literals and fields that you

A* use to enter reason code master maintenance.

Figure 171 (Part 8 of 9). Master File Maintenance Data Descriptions - PRG01FM

362 RPG/400 User's Guide

 PRG01FM (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A BLINK

A 61 ALARM

A CA07(07 'return to reason code sele-

A ction')

A 2 5'PRG01'

A 2 30'Time Reporting System'

A 2 70DATE

A EDTCDE(Y)

A 3 70TIME

A 3 27'Employee Master Maintenance'

A 5 30'Reason Code'

A RSCDE R O 5 43REFFLD(RCRSN/RSCDE *LIBL/RSNMST)

A 7 9'Description'

A RSDSC R B 7 22REFFLD(RCRSN/RSDSC *LIBL/RSNMST)

A 90 DSPATR(PR)

A 9 31'Reason Code History'

A 11 26'Current'

A 11 36'Year To Prior'

A 12 27'Month'

A 12 38'Date Year'

A RSHRC R O 13 26REFFLD(RCRSN/RSHRC *LIBL/RSNMST)

A RSHRY R O 13 35REFFLD(RCRSN/RSHRY *LIBL/RSNMST)

A RSHRP R O 13 46REFFLD(RCRSN/RSHRP *LIBL/RSNMST)

A EMESS 50 O 21 16

A 61 DSPATR(HI)

A 23 7'F3-End of Job'

A 23 25'F4-Maintenance Selection'

A 23 54'F7-Reason Code Selection'

Figure 171 (Part 9 of 9). Master File Maintenance Data Descriptions - PRG01FM

 Chapter 13. RPG/400 Sample Programs 363

 PRG01 (Master File Maintenance)

Master File Maintenance RPG/400 program - PRG01
Figure 172 shows the RPG/400 program PRG01. The program contains
embedded comments to explain the logic flow and the use of RPG/400 functions
and operation codes.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PRG01 - Master File Maintenance RPG/400 Program

F* DESCRIPTION - Time reporting master file maintenance using

F* externally described workstation processing.

F**

F* INDICATORS USED:

F* 50 - No record found on CHAIN operation

F* 60 - General error condition

F* 90 - Protect display on delete request

F* KC - End of job requested

F* KD - Return to application selection

F* KE - Return to employee selection

F* KF - Return to project selection

F* KG - Return to reason code selection

F* LR - Last record

F**

F* SUBROUTINES USED:

F* EDITSL - Edit application selection display (SELECT)

F* ACDESR - Edit action code for all maintenance requests

F**

F* This program uses all externally described files. Files used

F* are: PRG01FM - Maintenance display file

F* EMPMST - Employee master file

F* PRJMST - Project master file

F* RSNMST - Reason code master file

F**

Figure 172 (Part 1 of 19). Sample RPG/400 Program - PRG01

364 RPG/400 User's Guide

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FPRG01FM CF E WORKSTN

FEMPMST UF E K DISK A

FPRJMST UF E K DISK A

FRSNMST UF E K DISK A

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E* Compile time array containing error descriptions.

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E ERR 1 10 50

E*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* MAINLINE CALCULATIONS

C**

C* This mainline routine controls display file processing and

C* editing. Using the function keys described on each display

C* format, you can transfer from one maintenance application to

C* another. The action code you select on the selection formats

C* determines if the program adds a new record to the file or

C* updates an existing record in the file.

C**

C* The program contains several TAG operations. The program will

C* branch to these TAGs based on the action you take or function

C* key you press on the various display formats. The BEGIN TAG

C* provides a label to which the program branches if you press F4

C* on any of the maintenance formats.

C* The term 'housekeeping' used in this program refers to the

C* initialization of indicators, temporary work fields, and display

C* fields. Housekeeping ensures that information from previous

C* input or calculation operations that may affect the operations

C* the program performs next is not kept. Indicator 60 (*IN60)

C* is set off, and blanks are moved to the SELECT format display

C* fields as part of housekeeping.

Figure 172 (Part 2 of 19). Sample RPG/400 Program - PRG01

 Chapter 13. RPG/400 Sample Programs 365

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C BEGIN TAG

C MOVE '0' *IN60

C MOVE *BLANKS EMESS

C MOVE *BLANKS EMPAPL

C MOVE *BLANKS PRJAPL

C MOVE *BLANKS RSNAPL

C*

C* The SELTAG TAG provides a label to which the program branches

C* if errors are found in the maintenance selection format SELECT.

C* The SELECT format is written to the work station using EXFMT.

C* The EXFMT causes a write to and a read from the display. If

C* you press F3 (*INKC = 1), the program branches to the END TAG.

C* If you do not press F3 (*INKC = 0), the program processes the

C* EDITSL subroutine to edit the SELECT format input.

C*

Figure 172 (Part 3 of 19). Sample RPG/400 Program - PRG01

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SELTAG TAG

C EXFMTSELECT

C *INKC CABEQ'1' END

C EXSR EDITSL

C*

C* IF the general error indicator *IN60 is on (equal to 1), the

C* program branches back to the SELTAG.

C*

C *IN60 CABEQ'1' SELTAG

C*

C* At this point, the SELECT format has been verified and the program

C* displays the maintenance entry format for the application selected.

C* The application selection fields from the SELECT format are tested

C* and the program branches to the section specific to the application.

C* If EMPAPL (employee maintenance) equals X, the program branches to

C* label EMPTAG. If PRJAPL (project maintenance) equals X, the

C* program branches to label PRJTAG. If the previous two tests were

C* not successful, you chose reason code maintenance. The program

C* continues with the next operation.

C*

Figure 172 (Part 4 of 19). Sample RPG/400 Program - PRG01

366 RPG/400 User's Guide

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C EMPAPL CABEQ'X' EMPTAG

C PRJAPL CABEQ'X' PRJTAG

C*

C**

C* Reason Code Maintenance: The RSNTAG TAG provides a label to

C* which the program branches if you press F7 from the reason-code

C* maintenance entry format RSNMNT. The program branches to this

C* tag when the maintenance request completes successfully.

C* Housekeeping: Initialize general error indicator 60 and clear

C* RSNSEL format display fields.

C*

C RSNTAG TAG

C MOVE '0' *IN60

C MOVE *BLANKS EMESS

C MOVE *BLANKS RSCDE

C MOVE *BLANKS ACODE

C*

C* The program branches to the RSNERR TAG if errors are found

C* when editing the RSNSEL format input.

C* Housekeeping: Initialize RSNMNT format display fields.

C* The RSNSEL format is written using the EXFMT operation. When

C* you press Enter or a function key, the program continues with

C* the next operation. If you press F4 (*INKD = 1), the program

C* branches to the BEGIN TAG.

C*

Figure 172 (Part 5 of 19). Sample RPG/400 Program - PRG01

 Chapter 13. RPG/400 Sample Programs 367

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C RSNERR TAG

C MOVE *BLANKS RSDSC

C EXFMTRSNSEL

C *INKD CABEQ'1' BEGIN

C*

C* If you press F3 (*INKC = 1), the program branches to the END TAG.

C* If you do not press F3, the reason code master file is accessed

C* using the reason code (RSCDE) that you entered and the CHAIN

C* operation. If the record is not found, resulting indicator 50

C* (positions 54 and 55) is set on. The ACDESR subroutine is

C* processed to edit your request.

C*

C *INKC CABEQ'1' END

C RSCDE CHAINRSNMST 50

C EXSR ACDESR

C*

C* If editing processed by the ACDESR subroutine detects errors

C* in your request, general error indicator 60 is on and the

C* program branches back to the RSNERR TAG.

C*

C *IN60 CABEQ'1' RSNERR

C*

C* The RSNMNT format is written using the EXFMT operation. If you

C* press F4 (*INKD), the program branches back to the BEGIN TAG. If

C* you press F7 (*INKG), the program branches back to the RSNTAG TAG.

C*

C EXFMTRSNMNT

C *INKD CABEQ'1' BEGIN

C *INKG CABEQ'1' RSNTAG

Figure 172 (Part 6 of 19). Sample RPG/400 Program - PRG01

368 RPG/400 User's Guide

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The following code performs the reason-code file update

C* operations. The code contains five levels of nested IF

C* statements. The beginning of each level is indicated by Bnn,

C* where nn is the nested level. The calculations in each level

C* are indicated by nn. The end of each level is indicated by Enn.

C* In each level, the ACREC (active record code) field is updated

C* to A for active or D for deleted.

C*

C* First level - if you press F3 for end of job, the program

C* processes the 01 level calculations and branches to the END TAG.

C* Second level - if you enter action code A, and the record

C* does not already exist (*IN50 = 1), the program WRITEs the record.

C* Third level - if you enter action code A, and the record already

C* exists (*IN50 = 0) with an active record code of D (ACREC = D),

C* then the program updates the existing record.

C* Fourth level - if you enter action code D, the record is updated.

C* Fifth level - if you enter action code C, the record is updated.

C*

Figure 172 (Part 7 of 19). Sample RPG/400 Program - PRG01

 Chapter 13. RPG/400 Sample Programs 369

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *INKC IFEQ '0' B01

C ACODE IFEQ 'A' B02

C *IN50 ANDEQ'1' 02

C MOVE 'A' ACREC 02

C WRITERCRSN 02

C ELSE 02

C ACODE IFEQ 'A' B03

C *IN50 ANDEQ'0' 03

C ACREC ANDEQ'D' 03

C MOVE 'A' ACREC 03

C UPDATRCRSN 03

C ELSE 03

C ACODE IFEQ 'D' B04

C MOVE 'D' ACREC 04

C UPDATRCRSN 04

C ELSE 04

C ACODE IFEQ 'C' B05

C UPDATRCRSN 05

C END E05

C END E04

C END E03

C END E02

C ELSE 01

C GOTO END 01

C END E01

C*

C* Your maintenance request is completed and the program branches

C* back to the RSNTAG TAG.

C*

C GOTO RSNTAG

Figure 172 (Part 8 of 19). Sample RPG/400 Program - PRG01

370 RPG/400 User's Guide

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* Employee-master maintenance routine performs the same steps as

C* done in the reason code routine. Refer to RSNTAG for further

C* explanation of the following processing steps.

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C EMPTAG TAG

C MOVE '0' *IN60

C MOVE *BLANKS EMESS

C Z-ADD0 EMPNO

C MOVE *BLANKS ACODE

C EMPERR TAG

C MOVE *BLANKS ENAME

C MOVE *BLANKS EMCAT

C MOVE *BLANKS EDEPT

C MOVE *BLANKS ELOCN

C MOVE *BLANKS EUSRI

C Z-ADD0 ENHRS

C* Display employee selection format

C EXFMTEMPSEL

C *INKD CABEQ'1' BEGIN

C* Access employee master to validate action code request

C *INKC CABEQ'1' END

C EMPNO CHAINEMPMST 50

C EXSR ACDESR

C *IN60 CABEQ'1' EMPERR

C* Display employee maintenance format

C EXFMTEMPMNT

C *INKD CABEQ'1' BEGIN

C *INKE CABEQ'1' EMPTAG

Figure 172 (Part 9 of 19). Sample RPG/400 Program - PRG01

 Chapter 13. RPG/400 Sample Programs 371

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *INKC IFEQ '0' B01

C ACODE IFEQ 'A' B02

C *IN50 ANDEQ'1' 02

C MOVE 'A' ACREC 02

C WRITERCEMP 02

C ELSE 02

C ACODE IFEQ 'A' B03

C *IN50 ANDEQ'0' 03

C ACREC ANDEQ'D' 03

C MOVE 'A' ACREC 03

C UPDATRCEMP 03

C ELSE 03

C ACODE IFEQ 'D' B04

C MOVE 'D' ACREC 04

C UPDATRCEMP 04

C ELSE 04

C ACODE IFEQ 'C' B05

C MOVE 'A' ACREC 05

C UPDATRCEMP 05

C END E05

C END E04

C END E03

C END E02

C ELSE 01

C GOTO END 01

C END E01

C GOTO EMPTAG

Figure 172 (Part 10 of 19). Sample RPG/400 Program - PRG01

372 RPG/400 User's Guide

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* Project-master maintenance routine performs the same steps as

C* in the reason code routine. Refer to RSNTAG for further

C* explanation of the following processing steps.

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C PRJTAG TAG

C MOVE '0' *IN60

C MOVE *BLANKS EMESS

C MOVE *BLANKS PRCDE

C MOVE *BLANKS ACODE

C PRJERR TAG

C MOVE *BLANKS PRDSC

C MOVE *BLANKS PRRSP

C Z-ADD0 PRSTR

C Z-ADD0 PREND

C Z-ADD0 PRCMP

C Z-ADD0 PREST

C* Display project selection format

C EXFMTPRJSEL

C *INKD CABEQ'1' BEGIN

C* Access project master to validate action code request

C *INKC CABEQ'1' END

C PRCDE CHAINPRJMST 50

C EXSR ACDESR

C *IN60 CABEQ'1' PRJERR

C* Display project maintenance format

C EXFMTPRJMNT

C *INKD CABEQ'1' BEGIN

C *INKF CABEQ'1' PRJTAG

Figure 172 (Part 11 of 19). Sample RPG/400 Program - PRG01

 Chapter 13. RPG/400 Sample Programs 373

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C* Determine update mode and perform record add or update

C *INKC IFEQ '0' B01

C ACODE IFEQ 'A' B02

C *IN50 ANDEQ'1' 02

C MOVE 'A' ACREC 02

C WRITERCPRJ 02

C ELSE 02

C ACODE IFEQ 'A' B03

C *IN50 ANDEQ'0' 03

C ACREC ANDEQ'D' 03

C MOVE 'A' ACREC 03

C UPDATRCPRJ 03

C ELSE 03

C ACODE IFEQ 'D' B04

C MOVE 'D' ACREC 04

C UPDATRCPRJ 04

C ELSE 04

C ACODE IFEQ 'C' B05

C MOVE 'A' ACREC 05

C UPDATRCPRJ 05

C END E05

C END E04

C END E03

C END E02

C ELSE 01

C GOTO END 01

C END E01

C GOTO PRJTAG

C* End of job requested. Control is passed to here when you press

C* F3 (*INKC). The last record indicator *INLR is set on and the

C* program ends.

C END TAG

C MOVE '1' *INLR

Figure 172 (Part 12 of 19). Sample RPG/400 Program - PRG01

374 RPG/400 User's Guide

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* EDITSL subroutine verifies the time reporting application

C* selection display input.

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C EDITSL BEGSR

C*

C* Housekeeping: The general error indicator *IN60 is set off and

C* the error message field EMESS is set to blanks.

C MOVE *BLANKS EMESS 50

C MOVE '0' *IN60

C*

C* The following IF AND OR combination checks the application

C* selection fields to ensure that only one application has been

C* selected. If more than one is selected, the general error

C* indicator *IN60 is set on (equal to 1) and the error message

C* established by moving array element 2 (ERR,2) to the EMESS field.

C*

C Z-ADD0 SELCNT 10

C EMPAPL IFEQ 'X'

C ADD 1 SELCNT

C END

C PRJAPL IFEQ 'X'

C ADD 1 SELCNT

C END

C RSNAPL IFEQ 'X'

C ADD 1 SELCNT

C END

C SELCNT IFGT 1

C MOVE '1' *IN60

C MOVE ERR,2 EMESS

C ELSE

C MOVE '0' *IN60

C END

Figure 172 (Part 13 of 19). Sample RPG/400 Program - PRG01

 Chapter 13. RPG/400 Sample Programs 375

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The following IF AND combination ensures that at least one

C* application is selected. The application selection fields are

C* checked and if they are all equal to ' ' (blank), *IN60 is set

C* on and array element 3 moved to the error message field.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C EMPAPL IFEQ ' '

C PRJAPL ANDEQ' '

C RSNAPL ANDEQ' '

C MOVE '1' *IN60

C MOVE ERR,3 EMESS

C END

C* The following code checks each application selection field to

C* ensure that it is either ' ' (blank) or equal to 'X'. If any

C* of the three selection fields contains a value other than ' '

C* or 'X', *IN60 is set on and array element 1 is moved to the

C* error message field.

C EMPAPL IFNE ' '

C EMPAPL ANDNE'X'

C MOVE '1' *IN60

C MOVE ERR,1 EMESS

C END

C PRJAPL IFNE ' '

C PRJAPL ANDNE'X'

C MOVE '1' *IN60

C MOVE ERR,1 EMESS

C END

C RSNAPL IFNE ' '

C RSNAPL ANDNE'X'

C MOVE '1' *IN60

C MOVE ERR,1 EMESS

C END

C ENDSR

Figure 172 (Part 14 of 19). Sample RPG/400 Program - PRG01

376 RPG/400 User's Guide

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* ACDESR subroutine verifies the time reporting action codes for

C* all maintenance selections.

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C ACDESR BEGSR

C*

C* Housekeeping: The error indicators *IN60 and *IN61 are set off

C* and the error message field EMESS is set to blanks. Indicator

C* *IN90 is defined in the maintenance display formats to protect

C* the display on a delete request. It is set off here (equal to 0)

C* as part of housekeeping.

C*

C MOVE *BLANKS EMESS

C MOVE '0' *IN60

C MOVE '0' *IN61

C MOVE '0' *IN90

C*

C* The following compare and branch (CABEQ) statements perform two

C* functions. They determines the type of maintenance requested

C* and branches to the appropriate label, and they determine if the

C* maintenance code entered is incorrect. The CABEQ operation

C* checks the ACODE (action code) field for a value of 'A' (add)

C* and, if true, branches to the ADDCDE TAG. ACODE is also checked

C* for 'C' and sent to CHGCDE TAG and for 'D' and sent to DELCDE TAG.

C* If the ACODE field does not equal A, C, or D, *IN60 is set on and

C* array element 4 moved to the error message field. The program

C* then branches to the end of the subroutine ACDEND label on the

C* ENDSR statement.

C*

Figure 172 (Part 15 of 19). Sample RPG/400 Program - PRG01

 Chapter 13. RPG/400 Sample Programs 377

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C ACODE CABEQ'A' ADDCDE

C ACODE CABEQ'C' CHGCDE

C ACODE CABEQ'D' DELCDE

C*

C* Not valid action code

C*

C MOVE '1' *IN60

C MOVE ERR,4 EMESS

C GOTO ACDEND

C*

C* The following code verifies the add request. Indicator *IN50

C* equals to '0' indicates the record is found on the CHAIN

C* operation. If the record already exists (*IN50 equals 0) and

C* the record status field ACREC for the record is 'A' for active,

C* *IN60 is set on, and array element 5 is moved to EMESS. If the

C* record already exists and the record status field ACREC is 'D'

C* for deleted, array element 6 is moved to EMESS. In the last

C* error, we do not set on the error indicator because error

C* message 6 is a warning error that is displayed on the

C* maintenance format indicating that the record has already been

C* deleted. You must then decide whether to reactivate the record

C* or to return to the selection display to change the request.

C*

Figure 172 (Part 16 of 19). Sample RPG/400 Program - PRG01

378 RPG/400 User's Guide

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C ADDCDE TAG

C *IN50 IFEQ '0'

C ACREC ANDEQ'A'

C MOVE '1' *IN60

C MOVE ERR,5 EMESS

C ELSE

C *IN50 IFEQ '0'

C ACREC ANDEQ'D'

C MOVE ERR,6 EMESS

C END

C END

C GOTO ACDEND

C*

C* The following code verifies the change request. If the first

C* check verifies that the record is not found on the CHAIN

C* operation (*IN50 equals 1), *IN60 is set on and array element is

C* moved to EMESS. The second check verifies that the record does

C* exists (*IN50 equals 0) but that the record status field ACREC

C* equals 'D' for deleted, *IN60 is set on and array element 8 is

C* moved to EMESS.

C CHGCDE TAG

C *IN50 IFEQ '1'

C MOVE '1' *IN60

C MOVE ERR,7 EMESS

C ELSE

C *IN50 IFEQ '0'

C ACREC ANDEQ'D'

C MOVE '1' *IN60

C MOVE ERR,8 EMESS

C END

C END

C GOTO ACDEND

Figure 172 (Part 17 of 19). Sample RPG/400 Program - PRG01

 Chapter 13. RPG/400 Sample Programs 379

 PRG01 (Master File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The following code verifies the delete request. When field

C* protect indicator *IN90 is first set on (equal to 1), changes to

C* existing data on a delete request are not allowed. When the

C* program checks that the record is not found on the CHAIN

C* operation (*IN50 equals 1), *IN60 is set on and array element 9

C* is moved to EMESS. A second check determines that the record

C* does exist (IN50 equals 0) but that the record status field

C* ACREC equals 'D' indicating it is already deleted, *IN60 is set

C* on and array element 10 is moved to EMESS.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C DELCDE TAG

C MOVE '1' *IN90

C *IN50 IFEQ '1'

C MOVE '1' *IN60

C MOVE ERR,9 EMESS

C ELSE

C *IN50 IFEQ '0'

C ACREC ANDEQ'D'

C MOVE '1' *IN60

C MOVE ERR,10 EMESS

C END

C END

C ACDEND ENDSR

Figure 172 (Part 18 of 19). Sample RPG/400 Program - PRG01

380 RPG/400 User's Guide

 PRG01 (Master File Maintenance)

* ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 O*

O* The compile time array ERR is entered below. The array is

O* preceded by "** " to denote the beginning of the array and

O* begins in column 1 of the output specification.

 O*

 ** Array ERR - Error descriptions

MAINTENANCE SELECTION CODE NOT EQUAL TO "X"

 MORE THAN ONE APPLICATION SELECTED FOR MAINTENANCE

NO APPLICATION SELECTED FOR MAINTENANCE

ACTION CODE NOT EQUAL TO "A", "C" OR "D"

ADD REQUESTED BUT RECORD ALREADY EXISTS IN FILE

WARNING - RECORD WAS PREVIOUSLY DELETED

CHANGE REQUESTED BUT RECORD DOES NOT EXIST

FLAGGED FOR DELETE BUT CHANGE REQUESTED

DELETE REQUESTED BUT RECORD DOES NOT EXIST

DELETE REQUESTED BUT RECORD ALREADY DELETED

Figure 172 (Part 19 of 19). Sample RPG/400 Program - PRG01

 Chapter 13. RPG/400 Sample Programs 381

 Control File Maintenance

Control File Maintenance
You select option 2 (Control file maintenance) on the Time Reporting System Main
Menu to change the week ending date, month ending date, or the all time entries
made flag. You make the changes before running your weekly update and your
monthly update. Figure 173 shows the Time Reporting System Main Menu.
Option 2 calls program PRG02 by using the CALL PGM(PRG02) command.

� �
 TMENU Time Reporting System
 Main Menu

1. Master file maintenance (PRG01)
2. Control file maintenance (PRG02)
3. Time file transaction entry (PRG03)
4. Weekly time file update (PROC1)
5. Monthly time file update & reporting (PROC3)

 8. Display messages (DSPMSG)
 9. Sign off (SIGNOFF)

 Selection or command
 ===>
F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 F13=User support F16=System main menu

� �

Figure 173. Time Reporting System Main Menu

382 RPG/400 User's Guide

 PRG02FM (Control File Maintenance)

Control File Maintenance - PRG02FM
The time reporting data area control file maintenance consists of one format,
CTLMNT, as shown below.

� �
PRG02 Time Reporting System .1/ MM/DD/YY

Control File Data Area Maintenance .2/ TT:TT:TT

Week Ending Date 999999- (MMDDYY) .3/
Month Ending Date 999999- (MMDDYY) .4/
All time entries made flag B (Y or N) .5/

 .6/
 OO

F3-End of Job

� �

Figure 174. Control File Data Area Maintenance - CTLMNT Format

Figure 174 shows the display for the Control File Maintenance format. The date
.1/ and time of day .2/ are updated each time you press enter. The current
values from the data area control file (CTLFIL) are displayed and can be changed;
week ending date .3/, month ending date .4/, and all time entries made flag .5/.
If you press F3, field editing is bypassed and the job ends. If you press enter, the
program validates the data entered. If errors are found, the CTLMNT format appears
with an error message .6/ If no errors are found, the program ends.

Possible error messages are:

¹ Invalid date format - must be MMDDYY.
¹ Invalid all entries flag - must be Y or N.
¹ Warning - year does not = curr yr - PF12 to accept.

 Chapter 13. RPG/400 Sample Programs 383

 PRG02FM (Control File Maintenance)

Control File Maintenance Data Descriptions - PRG02FM
Figure 175 on page 385 shows the DDS for the PRG02FM Control File Mainte-
nance display file. The data descriptions describe the function and appearance of
the display file formats. Comments have been included in the display file to
describe the code.

The following keywords are used:

BLINK Blinks the cursor.
CAnn Specifies the function key, identified by nn, is available for use.
DSPATR Specifies the display attributes for the field.
DSPSIZ Specifies the display size to which the program can open the file.
EDTCDE Specifies the edit code for an output-capable field.
INDARA Removes option and response indicators from the buffer and places them

in a 99-byte separate indicator area.
REFFLD References the attributes of a previously defined field.
TIME Displays the current system time as a constant field.

384 RPG/400 User's Guide

 PRG02FM (Control File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* This display file provides maintenance to the time reporting

A* control file.

A**

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions++++++++++++++++++++*

A DSPSIZ(24 80 *DS3)

A PRINT

A INDARA

A CA03(03 'end of job')

A R CTLMNT

A*

A* The CTLMNT format describes the layout of the control file

A* maintenance entry.

A*

A CA12(12 'DATE WARNING - ACCEPT')

A BLINK

A 2 5'PRG02'

A 2 30'Time Reporting System'

A 2 70DATE

A EDTCDE(Y)

A 3 70TIME

A 3 23'Control File Data Area Maintenance'

A 6 17'Week Ending Date'

A CWKDT R B 6 45REFFLD(RCCTL/CWKDT *LIBL/CTLFIL)

A 7 17'Month Ending Date'

A CMTDT R B 7 45REFFLD(RCCTL/CMTDT *LIBL/CTLFIL)

A 8 17'All time entries made flag'

A CALLE R B 8 45REFFLD(RCCTL/CALLE *LIBL/CTLFIL)

A ERMESS 50A O 21 16

A 60 DSPATR(HI)

A 23 7'F3-End of Job'

A 6 55'(MMDDYY)'

A 7 55'(MMDDYY)'

A 8 55'(Y or N)'

Figure 175. Control File Maintenance Data Descriptions - PRG02FM

 Chapter 13. RPG/400 Sample Programs 385

 PRG02 (Control File Maintenance)

Control File Maintenance RPG/400 Program - PRG02
Figure 176 shows the RPG/400 specifications for the control file maintenance
program. Comments are included as part of the program to describe the various
sections of the code.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PRG02 - Control File Maintenance RPG/400 Program

F* DESCRIPTION - Time reporting control file maintenance using

F* program-described work station processing.

F**

F* INDICATORS USED:

F* 01 - Control file maintenance display input

F* 50 - Leap year

F* 51 - Invalid date entered

F* 52 - Invalid time entry flag

F* 53 - Year in date entered does not equal current year

F* 60 - General error condition

F* KC - End of job requested

F* KL - Accept warning error

F* LR - Last record

F**

F* SUBROUTINES USED:

F* EDITSR - Edit input fields from CTLMNT format

F* DATESR - Edit date format

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FPRG02FM CP F 100 WORKSTN

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E*

E* Compile time array containing error descriptions.

E ERR 1 3 50

E* Compile time arrays containing days per month for non-leap

E* year and leap year.

E ARM 12 12 2 0

E ARL 12 12 2 0

Figure 176 (Part 1 of 8). Sample RPG/400 Program - PRG02

386 RPG/400 User's Guide

 PRG02 (Control File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* Program-described display file input for control file maintenance.

I* Input fields are:

I* CWEEK - Week ending date

I* CMMTH - Month ending date

I* CENTR - All time entries made flag

I*

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IPRG02FM NS 01

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 1 60CWEEK

I 7 120CMNTH

I 13 13 CENTR

I*

I* The following named constant defines the record format name

I* for the WORKSTN file.

I*

I 'CTLMNT' C RECFMT

I*

I* Externally described control file data area

I*

IDsname....NODsExt-file++.............OccrLen+......................*

ICTLFIL EUDS

I*

I* Data structure used for date editing: The data structure

I* contains a 6-position date field with three 2-position

I* subfields. This provides the program with individual

I* reference to the month, day, and year.

Figure 176 (Part 2 of 8). Sample RPG/400 Program - PRG02

 Chapter 13. RPG/400 Sample Programs 387

 PRG02 (Control File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IDsname....NODsExt-file++.............OccrLen+......................*

I DS

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 1 60CDATE

I 1 20CDTMM

I 3 40CDTDD

I 5 60CDTYY

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* MAINLINE CALCULATIONS

C**

C* This program uses the RPG/400 program cycle to handle input and

C* output to the display file and the data area data structure.

C* The MAINLINE routine first checks for an end-of-job request

C* indicated by function key indicator F3 (*INKC). If *INKC is

C* off (equal to 0), the general error indicator *IN60 is set off

C* (equal to 0), and the error message field is filled with blanks.

C* The subroutine EDITSR is processed to validate input from the

C* display file.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *INKC IFEQ '0'

C MOVE '0' *IN60

C MOVE *BLANKS EMESS

C EXSR EDITSR

C*

C* Control returns to the statement following the EXSR line above

C* and the general error indicator *IN60 is checked to see if it is

C* off (equal to 0), and the display file input is moved to the

C* data area data structure fields. The last record indicator *INLR

C* is set on (equal to 1) and the program ends.

C*

Figure 176 (Part 3 of 8). Sample RPG/400 Program - PRG02

388 RPG/400 User's Guide

 PRG02 (Control File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN60 IFEQ '0'

C MOVE CWEEK CWKDT

C MOVE CMNTH CMTDT

C MOVE CENTR CALLE

C MOVE '1' *INLR

C END

C*

C* The preceding END statement denotes the end of the second IF

C* statement.

C*

C* The following ELSE statement is associated with the initial

C* IF statement checking for end-of-job requested *INKC. The

C* statements that follow the ELSE perform the *INKC indicator on

C* condition (equal to 1) by setting on the last record indicator

C* *INLR.

C*

C ELSE

C MOVE '1' *INLR

C END

C*

C* The preceding END statement denotes the end of the initial

C* IF statement.

C*

C**

C* EDITSR subroutine verifies the week ending and month

C* ending dates entered and the all entries made flag.

C**

C*

C EDITSR BEGSR

Figure 176 (Part 4 of 8). Sample RPG/400 Program - PRG02

 Chapter 13. RPG/400 Sample Programs 389

 PRG02 (Control File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The display input field CWEEK is moved to the data structure

C* field to provide separate reference to the month, day, and year.

C* The subroutine DATESR is processed to verify the date format

C* and control returns to the statement following the EXSR. If no

C* errors are found in the week ending date (*IN51 and *IN53 both

C* equal 0), the same process is done using CMNTH month ending date.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C MOVE CWEEK CDATE

C EXSR DATESR

C *IN51 IFEQ '0'

C *IN53 ANDEQ'0'

C MOVE CMNTH CDATE

C EXSR DATESR

C END

C*

C* The all entries made flag CENTR is checked to ensure only the

C* values Y or N are entered. Error indicator *IN52 is set off

C* (equal to 0). If the field is equal to Y or N, ELSE *IN52 is

C* set on (equal to 1).

C*

C CENTR IFEQ 'Y'

C CENTR OREQ 'N'

C MOVE '0' *IN52

C ELSE

C MOVE '1' *IN52

C END

Figure 176 (Part 5 of 8). Sample RPG/400 Program - PRG02

390 RPG/400 User's Guide

 PRG02 (Control File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The following code checks the error indicators and moves the

C* appropriate error message from the compile-time array. The

C* general error indicator *IN60 is set on (equal to 1) if any of

C* the three error indicators are on and the error message moved.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN51 IFEQ '1'

C *IN52 OREQ '1'

C *IN53 OREQ '1'

C MOVE '1' *IN60

C END

C*

C 51 MOVE ERR,1 EMESS 50

C 52 MOVE ERR,2 EMESS

C 53 MOVE ERR,3 EMESS

C*

C ENDSR

C**

C* DATESR subroutine verifies the date format entered. The date

C* has been moved to the program data structure before this routine

C* is processed.

C**

C DATESR BEGSR

C*

C* The year entered is processed to determine if it is a leap year.

C* The year is divided by 4 and the remainder moved to a separate

C* work field. Resulting indicator 50, positions 58 and 59, is

C* set on (equal to 1) if the remainder is zero. This indicates

C* a leap year and is used to condition subsequent calculations.

C*

C CDTYY DIV 4 LEAPYR 30

C MVR LEAPRM 30 50

Figure 176 (Part 6 of 8). Sample RPG/400 Program - PRG02

 Chapter 13. RPG/400 Sample Programs 391

 PRG02 (Control File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The error indicator *IN51 is set off (equal to 0) and then the

C* month is checked. If the month is greater than 12 or less than 1,

C* the error indicator *IN51 is set on (equal to 1).

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C MOVE '0' *IN51

C CDTMM IFGT 12

C CDTMM ORLT 1

C MOVE '1' *IN51

C END

C* The following code verifies the day entered. The month entered

C* is used as the index to the compile time array's ARL and ARM.

C* The ARL array contains the number of days in a month during a

C* leap year; the ARM array contains the number of days in a month

C* for a non-leap year. If the number of days entered is greater

C* than the array element, indicator 51 is set on.

C *IN51 IFEQ '0'

C Z-ADDCDTMM M 20

C *IN50 IFEQ '1'

C CDTDD COMP ARL,M 51

C ELSE

C CDTDD COMP ARM,M 51

C END

C END

C* The year entered is compared to the system year reserved word

C* UYEAR. If they are not equal, *IN53 equals 1, a warning message

C* is issued. If you press F12 (*INKL) to accept the value entered,

C* the verification is bypassed.

C MOVE '0' *IN53

C *INKL IFEQ '0'

C CDTYY IFNE UYEAR

C MOVE '1' *IN53

C END

C END

C ENDSR

Figure 176 (Part 7 of 8). Sample RPG/400 Program - PRG02

392 RPG/400 User's Guide

 PRG02 (Control File Maintenance)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O*

O* Display format CTLMNT is written on the first RPG/400 program

O* cycle by conditioning it with indicator 1P.

O*

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRG02FM D 1P

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O K6 RECFMT

O CWKDT 6

O CMTDT 12

O CALLE 13

O* Display format CTLMNT is displayed again only if errors are found.

O* You must correct (with the exception of the warning error on the

O* year entry) the entries in error or press F3 to end the job.

O D 01 60

O K6 RECFMT

O CWEEK 6

O CMNTH 12

O CENTR 13

O EMESS 63

* ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

O* The compile time array ERR is entered below. The array is

O* preceded by "** " to denote the beginning of the array

O* and begins in column 1 of the output specification.

 O*

 ** Array ERR - Error descriptions

INVALID DATE FORMAT - MUST BE MMDDYY

INVALID ALL ENTRIES FLAG - MUST BE "Y" OR "N"

 WARNING- YEAR DOES NOT = CURR YR - PF12 TO ACCEPT

 ** Array ARM - non-leap year days per month

 312831303130313130313031

 ** Array ARL - leap year days per month

 312931303130313130313031

Figure 176 (Part 8 of 8). Sample RPG/400 Program - PRG02

 Chapter 13. RPG/400 Sample Programs 393

 Time File Transaction Entry

Time File Transaction Entry
You select option 3 (Time file transaction entry) on the Time Reporting System
Main Menu to enter employee time file transactions. The entries can be made at
any time before you begin your weekly update. Figure 177 shows the Time
Reporting System Main Menu. Option 3 calls program PRG03 by using the CALL
PGM(PGM03) command.

� �
 TMENU Time Reporting System
 Main Menu

1. Master file maintenance (PRG01)
2. Control file maintenance (PRG02)
3. Time file transaction entry (PRG03)
4. Weekly time file update (PROC1)
5. Monthly time file update & reporting (PROC3)

 8. Display messages (DSPMSG)
 9. Sign off (SIGNOFF)

 Selection or command
 ===>
F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 F13=User support F16=System main menu

� �

Figure 177. Time Reporting System Main Menu

394 RPG/400 User's Guide

 PRG03FM (Transaction Entry)

Time Reporting Transaction Entry - PRG03FM
The transaction entry application of the time reporting system consists of two dis-
plays. On the first display, you enter an employee number and change the week
ending date. On the second display, you enter the detail transactions. The second
display consists of three formats: a subfile control record format, a subfile record
format, and a format containing valid function key descriptions and error messages.

Employee Selection Display
Figure 178 shows the first part of the Employee Time Entry display of the time
reporting system.

� �
PRG03 Time Reporting System .1/ MM/DD/YY

Employee Time Entry .2/ TT:TT:TT

 Employee Number 999999- .3/
Week Ending Date 999999- .4/

 .5/
 OO

F3-End of Job

� �

Figure 178. Time Reporting System - Employee Time Entry Display (Part 1)

The first part of the Employee Time Entry display consists of one format, EMPSEL.
The date .1/ and time of day .2/ are updated each time the you press enter. You
must enter an employee number .3/ and can optionally change the week ending
date .4/. When you press Enter, the program verifies that the employee number
exists in the employee master file and has an active status code. If no errors are
found, the second part of the Employee Time Entry display appears (see
Figure 179 on page 396). If errors are found, the program returns format EMPSEL

with an error message .5/. You can press F3 to end the job.

Possible error messages are:

¹ Employee master record not found.

¹ Employee master record not active.

 Chapter 13. RPG/400 Sample Programs 395

 PRG03FM (Transaction Entry)

Figure 179 shows the second part of the Employee Time Entry display of the time
reporting system.

� �
 ┌─
│ PRG03 Time Reporting System MM/DD/YY
│ Employee Time Entry TT:TT:TT
│ .1/ .2/ .3/
│ Empl # 666666 Name OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO Dept OOOOO

.A/ .4/
│ Employee time entry hours in weekly file 6666.6

 │
 │ Action Project Reason Hours Actual date Relative
 └─ Code Code Code Worked Worked Record No.

.5/ .6/ .7/ .8/ .9/ .10/ .11/
 ┌─ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-
 │ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-
 │ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-
 │ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-
.B/ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-

 │ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-
 │ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-
 │ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-
 │ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-
 └─ B OO BBBBBBBB OO BBBBBBBB OO 99999- 999999- 99999-
 .12/

 ┌─ OO
 .C/

└─ F3-End of Job F1-Employee Selection F5-Restart Employee Display

� �

Figure 179. Time Reporting System - Employee Time Entry Display (Part 2)

The second part of the Employee Time Entry display consists of three formats: .A/
EMPCTL subfile control record, .B/ EMPFIL subfile record, and .C/ EMPERR function
key and message display. The subfile control record format contains special
keywords to define the subfile and control actions within the subfile. The control
format also contains normal display fields and constants. The subfile record format
describes the data within the subfile record. The function key and message display
format contains error messages associated with the subfile record and defines the
function keys which can be used.

The .A/ EMPCTL subfile control record format displays information but does not
contain input fields. The employee number .1/ that you entered on the employee
selection display and the employee name .2/ and department .3/ from the
employee master record are displayed. The current transaction entry hours .4/ for
the employee are totaled and displayed.

The .B/ EMPFIL subfile record format displays current transaction detail records and
allows you to add new records and change or delete existing records. The action
code .5/ is required only when you want to delete an existing record. An action
code of D physically removes the associated record from the transaction file. You
must enter either a project code .7/ or a reason code .8/. You cannot enter both
codes on the same transaction line. The code entered is verified with its master file
as a valid active record. Hours worked .9/ must also be entered (negative hours
are accepted by the program). The actual date worked .10/ is optional. The rela-
tive record number .11/ is controlled by the program and is displayed only for infor-
mation. If errors are found in either the project code, reason code, or hours
worked, the program flags the field in error .6/. The flag appears as a blinking and
highlighted arrow "->". The associated error message .12/ is also shown. The
program reads a record from the subfile and verifies it. The program returns the
employee time entry display when either an error is found or when all entries are

396 RPG/400 User's Guide

 PRG03FM (Transaction Entry)

validated. When all entries pass the validation, the employee time entry hours .4/
is updated.

The .C/ EMPERR record format displays the function keys allowed and any error
messages .12/ from the program. You can press F3 to end the job, or F1 to return
to the employee selection display. If you press F5, the program rebuilds the subfile
and the transaction entry display appears. If you press any of these function keys
before you press Enter, no updates are performed on the transaction file.
However, entries made and passed to the program by pressing Enter, before
pressing the function key, are kept.

Possible error messages are:

¹ A project code or a reason code is required.

¹ Invalid project code.

¹ Invalid reason code.

¹ No hours entered on this transaction.

Time Reporting Transaction Entry Data Descriptions - PRG03FM
Figure 180 on page 398 shows the DDS for the PRG03FM Time Reporting Trans-
action Entry display file. Four record formats, identified by R in position 17, are
followed by the format name in positions 19 through 28. The following keywords
are used:

ALARM Activates the audible alarm.
BLINK Blinks the cursor.
CAnn Makes the function key specified in the keyword available for use.
DATE Displays the current job date as a constant.
DSPATR Specifies a display attribute for the field.
DSPSIZ Specifies the display size to which the program can open this file.
EDTCDE Specifies editing on an output capable numeric field.
EDTWRD Specifies an edit word on an output capable numeric field.
OVERLAY Specifies that the record format you are defining appears on the display

without the entire display being erased first.
REFFLD Refers to the attributes of a previously defined field.
SFL Record level keyword specifying that this record format is to be a subfile

record format.
SFLCLR Used in the subfile control record format so that your program can clear

the subfile of all records.
SFLCTL Record level keyword specifying that this record format is to be a subfile

control record format.
SFLDSP Used in the subfile control record format so that the OS/400 system dis-

plays the subfile when your program sends an output operation to the
subfile control record format.

SFLDSPSTL Used in the subfile control record format so that the OS/400 system dis-
plays fields in the subfile control record format when your program
sends an output operation to the subfile control record format.

SFLPAG Used in the subfile control record format to specify the number of
records in the subfile to be displayed at the same time.

SFLSIZ Used in the subfile control record format to specify the number of
records in the subfile.

TIME Display the current system time as a constant.

 Chapter 13. RPG/400 Sample Programs 397

 PRG03FM (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* PRG03FM - Transaction Entry Data Descriptions

A* DESCRIPTION - A file containing record formats for the employee

A* time file transcations.

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A DSPSIZ(24 80 *DS3)

A R EMPSEL

A CA03(03 'End of job')

A BLINK

A 60 ALARM

A 2 5'PRG03'

A 2 30'Time Reporting System'

A 2 71DATE

A EDTCDE(Y)

A 3 31'Employee Time Entry'

A 3 71TIME

A 6 29'Employee Number'

A EMPNO R B 6 46REFFLD(RCEMP/EMPNO *LIBL/EMPMST)

A 8 28'Week Ending Date'

A CWKDTX R B 8 46REFFLD(RCCTL/CWKDT *LIBL/CTLFIL)

A EMESS 50A O 21 15

A 60 DSPATR(HI)

A 23 6'F3-End of Job'

A R EMPFIL SFL

A RECNO 3S 0B 11 2DSPATR(ND)

A DSPATR(PR)

A STATUS 1A B 11 10

A PRFLAG 2 O 11 14

A 60 DSPATR(HI)

A 60 DSPATR(BL)

A PRCDEX R B 11 17REFFLD(RCWEEK/PRCDE *LIBL/TRWEEK)

A RSFLAG 2 O 11 27

A 60 DSPATR(HI)

A 60 DSPATR(BL)

A RSCDEX R B 11 30REFFLD(RCWEEK/RSCDE *LIBL/TRWEEK)

A HRFLAG 2 O 11 40

Figure 180 (Part 1 of 3). Time Reporting Transaction Entry Data Descriptions - PRG03FM

398 RPG/400 User's Guide

 PRG03FM (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A 60 DSPATR(HI)

A 60 DSPATR(BL)

A EHWRKX R B 11 43REFFLD(RCWEEK/EHWRK *LIBL/TRWEEK)

A ACDATX R B 11 54REFFLD(RCWEEK/ACDAT *LIBL/TRWEEK)

A TFRRN R B 11 67REFFLD(RCWEEK/TFRRN *LIBL/TRWEEK)

A DSPATR(PR)

A R EMPCTL SFLCTL(EMPFIL)

A SFLSIZ(0050)

A SFLPAG(0010)

A 30 SFLCLR

A N30 SFLDSP

A N30 SFLDSPCTL

A OVERLAY

A CA03(03 'End of job')

A CA05(05 'Restart employee display a-

A t beginning')

A CA01(01 'Employee selection display-

A ')

A BLINK

A 60 ALARM

A 2 5'PRG03'

A 2 30'Time Reporting System'

A 2 71DATE

A EDTCDE(Y)

A 3 31'Employee Time Entry'

A 3 71TIME

A 5 9'Empl #'

A EMPNO R O 5 16REFFLD(RCEMP/EMPNO *LIBL/EMPMST)

A DSPATR(CS)

A 5 25'Name'

Figure 180 (Part 2 of 3). Time Reporting Transaction Entry Data Descriptions - PRG03FM

 Chapter 13. RPG/400 Sample Programs 399

 PRG03FM (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A ENAME R O 5 30REFFLD(RCEMP/ENAME *LIBL/EMPMST)

A DSPATR(CS)

A 5 63'Dept'

A EDEPT R O 5 68REFFLD(RCEMP/EDEPT *LIBL/EMPMST)

A DSPATR(CS)

A 7 15'Employee time entry hours in-

A weekly file'

A CURHRS 5 1O 7 57EDTWRD(' . ')

A DSPATR(CS)

A 9 8'Action Project Reason -

A Hours Actual date'

A 9 66'Relative'

A 10 9'Code Code Code W-

A orked Worked'

A 10 66'Record #'

A R EMPERR

A EMESS 50 O 22 17

A 60 DSPATR(HI)

A 23 6'F3-End of Job'

A 23 24'F1-Employee Selection'

A 23 50'F5-Restart Employee Display'

Figure 180 (Part 3 of 3). Time Reporting Transaction Entry Data Descriptions - PRG03FM

400 RPG/400 User's Guide

 PRG03 (Transaction Entry)

Time Reporting Transaction Entry RPG/400 Program - PRG03
Figure 181 shows the RPG/400 program for the time reporting transaction entry.
Comments are included as part of the program to describe the various sections of
the code and the RPG/400 logic.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PRG03 - Time Reporting Transaction Entry RPG/400 Program

F* DESCRIPTION - Time reporting transaction entry using subfile

F* work station processing.

F**

F* INDICATORS USED:

F* 31 - Record read does not match factor 1 on READE operation

F* 32 - Subfile is full

F* 35 - No more changed records in subfile on READC operation

F* 41 - Record found on SETLL operation equal to factor 1

F* 45 - Record not found in TRWEEK file on CHAIN operation

F* 60 - General error condition

F* 64 - Record not found in EMPMST file on CHAIN operation

F* 65 - Record not found in PRJMST file on CHAIN operation

F* 66 - Record not found in RSNMST file on CHAIN operation

F* KA - Return to employee selection

F* KC - End of job requested

F* KE - Restart employee transaction display

F* LR - Last record

F**

F* SUBROUTINES USED:

F* EMPEDT - Verifies the employee requested in EMPSEL format

F* SFLEDT - Verifies the subfile entries in EMPFIL format

F**

Figure 181 (Part 1 of 17). Sample RPG/400 Program - PRG03

 Chapter 13. RPG/400 Sample Programs 401

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F*

F* This program uses all externally described files. Files

F* used are: PRG03FM - transaction entry display file

F* EMPMST - employee master file

F* PRJMST - project master file

F* RSNMST - reason code master file

F* TRWEEKL - logical view of the weekly transaction

F* file by employee number EMPNO and

F* relative record number TFRRN.

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FPRG03FM CF E WORKSTN

F RECNO KSFILE EMPFIL

F*

F* The continuation line for the WORKSTN file identifies the record

F* format (EMPFIL) that is to be used as a subfile. The relative

F* record number field (RECNO) controls which record within the

F* subfile is being accessed.

F*

FEMPMST IF E K DISK

FPRJMST IF E K DISK

FRSNMST IF E K DISK

FTRWEEKL UF E K DISK A

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E*

E* Compile time array containing error descriptions.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E ERR 1 6 50

E*

Figure 181 (Part 2 of 17). Sample RPG/400 Program - PRG03

402 RPG/400 User's Guide

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The following input specification defines a named constant field

I* FLAG. This constant is used to indicate transaction errors on

I* the subfile display.

I*

I..............Constant++++++++++++++C.........Field+...............*

I '->' C FLAG

I*

I* Externally described control file data area

I*

IDsname....NODsExt-file++.............OccrLen+......................*

ICTLFIL EUDS

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* MAINLINE CALCULATIONS

C**

C* This mainline routine controls display file processing and

C* editing. You must first select an employee number from the

C* EMPSEL display. The number is verified against the employee

C* master. The transaction entry display consists of three formats:

C* EMPCTL subfile control record, EMPFIL subfile record, and EMPERR

C* error display and message record.

C* You can return to the employee selection display, end the job,

C* or restart the subfile display by using the function keys.

C* The roll keys scroll through the existing entries. You can add

C* new records, and change or delete existing records. The weekly

C* transaction file is updated with valid entries when you press

C* Enter.

C**

Figure 181 (Part 3 of 17). Sample RPG/400 Program - PRG03

 Chapter 13. RPG/400 Sample Programs 403

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The mainline routine begins by moving the week ending date to the

C* display file week ending date. This protects the week ending

C* date in the data area from being updated since you can change

C* the date on the EMPSEL display. As part of housekeeping,

C* general error indicator *IN60 is set off, blanks are moved to

C* the error message display field, and the employee number is set

C* to zeros before writing the EMPSEL format. The BEGIN TAG

C* provides a label to which the program can return when requested

C* from the entry display using function key 1 *INKA.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C MOVE CWKDT CWKDTX

C BEGIN TAG

C MOVE '0' *IN60

C MOVE *BLANKS EMESS

C Z-ADD0 EMPNO

C*

C* The SELTAG TAG provides a label the program returns to if an

C* error is found in the employee selection display EMPSEL. The

C* EMPSEL format is written to the work station using EXFMT. The

C* EXFMT causes a write to and a read from the display. The

C* function key F3 (*INKC) is checked to see if end-of-job is

C* requested, and if not (*INKC equals 0), the employee edit EMPEDT

C* subroutine is processed. If end-of-job is requested by F3,

C* which sets on indicator 03 (see display file), the last record

C* indicator LR is set on and the RETRN operation starts.

C*

C SELTAG TAG

C EXFMTEMPSEL

C 03 SETON LR

C 03 RETRN

C EXSR EMPEDT

Figure 181 (Part 4 of 17). Sample RPG/400 Program - PRG03

404 RPG/400 User's Guide

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* IF the general error indicator *IN60 is on (equal to 1), the

C* program branches back to the SELTAG and redisplays the EMPSEL

C* format with the appropriate error message.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN60 IFEQ '1'

C GOTO SELTAG

C END

C*

C* At this point, the EMPSEL format has been verified and the

C* program displays the time entry formats. Existing time entry

C* transaction records for the employee are displayed. The

C* REPEAT TAG provides a label to which the program can branch if

C* F5 (*INKE) has been requested or when all subfile entries have

C* been verified and applied to the transaction file. The resulting

C* indicators that are used when building and processing the subfile

C* are set off (equal to 0) before processing is done.

C*

C REPEAT TAG

C SETOF 313235

Figure 181 (Part 5 of 17). Sample RPG/400 Program - PRG03

 Chapter 13. RPG/400 Sample Programs 405

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The following code positions the program at the employee number

C* requested within the transaction file. If a record is found

C* that matches EMPNO, resulting indicator 41 is set on.

C* Indicator 30 is defined in the subfile control format to allow

C* clearing of the subfile display format. Indicator 30 is set on

C* and the EMPCTL format is written. The EMPERR format is also

C* written to display valid function keys on the bottom of the

C* screen. Indicator 30 is set off and work fields are initialized.

C* RECNO is defined on the file description continuations line;

C* LSRRN is used to store the last relative record number from the

C* transaction file; CURHRS is used to display the total hours that

C* are entered for the employee, and STATUS is used to allow

C* deletion of existing subfile records.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C EMPNO SETLLTRWEEKL 41

C MOVE '1' *IN30

C WRITEEMPCTL

C WRITEEMPERR

C MOVE '0' *IN30

C Z-ADD0 RECNO 30

C Z-ADD0 LSRRN 50

C Z-ADD0 CURHRS 51

C MOVE *BLANKS STATUS

Figure 181 (Part 6 of 17). Sample RPG/400 Program - PRG03

406 RPG/400 User's Guide

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The following DOWEQ operation is processed until indicator 31

C* (*IN31) is set on by the READE operation or by the subfile

C* being filled. The READE reads all existing entries in the

C* transaction file that are equal to the employee number (EMPNO).

C* If an entry is found (*IN31 equals 0), the fields from the

C* transaction file are moved to the subfile display fields.

C* Three error flags in each subfile record are used to point out

C* not valid entries; these flags are blanked: The subfile relative

C* record number RECNO is incremented by 1, the hours from the

C* transaction record added to the total for the employee, and the

C* subfile record is written. When the subfile is full, resulting

C* indicator 32 on the WRITE operation is set on.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN31 DOWEQ'0'

C EMPNO READERCWEEK 31

C*

C *IN31 IFEQ '0'

C MOVE PRCDE PRCDEX

C MOVE RSCDE RSCDEX

C Z-ADDEHWRK EHWRKX

C Z-ADDACDAT ACDATX

C Z-ADDTFRRN LSRRN

C MOVE *BLANKS PRFLAG

C MOVE *BLANKS RSFLAG

C MOVE *BLANKS HRFLAG

C ADD 1 RECNO

C ADD EHWRK CURHRS

C WRITEEMPFIL 32

C END

Figure 181 (Part 7 of 17). Sample RPG/400 Program - PRG03

 Chapter 13. RPG/400 Sample Programs 407

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* If the subfile full indicator (*IN32) is on, indicator 31 is

C* set on to end the DOWEQ operation. If 31 is off, the preceding

C* code is processed again.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN32 IFEQ '1'

C MOVE '1' *IN31

C END

C END

C* The preceding END denotes the end of the Do While operation.

C*

C* The following code determines if the subfile is filled. If

C* indicator 30 is off (*IN30 equals 0), then the DOWEQ operation

C* processes until the remainder of the subfile is filled with

C* blank records.

C*

C *IN32 DOWEQ'0'

C MOVE *BLANKS STATUS

C MOVE *BLANKS PRCDEX

C MOVE *BLANKS RSCDEX

C Z-ADD0 EHWRKX

C Z-ADD0 ACDATX

C Z-ADD0 TFRRN

C ADD 1 RECNO

C WRITEEMPFIL 32

C END

C*

C* The preceding END denotes the end of the Do While operation.

C*

Figure 181 (Part 8 of 17). Sample RPG/400 Program - PRG03

408 RPG/400 User's Guide

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The SFDISP TAG provides a label to which the program can branch

C* if errors are found in the subfile records. If indicator 60 is

C* on, the EMPERR format is written to display the error message

C* followed by the EXFMT operation to write the EMPCTL subfile

C* control format. If F1 (*INKA) is pressed from the transaction

C* entry display, indicator 01 is set on (see display file) and the

C* program returns to the BEGIN tag and displays the employee

C* selection format EMPSEL. If F3 is entered (*INKC) requesting

C* end-of-job, indicator 03 is set on. This in turn sets on

C* the last record indicator LR and the RETRN operation. If F5

C* (*INKE) is entered requesting a redisplay of employee time

C* entries, the program branches back to the REPEAT TAG and the

C* subfile is rebuilt. No file updates are performed if any of

C* these functions keys are used.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SFDISP TAG

C 60 WRITEEMPERR

C EXFMTEMPCTL

C 01 GOTO BEGIN

C 03 SETON LR

C 03 RETRN

C 05 GOTO REPEAT

C*

Figure 181 (Part 9 of 17). Sample RPG/400 Program - PRG03

 Chapter 13. RPG/400 Sample Programs 409

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The following code prepares the program for processing the

C* subfile. The subfile relative record number is set to a value

C* of 1 using the Z-ADD operation, and the error indicator *IN60

C* is set off. The transaction file key is established using the

C* KLIST and KFLD operation codes. The KLIST and KFLD operation are

C* declarative (cannot be processed) operations indicating the search

C* argument for the file. They could have appeared anywhere within

C* the calculations but are coded here for documentation purposes.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C Z-ADD1 RECNO

C MOVE '0' *IN60

C TRKEY KLIST

C KFLD EMPNO

C KFLD TFRRN

C*

C* The following DOWEQ operation processes the transaction file

C* and all changed records in the subfile. The Do While operation

C* continues until indicator 35 (*IN35) is set on. Indicator 35 is

C* defined as a resulting indicator on the READC (read changed

C* records) operation, which is set on when all changed subfile

C* records are read. If the display field STATUS is blank and

C* indicator 35 is off (equal to 0), the subfile edit subroutine

C* SFLEDT is processed. The program returns from the edit and if

C* the error indicator 60 is on, the program branches back to

C* the SFDISP TAG, writes the EMPERR format, and displays the

C* EMPCTL format again. If indicator 35 is on, the program

C* branches back to the REPEAT TAG and rebuilds the subfile.

C*

Figure 181 (Part 10 of 17). Sample RPG/400 Program - PRG03

410 RPG/400 User's Guide

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN35 DOWEQ'0'

C READCEMPFIL 35

C STATUS IFEQ ' '

C *IN35 ANDEQ'0'

C EXSR SFLEDT

C END

C 60 GOTO SFDISP

C 35 GOTO REPEAT

C*

C* The following code is still part of the Do While operation.

C* Using the TRKEY field built by the KLIST operation, the trans-

C* action file is accessed using the CHAIN operation. If the

C* record does not exist in the file, resulting indicator 45 is

C* set on. If indicator 45 is on, the record must be added to the

C* transaction file. The last relative record number, which is

C* stored in field LSRRN, is incremented by 1 and the display fields

C* are moved to the transaction record. The new record is then

C* written using the WRITE operation and record format RCWEEK.

C*

C TRKEY CHAINTRWEEKL 45

C *IN45 IFEQ '1'

C ADD 1 LSRRN

C Z-ADDLSRRN TFRRN

C MOVE PRCDEX PRCDE

C MOVE RSCDEX RSCDE

C Z-ADDEHWRKX EHWRK

C Z-ADDACDATX ACDAT

C WRITERCWEEK

C END

Figure 181 (Part 11 of 17). Sample RPG/400 Program - PRG03

 Chapter 13. RPG/400 Sample Programs 411

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* If indicator 45 is off (*IN45 equals 0) and the display file

C* field STATUS equals D, the operator requests the deletion of the

C* record. The DELET operation code is processed and the record

C* is removed from the file. The record cannot be retrieved.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN45 IFEQ '0'

C STATUS ANDEQ'D'

C DELETRCWEEK

C END

C*

C* If indicator 45 is off and the display file field STATUS is not

C* equal to D, the operator has changed an existing record.

C* The display file fields are moved to the transaction file fields

C* and the UPDAT operation is processed to update the file.

C*

C *IN45 IFEQ '0'

C STATUS ANDNE'D'

C MOVE PRCDEX PRCDE

C MOVE RSCDEX RSCDE

C Z-ADDEHWRKX EHWRK

C Z-ADDACDATX ACDAT

C UPDATRCWEEK

C END

C END

C*

C* The preceding END denotes the end of the Do While operation.

C*

Figure 181 (Part 12 of 17). Sample RPG/400 Program - PRG03

412 RPG/400 User's Guide

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* EMPEDT subroutine verifies the employee number requested.

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C EMPEDT BEGSR

C*

C* The error indicator 60 (*IN60) is set off (equal to 0) and the

C* error message field EMESS is filled with blanks.

C*

C MOVE '0' *IN60

C MOVE *BLANKS EMESS

C*

C* Using the employee number entered (EMPNO) and the CHAIN operation,

C* the employee master file is accessed. If the record is found,

C* resulting indicator 64 is set on. If *IN64 is on, error indicator

C* 60 is set on and error array element 1 is moved to EMESS. The

C* ELSE operation indicates the record is found (*IN60 equals 0)

C* and the record status is checked for a value of D for deleted.

C* If true, error indicator 60 is set on and error array element 2

C* is moved to EMESS.

C*

C EMPNO CHAINEMPMST 64

C *IN64 IFEQ '1'

C MOVE '1' *IN60

C MOVE ERR,1 EMESS

C ELSE

C ACREC IFEQ 'D'

C MOVE '1' *IN60

C MOVE ERR,2 EMESS

C END

C END

C ENDSR

Figure 181 (Part 13 of 17). Sample RPG/400 Program - PRG03

 Chapter 13. RPG/400 Sample Programs 413

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SFLEDT subroutine verifies the subfile entries.

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SFLEDT BEGSR

C*

C* The subfile error flags PRFLAG, RSFLAG, and HRFLAG are set to

C* blanks, the error indicator is set off and the error message

C* field EMESS set to blanks. The subfile error flags contain ->

C* (named constant field FLAG) when an error is found. The flag

C* blinks on the display in highlighted mode beside the field(s)

C* in error.

C*

C MOVE *BLANKS PRFLAG

C MOVE *BLANKS RSFLAG

C MOVE *BLANKS HRFLAG

C MOVE '0' *IN60

C MOVE *BLANKS EMESS

C* The first check determines if both the project code and reason

C* code subfile fields are blank. If they are both blank, FLAG is

C* moved to project code flag and reason code flag, the error

C* indicator is set on, and error array element 3 is moved to EMESS.

C*

C PRCDEX IFEQ *BLANKS

C RSCDEX ANDEQ*BLANKS

C MOVE FLAG PRFLAG

C MOVE FLAG RSFLAG

C MOVE '1' *IN60

C MOVE ERR,3 EMESS

C ELSE

Figure 181 (Part 14 of 17). Sample RPG/400 Program - PRG03

414 RPG/400 User's Guide

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The second check determines if a project code is entered

C* (not equal to blanks), and using the code entered, accesses the

C* project master. Resulting indicator 65 is set on by the CHAIN

C* operation if the record is not found. If indicator 65 is on,

C* or if it is off but the record status field ACREC in the record

C* contains D for deleted, FLAG is moved to the project code error

C* flag, error indicator 60 is set on, and error array element 4 is

C* moved to EMESS.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C PRCDEX IFNE *BLANKS

C PRCDEX CHAINPRJMST 65

C *IN65 IFEQ '1'

C *IN65 OREQ '0'

C ACREC ANDEQ'D'

C MOVE FLAG PRFLAG

C MOVE '1' *IN60

C MOVE ERR,4 EMESS

C END

C ELSE

C*

C* The third check determines if a reason code is entered (not equal

C* to blanks), and using the code entered, accesses the reason code

C* master. Resulting indicator 66 is set on by the CHAIN operation

C* if the record is not found. If indicator 66 is on, or if it is

C* off but the record status field ACREC in the record contains D

C* for deleted, FLAG is moved to the reason code error flag, error

C* indicator 60 is set on and error array element 5 is moved to EMESS.

C*

Figure 181 (Part 15 of 17). Sample RPG/400 Program - PRG03

 Chapter 13. RPG/400 Sample Programs 415

 PRG03 (Transaction Entry)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C RSCDEX IFNE *BLANKS

C RSCDEX CHAINRSNMST 66

C *IN66 IFEQ '1'

C *IN66 OREQ '0'

C ACREC ANDEQ'D'

C MOVE FLAG RSFLAG

C MOVE '1' *IN60

C MOVE ERR,5 EMESS

C END

C END

C END

C END

C* The fourth check verifies that hours are entered on the subfile

C* transaction. If the hours worked field is equal to zero, FLAG

C* is moved to the hours worked error flag, error indicator 60 is

C* set on, and error array element 6 is moved to EMESS.

C*

C EHWRKX IFEQ *ZEROS

C MOVE FLAG HRFLAG

C MOVE '1' *IN60

C MOVE ERR,6 EMESS

C END

C*

C* If errors are found in the subfile entry edit, error indicator

C* 60 is set on, and the subfile record is updated. This is

C* required since we moved values to one or more of the error flags.

C* These error flags are then displayed when the EMPCTL format is

C* written.

C*

C *IN60 IFEQ '1'

C UPDATEMPFIL

C END

C ENDSR

Figure 181 (Part 16 of 17). Sample RPG/400 Program - PRG03

416 RPG/400 User's Guide

 PRG03 (Transaction Entry)

* ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 O*

O* The compile time array ERR is entered below. The array is

O* preceded by "** " to denote the beginning of the array

O* and begins in column 1 of the output specification.

 O*

 ** Array ERR - Error descriptions

EMPLOYEE MASTER RECORD NOT FOUND

EMPLOYEE MASTER RECORD NOT ACTIVE

A PROJECT CODE OR A REASON CODE IS REQUIRED

INVALID PROJECT CODE

INVALID REASON CODE

NO HOURS ENTERED ON THIS TRANSACTION

Figure 181 (Part 17 of 17). Sample RPG/400 Program - PRG03

 Chapter 13. RPG/400 Sample Programs 417

 Weekly Time File Update

Weekly Time File Update
Once a week the time entry transaction file TRWEEK is processed to: determine if all
employees enrolled in the time reporting system entered their time transactions;
update the master files with transactions entered; and prepare the transaction files
for new week processing. The weekly application consists of two RPG/400 pro-
grams and two control procedures.

Figure 182 shows the Time Reporting System Main Menu. The first step in the
weekly update is to change the week ending date in the control file by selecting
option 3 (Time file transaction entry). After the control file is updated, call the
weekly update by selecting option 4 (Weekly time file update). Option 4 calls
PROC1 (See Figure 183 on page 419) by using the CALL PGM(PROC1)
command.

� �
 TMENU Time Reporting System
 Main Menu

1. Master file maintenance (PRG01)
2. Control file maintenance (PRG02)
3. Time file transaction entry (PRG03)
4. Weekly time file update (PROC1)
5. Monthly time file update & reporting (PROC3)

 8. Display messages (DSPMSG)
 9. Sign off (SIGNOFF)

 Selection or command
 ===>
F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 F13=User support F16=System main menu

� �

Figure 182. Time Reporting System Main Menu

The weekly time file update of the time reporting system consists of three control-
level programs:

1. The first CL program, PROC1, runs interactively to determine if all employees
have made their time entries. See Figure 183 on page 419.

2. CL program PROC1 calls RPG/400 program PRG05. Within PRG05 is the
RPG/400 operation code CALL, which calls the second CL program PROC5.
For employees who have not entered a time reporting transaction, PROC5
sends messages to their message queues. See Figure 184 on page 419.

3. CL program PROC1 submits the third CL program, PROC2, to batch. PROC2
produces the weekly employee transaction reports, updates the master files
and prepares the transaction files for the new week. See Figure 185 on
page 420.

418 RPG/400 User's Guide

 Weekly Time File Update

/* Weekly Time File Update: */

/* This procedure is run weekly to process the weekly time */

/* entry transaction file. The file is reviewed for missing */

/* entries. Both the person who asks for this procedure and the */

/* employee whose entries are missing are notified that entries */

/* are missing. The batch update procedure PROC2 is then */

/* submitted for processing. */

/* */

/* Program PRG05 reads the employee master file and checks for */

/* an entry in the weekly transaction file. If an entry is not */

/* found, the program calls procedure PROC5 to issue a message */

/* to the employee. At end of job, the person who asked is */

/* issued a message stating if all entries have been made or not.*/

/* */

 BEGIN: PGM

 CHGJOB SWS('00000000')

 CALL PGM(PRG05)

 IF COND(%SWITCH(XXXXXXX1)) THEN(DO)

SBMJOB CMD(CALL PGM(PROC2)) JOB(*JOBD)

 ENDDO

 ENDIT: ENDPGM

Figure 183. CL Program PROC1

/* This procedure sends an information message to the employees' */

/* message queues stating their time entries are missing. */

/* */

 PGM PARM(&EUSRI)

DCL VAR(&EUSRI) TYPE(*CHAR) LEN(8)

SNDUSRMSG MSG('Your time entries are missing for +

prior week') MSGTYPE(*INFO) TOMSGQ(&EUSRI)

 MONMSG MSGID(CPF2559)

 ENDPGM

Figure 184. CL Program PROC5

 Chapter 13. RPG/400 Sample Programs 419

 Weekly Time File Update

/* Weekly Time File Update */

/* This procedure is run weekly to produce the weekly */

/* employee transaction report and to update the time */

/* reporting master files. */

/* */

/* Program PRG09 reads the weekly transaction entry file */

/* to produce the weekly report and update the month */

/* to date hours in the master files. */

/* */

 BEGIN: PGM

 CALL PGM(PRG09)

/* */

/* STEP2 adds the weeks time entry transactions to the */

/* monthly transaction file. */

/* */

 STEP2: CPYF FROMFILE(TRWEEK) TOFILE(TRMNTH) MBROPT(*ADD) +

 FMTOPT(*MAP *DROP)

/* */

/* STEP3 clears the weekly transaction file in preparation*/

/* for new weeks entry. */

/* */

 STEP3: CLRPFM FILE(TRWEEK)

/* */

 ENDIT: ENDPGM

Figure 185. CL Program PROC2

420 RPG/400 User's Guide

 Weekly Time File Update

Time File Entry Edit RPG/400 Program - PRG05
This program processes the employee master file and uses the employee number
to access the weekly transaction entry file to determine if at least one transaction
record exists for the employee. If no entries are found, the program calls a control
language program to issue a message to the employee who has not made entries.

Figure 186 shows program PRG05 with embedded comments to explain the logic
flow, and the use of RPG/400 functions and operation codes.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PRG05 - Time Reporting Time File Entry Edit

F* DESCRIPTION - This program edits the weekly transaction entry

F* file and the employee master to determine if all

F* employees enrolled have entered their weekly

F* transactions.

F**

F* This program uses externally described files. Files

F* used are: EMPMST - employee master file

F* TRWEEKL - logical view of weekly transaction entry

F* file by employee number

F**

F* INDICATORS USED:

F* 50 - No record found on SETGT greater than search argument

F* 51 - No matching record on REDPE operation

F* 60 - Missing time entries from transaction file

F* 99 - First cycle processing

F* LR - Last record

F**

Figure 186 (Part 1 of 6). PRG05 program

 Chapter 13. RPG/400 Sample Programs 421

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FEMPMST IP E DISK

F*

F* The weekly transaction file contains the entry UC in positions

F* 71 through 72. This entry allows the program to control the

F* opening and closing of this file (see first cycle processing and

F* last record processing for details).

F*

FTRWEEKL IF E K DISK UC

F*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E*

E* Compile time array containing requestor messages.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E MESS 1 2 50

E*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* Data structure CTLDS processes the control file data area CTLFIL.

I* Processing of this data area is controlled by the program using

I* the data area operation codes (see first cycle processing and

I* last record processing for details).

I*

IDsname....NODsExt-file++.............OccrLen+......................*

ICTLDS DS

I..............Ext-field+............PFromTo++DField+...............*

I 1 6 CTCDE

I 7 120WKEND

I 13 180CMTDT

I 19 19 CALLE

Figure 186 (Part 2 of 6). PRG05 program

422 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* FIRST CYCLE PROCESSING: The following code is processed on

C* the first RPG/400 program cycle only. Indicator 99 is tested

C* IFEQ to '0', the transaction weekly file is opened, and the

C* control-file data area is retrieved with the reserved word *LOCK

C* to give this program exclusive use of it until the job ends.

C* Indicator 99 is then set on (equal to 1) to prevent this

C* routine from being processed on any other cycles.

C**

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN99 IFEQ '0'

C OPEN TRWEEKL

C *NAMVAR DEFN CTLFIL CTLDS

C *LOCK IN *NAMVAR

C MOVE '1' *IN99

C END

C**

C* MAINLINE PROCESSING: The employee master is processed using the

C* RPG/400 program cycle. For each employee record read, at least

C* one entry should be in the transaction weekly file. If no

C* record is found in the transaction weekly, a message is sent to

C* the employee.

C**

Figure 186 (Part 3 of 6). PRG05 program

 Chapter 13. RPG/400 Sample Programs 423

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C* Using the employee number EMPNO, the transaction file is posi-

C* tioned at the next record with an employee number greater than the

C* employee record being processed. Then using the operation code

C* REDPE, the next prior sequential record is read. If the employee

C* number of the record read does not match the employee number from

C* the employee master, indicator 51 is set on (equal to 1).

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C EMPNO SETGTRCWEEK 50

C EMPNO REDPERCWEEK 51

C* The following code is processed if indicator 51 is set on by the

C* REDPE operation. The employee is sent a message, stating that

C* their time entries are missing. To send the message, the program

C* passes control to a separate program that passes the employee

C* user ID to the called program. The PLIST operation contains

C* the parameter list name PLIST1 as factor 1 and is followed by the

C* PARM operation specifying the user ID field EUSRI.

C*

C* This operation could have been coded by simply placing the PARM

C* entries immediately after the CALL operation, but is coded this

C* way to illustrate the PLIST operation code. The program passes

C* control to program PROC5, which is a control language program for

C* sending the employee message. When this program receives control

C* back, indicator 60 is set on (equal to 1) to indicate that all

C* time entries have not been made and that program PROC5 is removed

C* from the list of activated programs by using the FREE operation.

C *IN51 IFEQ '1'

C PLIST1 PLIST

C PARM EUSRI

C CALL 'PROC5' PLIST1

C MOVE '1' *IN60

C FREE 'PROC5'

C END

Figure 186 (Part 4 of 6). PRG05 program

424 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The last record indicator LR is set on by the RPG/400 program

C* cycle when the last employee master record has been read.

C* When LR is on, error indicator 60 is checked, and if on

C* (equal to 1), the person who asked of this program is sent message 1

C* from the message array MESS, using the DSPLY operation code.

C* The person then enters a response which is received into the

C* result field MRESP. The all time entries made flag field is

C* updated to N, and the data area is updated using the OUT operation.

C* If *IN60 is off, the ELSE operation is processed and the person

C* is sent message 2 from the message array MESS by the program using

C* the DSPLY operation code. The person must press Enter to

C* continue the job. The all time entries made flag field is

C* updated to Y and the data area is updated using the OUT operation.

C* If the MRESP field contains a Y, indicating the job continues,

C* external indicator U8 is set on (equal to 1). The UNLCK operation,

C* with *NAMVAR specified in factor 2, unlocks all data areas in the

C* program. The CLOSE operation is then processed to close the weekly

C* transaction file TRWEEKL.

C*

C* Note: If factor 1 on the OUT operation were blank, the data area

C* would be unlocked as part of the function of the operation;

C* however, the RPG reserved word *LOCK is coded to illustrate

C* the UNLCK operation code.

C*

Figure 186 (Part 5 of 6). PRG05 program

 Chapter 13. RPG/400 Sample Programs 425

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

CLR *IN60 IFEQ '1'

CLR MOVE MESS,1 EMESS 50

CLR EMESS DSPLY'*EXT' MRESP 1

CLR MOVE 'N' CALLE

CLR *LOCK OUT *NAMVAR

CLR ELSE

CLR MOVE MESS,2 EMESS 50

CLR EMESS DSPLY'*EXT' MRESP

CLR MOVE 'Y' CALLE

CLR MOVE 'Y' MRESP

CLR *LOCK OUT *NAMVAR

CLR END

C*

CLR MRESP IFEQ 'Y'

CLR MOVE '1' *INU8

CLR END

CLR UNLCK*NAMVAR

CLR CLOSETRWEEKL

O*

O* The compile time array MESS is entered below. The array is

O* preceded by ** to denote the beginning of the array.

O*

** MESS - requestor messages

Time entries missing. "Y"-continue "C"-cancel

No time entries missing. Press enter to continue.

Figure 186 (Part 6 of 6). PRG05 program

426 RPG/400 User's Guide

 Weekly Time File Update

Weekly Employee Transaction Report Layout - PRG09
The weekly employee transaction report lists all time entry transactions by actual
date worked within employee number. On a change of employee number, the total
employee project, non-project and weekly hours are printed. A final report shows
total project, non-project and weekly hours as well as an employee count for the
week.

Figure 187 shows the weekly Employee Transaction Entry Report. The alphanu-
meric fields in the report are represented by a string of As, numeric fields are
represented by a string of 9s, and dates are represented by MM/DD/YY. Program
PRG09 is an SAA compatible program and the report specifications are program-
described. Refer to the output specifications of program PRG09 for a detailed
description of the report.

─── ──┐

 0 0 0 0 0 0 0 0 0 1 1

 000000000111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999000000000011111

 123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234

├───┼──┤

001

002

003 PRG09 EMPLOYEE TRANSACTION ENTRY PAGE 9999

004 FOR THE WEEK ENDING AAAAAAAAA 99, 1999 MM/DD/YY

005 EMPLOYEE NUMBER 999999 NAME AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA DEPARTMENT AAAAA

006

007 PROJECT REASON DESCRIPTION ACTUAL DATE HOURS

008 CODE CODE WORKED WORKED

009 AAAAAAAA AAAAAAAA AA MM/DD/YY 9999.9-

010 AAAAAAAA AAAAAAAA AA MM/DD/YY 9999.9-

011 AAAAAAAA AAAAAAAA AA MM/DD/YY 9999.9-

012 AAAAAAAA AAAAAAAA AA MM/DD/YY 9999.9-

013

014 EMPLOYEE TOTALS: PROJECT HOURS 9999.9-

015 NON PROJECT HOURS 9999.9-

016 WEEKLY TOTAL HOURS 9999.9-

017

018 REPORT TOTALS: PROJECT HOURS 99999999.9-

019 NON PROJECT HOURS 99999999.9-

020 WEEKLY TOTAL HOURS 99999999.9-

021 EMPLOYEE COUNT 99999

022

023

───┴──┘

Figure 187. Weekly Employee Transaction Entry Report Layout - PRG09

 Chapter 13. RPG/400 Sample Programs 427

 Weekly Time File Update

Master File Update and Weekly Transaction Report - PRG09
Program PRG09 processes the weekly time entry transaction file TRWEEK to update
the employee master, project master, and reason code master files, and to produce
the weekly employee transaction summary report. The program is SAA compatible
using program-described files.

Figure 188 shows the RPG/400 program PRG09 with embedded comments to
explain the logic flow and use of various RPG/400 functions and operation codes.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PRG09 - Time Reporting Master File Update

F* DESCRIPTION - This program updates the master files with the

F* weekly transaction entries and produces the

F* employee weekly transaction detail report.

F* This program is SAA compatible.

F**

F* INDICATORS USED:

F* 40 - Entry found on table look up

F* 50 - Invalid or missing employee record

F* 51 - Invalid or missing project code or reason code record

F* 69 - Exception output - heading lines

F* 70 - Exception output - employee heading line

F* 71 - Exception output - update project master

F* 72 - Exception output - update reason code master

F* 73 - Exception output - detail print line

F* 74 - Exception output - employee total line

F* 75 - Exception output - report total lines

F* 76 - Exception output - update employee master

F* L1 - Control level on employee number

F**

Figure 188 (Part 1 of 16). Sample RPG/400 Program - PRG09

428 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* SUBROUTINES USED:

F* L1CLR - Control level detail time clear of work fields

F* UPDSR - Project and reason code master update and detail print

F* TOTL1 - Control-level total-time employee master update and

F* total time print

F**

F* This program uses program-described files. Files

F* used are: TRWEEK - weekly transaction entry file

F* EMPMST - employee master file

F* PRJMST - project master file

F* RSNMST - reason code master file

F* QSYSPRT - printer file

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FTRWEEK IP F 53 DISK

FEMPMST UF F 103 4PI 2 DISK

FPRJMST UF F 120 8AI 2 DISK

FRSNMST UF F 73 8AI 2 DISK

FQSYSPRT O F 132 OF PRINTER

Figure 188 (Part 2 of 16). Sample RPG/400 Program - PRG09

 Chapter 13. RPG/400 Sample Programs 429

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E*

E* The following extension specification describes the compile-time

E* table TABMTH. This table contains an entry for each month of

E* the year with the alternating entry TABNAM containing the month's

E* descriptive name. The table is accessed to provide the month

E* name in the heading line date field.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E TABMTH 1 12 2 0 TABNAM 9

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The weekly transaction entry file containing all time entries

I* is processed by employee number with control-level indicator L1

I* defined to control processing on a change of employee number.

I*

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

ITRWEEK NS 01

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I P 2 50EMPNO L1

I 6 13 EUSRI

I 20 250CWKDT

I 14 190ACDAT

I 32 39 PRCDE

I 40 47 RSCDE

I P 48 501EHWRK

I P 51 530TFRRN

I*

Figure 188 (Part 3 of 16). Sample RPG/400 Program - PRG09

430 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* Employee master is accessed randomly when a control break occurs.

I* The current month project hours (EPHRC) and the current month

I* reason code hours (ENPRC) are updated. Record identifying

I* indicator 02 is set on if the employee record read contains an A

I* in position 1, indicating an active record. If position 1 is not

I* an A, record identifying indicator 03 is set on. The RPG/400

I* program cycle sets these indicators on and off.

I*

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IEMPMST NS 02 1 CA

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 6 35 ENAME

I 37 41 EDEPT

I P 82 841EPHRC

I P 93 951ENHRC

I NS 03

I*

I* Project master is accessed randomly for each transaction read

I* if the project in the transaction is not blank. The current

I* month project hours (PRHRC) is updated. Record identifying

I* indicator 04 is set on if the project record read contains an A

I* in position 1, indicating an active record. If position 1 is not

I* an A, record identifying indicator 05 is set on. The RPG/400

I* program cycle sets these indicators on and off.

I*

IPRJMST NS 04 1 CA

I 10 59 PRDSC

I P 107 1101PRHRC

I NS 05

Figure 188 (Part 4 of 16). Sample RPG/400 Program - PRG09

 Chapter 13. RPG/400 Sample Programs 431

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I* Reason code master is accessed randomly for each transaction

I* read if the reason code in the transaction is not blank. The

I* current month reason code hours (RSHRC) is updated. Record

I* identifying indicator 06 is set on if the project record read

I* contains an A in position 1, indicating an active record. If

I* position 1 is not an A, record identifying indicator 07 is set on.

I* The RPG/400 program cycle sets these indicators on and off.

I*

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IRSNMST NS 06 1 CA

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 10 59 RSDSC

I P 60 631RSHRC

I NS 07

I* The following named constants define edit words for the weekly

I* employee transaction entry report.

I*

I..............Constant++++++++++++++C.........Field+...............*

I ' 0. -' C EDTHR1

I ' 0. -' C EDTHR2

I* The control-file data area contains the week ending date that

I* is used in the report headings and for accessing the month

I* descriptive name from the table TABMTH.

I*

IDsname....NODsExt-file++.............OccrLen+......................*

ICTLFIL UDS

I..............Ext-field+............PFromTo++DField+...............*

I 1 6 CTCDE

I 7 120WKEND

I 7 80WKMTH

I 9 100WKDAY

I 11 120WKYR

I 13 180CMTDT

I 19 19 CALLE

Figure 188 (Part 5 of 16). Sample RPG/400 Program - PRG09

432 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C* First cycle processing. The following code is processed on the

C* first cycle only. Indicator 99 (*IN99) is off (equal to 0) on

C* the first cycle and the code following the IFEQ operation is

C* processed. The data area data structure CTLFIL is implicitly

C* retrieved by the RPG/400 program. Using the month field WKMTH

C* from the data area, the LOKUP operation is performed to retrieve

C* the month descriptive name from table file TABMTH. The alternating

C* entry TABNAM is moved to report heading field MNAME if the look up

C* is successful (40 is on). If not, the literal UNKNOWN is moved to

C* MNAME. Work fields used for report totals are initialized to zero

C* by the Z-ADD operation and indicator 99 is set on to prevent this

C* routine from being processed in subsequent cycles.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN99 IFEQ '0'

C WKMTH LOKUPTABMTH TABNAM 9 40

C 40 MOVELTABNAM MNAME 9

C N40 MOVEL'UNKNOWN' MNAME

C Z-ADD0 PRTOT 91

C Z-ADD0 RSTOT 91

C Z-ADD0 WKTOT 91

C Z-ADD0 EMCNT 50

C EMPNO CHAINEMPMST 50

C *IN50 IFEQ '0'

C *IN02 ANDEQ'0'

C MOVE '1' *IN50

C END

C MOVE '1' *IN99

C END

C* The RPG/400 program cycle controls the reading of the

C* transaction file and the setting on of last record indicator LR.

C* This is controlled by defining the TRWEEK file as P (primary)

C* in position 16 of the file specification.

Figure 188 (Part 6 of 16). Sample RPG/400 Program - PRG09

 Chapter 13. RPG/400 Sample Programs 433

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* MAINLINE: The mainline consists of three EXSR operations and

C* last record (LR) processing. The first routine is processed at

C* control-level detail time. Control level detail time happens on

C* the initial RPG/400 program cycle and on the first record of each

C* control group. In other words, when the employee number changes,

C* the L1CLR routine is processed before processing is done on the

C* new employee group. The second routine is processed on each

C* RPG/400 detail cycle to accumulate employee totals and update

C* the project and reason code master files. The third routine is

C* processed at control-level total time. Control level total time

C* happens when the last record of the control group has been read

C* and on last record.

C*

C* The final three lines of code in the mainline is processed on

C* the last record only. Indicator 69 is set on to skip to new

C* page and print headings, and indicator 75 is set on to print

C* the report totals. The EXCPT operation is used to process

C* exception output. The indicators are set off after the EXCPT

C* operation to prevent the same output from being done by

C* subsequent EXCPT operations.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C L1 EXSR L1CLR

C 01 EXSR UPDSR

CL1 EXSR TOTL1

CLR SETON 6975

CLR EXCPT

CLR SETOF 6975

C*

Figure 188 (Part 7 of 16). Sample RPG/400 Program - PRG09

434 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* L1CLR subroutine is processed at control level detail time. The

C* employee total work fields are cleared by the program using the

C* Z-ADD operation. Using the employee number and the CHAIN

C* operation, the program retrieves the employee master record. If

C* the record is not found, resulting indicator 50 is set on. If the

C* record is found (*IN50 equals 0), but the record identifying

C* indicator 02 is not on (*IN02 equals 0), indicator 50 is set on.

C* Indicator 50 controls the printing of the employee name, employee

C* department, and the updating of the employee master at total time.

C* Indicator 69 is set on to skip to a new page and print the

C* heading lines. Indicator 70 is set on to print the employee

C* heading line. The EXCPT operation is run to process exception

C* output, and indicators 69 and 70 are set off.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C L1CLR BEGSR

C Z-ADD0 PRHRS 51

C Z-ADD0 RSHRS 51

C Z-ADD0 WKHRS 51

C EMPNO CHAINEMPMST 50

C *IN50 IFEQ '0'

C *IN02 ANDEQ'0'

C MOVE '1' *IN50

C END

C SETON 6970

C EXCPT

C SETOF 6970

C ENDSR

C*

Figure 188 (Part 8 of 16). Sample RPG/400 Program - PRG09

 Chapter 13. RPG/400 Sample Programs 435

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The UPDSR subroutine is processed for each detail record. The

C* work field DESC is cleared first by moving blanks to it. This

C* prevents a description from a previous record being printed when

C* both project code and reason code records cannot be found in the

C* master files. If the project code is not equal to blanks, the

C* project master is accessed using PRCDE and the CHAIN operation.

C* If the record is not found, resulting indicator 51 is set on.

C* If the record is found (*IN50 equals 0) and the record identifying

C* indicator 04 is on (*IN04 equals 1), the transaction hours are

C* added to the current month project hours PRHRC and to the employee

C* project hours work field PRHRS and the project description is

C* moved to work field DESC. Indicator 71 is set on to update the

C* project master and indicator 73 is set on to print the detail line.

C* The EXCPT operation is run to process exception output and

C* indicators 71 and 73 are set off.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C UPDSR BEGSR

C MOVE *BLANKS DESC

C PRCDE IFNE *BLANKS

C PRCDE CHAINPRJMST 51

C *IN51 IFEQ '0'

C *IN04 ANDEQ'1'

C EHWRK ADD PRHRC PRHRC

C EHWRK ADD PRHRS PRHRS

C MOVE PRDSC DESC 50

C SETON 7173

C EXCPT

C SETOF 7173

C END

C END

C*

Figure 188 (Part 9 of 16). Sample RPG/400 Program - PRG09

436 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* If the reason code is not equal to blanks, the reason code master

C* is accessed using RSCDE and the CHAIN operation. If the record

C* is not found, resulting indicator 51 is set on. If the record

C* is found (*IN50 equals 0) and the record identifying indicator 06

C* is on (*IN06 equals 1), the transaction hours are added to the

C* current month reason code hours RSHRC and to the employee reason

C* code hours work field RSHRS and the reason code description is

C* moved to work field DESC. Indicator 72 is set on to update the

C* reason code master and indicator 73 is set on to print the detail

C* line. The EXCPT operation is run to process exception output

C* and indicators 72 and 73 are set off.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C RSCDE IFNE *BLANKS

C RSCDE CHAINRSNMST 52

C *IN52 IFEQ '0'

C *IN06 ANDEQ'1'

C EHWRK ADD RSHRC RSHRC

C EHWRK ADD RSHRS RSHRS

C MOVE RSDSC DESC

C SETON 7273

C EXCPT

C SETOF 7273

C END

C END

C ENDSR

C*

Figure 188 (Part 10 of 16). Sample RPG/400 Program - PRG09

 Chapter 13. RPG/400 Sample Programs 437

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The TOTL1 subroutine is processed on control level total time.

C* The employee work field totals are added to the report work field

C* totals. Indicator 74 is set on and the EXCPT operation is run

C* to print the employee totals and indicator 74 is set off. If

C* indicator 50 is off (*IN50 equals 0, employee record found), the

C* employee weekly project hours total PRHRS is added to the employee

C* master record field EPHRC, and the weekly reason code hours total

C* RSHRS is added to ENHRC. Indicator 76 is set on and the EXCPT

C* operation is run to update the employee master and indicator 76

C* is then set off.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C TOTL1 BEGSR

C PRHRS ADD PRTOT PRTOT

C RSHRS ADD RSTOT RSTOT

C PRHRS ADD RSHRS WKHRS

C WKHRS ADD WKTOT WKTOT

C EMCNT ADD 1 EMCNT

C SETON 74

C EXCPT

C SETOF 74

C *IN50 IFEQ '0'

C PRHRS ADD EPHRC EPHRC

C RSHRS ADD ENHRC ENHRC

C SETON 76

C EXCPT

C SETOF 76

C END

C ENDSR

Figure 188 (Part 11 of 16). Sample RPG/400 Program - PRG09

438 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O*

O* This program uses exception output for all its output operations.

O* The following code describes the printer file QSYSPRT contents,

O* spacing and skipping. The first two exception groups are printed

O* when indicator 69 is on. The first exception causes a skip to

O* line 03 of a new page, and the second exception spaces one line

O* before printing and one line after printing. RPG reserved words

O* PAGE is used to handle page numbering and UDATE to print the

O* system date.

O*

OName++++DFBASbSaN01N02N03Excnam....................................*

OQSYSPRT E 03 69

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 6 'PRG09'

O 61 'EMPLOYEE TRANSACTION'

O 67 'ENTRY'

O 105 'PAGE'

O PAGE Z 110

O E 11 69

O 55 'FOR THE WEEK ENDING'

O MNAME 65

O WKDAY 68

O 72 ', 19'

O WKYR 74

O UDATE Y 110

O*

Figure 188 (Part 12 of 16). Sample RPG/400 Program - PRG09

 Chapter 13. RPG/400 Sample Programs 439

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O*

O* The following three exception lines are controlled by indicator

O* 70 and print additional heading information. The first exception

O* line prints the employee information. If the employee record is

O* not found (indicator 50 is on), the employee name is replaced by

O* the error message. The next two exception lines print headings

O* for the detail lines.

O*

OName++++DFBASbSaN01N02N03Excnam....................................*

O E 11 70

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 20 'EMPLOYEE NUMBER'

O EMPNO Z 28

O 39 'NAME'

O N50 ENAME 71

O 50 66 'EMPLOYEE NUMBER INVALID'

O 88 'DEPARTMENT'

O N50 EDEPT 95

O E 1 70

O 22 'PROJECT REASON'

O 40 'DESCRIPTION'

O 108 'ACTUAL DATE HOURS'

O E 1 70

O 21 'CODE CODE'

O 108 'WORKED WORKED'

O*

Figure 188 (Part 13 of 16). Sample RPG/400 Program - PRG09

440 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O*

O* The following exception line is controlled by indicator 73 and

O* prints each transaction detail.

O*

OName++++DFBASbSaN01N02N03Excnam....................................*

O E 1 73

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O PRCDE 9

O RSCDE 23

O DESC 79

O ACDAT Y 94

O EHWRK 108 EDTHR1

O*

O* The following three exception lines are controlled by indicator

O* 74 and print on a change of employee number or control break.

O*

O E 2 74

O 78 'EMPLOYEE TOTALS:'

O 93 'PROJECT HOURS'

O PRHRS 108 EDTHR1

O E 1 74

O 91 'NON PROJECT HOURS'

O RSHRS 108 EDTHR1

O E 1 74

O 98 'WEEKLY TOTAL HOURS'

O WKHRS 108 EDTHR1

O*

Figure 188 (Part 14 of 16). Sample RPG/400 Program - PRG09

 Chapter 13. RPG/400 Sample Programs 441

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O*

O* The following four exception lines are controlled by indicator

O* 75 and print at end of file or last record.

O*

OName++++DFBASbSaN01N02N03Excnam....................................*

O E 2 75

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O 71 'REPORT TOTALS:'

O 87 'PROJECT HOURS'

O PRTOT 108 EDTHR2

O E 1 75

O 91 'NON PROJECT HOURS'

O RSTOT 108 EDTHR2

O E 1 75

O 92 'WEEKLY TOTAL HOURS'

O WKTOT 108 EDTHR2

O E 1 75

O 88 'EMPLOYEE COUNT'

O EMCNT Z 108

O*

Figure 188 (Part 15 of 16). Sample RPG/400 Program - PRG09

442 RPG/400 User's Guide

 Weekly Time File Update

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O*

O* The following exception line is controlled by indicator 71 and

O* updates the project master file record.

O*

OName++++DFBASbSaN01N02N03Excnam....................................*

OPRJMST E 71

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O PRHRC 110P

O* The following exception line is controlled by indicator 72 and

O* updates the reason code master file record.

ORSNMST E 72

O RSHRC 63P

O* The following exception line is controlled by indicator 76 and

O* updates the employee master file record.

OEMPMST E 76

O EPHRC 84P

O ENHRC 95P

* ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

O* The following table contains descriptions for each month

O* of the year. The month number is used as the look up to

O* retrieve the month description - the alternating table

O* element. The table begins in column 1 of the output

 O* specification.

 O*

 ** TABMTH - Month Description Table

 01JANUARY

 02FEBRUARY

 03MARCH

 04APRIL

 05MAY

 06JUNE

 07JULY

 08AUGUST

 09SEPTEMBER

 10OCTOBER

 11NOVEMBER

 12DECEMBER

Figure 188 (Part 16 of 16). Sample RPG/400 Program - PRG09

 Chapter 13. RPG/400 Sample Programs 443

 Time Reporting Monthly Update

 Monthly Processing
All the master files are processed after the last weekly update for the month to
produce monthly reports, add current month values to the year-to-date values, and
prepare transaction files for new month processing.

Technical design for each step in the monthly process contains all or part of the
following:

¹ Display format layout

¹ Display file data descriptions

¹ Program code and narratives

¹ Printer spacing chart.

Monthly Time File Update and Reporting
Figure 189 shows the Time Reporting System Main Menu. The first step in the
monthly update is to change the month end date in the control file using option 3.
After the control file has been updated, you call the monthly update by entering
option 5 (Monthly time file update & reporting). Option 5 calls PROC3, prompting if
the run is for year end. You must enter a Y or an N. PROC3 then submits PROC4
to batch for processing. See Figure 190 on page 445.

 ¹ CALL PGM(PROC3)

� �
 TMENU Time Reporting System
 Main Menu

1. Master file maintenance (PRG01)
2. Control file maintenance (PRG02)
3. Time file transaction entry (PRG03)
4. Weekly time file update (PROC1)
5. Monthly time file update & reporting (PROC3)

 8. Display messages (DSPMSG)
 9. Sign off (SIGNOFF)

 Selection or command
 ===>
F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 F13=User support F16=System main menu

� �

Figure 189. Time Reporting Menu

The monthly time file update consists of two control level programs:

¹ CL program PROC3 is an interactive program that prompts you for a Y or an N
response for year end processing. The program accepts an uppercase or a
lowercase response. The program then submits PROC4 to batch for proc-
essing.

¹ CL program PROC4 is a batch job that produces the monthly employee,
project, and reason code summary reports. It also prepares the master files

444 RPG/400 User's Guide

 Time Reporting Monthly Update

and transaction files for new month processing (and new year, if year end has
been requested).

/* Monthly Time File Update and Reporting: */

/* This procedure is the first step in the monthly time */

/* reporting update. The program sends a message prompting */

/* if this run is for year end. If the run is for year end, */

/* the CHGJOB command sets on job switch 4. The update program */

/* The update program PROC4 is then submitted to batch. */

/* */

 BEGIN: PGM

DCL &REPLY *CHAR LEN(1)

SNDUSRMSG MSG('Update for year end Y or N') +

 MSGRPY(&REPLY)

IF COND(&REPLY *EQ Y) THEN(DO)

SBMJOB CMD(CALL PGM(PROC4)) JOB(PROC4) SWS(00010000)

 ENDDO

 ELSE

IF COND(&REPLY *NE Y) THEN(DO)

SBMJOB CMD(CALL PGM(PROC4)) JOB(PROC4) SWS(00000000)

 ENDDO

/* */

 ENDIT: ENDPGM

Figure 190. CL Program PROC3

 Chapter 13. RPG/400 Sample Programs 445

 Time Reporting Monthly Update

/* Monthly Time File Update and Reporting: */

/* This procedure is run monthly to produce the monthly */

/* employee, project and reason code reports and to prepare */

/* the master files and transaction files for new month */

/* processing. */

/* */

/* Program PRG06 reads the monthly transaction file to produce */

/* the employee time entry report. */

/* */

 BEGIN: PGM

 RTVJOBA

 CALL PGM(PRG06)

/* */

/* Program PRG07 reads the monthly transaction file to produce */

/* the project time entry report. */

/* */

 PRG07: CALL PGM(PRG07)

/* */

/* Program PRG08 reads the monthly transaction file to produce */

/* the reason code time entry report. */

/* */

 PRG08: CALL PGM(PRG08)

/* */

/* This step adds the current month hours to the year-to-date */

/* hours and clears the month-to-date field. If this is a year */

/* end run, the year-to-date is rolled to the prior year-to-date */

/* and the year-to-date is cleared. The step loops three times. */

/* Each time program PRG04 is called, the opened and updated */

/* file is controlled by the external indicator set on by the */

/* CHGJOB command. */

/* U1 - Employee master */

/* U2 - Project master */

/* U3 - Reason code master */

/* */

Figure 191 (Part 1 of 2). CL Program PROC4

446 RPG/400 User's Guide

 Time Reporting Monthly Update

 CHGJOB SWS(100X0000)

 PRG04: CALL PGM(PRG04)

 IF COND(%SWITCH(100X0000)) THEN(DO)

 CHGJOB SWS('010X0000')

 GOTO CMDLBL(PRG04)

 ENDDO

 ELSE

 IF COND(%SWITCH(010X0000)) THEN(DO)

 CHGJOB SWS('001X0000')

 GOTO CMDLBL(PRG04)

 ENDDO

/* */

/* CLEAR step clears the monthly transaction file in */

/* preparation for new month activity. */

/* */

 CLEAR: CLRPFM FILE(TRMNTH)

/* */

 ENDIT: ENDPGM

Figure 191 (Part 2 of 2). CL Program PROC4

 Chapter 13. RPG/400 Sample Programs 447

 Monthly Processing

Time Reporting Employee Summary Report Layout - PRG06RP
The Time Reporting Employee Summary report lists all time entry transactions for
the employee for the month. The report is organized by week ending date for an
employee number. Subtotals are printed on a change of week ending date and an
employee summary is printed on a change of employee number. The employee
summary includes percentage calculations to show what portion of the employee's
time is spent on project related and non-project related tasks.

Figure 192 shows the Time Reporting Employee Summary report. The alphanu-
meric fields defined in the report are represented by a string of As, numeric fields
are represented by a string of 9s, and dates are represented by MM/DD/YY. See
Figure 193 on page 449 for the data description specifications for report
PRG06RP.

┌───┬──┐
│ │ 0 0 0 0 0 0 0 0 0 1 1 │
│ │000000000111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999000000000011111│
│ │123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234│
├───┼──┤
│001│ │
│002│ │
│003│ PRG06RP TIME REPORTING EMPLOYEE SUMMARY PAGE 9999 │
│004│ FOR THE PERIOD ENDED MM/DD/YY MM/DD/YY │
│005│ │
│006│ EMPLOYEE NUMBER 999999 EMPLOYEE NAME AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA DEPARTMENT AAAAA │
│007│ │
│008│ PROJECT REASON DESCRIPTION ACTUAL DATE HOURS │
│009│ CODE CODE WORKED WORKED │
│010│ AAAAAAAA AAAAAAAA AA MM/DD/YY 9999.9- │
│011│ AAAAAAAA AAAAAAAA AA MM/DD/YY 9999.9- │
│012│ │
│013│ WEEKLY TOTAL HOURS 9999.9- │
│014│ │
│015│ AAAAAAAA AAAAAAAA AA MM/DD/YY 9999.9- │
│016│ AAAAAAAA AAAAAAAA AA MM/DD/YY 9999.9- │
│017│ │
│018│ WEEKLY TOTAL HOURS 9999.9- │
│019│ │
│020│ │
│021│ CURRENT % OF YEAR TO % OF │
│022│ MONTH TOTAL DATE TOTAL │
│023│ EMPLOYEE SUMMARY: PROJECT HOURS 9999.9- 9999.9- 999999.9- 9999.9- │
│024│ NON PROJECT HOURS 9999.9- 9999.9- 999999.9- 9999.9- │
│025│ TOTAL HOURS 9999.9- 9999.9- 999999.9- 9999.9- │
└───┴──┘

Figure 192. Time Reporting Employee Summary Report Layout - PRG06RP

448 RPG/400 User's Guide

 Monthly Processing

Employee Summary Report Data Descriptions - PRG06RP

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* This print file describes the format for the monthly time

A* reporting employee summary report. In this printer file are

A* four record formats, identified by R in position 17 followed by

A* the format name in positions 19 through 20. The following

A* keywords are used:

A* EDTCDE(a) - Edits output capable numeric fields.

A* PAGNBR - Specifies a four digit, zoned decimal field to

A* contain the page number.

A* REF(REFMST) - Lines containing an R in position 29 use the

A* attributes from a previously defined field in

A* this reference file.

A* SKIPB(n) - Specifies that the printer device is to skip to

A* a specific line before it prints the next line.

A* SPACEA(n) - Specifies that the printer device is to space (n)

A* lines after it prints one or more lines.

A* SPACEB(n) - Specifies that the printer device is to space (n)

A* lines before it prints the next line or lines.

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A REF(REFMST)

A*

A* The first format, TITLE1, contains the definition for the

A* heading lines of the report. The format is written on the

A* first cycle, on a change of employee number, or when overflow

A* occurs while printing details for an employee.

A*

Figure 193 (Part 1 of 4). Employee Summary Report Data Descriptions - PRG06RP

 Chapter 13. RPG/400 Sample Programs 449

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R TITLE1 SKIPB(3)

A 2'PRG06RP'

A 37'TIME REPORTING EMPLOYEE SUMMARY'

A 90'PAGE'

A 95PAGNBR

A SPACEA(1)

A 38'FOR THE PERIOD ENDED'

A CMTDT R 59EDTCDE(Y)

A RDATE 6S 0 91EDTCDE(Y)

A SPACEA(2)

A 2'EMPLOYEE NUMBER'

A EMPNO R 19EDTCDE(Z)

A 31'EMPLOYEE NAME'

A N60 ENAME R 46

A 60 46'INVALID EMPLOYEE NUMBER'

A 82'DEPARTMENT'

A N60 EDEPT R 94

A SPACEA(2)

A 2'PROJECT REASON'

A 26'DESCRIPTION'

A 78'WEEK ENDING HOURS'

A SPACEA(1)

A 3'CODE CODE'

A 81'DATE WORKED'

A SPACEA(1)

Figure 193 (Part 2 of 4). Employee Summary Report Data Descriptions - PRG06RP

450 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A*

A* The second format, DETAIL, contains the definition for the detail

A* print lines. The format is written for each detail record in

A* the monthly transaction file.

A*

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R DETAIL

A PRCDE R 2

A RSCDE R 14

A N61N62 RDESC 50 26

A 61 26'INVALID PROJECT CODE'

A 62 26'INVALID REASON CODE'

A CWKDTX R 79REFFLD(CWKDT)

A EDTCDE(Y)

A EHWRK R 93EDTCDE(L)

A SPACEA(1)

A*

A* The third format, TOTL1, contains the definition for total time

A* level break L1. The format is written on a change of week

A* ending date or a change of employee number.

A*

A R TOTL1 SPACEB(1)

A 71'WEEKLY TOTAL HOURS'

A WKTOT 5S 1 93EDTCDE(L)

A SPACEA(2)

Figure 193 (Part 3 of 4). Employee Summary Report Data Descriptions - PRG06RP

 Chapter 13. RPG/400 Sample Programs 451

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A*

A* The fourth format, TOTL2, contains the definition for total

A* time level break L2. The format is written on a change of

A* employee number.

A*

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R TOTL2

A 44'CURRENT % OF'

A 67'YEAR TO % OF'

A SPACEA(1)

A 45'MONTH TOTAL'

A 69'DATE TOTAL'

A SPACEA(1)

A 2'EMPLOYEE SUMMARY'

A 23'PROJECT HOURS'

A PRMTH 5S 1 44EDTCDE(L)

A PCMTH 5S 1 55EDTCDE(L)

A PRYER 7S 1 66EDTCDE(L)

A PCYER 5S 1 79EDTCDE(L)

A SPACEA(1)

A 23'NON PROJECT HOURS'

A NPMTH 5S 1 44EDTCDE(L)

A NCMTH 5S 1 55EDTCDE(L)

A NPYER 7S 1 66EDTCDE(L)

A NCYER 5S 1 79EDTCDE(L)

A SPACEA(1)

A 23'TOTAL HOURS'

A TOMTH 5S 1 44EDTCDE(L)

A TCMTH 5S 1 55EDTCDE(L)

A TOYER 7S 1 66EDTCDE(L)

A TCYER 5S 1 79EDTCDE(L)

A SPACEA(1)

Figure 193 (Part 4 of 4). Employee Summary Report Data Descriptions - PRG06RP

452 RPG/400 User's Guide

 Monthly Processing

Employee Summary Report RPG/400 Program - PRG06
Figure 194 shows RPG/400 program PRG06 with embedded comments to explain
the logic flow and use of various RPG functions and operation codes.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PRG06 - Time Reporting Employee Summary Report

F* DESCRIPTION - This program produces the time reporting employee

F* summary report. All time entries for the month

F* are printed by week ending date with subtotals by

F* week and an employee summary showing month and

F* year-to-date totals.

F**

F* This program uses externally described files. Files used are:

F* TRMNTHL - Logical view of TRMNTH, monthly transaction file

F* by employee number and week ending date.

F* EMPMST - Employee master file

F* PRJMST - Project master file

F* RSNMST - Reason code master file

F* PRG06RP - Employee summary report file

F**

F* INDICATORS USED:

F* 60 - Employee master record not found

F* 61 - Project master record not found

F* 62 - Reason code master record not found

F* 99 - First cycle processing

F* L1 - Control level on week ending date

F* L2 - Control level on employee number

F**

F* SUBROUTINES USED:

F* DTLSR - Detail calculations routine

F* LICHK - Line count check routine

F* L2CLR - Clear work fields at detail time L2

F* SUBRL1 - Total time calculations - change of week ending date

F* SUBRL2 - Total time calculations - change of employee number

Figure 194 (Part 1 of 10). Sample RPG/400 Program - PRG06

 Chapter 13. RPG/400 Sample Programs 453

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FTRMNTHL IP E K DISK

FEMPMST IF E K DISK

FPRJMST IF E K DISK

FRSNMST IF E K DISK

FPRG06RP O E PRINTER

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E* The following arrays are used to store the weekly project and

E* reason code hours for the employee. Each array contains up to

E* five weekly totals.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E ARRP 5 5 1

E ARRN 5 5 1

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I* The following code renames the monthly transaction file input

I* field names. These fields appear in other data definitions

I* and are overlaid when those files are read, these renames

I* prevent the overlay.

I*

IRcdname+....In...*

IRCMNTH

I..............Ext-field+......................Field+L1M1..PlMnZr...*

I EMPNO EMPNOXL2

I CWKDT CWKDTXL1

I CMTDT CMTDTX

I*

I* Externally described control file data area

I*

IDsname....NODsExt-file++.............OccrLen+......................*

ICTLFIL EUDS

I*

Figure 194 (Part 2 of 10). Sample RPG/400 Program - PRG06

454 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* FIRST CYCLE PROCESSING: Indicator 99 is set off (equal to 0)

C* on the first RPG/400 program cycle and the routine is processed.

C* The TIME operation retrieves the time of day and the system date

C* and places them in the result field TDATE. The time of day

C* occupies the first six positions and the system date the last

C* six positions of TDATE. The MOVE operation moves the last six

C* positions to the result field RDATE to provide the run date for

C* the report. The RPG reserved word UDATE could have been specified

C* on the output specifications to accomplish the same result.

C* Indicator 99 is then set on (equal to 1) to prevent this routine

C* from being processed on subsequent cycles.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *IN99 IFEQ '0'

C TIME TDATE 120

C MOVE TDATE RDATE 60

C MOVE '1' *IN99

C END

Figure 194 (Part 3 of 10). Sample RPG/400 Program - PRG06

 Chapter 13. RPG/400 Sample Programs 455

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* MAINLINE: The mainline routine consists of four EXSR subroutines.

C* The first subroutine is processed at detail time when the

C* control level indicator L2 is on. This occurs on the first

C* RPG/400 program cycle and on the RPG/400 program cycle following

C* total time calculations. The L2CLR subroutine clears work fields

C* and writes report headings. The second subroutine, DTLSR, is

C* processed on each RPG/400 detail time cycle. The routine writes

C* detail report lines and accumulates data for total time printing.

C* The third and fourth subroutines are processed at total time.

C* The SUBRL1 subroutine is processed on a change of week ending

C* date and also on a change of employee number (RPG/400 logic sets

C* on all lower level control indicators when a control break occurs,

C* that is, when L2 is set on, so is L1). The SUBRL2 subroutine is

C* processed on a change of employee number.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C L2 EXSR L2CLR

C EXSR DTLSR

CL1 EXSR SUBRL1

CL2 EXSR SUBRL2

C**

C* DTLSR SUBROUTINE: This routine performs detail time operations.

C* Error indicators *IN61 and *IN62 are set off (equal to 0) as

C* part of housekeeping. If the project code PRCDE is not equal

C* to blanks, the hours worked are added to the current element of

C* the project array. The array is incremented each time the week

C* ending date changes, and is reset to 1 (the first element) when

C* the employee number changes. The project master file is

C* accessed using the CHAIN operation. If the record is not found,

C* indicator 61 is set on. If the record is found, the project

C* description is moved to the work field RDESC.

C*

Figure 194 (Part 4 of 10). Sample RPG/400 Program - PRG06

456 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C DTLSR BEGSR

C MOVE '0' *IN61

C MOVE '0' *IN62

C PRCDE IFNE *BLANKS

C EHWRK ADD ARRP,P ARRP,P

C PRCDE CHAINPRJMST 61

C *IN61 IFEQ '0'

C MOVE PRDSC RDESC

C END

C ELSE

C*

C* The preceding ELSE statement denotes the end of the project code

C* operations. If the project code is equal to blanks, a reason

C* code must exist. The hours worked are added to the current

C* element of the non-project hours array and the reason code master

C* file is accessed using the CHAIN operation. If the record is

C* not found, indicator 62 is set on. If the record is found,

C* the reason code description is moved to the work field RDESC.

C*

C EHWRK ADD ARRN,N ARRN,N

C RSCDE CHAINRSNMST 62

C *IN62 IFEQ '0'

C MOVE RSDSC RDESC

C END

C END

Figure 194 (Part 5 of 10). Sample RPG/400 Program - PRG06

 Chapter 13. RPG/400 Sample Programs 457

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The preceding END statement denotes the end of the original IF

C* in this subroutine. The detail record has now been processed

C* and the program is ready to write the detail report line. The

C* WRITE statement writes the record format DETAIL in the externally

C* described printer file PRG06RP. The format contains one line and

C* the line counter is incremented by one. Each time an output

C* operation is performed to the printer file, subroutine LICHK is

C* processed. This routine determines if page overflow processing

C* should be performed.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C WRITEDETAIL

C ADD 1 LICNT

C EXSR LICHK

C ENDSR

C*

C**

C* SUBRL1 SUBROUTINE: This routine performs total time operations.

C* The project hours and non-project hours are added to provide the

C* total weeks hours using the current element to each array. The

C* line counter value is checked. If it is greater than or equal

C* to 59, it is set to 60 and the LICHK overflow routine is

C* processed. The program performs these operations to ensure that

C* enough print lines are available on the page to print the weekly

C* total line. The print format TOTL1 is then written. The

C* project and non-project array indexes are incremented by one

C* for the next week's hours, and the line counter is incremented

C* by two for the print lines written in format TOTL1.

C*

Figure 194 (Part 6 of 10). Sample RPG/400 Program - PRG06

458 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SUBRL1 BEGSR

C ARRP,P ADD ARRN,N WKTOT

C LICNT IFGE 59

C Z-ADD60 LICNT

C EXSR LICHK

C END

C WRITETOTL1

C ADD 1 P

C ADD 1 N

C ADD 2 LICNT

C EXSR LICHK

C ENDSR

C*

C**

C* SUBRL2 SUBROUTINE: This routine performs total time operations.

C* The line counter value is checked. If it is greater than or

C* equal to 55, then it is set to 60 and the LICHK overflow routine

C* is processed. The program performs these operations to ensure

C* that enough print lines are available on the page to print the

C* employee total lines. The project and non-project arrays are

C* summed using the XFOOT operation. This operation adds all

C* elements of the array together and places the sum in the result

C* field. The series of arithmetic operations that follow prepare

C* the employee total line for printing. The total project hours

C* are added to the total non-project hours, the result is equal to

C* total month hours. The percentage of project hours of the total

C* is calculated by dividing total project hours by total hours and

C* multiplying the result (WRK1) by 100. The percentage of non-

C* project hours of the total is calculated by dividing total non-

C* project hours by the total hours and multiplying the result (WRK1)

C* by 100. The percent total field is set to 100 using the Z-ADD

C* operation.

C*

Figure 194 (Part 7 of 10). Sample RPG/400 Program - PRG06

 Chapter 13. RPG/400 Sample Programs 459

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SUBRL2 BEGSR

C LICNT IFGE 55

C Z-ADD60 LICNT

C EXSR LICHK

C END

C XFOOTARRP PRMTH

C XFOOTARRN NPMTH

C PRMTH ADD NPMTH TOMTH

C PRMTH DIV TOMTH WRK1 53H

C WRK1 MULT 100 PCMTH

C NPMTH DIV TOMTH WRK1 H

C WRK1 MULT 100 NCMTH

C Z-ADD100 TCMTH

C*

C* The following calculations add the current month to year-to-date

C* totals and performs the same expressions as for current month.

C*

C PRMTH ADD EPHRY PRYER

C NPMTH ADD EPNRY NPYER

C PRYER ADD NPYER TOYER

C PRYER DIV TOYER WRK1 H

C WRK1 MULT 100 PCYER

C NPYER DIV TOYER WRK1 H

C WRK1 MULT 100 NCYER

C Z-ADD100 TCYER

C*

Figure 194 (Part 8 of 10). Sample RPG/400 Program - PRG06

460 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The employee total line is now ready for printing. The TOTL2

C* format is written. Because the program will perform detail

C* time L2 operations on the next cycle to prepare for the next

C* employee, the line counter field is not incremented and

C* overflow is not checked after writing the format

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C WRITETOTL2

C ENDSR

C*

C**

C* LICHK SUBROUTINE: This routine controls page overflow.

C* If the line count is greater than or equal to 60, the heading

C* format TITLE1 is written and the line count is set to 9.

C*

C LICHK BEGSR

C LICNT IFGE 60

C WRITETITLE1

C Z-ADD9 LICNT

C END

C ENDSR

Figure 194 (Part 9 of 10). Sample RPG/400 Program - PRG06

 Chapter 13. RPG/400 Sample Programs 461

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* L2CLR SUBROUTINE: This routine prepares work fields and prints

C* heading lines before processing the first employee detail record.

C* The project hours array ARRP and the non-project hours array

C* ARRN are initialized to 0. The array elements are then set

C* to 1 for the first occurrence. The employee master file is

C* accessed using the employee number from the transaction record.

C* If the employee record is not found, indicator 60 is set on.

C* The report headings are printed by writing print format TITLE1

C* and the line counter is set to 9.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C L2CLR BEGSR

C Z-ADD0 ARRP

C Z-ADD0 ARRN

C Z-ADD1 P 10

C Z-ADD1 N 10

C EMPNOX CHAINEMPMST 60

C WRITETITLE1

C Z-ADD9 LICNT 30

C ENDSR

Figure 194 (Part 10 of 10). Sample RPG/400 Program - PRG06

462 RPG/400 User's Guide

 Monthly Processing

Time Reporting Project Summary Report Layout - PRG07RP
The Time Reporting Project Summary report lists all time entry transactions
charged against a project code. The report is organized by employee number
within week ending date within project code. Subtotals are printed on a change of
week ending date and a project summary is printed on a change of project code.

Figure 195 shows the Time Reporting Project Summary Report. The alphanumeric
fields defined in the report are represented by a string of As, numeric fields are
represented by a string of 9s, and dates are represented by MM/DD/YY. See
Figure 196 on page 464 for the data descriptions specifications for report
PRG07RP.

┌───┬──┐
│ │ 0 0 0 0 0 0 0 0 0 1 1 │
│ │000000000111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999000000000011111│
│ │123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234│
├───┼──┤
│001│ │
│002│ │
│003│ PRG07RP TIME REPORTING PROJECT SUMMARY PAGE 9999 │
│004│ FOR THE PERIOD ENDED MM/DD/YY MM/DD/YY │
│005│ │
│006│ PROJECT CODE AAAAAAAA DESCRIPTION AAA │
│007│ │
│008│ RESPONSIBILITY START ESTIMATED COMPLETION ESTIMATED │
│009│ DATE END DATE DATE TOTAL HOURS │
│010│ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA MM/DD/YY MM/DD/YY MM/DD/YY 99999999.9- │
│011│ │
│012│ EMPLOYEE EMPLOYEE NAME WEEK ENDING HOURS │
│013│ NUMBER DATE WORKED │
│014│ 999999 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│015│ 999999 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│016│ 999999 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│017│ │
│018│ WEEKLY TOTAL 999999.9- │
│019│ │
│020│ 999999 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│021│ 999999 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│022│ │
│023│ WEEKLY TOTAL 999999.9- │
│024│ │
│025│ PROJECT SUMMARY: CURRENT CURRENT PRIOR YEAR TOTAL PROJECT % VARIANCE TO │
│026│ MONTH YEAR TO DATE TOTAL HOURS ESTIMATED HOURS │
│027│ 999999.9- 99999999.9- 99999999.9- 99999999.9- 9999.9- │
│028│ │
└───┴──┘

Figure 195. Time Reporting Project Summary Report Layout - PRG07RP

 Chapter 13. RPG/400 Sample Programs 463

 Monthly Processing

Project Summary Report Data Descriptions - PRG07RP

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* This print file describes the format for the monthly time

A* reporting project summary report. In this printer file are

A* four record formats, identified by an R in position 17 followed

A* by the format name in positions 19 through 20. The following

A* keywords are used:

A* DATE - Specifies the system date

A* EDTCDE(a) - Edits output capable numeric fields

A* PAGNBR - Specifies a four digit, zoned decimal field to

A* contain the page number.

A* REF(REFMST) - Any lines containing the an R in position 29

A* uses the attributes from a previously defined

A* field in this reference file.

A* REFFLD - References a field to a previously defined field.

A* SKIPB(n) - Specifies that the printer device is to skip to

A* a specific line before it prints the next line.

A* SPACEA(n) - Specifies that the printer device is to space n

A* lines after it prints one or more lines.

A* SPACEB(n) - Specifies that the printer device is to space n

A* lines before it prints the next line or lines.

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A REF(REFMST)

A*

A* The first format, TITLE1, contains the definition for the

A* heading lines of the report. The format is written on the

A* first cycle, on a change of project number, or when overflow

A* occurs while printing details for a project code.

A*

Figure 196 (Part 1 of 4). Project Summary Report Data Descriptions - PRG07RP

464 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R TITLE1 SKIPB(3)

A 2'PRG07RP'

A 34'TIME REPORTING PROJECT SUMMARY'

A 88'PAGE'

A 93PAGNBR

A SPACEA(1)

A 35'FOR THE PERIOD ENDED'

A CMTDT R 56EDTCDE(Y)

A 89DATE EDTCDE(Y)

A SPACEA(2)

A 4'PROJECT CODE'

A PRCDEX R 18REFFLD(PRCDE)

A 35'DESCRIPTION'

A PRDSC R 48

A SPACEA(2)

A 4'RESPONSIBILITY'

A 41'START ESTIMATED'

A 69'COMPLETION ESTIMATED'

A SPACEA(1)

A 42'DATE END DATE'

A 72'DATE TOTAL HOURS'

A SPACEA(1)

A N60 PRRSP R 4

A N60 PRSTR R 40EDTCDE(Y)

A N60 PREND R 55EDTCDE(Y)

A N60 PRCMP R 70EDTCDE(Y)

A N60 PREST R 86EDTCDE(L)

A SPACEA(2)

A 4'EMPLOYEE EMPLOYEE NAME'

A 54'WEEK ENDING HOURS'

A SPACEA(1)

A 5'NUMBER'

A 57'DATE WORKED'

A SPACEA(1)

Figure 196 (Part 2 of 4). Project Summary Report Data Descriptions - PRG07RP

 Chapter 13. RPG/400 Sample Programs 465

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A*

A* The second format, DETAIL, contains the definition for the detail

A* print lines. The format is written for each detail record in

A* the monthly transaction file.

A*

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R DETAIL

A EMPNO R 5EDTCDE(Z)

A N61 ENAME R 18

A 61 18'INVALID EMPLOYEE NUMBER'

A CWKDTX R 55REFFLD(CWKDT)

A EDTCDE(Y)

A EHWRK R 71EDTCDE(L)

A SPACEA(1)

A*

A* The third format, TOTL1, contains the definition for total time

A* level break L1. The format is written on a change of week

A* ending date or a change of project code.

A*

A R TOTL1 SPACEB(1)

A 54'WEEKLY TOTAL'

A WKTOT 7S 1 69EDTCDE(L)

A SPACEA(2)

Figure 196 (Part 3 of 4). Project Summary Report Data Descriptions - PRG07RP

466 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A*

A* The fourth format, TOTL2, contains the definition for total

A* time level break L2. The format is written on a change of

A* project code.

A*

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R TOTL2 SPACEB(1)

A 2'PROJECT SUMMARY:'

A 20'CURRENT CURRENT'

A 49'PRIOR YEAR TOTAL PROJECT'

A 82'% VARIANCE TO'

A SPACEA(1)

A 21'MONTH YEAR TO DATE'

A 52'TOTAL HOURS'

A 81'ESTIMATED HOURS'

A SPACEA(1)

A PRMTH 7S 1 19EDTCDE(L)

A PRYER 9S 1 32EDTCDE(L)

A PRHRP R 49EDTCDE(L)

A PRTOT 9S 1 65EDTCDE(L)

A PRVAR 5S 1 86EDTCDE(L)

Figure 196 (Part 4 of 4). Project Summary Report Data Descriptions - PRG07RP

 Chapter 13. RPG/400 Sample Programs 467

 Monthly Processing

Project Summary Report RPG/400 Program - PRG07
Figure 197 shows RPG/400 program PRG07 with embedded comments to explain
the logic flow and use of various RPG/400 functions and operation codes.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PRG07 - Time Reporting Project Summary Report

F* DESCRIPTION - This program produces the time reporting monthly

F* project summary report. All time entries for the

F* month are printed by employee number within week

F* ending date within project code. Subtotals is

F* printed by week and a project summary is printed

F* on a change of project code.

F**

F* This program uses externally described files. Files

F* used are: TRMNTHL - logical view of TRMNTH, monthly transaction

F* file by project code, employee number and

F* week ending date.

F* EMPMST - employee master file

F* PRJMST - project master file

F* PRG07RP - project summary report file

F**

F* INDICATORS USED:

F* 60 - Project master record not found

F* 61 - Employee master record not found

F* L1 - Control level on week ending date

F* L2 - Control level on project code

F**

F* SUBROUTINES USED:

F* DTLSR - Detail calculations routine

F* LICHK - Line count check routine

F* L2CLR - Clear work fields at detail time L2

F* SUBRL1 - Total time calculations - change of week ending date

F* SUBRL2 - Total time calculations - change of project code

F**

Figure 197 (Part 1 of 7). Sample RPG/400 Program - PRG07

468 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FTRMNTHN IP E K DISK

FEMPMST IF E K DISK

FPRJMST IF E K DISK

FPRG07RP O E PRINTER

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E*

E* The following array is used to store the weekly project code

E* hours. The array contains up to five weekly totals.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E ARRP 5 5 1

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The following code renames the monthly transaction file input

I* field names. These fields appear in other data definitions

I* and are overlaid when those files are read, these code renames

I* prevent the overlay.

IRcdname+....In...*

IRCMNTH

I..............Ext-field+......................Field+L1M1..PlMnZr...*

I PRCDE PRCDEXL2

I CWKDT CWKDTXL1

I CMTDT CMTDTX

I* Externally described control file data area

I*

IDsname....NODsExt-file++.............OccrLen+......................*

ICTLFIL EUDS

I*

Figure 197 (Part 2 of 7). Sample RPG/400 Program - PRG07

 Chapter 13. RPG/400 Sample Programs 469

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* MAINLINE: The mainline routine consists of four EXSR subroutines.

C* The first subroutine is processed at detail time when the control

C* level indicator L2 is on. This occurs on the first RPG/400

C* program cycle and on the RPG/400 program cycle following total

C* time calculations. The L2CLR subroutine clears work fields and

C* writes report headings. The second subroutine, DTLSR, is

C* processed on each RPG/400 detail time cycle. The routine writes

C* detail report lines and accumulates data for total time printing.

C* The third and fourth subroutines are processed at total time.

C* The SUBRL1 subroutine is processed on a change of week ending

C* date and also on a change of project code (RPG logic sets on

C* all lower level control indicators when a control break occurs,

C* that is, when L2 is set on, so is L1). The SUBRL2 subroutine

C* is processed on a change of project code.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C L2 EXSR L2CLR

C EXSR DTLSR

CL1 EXSR SUBRL1

CL2 EXSR SUBRL2

C*

C**

C* DTLSR SUBROUTINE: This routine performs detail time operations.

C* The hours worked EHWRK from the transaction record are added

C* to the current element of the project hours array. The employee

C* master file is accessed using the CHAIN operation and the

C* employee number from the transaction record. The detail record

C* is then written to the printer file PRG07RP by using the record

C* format DETAIL. The line counter is incremented by one and the

C* overflow routine LICHK is processed to determine if a skip to

C* new page and heading line output is required.

C*

Figure 197 (Part 3 of 7). Sample RPG/400 Program - PRG07

470 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C DTLSR BEGSR

C EHWRK ADD ARRP,P ARRP,P

C EMPNO CHAINEMPMST 61

C WRITEDETAIL

C ADD 1 LICNT

C EXSR LICHK

C ENDSR

C*

C**

C* SUBRL1 SUBROUTINE: This routine performs total time operations.

C* The current week's total hours from the project hours array is

C* moved to the print field WKTOT using the Z-ADD operation and the

C* current occurrence of the project array (array index value in P).

C* The weekly total line is written to printer file PRG07RP using

C* print format TOTL1. The project hours array index P is

C* incremented by one for accumulating the next week's hours, and

C* the line counter is incremented by two. The LICHK overflow

C* routine is processed to determine if a skip to new page and

C* heading line output is required.

C*

C SUBRL1 BEGSR

C Z-ADDARRP,P WKTOT

C WRITETOTL1

C ADD 1 P

C ADD 2 LICNT

C EXSR LICHK

C ENDSR

Figure 197 (Part 4 of 7). Sample RPG/400 Program - PRG07

 Chapter 13. RPG/400 Sample Programs 471

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBRL2 SUBROUTINE: This routine performs total time operations.

C* The line counter value is checked. If the value is greater than

C* or equal to 55, it is set to 60 and the LICHK overflow routine

C* is processed. The program performs these operations to ensure

C* that enough print lines are available on the page to print the

C* project total lines. The project array is summed using the

C* XFOOT operation. This operation adds all elements of the array

C* together and places the sum in the result field. The series of

C* arithmetic operations that follow prepare the project summary

C* lines for printing. The total project hours for the month are

C* added to the total year-to-date project hours from the project

C* file to determine current year-to-date hours. The current year-

C* to-date hours are added to the prior year total to determine the

C* total project hours. The total project hours is subtracted from

C* the estimated total hours, and the sign of the result is changed

C* using the Z-SUB operation to give the variance hours. The

C* variance hours are divided by the estimated total hours and then

C* multiplied by 100 to give the variance percent. This percent

C* indicates what percent the actual hours are greater than

C* (positive %) or less than (negative %) the estimated hours.

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SUBRL2 BEGSR

C LICNT IFGE 55

C Z-ADD60 LICNT

C EXSR LICHK

C END

C XFOOTARRP PRMTH

C PRMTH ADD EPHRY PRYER

C PRYER ADD PRHRP PRTOT 91

C PREST SUB PRTOT PRDIF 91

C Z-SUBPRDIF PRDIF

C PRDIF DIV PRTOT WRK1 53H

C WRK1 MULT 100 PRVAR 51

Figure 197 (Part 5 of 7). Sample RPG/400 Program - PRG07

472 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The employee total line is now ready for printing. The TOTL2

C* format is written. Because the program will perform detail

C* time L2 operations on the next cycle to prepare for the next

C* project code, the line counter field is not incremented and

C* overflow is not checked after writing the format.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C WRITETOTL2

C ENDSR

C*

C**

C* LICHK SUBROUTINE: This routine controls page overflow. If the

C* line count is greater than or equal to 60, the heading format

C* TITLE1 is written and the line count is set to 9.

C*

C LICHK BEGSR

C LICNT IFGE 60

C WRITETITLE1

C Z-ADD9 LICNT

C END

C ENDSR

Figure 197 (Part 6 of 7). Sample RPG/400 Program - PRG07

 Chapter 13. RPG/400 Sample Programs 473

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* L2CLR SUBROUTINE: This routine prepares work fields and prints

C* heading lines before processing the first project detail record.

C* The project hours array ARRP is initialized to 0 and the array

C* index set to 1. The project master file is accessed using the

C* project code from the transaction record. If the project record

C* is not found, indicator 60 is set on. The report headings are

C* printed by writing print format TITLE1 and the line counter is

C* set to 9.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C L2CLR BEGSR

C Z-ADD0 ARRP

C Z-ADD1 P 10

C PRCDEX CHAINPRJMST 60

C *IN60 IFEQ '1'

C MOVE *BLANKS PRDSC

C MOVEL'INVALID' PRDSC

C END

C WRITETITLE1

C Z-ADD9 LICNT 30

C ENDSR

Figure 197 (Part 7 of 7). Sample RPG/400 Program - PRG07

474 RPG/400 User's Guide

 Monthly Processing

Time Reporting Reason Code Summary Report Layout - PRG08RP
The Time Reporting Reason Code Summary report lists all time entry transactions
charged against a reason code. The report is organized by employee number
within week ending date within reason code. Sub totals are printed on a change of
week ending date and a reason code summary is printed on a change of reason
code.

Figure 198 shows the Time Reporting Reason Code Summary Report. The alpha-
numeric fields defined in the report are represented by a string of As, numeric fields
are represented by a string of 9s, and dates are represented by MM/DD/YY. See
Figure 199 on page 476 for the data description specifications for report
PRG08RP.

┌───┬──┐
│ │ 0 0 0 0 0 0 0 0 0 1 1 │
│ │000000000111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999000000000011111│
│ │123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234│
├───┼──┤
│001│ │
│002│ │
│003│ PRG08 TIME REPORTING REASON CODE SUMMARY PAGE 9999 │
│004│ FOR THE PERIOD ENDED MM/DD/YY MM/DD/YY │
│005│ │
│006│ REASON CODE AAAAAAAA DESCRIPTION AA │
│007│ │
│008│ EMPLOYEE EMPLOYEE NAME WEEK ENDING HOURS │
│009│ NUMBER DATE WORKED │
│010│ 999999 AAAAAAA AAAAAAAAAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│011│ 999999 AAAAAAAAAAAA AAAAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│012│ 999999 AAAAAAAAA AAAAAAAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│013│ │
│014│ WEEKLY TOTAL 999999.9- │
│015│ │
│016│ 999999 AAAAAAAAAA AAAAAAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│017│ 999999 AAAAAAAAAAAAAA AAAAAAAAAAAAAAA MM/DD/YY 9999.9- │
│018│ │
│019│ WEEKLY TOTAL 999999.9- │
│020│ │
│021│ REASON CODE SUMMARY: CURRENT CURRENT PRIOR YEAR │
│022│ MONTH YEAR TO DATE TOTAL │
│023│ 999999.9- 99999999.9- 99999999.9- │
│024│ │
│025│ │
└───┴──┘

Figure 198. Time Reporting Reason Code Summary Report Layout - PRG08RP

 Chapter 13. RPG/400 Sample Programs 475

 Monthly Processing

Reason Code Summary Report Data Descriptions - PRG08RP

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A**

A* This print file describes the format for the monthly time

A* reporting reason code summary report. In this printer file are

A* four record formats, identified by an R in position 17 followed

A* by the format name in positions 19 through 20. The following

A* keywords are used:

A* DATE - Specifies the system date

A* EDTCDE(a) - Edits output capable numeric fields

A* PAGNBR - Specifies a four digit, zoned decimal field to

A* contain the page number.

A* REF(REFMST) - Lines containing an R in position 29 uses the

A* attributes from a previously defined field in

A* this reference file.

A* REFFLD - References a field to a previously defined field.

A* SKIPB(n) - Specifies that the printer device is to skip to

A* a specific line before it prints the next line.

A* SPACEA(n) - Specifies that the printer device is to space n

A* lines after it prints one or more lines.

A* SPACEB(n) - Specifies that the printer device is to space n

A* lines before it prints the next line or lines.

A**

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A REF(REFMST)

A*

A* The first format, TITLE1, contains the definition for the reports

A* heading lines. The format is written on the first cycle,

A* on a change of reason code or when overflow occurs while

A* printing details for a reason code.

A*

Figure 199 (Part 1 of 3). Reason Code Summary Report Data Descriptions - PRG08RP

476 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R TITLE1 SKIPB(3)

A 2'PRG08RP'

A 29'TIME REPORTING REASON CODE SUMMARY'

A 83'PAGE'

A 88PAGNBR

A SPACEA(1)

A 31'FOR THE PERIOD ENDED'

A CMTDT R 52EDTCDE(Y)

A 84DATE EDTCDE(Y)

A SPACEA(2)

A 2'REASON CODE'

A RSCDEX R 15REFFLD(RSCDE)

A 29'DESCRIPTION'

A RSDSC R 42

A SPACEA(2)

A 2'EMPLOYEE EMPLOYEE NAME'

A 52'WEEK ENDING HOURS'

A SPACEA(1)

A 3'NUMBER'

A 55'DATE WORKED'

A SPACEA(1)

A*

A* The second format, DETAIL, contains the definition for the detail

A* print lines. The format is written for each detail record in

A* the monthly transaction file.

A*

Figure 199 (Part 2 of 3). Reason Code Summary Report Data Descriptions - PRG08RP

 Chapter 13. RPG/400 Sample Programs 477

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R DETAIL

A EMPNO R 3EDTCDE(Z)

A N61 EMPNAM 30 16

A 61 16'INVALID EMPLOYEE NUMBER'

A CWKDTX R 53REFFLD(CWKDT)

A EDTCDE(Y)

A EHWRK R 69EDTCDE(L)

A SPACEA(1)

A*

A* The third format, TOTL1, contains the definition for total time

A* level break L1. The format is written on a change of week

A* ending date or a change of reason code.

A*

A R TOTL1 SPACEB(1)

A 52'WEEKLY TOTAL'

A WKTOT 7S 1 67EDTCDE(L)

A SPACEA(2)

A*

A* The fourth format, TOTL2, contains the definition for total

A* time level break L2. The format is written on a change of

A* reason code.

A*

A R TOTL2 SPACEB(1)

A 2'REASON CODE SUMMARY:'

A 29'CURRENT CURRENT'

A 60'PRIOR YEAR'

A SPACEA(1)

A 30'MONTH YEAR TO DATE'

A 63'TOTAL'

A SPACEA(1)

A RSMTH 7S 1 28EDTCDE(L)

A RSYER 9S 1 41EDTCDE(L)

A RSHRP R 60EDTCDE(L)

Figure 199 (Part 3 of 3). Reason Code Summary Report Data Descriptions - PRG08RP

478 RPG/400 User's Guide

 Monthly Processing

Reason Code Summary Report RPG/400 Program - PRG08
Figure 200 shows the RPG/400 program PRG08 with embedded comments to
explain the logic flow and use of various RPG/400 functions and operation codes.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PRG08 - Time Reporting Reason Code Summary Report

F* DESCRIPTION - This program produces the time reporting monthly

F* reason code summary report. All time entries for

F* the month are printed by employee number within

F* week ending date within reason code. Subtotals

F* are printed by week and a reason code summary is

F* printed on a change of reason code.

F**

F* This program uses externally described files. Files

F* used are: TRMNTHN - logical view of TRMNTH, monthly transaction

F* file by reason code, employee number, and

F* week ending date

F* EMPMST - employee master file

F* RSNMST - reason code master file

F* PRG08RP - reason code summary report file

F**

F* INDICATORS USED:

F* 60 - Reason code master record not found

F* 61 - Employee master record not found

F* 90 - String found in SCAN operation

F* L1 - Control level on week ending date

F* L2 - Control level on reason code

F**

F* SUBROUTINES USED:

F* DTLSR - Detail calculations routine

F* *INZSR - Initialization subroutine

F* LICHK - Line count check routine

F* L2CLR - Clear work fields at detail time L2

F* SUBRL1 - Total time calculations - change of week ending date

F* SUBRL2 - Total time calculations - change of reason code

F**

Figure 200 (Part 1 of 8). Sample RPG/400 Program - PRG08

 Chapter 13. RPG/400 Sample Programs 479

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FTRMNTHR IP E K DISK

FEMPMST IF E K DISK

FRSNMST IF E K DISK

FPRG08RP O E PRINTER

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E*

E* The following array is used to store the weekly reason code

E* hours. The array contains up to five weekly totals.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E ARRN 5 5 1

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I*

I* The following code renames the monthly transaction file input

I* field names. These fields appear in other data definitions

I* and are overlaid when those files are read, these code renames

I* prevent the overlay.

IRcdname+....In...*

IRCMNTH

I..............Ext-field+......................Field+L1M1..PlMnZr...*

I RSCDE RSCDEXL2

I CWKDT CWKDTXL1

I CMTDT CMTDTX

I* Externally described control file data area

I*

IDsname....NODsExt-file++.............OccrLen+......................*

ICTLFIL EUDS

I*

Figure 200 (Part 2 of 8). Sample RPG/400 Program - PRG08

480 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* MAINLINE: The mainline routine consists of four EXSR subroutines.

C* The *INZSR initialization subroutine is processed first during the

C* initialization step of the program cycle. The *INZSR subroutine

C* initializes fields used in calculations.

C* The L2CLR subroutine is processed at detail time when the control

C* level indicator L2 is on. This occurs on the first RPG/400

C* program cycle and on the RPG/400 program cycle following total

C* time calculations. The L2CLR subroutine clears work fields and

C* writes report headings. The second subroutine, DTLSR, is

C* processed on each RPG/400 detail time cycle. This routine writes

C* detail report lines and accumulates data for total time printing.

C* The third and fourth subroutines are processed at total time.

C* The SUBRL1 subroutine is processed on a change of week ending

C* date and also on a change of reason code (RPG/400 logic sets on

C* all lower level control indicators when a control break occurs,

C* that is, when L2 is set on, so is L1). The SUBRL2 subroutine is

C* processed on a change of reason code.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C L2 EXSR L2CLR

C EXSR DTLSR

CL1 EXSR SUBRL1

CL2 EXSR SUBRL2

C*

Figure 200 (Part 3 of 8). Sample RPG/400 Program - PRG08

 Chapter 13. RPG/400 Sample Programs 481

 Monthly Processing

C**

C* DTLSR SUBROUTINE: This routine performs detail time operations.

C* The hours worked EHWRK from the transaction record are added

C* to the current element of the reason code hours array. The

C* employee master file is accessed using the CHAIN operation and

C* the employee number from the transaction record. If an EMPMST

C* record is found, indicator 61 is off and the SCAN, SUBST and CAT

C* operations format the employee name for the report. The employee

C* name from the input record is in the format of first name,

C* followed by a blank, followed by last name. The employee name is

C* printed on the report in the reverse format: last name, followed by

C* a blank, followed by the first name. The SCAN operation determines

C* the position of the blank in ENAME. If the SCAN is successful: the

C* lengths of the first and last name are calculated; the SUBST

C* operations extract the first and last name from the ENAME field;

C* the CAT operation concatenates the names with one blank between

C* them. If the SCAN is not successful, the employee name is printed

C* on the report as it appears on the input record. The detail

C* record is then written to the printer file PRG08RP using the

C* record format DETAIL. The line counter is incremented by one

C* and the overflow routine LICHK is processed to determine if a

C* skip to new page and heading line output is required.

C*

Figure 200 (Part 4 of 8). Sample RPG/400 Program - PRG08

482 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C DTLSR BEGSR

C EHWRK ADD ARRN,N ARRN,N

C EMPNO CHAINEMPMST 61

C *IN61 IFEQ '0'

C BLK1 SCAN ENAME BLKPOS 20 90

C *IN90 IFEQ '1'

C 1 ADD BLKPOS SPOS 20

C LENENM SUB BLKPOS LENLNM 20

C LENLNM SUBSTENAME:SPOSLNAME 30

C BLKPOS SUB 1 EPOS 20

C EPOS SUBSTENAME FNAME 30

C LNAME CAT FNAME:1 EMPNAM

C CLEARFNAME

C CLEARLNAME

C ELSE

C MOVE ENAME EMPNAM

C END

C END

C WRITEDETAIL

C ADD 1 LICNT

C EXSR LICHK

C ENDSR

C**

Figure 200 (Part 5 of 8). Sample RPG/400 Program - PRG08

 Chapter 13. RPG/400 Sample Programs 483

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* *INZSR SUBROUTINE: This routine initializes fields using the

C* MOVE and Z-ADD operations. The BLK1 and LENENM fields are used

C* to format the employee name in the DTLSR subroutine. The N

C* field is the index for array ARRN.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *INZSR BEGSR

C MOVE *BLANK BLK1 1

C Z-ADD30 LENENM 20

C Z-ADD1 N 10

C ENDSR

C*

C**

C* SUBRL1 SUBROUTINE: This routine performs total time operations.

C* The current weeks total hours from the reason code hours array

C* is moved to the print field WKTOT using the Z-ADD operation and

C* the current occurrence of the reason code array (array index

C* value in N). The weekly total line is written to printer file

C* PRG08RP using print format TOTL1. The reason code hours array

C* index N is incremented by one for accumulating the next week's

C* hours and the line counter is incremented by two. The LICHK

C* overflow routine is processed to determine if a skip to new page

C* and heading line output is required.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SUBRL1 BEGSR

C Z-ADDARRN,N WKTOT

C WRITETOTL1

C ADD 1 N

C ADD 2 LICNT

C EXSR LICHK

C ENDSR

Figure 200 (Part 6 of 8). Sample RPG/400 Program - PRG08

484 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* SUBRL2 SUBROUTINE: This routine performs total time operations.

C* The line counter value is checked. If it is greater than or

C* equal to 55, then it is set to 60 and the LICHK overflow

C* subroutine is processed. The program performs these operations

C* to ensure that enough print lines are available on the page to

C* print the reason code total lines. The reason code array is

C* summed using the XFOOT operation. This operation adds all

C* elements of the array together and places the sum in the result

C* field. The current month total hours are added to the year-to-

C* date hours from the reason code file to determine the current

C* year-to-date hours.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C SUBRL2 BEGSR

C LICNT IFGE 55

C Z-ADD60 LICNT

C EXSR LICHK

C END

C XFOOTARRN RSMTH

C RSMTH ADD RSHRY RSYER

C*

C* The reason code total line is now ready for printing. The TOTL2

C* format is written. Because the program will perform detail time

C* L2 operations on the next cycle to prepare for the next reason

C* code, the line counter field is not incremented and overflow is

C* not checked after writing the format.

C*

C WRITETOTL2

C ENDSR

Figure 200 (Part 7 of 8). Sample RPG/400 Program - PRG08

 Chapter 13. RPG/400 Sample Programs 485

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* LICHK SUBROUTINE: This routine controls page overflow.

C* If the line count is greater than or equal to 60, the heading

C* format TITLE1 is written and the line count is set to 9.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C LICHK BEGSR

C LICNT IFGE 60

C WRITETITLE1

C Z-ADD9 LICNT

C END

C ENDSR

C*

C**

C* L2CLR SUBROUTINE: This routine prepares work fields and prints

C* heading lines before processing the first reason code detail

C* record. The reason code hours array ARRN is set to 0 using the

C* CLEAR operation and the array index is set to 1 using the RESET

C* operation. The array index, N, is initialized to 1 in the

C* initialization subroutine and is reset to that value. The

C* reason code master file is accessed using the reason code from

C* the transaction record. If the reason code record is not found,

C* indicator 60 is set on. The report headings are printed by

C* writing print format TITLE1 and the line counter is set to 9.

C*

C L2CLR BEGSR

C CLEARARRN

C RESETN

C RSCDEX CHAINRSNMST 60

C WRITETITLE1

C Z-ADD9 LICNT 30

C ENDSR

Figure 200 (Part 8 of 8). Sample RPG/400 Program - PRG08

486 RPG/400 User's Guide

 Monthly Processing

Master File Monthly Update and Clear RPG/400 Program - PRG04
Figure 201 shows the RPG/400 program PRG04 with embedded comments to
explain the logic flow and use of various RPG/400 functions and operation codes.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

F**

F* PRG04 - Time Reporting Master File Update

F* DESCRIPTION - This program performs monthly and year end roll

F* of time reporting hours. The files and type of

F* update are controlled by external indicators.

F**

F* This program uses externally described files. Files

F* used are: EMPMST - Employee master file

F* PRJMST - Project master file

F* RSNMST - Reason code master file

F**

F* INDICATORS USED:

F* 50 - End of file

F* U1 - Employee master update

F* U2 - Project master update

F* U3 - Reason code master update

F* U4 - Year end processing

F**

F* SUBROUTINES USED:

F* EMPSR - Update employee master

F* PRJSR - Update project master

F* RSNSR - Update reason code master

F**

FFilenameIPEAF....RlenLK1AIOvKlocEDevice+......KExit++Entry+A....U1.*

FEMPMST UF E K DISK U1

FPRJMST UF E K DISK U2

FRSNMST UF E K DISK U3

Figure 201 (Part 1 of 5). Sample RPG/400 Program - PRG04

 Chapter 13. RPG/400 Sample Programs 487

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* MAINLINE: The mainline routine determines which file is to be

C* processed and runs the appropriate subroutine. The master

C* files are all described as full procedural (F in position 16

C* of the file description specification), which allows the program

C* to perform the read/write operations on the files. All files

C* are controlled by a file condition indicator (position 71 to 72

C* of the file description specification) that controls which file

C* is processed.

C**

C* The following code determines which subroutine is evoked.

C* If *INU1 is on (equal to 1), EMPSR is selected; if *INU2 is on,

C* PRJSR is selected; if *INU3 is on, RSNSR is selected.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C *INU1 CASEQ'1' EMPSR

C *INU2 CASEQ'1' PRJSR

C *INU3 CASEQ'1' RSNSR

C END

C**

C* EMPSR SUBROUTINE: The following line of code performs a Do Until

C* condition. The program loops between the DOUEQ statement and

C* the END statement until end of file (*IN50 equals 1) has been

C* reached.

C*

C EMPSR BEGSR

C*

C *IN50 DOUEQ'1'

C READ RCEMP 50

Figure 201 (Part 2 of 5). Sample RPG/400 Program - PRG04

488 RPG/400 User's Guide

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C* The following lines of code add current month hours to the

C* year-to-date hours for the employee master file. Since factor

C* 1 is not specified in the statements, factor 2 is added to

C* the result fields and the result place in the result field.

C* If *INU4 is on, this session is run for year end, and the

C* current year hours are moved to the prior year hours.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C ADD EPHRC EPHRY

C ADD EPNRC EPNRY

C U4 MOVE EPHRY EPHRP

C U4 MOVE EPNRY EPNRP

C* The following code clears the current month hours fields

C* by zeroing them and adding 0 to them. If *INU4 is on, this

C* session is being run for year end, and the current year

C* hours must be zeroed as well.

C Z-ADD0 EPHRC

C Z-ADD0 EPNRC

C U4 Z-ADD0 EPHRY

C U4 Z-ADD0 EPNRY

C* The following code updates the employee master file using

C* the RCEMP format.

C UPDATRCEMP

C END

C* The preceding END statement is associated with the DOUEQ

C* statement.

C*

C* Last record indicator *INLR is set on (equal to 1) and

C* the program ends.

C*

C MOVE '1' *INLR

C ENDSR

Figure 201 (Part 3 of 5). Sample RPG/400 Program - PRG04

 Chapter 13. RPG/400 Sample Programs 489

 Monthly Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C**

C* PRJSR SUBROUTINE: This subroutine performs the same functions

C* as the EMPSR subroutine only the project master is updated.

C* Refer to EMPSR for specific information.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C PRJSR BEGSR

C *IN50 DOUEQ'1'

C READ RCPRJ 50

C*

C* Add current month to year-to-date, and move current year to

C* to prior year if U4 is on.

C ADD PRHRC PRHRY

C U4 MOVE PRHRY PRHRP

C*

C* Zero current month, and year-to-date if U4 is on.

C Z-ADD0 PRHRC

C U4 Z-ADD0 PRHRY

C*

C* Update project master file.

C UPDATRCPRJ

C END

C*

C* Set on last record indicator.

C MOVE '1' *INLR

C ENDSR

C**

C* RSNSR SUBROUTINE: This subroutine performs the same functions

C* as the EMPSR subroutine only the reason code master is updated.

C* Refer to EMPSR for specific information.

C*

C RSNSR BEGSR

C *IN50 DOUEQ'1'

C READ RCRSN 50

Figure 201 (Part 4 of 5). Sample RPG/400 Program - PRG04

490 RPG/400 User's Guide

 Year End Processing

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* Add current month to year-to-date, and move current year to

C* to prior year if U4 is on.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C ADD RSHRC RSHRY

C U4 MOVE RSHRY RSHRP

C*

C* Zero current month, and year-to-date if U4 is on.

C Z-ADD0 RSHRC

C U4 Z-ADD0 RSHRY

C*

C* Update reason code master file

C UPDATRCRSN

C END

C*

C* Set on last record indicator

C MOVE '1' *INLR

C ENDSR

C*

Figure 201 (Part 5 of 5). Sample RPG/400 Program - PRG04

Year End Processing
All the master files are processed as part of the last monthly update for the year to
prepare the files for the new year. Each master file contains both current year-to-
date and prior year total hours. Program PRG04 performs both the monthly and
year end roll of the time reporting hours. External switches are used to control
which file is processed, and if the session is for a regular month end or for a com-
bined month end and year end. Refer to the detailed discussion of program
PRG04 for details.

 Chapter 13. RPG/400 Sample Programs 491

 Year End Processing

492 RPG/400 User's Guide

 Compiler Overview

Appendix A. RPG Compiler and Auto Report Program
Service Information

This appendix is provided for the RPG/400 compiler service personnel to use when
investigating RPG/400 compiler problems and provides the following information:

 ¹ Compiler overview
¹ Compiler debugging options
¹ Intermediate representation of program (IRP) layout
¹ Automatic report program overview.

RPG/400 compiler programmers can also use this information to investigate
RPG/400 compiler problems on their own before or instead of calling for service.

 Compiler Overview
This section provides the following compiler information:

¹ How the compiler works
¹ Compiler phase descriptions
¹ Major compiler data area descriptions
¹ Compiler error message organization.

Figure 202 on page 494 summarizes how an RPG/400 source program is com-
piled into a (encapsulated) program object.

Intermediate text, which is output from step 1 in Figure 202 on page 494, is a rep-
resentation of RPG/400 source statements that is created by compiler phases and
exists only while they are running. This text can be dynamically listed with the
ITDUMP parameter of the CL command CRTRPGPGM (Create RPG/400 Program)
or can be listed at the completion of any compiler phase with the SNPDUMP
parameter of the CL command CRTRPGPGM. Refer to “Compiler Debugging
Options” on page 498 for explanations of these parameters and examples of inter-
mediate text.

When compilation ends, intermediate text has been processed and converted to
appropriate IRP (intermediate representation of a program). IRP, which is output
from step 2 in Figure 202 on page 494, can be dynamically listed with the
CODELIST parameter of the CL command CRTRPGPGM or can be listed at the
end of compilation with an *LIST value for the GENOPT parameter on the CL
command CRTRPGPGM. Refer to “Compiler Debugging Options” on page 498 for
explanations of these parameters and examples of IRP statements.

A program template is output from step 3 in Figure 202 on page 494. A template
is the final form of a program before it is converted to an operable program, which
is called an encapsulated program. A template can be listed at the end of a compi-
lation with an *DUMP value for the GENOPT parameter on the CL command
CRTRPGPGM. Refer to “Compiler Debugging Options” on page 498 for explana-
tion of this parameter and an example of a program template listing.

 Copyright IBM Corp. 1994 493

 Compiler Overview

 Compiler Phases
The compiler consists of the phases listed in Table 20 on page 495. These
phases are shown in the order in which they are run.

If *NOGEN has been specified for the OPTION parameter on the CL command
CRTRPGPGM, compilation ends following phase QRGCR.

During compilation, those phases that have a U in the third column in Table 20 on
page 495 run unconditionally and those phases that have a C in the third column
run only if they are required for the program being compiled.

The first compiler phase is named QRG1. All phases that follow QRG1 have names
that begin with QRG and end with two identifying characters. These phases can be
referred to by their identifying characters. For example, these characters can be
used as values for debugging parameters in the CL command CRTRPGPGM.
Refer to “Compiler Debugging Options” on page 498 for more information.

 INPUT PROCESSING OUTPUT

This process begins when a Create RPG
Program (CRTRPGPGM) command is entered.

 │
 │
 6
┌──────────┐ ┌──┐
│RPG SOURCE├───────5│ 1. This compiler converts the source, │
└──────────┘ │ statement by statement to inter- │
 │ mediate text. │ ┌─────────────────┐
 │ ────┼────────5│Intermediate Text│

│ 2. The compiler produces an inter- │ └─┬───────────────┘
│ mediate representation of the │%──────────┘
│ program, called IRP, from the │

 │ intermediate text. │ ┌───┐
 │ ────┼────────5│IRP│

│ 3. Another program, called the program │ └─┬─┘
│ resolution monitor (PRM), converts │%──────────┘
│ the IRP to object code that is │
│ called the program template. │ ┌─────────────────┐
│ ────┼────────5│Program Template │
│ 4. The program template is converted │ └─┬───────────────┘
│ (translated) to an operable │%──────────┘
│ that is called an encapsulated │

 │ program. │ ┌─────────────────┐
│ ────┼────────5│Operable Program │

 └──┘ └─────────────────┘

Figure 202. Overview of the RPG/400 Compiler

494 RPG/400 User's Guide

 Compiler Overview

Table 20 (Page 1 of 2). Compiler Phases

Phase
Name

Phase Description

Called:
Unconditionally (U)
Conditionally (C)

QRG1 Command interface that receives control when the CRTRPGPGM
command is entered, assigns defaults to the command parameter list, and
passes the command parameter list to QRGRT.

 U

QRGRT Root phase that controls the calling of all other compiler phases and con-
tains all system interfaces such as reading and printing records.

 U

QRGSF Phase that diagnoses the file description specifications and builds a file
table.

 C

QRGSE Phase that diagnoses the extension specifications and builds intermediate
text.

 C

QRGSI Phase that diagnoses the input specifications and builds intermediate text. C

QRGSC Phase that diagnoses the calculation specifications and builds intermediate
text.

 C

QRGSO Phase that diagnoses the output specifications and builds intermediate
text.

 C

QRGAE Phase that generates declare statements for fields and creates edit masks. U

QRGD1 Phase that diagnoses relational errors among the source specifications.
These errors are illogical or incorrect combinations of entries.

 U

QRGCR Phase that produces a cross-reference listing, generates code for proc-
essing compile-time tables, and produces a list of compile-time messages
on completion of a compilation.

 U

QRGGB Phase that generates user file control blocks (UFCBs). U

QRGFB Phase that is called by QRGGB to generate file information blocks (FIBs). U

QRGPL Phase that is called by QRGGB to generate PLISTs. U

QRGGV Phase that is called by QRGGB to generate file I/O drivers. C

QRGGC Mainline phase that controls processing of calculation operations. C

QRGAC Phase that is called by QRGGC to process arithmetic calculation operations. C

QRGBC Phase that is called by QRGGC to process branch calculation operations. C

QRGCC Phase that is called by QRGGC to process compare calculation operations. C

QRGIC Phase that is called by QRGGC to generate input/output linkages for calcu-
lation operations.

 C

QRGMC Phase that is called by QRGGC to generate code for MOVE calculation oper-
ations.

 C

QRGRC Phase that is called by QRGGC to process CLEAR and RESET calculation oper-
ations.

 C

QRGTC Phase that is called by QRGGC to process string calculation operations. C

QRGYC Phase that is called by QRGGC to process miscellaneous calculation oper-
ations.

 C

QRGGI Phase that generates code that extracts data from records and fills input
fields.

 C

QRGGO Phase that generates code that builds output records. C

QRGGS Phase that generates data management for DISK and SEQ files. C

 Appendix A. RPG Compiler and Auto Report Program Service Information 495

 Compiler Overview

Table 20 (Page 2 of 2). Compiler Phases

Phase
Name

Phase Description

Called:
Unconditionally (U)
Conditionally (C)

QRGGW Phase that is called by QRGGS to generate data management for WORKSTN

files.
 C

QRGGR Phase that is called by QRGGS to generate data management for RAF files. C

QRGC1 Phase that generates code for getting input and processing multiple files. U

QRGEC Phase that generates subroutines required for the program, generates
code for processing run-time tables, and generates beginning and ending
code for the program.

 U

Major Compiler Data Areas
The major compiler data areas are a common area (VCOMMON), a field-name table
(XFDTAB), a file-name table (XFLTAB), a record-name table (XRCTAB), and an indicator
table (XINTAB).

Compiler Error Message Organization
Compiler error messages are organized according to the phases that issue them.
For example, any compiler message beginning with 2 is issued by phase QRGSF.
The following table lists compiler phases and the messages that they issue:

Table 21. Automatic Report Program Phases

Error
Messages

Phase

 0000 to 1999 QRGRT

 2000 to 2999 QRGSF

 3000 to 3999 QRGSE

 4000 to 4999 QRGSI

 5000 to 5999 QRGSC

 6000 to 6999 QRGSO

 7000 to 7999 QRGDI and QRGCR
 8000 to 8999 QRGAE and QRGCR

496 RPG/400 User's Guide

 Compiler Overview

 Run-Time Subroutines
Table 22 lists the run-time subroutines that are used by the compiler.

Table 22. Run-Time Subroutines

Subroutine
Name

Subroutine Description

Called:
Unconditionally (U)
Conditionally (C)

QRGXINIT Initializes the RPG/400 program. U

QRGXDUMP Provides a formatted dump of the RPG/400 program. C

QRGXERR Called when an error message is received. C

QRGXPRT Called by QRGXDUMP to print the dump. C

QRGXSTAT Called for the POST operation with a device specified in factor 1. C

QRGXTIME Called for the TIME operation code. C

QRGXIOU Called for the IN/OUT/UNLCK operation codes. Also used by the com-
piler to set the RETURNCODE data area and to retrieve the RPG/400
control-specification data area during compilation.

 U

QRGXMSG Sends RPG/400 run-time messages to the requester and provides
the system dump when requested.

 C

QRGXCLRF Clears the file before a table dump at program end. C

QRGXDSP Called for the DSPLY operation code. C

QRGXSIGE Signals exception for run-time terminal error. C

QRGXGDDM Called for the CALL GDDM operation. C

QRGINVX Unlocks data areas when a program ends because of errors. C

SUBR23R3 Message retrieving C

SUBR40R3 Moving double-byte data and deleting control characters. C

SUBR41R3 Moving double-byte data and adding control characters. C

 Appendix A. RPG Compiler and Auto Report Program Service Information 497

 Compiler Debugging Options

Compiler Debugging Options
This section explains each of the debugging parameters. For examples of debug-
ging information that can be requested by these parameters, refer to “Examples of
Using Compiler Debugging Options” on page 500.

*SOURCE Value for the OPTION Parameter
A value of *SOURCE for the OPTION parameter requests a listing of the RPG/400
source program. The default is *SOURCE.

*XREF Value for the OPTION Parameter
A value of *XREF for the OPTION parameter requests a cross-reference listing and
a key field information table (when appropriate). Refer to Chapter 3, “Compiling an
RPG/400 Program” for a description of this listing. The default is *XREF.

*DUMP Value for the OPTION Parameter
A value of *DUMP for the OPTION parameter causes the contents of major data
areas such as VCOMMON, file-name table, field-name table, and IT (intermediate text)
to be printed. This printing occurs only if compilation ends abnormally. Therefore,
*DUMP is usually specified when an unsuccessful compilation is retried. The default
is *NODUMP.

*LIST Value for the GENOPT Parameter
A value of *LIST for the GENOPT parameter causes IRP, its associated
hexadecimal code, and any error messages to be listed. The default is *NOLIST.

*ATR Value for the GENOPT Parameter
A value of *ATR for the GENOPT parameter causes the attributes for the IRP
source to be listed. The listing includes the field descriptions and the statement
numbers on which the fields are defined. The default is *NOATR.

*XREF Value for the GENOPT Parameter
A value of *XREF for the GENOPT parameter causes a cross-reference listing of all
objects defined in the IRP to be printed when compilation ends.

*DUMP Value for the GENOPT Parameter
A value of *DUMP for the GENOPT parameter causes the program template to be
listed. The default is *NODUMP.

*PATCH Value for the GENOPT Parameter
A value of *PATCH for the GENOPT parameter reserves space in the compiled
program for a program patch area. The program patch area can be used for your
debugging purposes. The size of the patch area is based on the size of the gener-
ated program. The default is *NOPATCH.

498 RPG/400 User's Guide

 Compiler Debugging Options

*OPTIMIZE Value for the GENOPT Parameter
A value of *OPTIMIZE for the GENOPT parameter causes the compiler to generate
a program that runs more efficiently and requires less storage. However, specifying
*OPTIMIZE can substantially increase the time required to create a program.
Existing programs can be optimized with the CL command CHGPGM.

 ITDUMP Parameter
For the CRTRPGPGM command, the ITDUMP parameter causes dynamic listing of
intermediate text produced by a specified phase. Dynamic listing means that the
intermediate text is printed during compilation while the intermediate text is being
built and stored. For the CRTRPTPGM command, the ITDUMP parameter causes
a flow of the major routines run in one or more specified phases to be printed.

As many as 25 phases, each identified by the last two characters of its name, can
be specified on the ITDUMP parameter. The list must be enclosed in parentheses.
For example, the following ITDUMP parameter causes dynamic listing of interme-
diate text produced by QRGSE, QRGSO, and QRGSC: ITDUMP(SESOSC).

 SNPDUMP Parameter
The SNPDUMP parameter produces a listing of major data areas and intermediate
text following the running of one or more specified phases.

As many as 25 phases, each identified by the last two characters of its name, can
be specified on the SNPDUMP parameter. The list must be enclosed in paren-
theses. For example, the following SNPDUMP parameter causes the listing of
intermediate text produced by QRGSI, QRGSC, and QRGSO and also causes the con-
tents of major data areas to be listed: SNPDUMP(SISCSO).

 CODELIST Parameter
The CODELIST parameter causes dynamic listing of IRP produced by a specified
phase. Dynamic listing means that the IRP is printed during compilation while the
specified phase processes.

As many as 25 phases, each identified by the last two characters of its name, can
be specified on the CODELIST parameter. The list must be enclosed in paren-
theses. For example, the following CODELIST parameter causes dynamic listing of
IRP produced by QRGGC, QRGGO, and QRGEC: CODELIST(GCGOEC).

 PHSTRC Parameter
The PHSTRC parameter specifies whether or not a phase trace occurs during com-
pilation. A phase trace consists of the names of compiler phases being printed on
the compiler listing in the order that the phases process. The numbers of the RXT
messages (such as compiler headings) are also listed as they are retrieved.

The values that can be coded for the PHSTRC parameter are *YES and *NO. *NO

is the default value.

 Appendix A. RPG Compiler and Auto Report Program Service Information 499

 Examples of Using Compiler Debugging Options

Examples of Using Compiler Debugging Options
Figure 203 on page 501 shows examples of debugging information that can be
requested by compiler debugging options on the CRTRPGPGM command. The
compiler listing in Figure 203 on page 501 was printed for a CRTRPGPGM
command that specified the following debugging parameters:

GENOPT(*LIST *DUMP) ITDUMP(SC) SNPDUMP(GO)

 CODELIST(GO) PHSTRC(*YES)

The PHSTRC(*YES) parameter causes the name of a phase to be printed when
the phase processes. For example, .A/ in Figure 203 shows that phase QRGSF
processed the file description specification, phase QRGSE processed the extension
specification, phase QRGSI processed the input specifications, and phase QRGSC

processed the calculation specifications.

The ITDUMP(SC) parameter causes printing of intermediate text that phase QRGSC
builds and stores. (See .B/ in Figure 203.)

The CODELIST(GO) parameter causes printing of IRP produced by phase QRGGO

when that phase ends. (See .C/ in Figure 203.)

The SNPDUMP(GO) parameter causes printing of the contents of major data areas
when phase QRGGO ends and causes printing of intermediate text produced by
QRGGO. (See .D/ in Figure 203.)

The *LIST value for the GENOPT parameter causes printing of IRP and machine
instructions when compilation ends. (See .E/ in Figure 203.) The headings in this
IRP listing indicate the following information:

SEQ: A sequential numbering of the IRP statements. Error messages such as IRP
syntax errors issued by the program resolution monitor use this number to refer to
the IRP statements in error.

INST: A sequential numbering of the machine instructions generated from the IRP
statements. Not all IRP statements cause machine instructions to be generated.
The instruction number can be used as a breakpoint for OS/400 debugging func-
tions. Refer to Chapter 4, “Error Messages, Testing, and Debugging” or the CL
Programmer’s Guide for further information about breakpoints.

GENERATED CODE: Machine instructions that have been generated from IRP
statements.

GENERATED OUTPUT: IRP statements.

BREAK: Breakpoints in the IRP that can be used for stopping points in OS/400
debugging functions. Refer to Chapter 4, “Error Messages, Testing, and
Debugging” or the CL Programmer’s Guide for further information about break-
points. If the breakpoint is a number, it indicates an RPG/400 source statement
from which the IRP statement was generated.

The *DUMP value for the GENOPT parameter causes printing of the program tem-
plate when compilation ends. (See .F/ in Figure 203.)

500 RPG/400 User's Guide

 Examples of Using Compiler Debugging Options

A value of *DUMP can be coded for the OPTION parameter to cause the contents of
major compiler data areas to be printed if the compiler ends abnormally.
Figure 204 on page 515 shows an example of the information printed. For this
example, the command is:

CRTRPGPGM OPTION(*DUMP)

RXT0001

RXT0002

RXT0003

RXT0004

RXT0028

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 1

RXT0005

 Compiler : IBM SAA RPG/400

RXT0020

 Command Options:

RXT0023

RXT0070

Program : QGPL/DATAE

RXT0071

Source file : *LIBL/QRPGSRC

RXT0072

Source member : *PGM

RXT0073

Source listing options : *SOURCE *XREF *GEN *NODUMP *NOSECLVL

RXT0024

RXT0074

Generation options : *LIST *NOXREF *NOATR *DUMP *NOOPTIMIZE

RXT0093

Source listing indentation . . . : *NONE

RXT0029

RXT0096

Type conversion options : *NONE

RXT0026

RXT0086

SAA flagging : *NOFLAG

RXT0075

Generation severity level . . . : 9

RXT0076

Print file : *LIBL/QSYSPRT

RXT0077

Replace program : *YES

RXT0027

RXT0087

Target release : *CURRENT

RXT0025

RXT0078

User profile : *USER

RXT0079

Authority : *CHANGE

RXT0080

Text : *SRCMBRTXT

RXT0081

Phase trace : *YES

RXT0082

Intermediate text dump : SC

RXT0083

Snap dump : GO

RXT0084

Codelist : GO

RXT0085

Ignore decimal data error . . . : *NO

RXT0097

Allow null values : *NO

RXT0010

 Actual Program Source:

RXT0011

Member : DATAE

RXT0012

File : QRPGSRC

RXT0013

Library : QGPL

RXT0014

Last Change : 01/25/94 14:40:26

OPTIONS PASSED IN BY CL

Figure 203 (Part 1 of 14). Examples of Compiler Debugging Information

 Appendix A. RPG Compiler and Auto Report Program Service Information 501

 Examples of Using Compiler Debugging Options

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 2

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER *...1....+....2....+....3....+....4....+....5....+....6....+....7...* USE NUM UPDATE LINE ID

PHASE 11010 11111010 00009DATAE QGPL QRPGSRC LIBL QSYS

QRGRT 0400000000045000FFFFF4FFFFFFFF0FFFFFCCECC44444DCDD444444DDDCEDC4445DCCD4444444444444444444444444DEEE

 0D0000000214C02011010011111010000009413150000087730000008977293000C392300000000000000000000000008282

PHASE PRT LIBL SC GO

QRGRT DDE4445DCCD4444444444444444444444EC44CD44444

 793000C3923000000000000000000000023007600000

PHASE GO

QRGRT 444CD444

 00076000

PHASE SRCMBRTXT 00 CHANGE 1

QRGRT 44444444444440005EDCDCDEEE440000000000000FF5CCCDCC444F00000000

 000000000000050AC293429373000C381575000100000000

PHASE 00000000

QRGRT 00FFFFFFFF44444444444444444444444444

 00

PHASE

QRGRT 44444444444444444444444400

 00

PHASE

QRGRT 000000000000000000000000000000000

 000000000000000000000000000000000

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 3

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER *...1....+....2....+....3....+....4....+....5....+....6....+....7...* USE NUM UPDATE LINE ID

RXT0054

S o u r c e L i s t i n g

 100 H 01/25/94 .A/
PHASE - SF 00027

 200 FQSYSPRT O F 132 LPRINTER 01/25/94

PHASE - SE 00000

300 LQSYSPRT 30FL 25OL 01/25/94

PHASE - SI 00001

 400 IEXDS UDS 01/25/94

 500 I 1 30F1 01/25/94

PHASE - SC 00000

600 C SETON LR 1 01/25/94

PHASE C1 000006000 LR

QRGSC CF03FFFFFFFFF0008808100062000000000000008DD000044444400 .B/
 00000600 3107000006000000000090008300000000000000039000000000000

 700 C DO 100 B001 01/25/94

PHASE C3 000007000 100

QRGSC CF05FFFFFFFFF00080081000240000000000000000000004444440000000000FFF00000000000000000000000000044

 00000700 330F0000070000000800100050000000000000000000000000000000000000010000000000003030000000000000000

 800 C EXCPT S 001 01/25/94

PHASE C1 000008000

QRGSC CF03FFFFFFFFF000880810003300000000000000000000044444400

 00000800 3107000008000000000090007B00000000000000000000000000000

 900 C END E001 01/25/94

PHASE C1 000009000

QRGSC CF03FFFFFFFFF000880810003400000000000000000000044444400

 00000900 3107000009000000000090005100000000000000000000000000000

 1000 C ADD 1 F1 01/25/94

PHASE C3 000010000 F1 1

QRGSC CF05FFFFFFFFF0008004000000000000000000000000000CF44440000000000F0000000000000000000000000000044

 00001000 330F00001000000008001000410000000000000000000006100000F0000000010000000000001010000000000000000 .A/
PHASE - SO 00000

1100 OQSYSPRT EF 1 01/25/94

 1200 O PAGE 01/25/94

RXT6103

OVERFLOW INDICATOR OA ASSIGNED TO FILE QSYSPRT.

RXT0043

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 4

* * * * * E N D O F S O U R C E * * * * *

Figure 203 (Part 2 of 14). Examples of Compiler Debugging Information

502 RPG/400 User's Guide

 Examples of Using Compiler Debugging Options

RXT0055

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

PHASE - D1 00000

RXT7999

RXT6999

PHASE - AE 00000

PHASE - CR 00000

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 5

RXT9111

 TABLE OF END POSITION OFFSETS FOR FIELDS DESCRIBED USING POSITION NOTATION.

RXT9112

 1200 4

RXT9100

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 6

RXT9104

C r o s s R e f e r e n c e

RXT9126

 File and Record References:

RXT9108

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

01 QSYSPRT PRINTER 200D 300 1100 1201

RXT9127

 Field References:

RXT9107

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

* 7031 EXDS DS(3) 400D

 F1 Z(3,0) 500D 1000M

 PAGE P(4,0) 1200

 1 LITERAL 1000

 100 LITERAL 700

RXT9128

 Indicator References:

RXT9109

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 LR 600M

 OA 200D 1201

RXT9122

* * * * * E N D O F C R O S S R E F E R E N C E * * * * *

RXT9132

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 7

RXT9123

M e s s a g e S u m m a r y

RXT9131

* QRG6103 Severity: 00 Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

RXT9131

* QRG7031 Severity: 00 Number: 1

Message : The Name or indicator is not referenced.

RXT9124

* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

Figure 203 (Part 3 of 14). Examples of Compiler Debugging Information

 Appendix A. RPG Compiler and Auto Report Program Service Information 503

 Examples of Using Compiler Debugging Options

PHASE - C1 00003

PHASE - GC 00000

PHASE - GO 00006

.C/
;/* PHASE - QRGGO DATE - 09/25/92 *//*SVP*/ GO

 GO

/************************************* GEN TIME - O ********//*ZCOMENT*/ GO

 GO

;ENTRY .OFL INT/*ZLABX*/ GO

 GO

;DCL INSPTR .OFLWRTN/*OVERFLOW RETURN POINTER*//*ZDCLRTN*/ GO

 GO

;BRK '1201 '/*BRK POINT*//*ZBRKPT*/ GO

 GO

;CMPBLA(B) *IN1A,*OFF/ EQ(.OOR0001)/*COND IND TST*//*ZCONID*/ GO

 GO

;SPACE 3 GO

;/* QSYSPRT FILE OUTPUT *//*ZFLCOM*/ GO

 GO

;SETSPP .FIBPTR,.F01FIB/*SET FIB PTR*//*ZFIBPT*/ GO

 GO

;CPYBLA .CURROP, C'WRITE'/* SET OP *//*ZCURROP*/ GO

 GO

;CPYBLA .PRTCTL,X'0000000000060000'/*SET OPERATION*//*ZPRC*/ GO

 GO

;CPYBWP .BUFPTR,.U01BUFO/*LOCATE BUFFER*//*ZBUFADD*/ GO

 GO

;CPYBLA .BUFFER(1:0132),.BLANKS /*ZCLRBUF*/ GO

 GO

;CPYBLA .F01XSET,'00000WRITEF*OFL 1201 '/*FILL FEEDBACK*/ GO

;CPYBLA .F01EIND,*OFF/*NO ERROR IND*//*ZFIBPT0*/ GO

 GO

;CMPBLA(B) .F01OPEN,*OFF/EQ(.DMEXL2)/*FILE OPEN?*//*ZFIBPT1*/ GO

 GO

;CALLI .XRVFW01,*,.DRIVRTN/*ZPUT*/ GO

 GO

;.OOR0001:/*LABEL*//*ZLAB*/ GO

 GO

;CPYBLA .OFL2A(2:2),'00'/*SET INTERNAL IN D OFF*//*ZOF2OFF*/ GO

 GO

;B .OFLWRTN/*RETURN*//*ZOFLRTN*/ GO

Figure 203 (Part 4 of 14). Examples of Compiler Debugging Information

504 RPG/400 User's Guide

 Examples of Using Compiler Debugging Options

 GO

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 8

;ENTRY .EXCPT INT/*ZLABX*/ GO

 GO

;DCL INSPTR .LINERTN/*EXCPTION RETURN POINTER*//*ZDCLLRT*/ GO

 GO

;BRK '1100 '/*BRK POINT*//*ZBRKPT*/ GO

 GO

;SPACE 3 GO

;/* QSYSPRT FILE OUTPUT *//*ZFLCOM*/ GO

 GO

;SETSPP .FIBPTR,.F01FIB/*SET FIB PTR*//*ZFIBPT*/ GO

 GO

;CPYBLA .CURROP, C'WRITE'/* SET OP *//*ZCURROP*/ GO

 GO

;CMPBLA(B) *IN1A,*ON/NEQ(.OEC0001)/*OVERFLOW ?*/ GO

;CALLI .FETCH01,*,.OFETCHR/*FETCH OVERFLOW*/ GO

;.OEC0001:/*RET/BR TGT*//*ZPRTOF*/ GO

 GO

;CPYBLA .PRTCTL,X'0000000100000000'/*SET OPERATION*//*ZPRC*/ GO

 GO

;CPYBWP .BUFPTR,.U01BUFO/*LOCATE BUFFER*//*ZBUFADD*/ GO

 GO

;CPYBLA .BUFFER(1:0132),.BLANKS /*ZCLRBUF*/ GO

 GO

;BRK '1200 '/*BRK POINT*//*ZBRKPT*/ GO

 GO

;ADDN(S) PAGE ,1 /*INCREMENT*//*ZINC*/ GO

 GO

;CVTNC .BUFFER(0001:0004), PAGE ,X'02000400000000'/*NUM TO CHAR*// GO

ZNNUM/ GO

 GO

;OR(S) .BUFFER(0004:1),X'F0'/*FORCE POS*/ GO

;TSTRPLC .BUFFER(0001:0004),' '/*ZERO SUPPRESS*//*ZZEDT*/ GO

 GO

;CPYBLA .F01XSET,'00000WRITEF*EXCP 1100 '/*FILL FEEDBACK*/ GO

;CPYBLA .F01EIND,*OFF/*NO ERROR IND*//*ZFIBPT0*/ GO

 GO

;CMPBLA(B) .F01OPEN,*OFF/EQ(.DMEXL2)/*FILE OPEN?*//*ZFIBPT1*/ GO

 GO

;CALLI .XRVFW01,*,.DRIVRTN/*ZPUT*/ GO

 GO

;B .LINERTN/*BRANCH*//*ZUNBR*/ GO

 GO

;DCL INSPTR .OFETCHR/*OVERFLOW FETCH RETURN*//*ZFETDCL1*/ GO

 GO

;DCL DD .SAVOFOA CHAR(3)/*OVFL IND SAVE*//*ZFETDCL2*/ GO

 GO

;ENTRY .FETCH01 INT/*OVRFLW FETCH SUBR*//*ZFETCH1*/ GO

 GO

;CALLI .OFL,*,.OFLWRTN/*GOTO OVERFLOW ROUTINE*//*ZFETCH3*/ GO

 GO

;B .OFETCHR/*RETURN*//*ZFETCH5*/ GO

Figure 203 (Part 5 of 14). Examples of Compiler Debugging Information

 Appendix A. RPG Compiler and Auto Report Program Service Information 505

 Examples of Using Compiler Debugging Options

 GO

VCOMMON AREA

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 9

PHASE H D QRGGO 11 05 87 PAGE PAGE

QRGGO 000200060004000C0000000A000C030400000000000000000000DDCCD444FF6FF6FF440001000000000000DCCC444444DCCC .D/
 000000050003001801000F010004000005000200000003000C00897760001110518700070F00000006000071750000007175

PHASE 10 2QRPGSRC QGPL

QRGGO 44444444FF4FDDDCEDC4444444DCDD4444444444E000

 0000000010028977293000000087730000000000F000

PHASE

QRGGO 00

 00

PHASE

QRGGO 000780

 000000000000020000000000000000000000200181

PHASE O 100000000000000000000000000000

QRGGO 0446446E00040000000000D8004448FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

 01010BB0000300000000006000100000000000000000000000000000

PHASE 00001000000000000000000000001000011000

QRGGO FF4000000000

 00001000000000000000000000001000011000

PHASE 703100 1

QRGGO 00000FFFFFF444F444

 000007031000001000

PHASE 14403401128800010000120100001201DATAE

QRGGO 444444444440000000005FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCCECC444440000000000000000000000000000000000000

 00000000000000000000B1440340112880001000012010000120141315000000900020000000000000000000000000000000

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

Figure 203 (Part 6 of 14). Examples of Compiler Debugging Information

506 RPG/400 User's Guide

 Examples of Using Compiler Debugging Options

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 10

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

Figure 203 (Part 7 of 14). Examples of Compiler Debugging Information

 Appendix A. RPG Compiler and Auto Report Program Service Information 507

 Examples of Using Compiler Debugging Options

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 11

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00010000000000000000000000000000000000

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 000000000000000000000000000000000100

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

Figure 203 (Part 8 of 14). Examples of Compiler Debugging Information

508 RPG/400 User's Guide

 Examples of Using Compiler Debugging Options

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 12

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE

QRGGO 00

 00

PHASE 00 RPG

QRGGO 00FF000000000000DDC44444448000

 0000000000000000977000

FILENAME TABLE

PHASE QSYSPRT 00000200 1 OA O

QRGGO DEEEDDE400000000000000000000000000FFFFFFFF08010100000000F000000000000DC444D4424008000000000000000040

 82827930000000000000000000000000000000020004090E0100000010000000000006100060004001000000000000000000

PHASE

QRGGO 0000000000000000000444444444444000

 00

RECORD NAME TABLE

FIELD NAME TABLE

PHASE IN

QRGGO 5CD444000004080600

 C950000100100003001000

PHASE UDATE B

QRGGO ECCEC400000C00

 4413500600320100001000

PHASE UDAY B

QRGGO ECCE4400000C00

 4418000200320100001000

Figure 203 (Part 9 of 14). Examples of Compiler Debugging Information

 Appendix A. RPG Compiler and Auto Report Program Service Information 509

 Examples of Using Compiler Debugging Options

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 13

PHASE UMONTH B

QRGGO EDDDEC00000C00

 4465380200320100001000

PHASE UYEAR B

QRGGO EECCD400000C00

 4851900200320100001000

PHASE DATE B

QRGGO 5CCEC400000C00

 C413500800320100001000

PHASE YEAR B

QRGGO 5ECCD400000C00

 C851900400320100001000

PHASE MONTH B

QRGGO 5DDDEC00000C00

 C465380200320100001000

PHASE DAY B

QRGGO 5CCE4400000C00

 C418000200320100001000

PHASE PAGE 0

QRGGO DCCC4400000F00

 71750004003008000011008000

PHASE PAGE1

QRGGO DCCCF400000C00

 7175100400300800001000

PHASE PAGE2

QRGGO DCCCF400000C00

 7175200400300800001000

PHASE PAGE3

QRGGO DCCCF400000C00

 7175300400300800001000

PHASE PAGE4

QRGGO DCCCF400000C00

 7175400400300800001000

PHASE PAGE5

QRGGO DCCCF400000C00

 7175500400300800001000

PHASE PAGE6

QRGGO DCCCF400000C00

 7175600400300800001000

PHASE PAGE7

QRGGO DCCCF400000C00

 7175700400300800001000

PHASE EXDS

QRGGO CECE440000050000000200

 574200030011000000200100

PHASE F1 1

QRGGO CF444400000F20000000001000

 610000030021000001010100

INDICATOR TABLE

PHASE 1P OA OB OC OD OE OF OG OV MR L1 L2 L3 L4 L5 L6 L7 L8 L9 LR

QRGGO FD000DCC40DC040DC040DC040DC040DC040DC040DE040DD002DF02BDF02BDF02BDF02BDF02BDF02BDF02BDF02BDF02BDDC09

 172026100F6200F6300F6400F6500F6600F6700F6500F4910A3100E3200E3300E3400E3500E3600E3700E3800E3900E3902E

Figure 203 (Part 10 of 14). Examples of Compiler Debugging Information

510 RPG/400 User's Guide

 Examples of Using Compiler Debugging Options

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 14

PHASE H1 H2 H3 H4 H5 H6 H7 H8 H9 KA KB KC KD KE KF KG KH KI KJ KK

QRGGO CF01ECF01ECF01ECF01ECF01ECF01ECF01ECF01ECF01EDC000DC000DC000DC000DC000DC000DC000DC000DC000DD000DD000

 8100E8200E8300E8400E8500E8600E8700E8800E8900E2104E2204E2304E2404E2504E2604E2704E2804E2904E2104E2204E

PHASE KL KM KN KP KQ KR KS KT KU KV KW KX KY RT U1 U2 U3 U4 U5 U6

QRGGO DD000DD000DD000DD000DD000DD000DE000DE000DE000DE000DE000DE000DE000DE00EEF08EEF08EEF08EEF08EEF08EEF08E

 2304E2404E2504E2704E2804E2904E2204E2304E2404E2504E2604E2704E2804E9308E4100E4200E4300E4400E4500E4600E

PHASE U7 U8 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

QRGGO EF08EEF08EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00EFF00E

 4700E4800E0101F0201F0301F0401F0501F0601F0701F0801F0901F1001F1101F1201F1301F1401F1501F1601F1701F1801F

PHASE 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

QRGGO FF00E

 1901F2001F2101F2201F2301F2401F2501F2601F2701F2801F2901F3001F3101F3201F3301F3401F3501F3601F3701F3801F

PHASE 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

QRGGO FF00E

 3901F4001F4101F4201F4301F4401F4501F4601F4701F4801F4901F5001F5101F5201F5301F5401F5501F5601F5701F5801F

PHASE 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

QRGGO FF00E

 5901F6001F6101F6201F6301F6401F6501F6601F6701F6801F6901F7001F7101F7201F7301F7401F7501F7601F7701F7801F

PHASE 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

QRGGO FF00E

 7901F8001F8101F8201F8301F8401F8501F8601F8701F8801F8901F9001F9101F9201F9301F9401F9501F9601F9701F9801F

PHASE 99

QRGGO FF00E

 9901F

INTERMEDIATE TEXT I.T.

PHASE RL 000003000 QSYSPRT

QRGGO DD02FFFFFFFFF00000DEEEDDE4000000008

 00000300 93030000030000010082827930000000000

PHASE ID 000004000

QRGGO CC01FFFFFFFFF0000

 00000400 940100000400000E0

PHASE ID 000005000

QRGGO CC01FFFFFFFFF0000

 00000500 940100000500000F2

PHASE C1 000006000 LR

QRGGO CF03FFFFFFFFF0008808100062000000000000008DD000044444400

 00000600 3107000006000000000090008300000000000000039000000000000

PHASE C3 000007000 100

QRGGO CF05FFFFFFFFF00080081000240000000000000000000004444440000000000FFF00000000000000000000000000044

 00000700 330F0000070000000800100050000000000000000000000000000000000000010000000000003030000000000000000

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 15

PHASE C1 000008000

QRGGO CF03FFFFFFFFF000880810003300000000000000000000044444400

 00000800 3107000008000000000090007B00000000000000000000000000000

PHASE C1 000009000

QRGGO CF03FFFFFFFFF000880810003400000000000000000000044444400

 00000900 3107000009000000000090005100000000000000000000000000000

PHASE C3 000010000 F1 1

QRGGO CF05FFFFFFFFF0008004000000000000000000000000000CF44440000000000F0000000000000000000000000000044

 00001000 330F00001000000008001000410000000000000000000006100000F0000000010000000000001010000000000000000

PHASE OR 000011000 QSYSPRT 1

QRGGO DD03FFFFFFFFF0000008DEEEDDE444444420044444444404F4444

 00001100 69050000110000010004828279300000008000000000000010000

PHASE OF 000012000 PAGE Z

QRGGO DC05FFFFFFFFF000000000000000000000DCCC440000000060E4444444440000000000000000000000000000000000

 00001200 660E00001200000404000000000000060071750000000053009000

PHASE OR 000012010 QSYSPRT OA 06

QRGGO DD03FFFFFFFFF0000008DEEEDDE40000009004DC444444044FF44

 00001201 69050000120100010004828279300000000000610000000000600

PHASE - GI 00016

PHASE - GB 00000

PHASE - GS 00005

PHASE - EC 00001

Figure 203 (Part 11 of 14). Examples of Compiler Debugging Information

 Appendix A. RPG Compiler and Auto Report Program Service Information 511

 Examples of Using Compiler Debugging Options

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 16

RXT9125

F i n a l S u m m a r y

RXT0045

 Message Count: (by Severity Number)

RXT0046

TOTAL 00 10 20 30 40 50

RXT0047

2 2 0 0 0 0 0

RXT0060

 Program Source Totals:

RXT0061

Records : 12

RXT0062

Specifications : 12

RXT0063

Table Records : 0

RXT0064

Comments : 0

 COUNT OF SERVICE REQUESTS

 GET SOURCE 000011

 PRINT SOURCE 000011

 PRINT LINE 000032

 RELATIONAL DIAGNOSTIC 000001

 SYNTAX DIAGNOSTIC 000000

 PRINT ERR NUMBER 000001

 GET I.T. 000044

 UPDATE I.T. 000014

 BUILD I.T. 000011

 NOTE I.T. 000005

 POINT I.T. 000011

 PUT IRP STRING 000192

 INVALID REQUEST 000000

 VERIFY NAME SYNTAX 000000

 CANCEL 000000

 TRACE 000000

 PRINT LINE & DIAG 000001

 INVALID REQUEST 000004

 INVALID REQUEST 000017

 INVALID REQUEST 000014

 TOTAL SERVICE REQUESTS - 000369

TEMPLATE PASSED TO PRM

PHASE

QRGEC 8000000000A680008000000000C040538000000000C040488000000000C0404A8000000000C040408000000000A680000000

 000000000540E010000000000500C060000000000500C0C0000000000500C014000000000500C004000000000540C0100000

PHASE DATAE

QRGEC 0000000000008000000000C0406100CCECC44444E000F2800000

 000000000000000000000500C04D0041315000000000C0000000

 5763RG1 V3R0M5 940125 IBM SAA RPG/400 QGPL/DATAE 01/25/94 14:40:34 Page 17

PHASE QGPL

QRGEC 00000000DCDDE44444000000000000000000B80000D500

 000010008773000000000000000000000000A00000C20800

PROGRAM DATA AREA

PHASE 5738RG1R01 M0YQRPGSRC DATAE QGPL

QRGEC FFFFDCFDFF4DFEDDDCEDC444CCECC44444DCDD4444444444444444444

 573897190104088977293000413150000087730000000000000000000

AUTHORIZATION PARM

PHASE CHANGE

QRGEC 005CCCDCC444

 01C381575000

USER TEXT

PHASE

QRGEC 0044

 00

WHERE USED DATA

PHASE EXDS LIBL QSYSPRT LIBL QSYSPRT

QRGEC 000400CECE44444445DCCD44444403DEEEDDE44445DCCD44444410DEEEDDE4444000

 00040257420000000C3923000000B082827930000C39230000009182827930000200

Figure 203 (Part 12 of 14). Examples of Compiler Debugging Information

512 RPG/400 User's Guide

 Examples of Using Compiler Debugging Options

RXT0034

 PRM has been called. .E/
 5763SS1 01/25/94 14:40:34 GENERATED OUTPUT 01/25/94 14:40:34 Pag 18

SEQ INST GENERATED CODE *... ... 1 2 3 4 5 6 7 8 BREAK

 00001 ;

 00002 BRK '.ENTRY ' /*Z1STBRK*/ ; .ENTRY

 .ENTRY

/* PHASE - QRGSF DATE - 06/26/87 */ .ENTRY

 /*SVP*/ .ENTRY

 00003 ; .ENTRY

/* PHASE - QRGSE DATE - 02/12/82 */ .ENTRY

 /*SVP*/ .ENTRY

 00004 ; .ENTRY

/* PHASE - QRGSI DATE - 05/15/86 */ .ENTRY

 /*SVP*/ .ENTRY

 00005 ; .ENTRY

/* PHASE - QRGSC DATE - 05/04/87 */ .ENTRY

 /*SVP*/ .ENTRY

 00006 ; .ENTRY

/* PHASE - QRGSO DATE - 06/27/86 */ .ENTRY

 /*SVP*/ .ENTRY

 00007 ; .ENTRY

/* PHASE - QRGD1 DATE - 11/26/87 */ .ENTRY

 /*SVP*/ .ENTRY

 00008 ; .ENTRY

/* PHASE - QRGAE DATE - 11/26/87 */ .ENTRY

 /*SVP*/ .ENTRY

 00009 ; .ENTRY

 00010 0001 000004 0252 0009 0257 SETIEXIT .RPGXIEX,.RPXIEXP /*SET UP INVOCATION EXIT P .ENTRY

 GM*/ ; .ENTRY

 00011 0002 00000A 1011 0234 B .START /*BEGIN OF PROGRAM */ ; .ENTRY

 00012 .STOP: ; .ENTRY

 00013 0003 00000E 30B2 0007 000D CPYBLA .INVOCSW,*OFF /*ALLOW CALL TO THIS PGM*/; .ENTRY

 00014 0004 000014 02A1 0000 RTX * /* RETURN */ .ENTRY

 /*ZSTAR*/ ; .ENTRY

 .ENTRY

/*START OF THE PROGRAM*/ .ENTRY

 00015 ; .ENTRY

/* STATIC AREA FOR INDIC/FIELDS */ .ENTRY

 00016 ; .ENTRY

/* START OF STRUCTURE POINTED BY .DMPTRLT*/ .ENTRY

 00017 ; .ENTRY

 00018 DCL DD .RPGPGM CHAR(1) BDRY(16) INIT ; .ENTRY

 00019 DCL DD .FIRSTSW CHAR(1) INIT('0') /* PROGRAM CALLED BEFORE * .ENTRY

 / ; .ENTRY

 00020 DCL DD .EOJSW CHAR(1) INIT('0') /*PROGRAM WENT TO EOJ*/ ; .ENTRY

 00021 DCL DD .DUMPSW CHAR(1) INIT('0') /* DUMP REQUESTED*/ ; .ENTRY

 00022 DCL DD .ERRTERM CHAR(1) INIT('0') /*PROGRAM ENDED */ ; .ENTRY

 00023 DCL DD .INVOCSW CHAR(1) INIT('0') ; .ENTRY

 00024 DCL DD .INVOCER CHAR(4) INIT('8888') ; .ENTRY

 00025 DCL SYSPTR .RPGXIEX INIT('QRGXINVX', TYPE(PGM,1)) .ENTRY

/*INVOCATION EXIT PROGRAM* .ENTRY

 / ; .ENTRY

 00026 DCL DD .INVXLVL BIN(2) INIT(1) /*INTERFACE LEVEL FOR QRGX .ENTRY

 INVX*/ .ENTRY

/*END OF STATIC AREA STRUC .ENTRY

 TURE*/ ; .ENTRY

 00027 DCL DD .BLANKS CHAR(140) INIT((140)' ') ; .ENTRY

 00028 DCL CON *ON CHAR(1) INIT('1') /* SET/CHECK INDICATORS ON .ENTRY

Figure 203 (Part 13 of 14). Examples of Compiler Debugging Information

 Appendix A. RPG Compiler and Auto Report Program Service Information 513

 Examples of Using Compiler Debugging Options

 */ ; .ENTRY

 5763SS1 01/25/94 14:40:34 GENERATED OUTPUT 01/25/94 14:40:34 Pag 56

MSGID MI INSTRUCTION STREAM SEMANTICS DIAGNOSTICS

 5763SS1 01/25/94 14:40:34 GENERATED OUTPUT 01/25/94 14:40:34 Pag 57

OFFSET I TEMPLATE DISPLA

 00000000 00003272 00000000 0201C4C1 E3C1C540 40404040 40404040 40404040 40404040 .F/
 00000020 40404040 40404040 C0000000 00000000 00000000 00010000 00000000 00000000

 00000040 00000000 00000000 000502FD DD000400 00000000 00000000 00000000 00000000

 00000060 208000FC 00000000 00000000 019602B1 00000100 00000C14 0000171C 00000008

 00000080 0000015E 00003114 00000000 00000A4B 000026C8 00000000 00000196 00000000

 000000A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 000000C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 000000E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 00000100 00000AD2 02520009 02571011 023430B2 0007000D 02A10000 21320050 020D10B2

 00000120 021F000C 1042020B 20021022 022F0059 0283004C 022D0000 1C464000 021623CA

 00000140 026A1C46 C0000216 20000059 10B2021F 000D1011 005C30B2 021F000D 10B2002E

 00000160 002D10B2 002D005A 10B20231 20D710B2 0232002D 1CC24000 0005000C 02691CC2

 00000180 4000005B 000C0269 10110061 30B20030 005E10B2 00120014 11930013 00141CC2

 000001A0 40000016 000D005F 10BE0015 000C1011 006430BE 0015000D 1CC24000 0060000C

 000001C0 006410B2 0060000C 10110068 30B20231 20D710B2 0232002D 10B2003A 00AB10B2

 000001E0 003B00E9 1CC24000 005B000C 006210B2 005B000C 10110269 30B20232 00631011

 00000200 026930B2 00300065 30B20030 006730B2 00300069 1CC24000 0016000C 02660293

 00000220 00740000 006A30B2 0030006C 10B20016 000C1042 006D2001 3C461000 006D006F

 00000240 00700293 007A0000 007B3143 006D2001 1011006E 3143001B 00711011 007230B2

 00000260 00300073 1011005D 3CC24000 0013000D 00780082 00840154 10B20022 007510B2

 00000280 01C80076 01320087 01A010B2 608F2001 2084000B 10B20190 007710B2 016C000D

 000002A0 1CC24000 0174000D 01FF0293 01ED0000 009030B2 60112002 20020079 1011006A

 000002C0 20820084 015410B2 0022007C 1CC2C000 0013000C 007D0293 00830000 008130B2

 000002E0 01C8007E 01320087 01A010B2 608F2001 2084000B 11430019 200110A3 608F2001

 00000300 20040019 007F1197 608F2004 200120F0 10A2608F 20012004 204010B2 01900080

 00000320 10B2016C 000D1CC2 40000174 000D01FF 029301ED 00000090 3011007B 22930074

 00000340 0000006A 30110081 21320085 00AC0132 0086011B 1042008E 409D2001 013201CD

 00000360 4089008E 013201CF 00AE0132 01CE00AF 104201D4 01C91042 01D601CA 104201D3

 00000380 01CB1042 01D501CC 10B20220 000C0283 01CD01D0 000010B2 0220000D 10B20141

 000003A0 01420083 0088011F 014410B2 01100135 1CC24000 00C4000C 01D10132 01D900B2

 000003C0 10B201DB 000C3042 01D701C9 104201D8 01CB0293 01E00000 01C73042 01D701CA

 000003E0 104201D8 01CC0293 01E00000 01C73011 01D13C46 400001D8 200001E7 1C462000

 00000400 01D800B8 01E41C46 100001D8 00B801E1 1C461000 00B800B9 01E31011 01E43C46

 00000420 900001D8 00B901E3 1C461000 00B800B9 01E310B2 81DA01D9 01E23042 00B801D8

 00000440 101101E7 3CC24000 00DE01E5 01E310B2 81DA01D9 01E61011 01E33C46 400001D7

 00000460 200001C7 1C461000 00B800B9 01EA1143 00B801D7 1C469000 00B800B9 01C710B2

 00000480 81DA01D9 01E81011 01C73011 01C73143 00B801D7 1C469000 00B800BA 01C71147

 000004A0 00B800BA 101101C7 3CC24000 0174000D 01FF0293 01DD0000 01D13011 009030B2

 000004C0 0220000D 10B200E1 022110B2 00E301F1 1CC24000 01EF000C 01FB1CC2 400000DD

 000004E0 01F201FD 1CC24000 00DD01F3 01FD0132 008500AC 1CE2C000 011B0000 01F410B2

 00000500 00CB000D 10B200C1 000D10B2 00C2000C 10B200DB 000C10B2 00D2000C 10B200DA

 00000520 000D1011 01F730B2 01410142 00830088 011F0105 10B20110 01351011 01F730B2

 00000540 00DC01F6 30B20225 000D10B2 0220000D 10B2003A 00AB10B2 003B00E9 10B20231

 00000560 20C610B2 023300DC 01320213 00841CC2 400000C3 000C0090 10114202 00B33CC2

 00000580 200000DC 01F90268 1CC21000 00DC01FA 02681011 009030B2 00DC01FC 10B20231

 000005A0 20C610B2 023300DC 01320213 008410B2 003A00AB 10B2003B 00E91011 01F830B2

 000005C0 00DC01FE 101101F7 30B200DC 02001011 01F730B2 01410142 00830088 011F0105

 000005E0 10B20110 01351011 01F73CC2 C0000007 000C0235 1042022B 200210B2 02400008

 00000600 1011026B 30B20007 000C10B2 00300236 10B2002F 02371042 022B2000 1CC24000

 00000620 0003000C 023C0547 020E0000 20010132 00270000 1042020B 20020283 0230022C

 00000640 00001C46 40000216 23CA0282 03EF0298 029C2001 10B20028 003F0082 02520245

 00000660 1042020B 20010283 02550254 000010B2 0232002D 1C46C000 02162000 026A10B2

 00000680 01C5002C 10B201C6 00361042 00232001 10220090 023A2132 00844204 002310B2

 000006A0 00E90239 10B200C3 000D1011 025E3D47 C0000023 20010238 10B2021E 000B10B2

 000006C0 002F023B 10B201EF 000D1042 022B2000 23EF0298 029C2001 1CC24000 0003000C

 000006E0 005D10B2 0003000C 10110072 3042020B 20020283 023D0243 00001C46 40000216

 Program DATAE is placed in library QGPL. 00 highest Error-Severity-Code.

RXT0048

* * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 203 (Part 14 of 14). Examples of Compiler Debugging Information

514 RPG/400 User's Guide

 IRP Layout

E XCE P T I ON DA TA

PHASE CPF 0PF 2 4 1 0RPGRT

RPGEC 0 0 0 9 0 0 0 9 9 9 0 1CDCCDCF F F FDDCDE 4 4 4 4 4 0 1 0 0 2 9 4 4 4 4 4 4 0

0 0 1 0 0 0 0E 9 9 0A3 7 6 3 7 6 2 4 1 0 9 7 7 9 3 0 0 0 0 0A 1 0 0 3 0

PHASE E XSG2XP

RPGEC 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0C9C0 2 0 8 0 0 0 0 0 0 0 0 0C9C0 0 2 0B 0 17CEECCED2 7

0 0A0BB0B0 0 0 0 0 0 0 0 0 0A 0BB 0F 0 0 8A 1B 5 7 2 7 5 7 7D0

SECONDARY E XCEP T I ON I NFO

PHASE ORD4 0 0

RPGEC 0 0DDCF F F 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 6 9 4 4 0

CURRENT I . T . RECORD BE I NG PROCE SSED .

PHASE EE

RPGEC CC0 0 0 0

0 0 0 0 0 0 0 0 5 5 0 6 0 0

PROGRAM ORD4 0 0 L I B QGPL NOT CREATED . # 3 4 0 1 .

* * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 204. Example of Information Printed for a Compiler Dump

 IRP Layout
The RPG/400 compiler generates code that runs in a predetermined program cycle.
A programmer can change this cycle to some extent with branching operations,
processing subroutines, and exception and error handling subroutines. Because
the cycle is similar for all user programs, common segments of code appear in the
IRP generated for most programs. Knowing what these segments do and where
they can be found in an IRP listing can help you relate a user program to the IRP
that the compiler generates.

Figure 205 on page 516 identifies labels that appear in most IRP listings, the order
in which the labels usually appear, and the function done by the IRP at the speci-
fied label. An IRP listing is typically many pages long and contains more labels
and IRP than indicated in Figure 205 on page 516. This figure is intended to be
used as a general directory into an IRP listing.

 Appendix A. RPG Compiler and Auto Report Program Service Information 515

 IRP Layout

X X X X X X X X X X X XX X X X X XX X X XX X X X X

R o u t in e t h a t d o e s d e ta i l c a l c u la t i o n s .

R o u t in e th a t p r in t s d e ta i l l i n e s .

I /O d r i v e r ro u t in e s .

C a lcu la t io n sub rou t ine s .

R PG S ub rou t in e s .

R o u t i n e th a t p r i n t s o v e r f l o w l i n e s .

R o u t in e th a t p r in ts t o ta l l i ne s .

R o u t i n e th a t d o e s to ta l c a lc u l a t i o n s .

R o u t in e t h a t g e t s i n p u t r e c o rd s .

P rog ra m te rm in a t io n p o in t .

B r a n c h t o s t a r t o f p r o g r a m .

T I M E - R e c o r d s t i m e o f d a y

S Q R T - C a l c u l a t e s s q u a r e r o o t

T E S T N - Te s t n u m e r i c

T E S T Z - Te s t z o n e

D E B U G I - D e b u g , i n d i c a to r p o r t i o n

D E B U G F - D e b u g , f i e l d p o r t i o n

BR EAK

*TO T L :

*TOTC:

* G E T IN :

.STOP:

* D E T L :

* D E T C :

* O F L :

B . S TA RT

GENERATED OUTPUT

Figure 205 (Part 1 of 2). IRP Layout

516 RPG/400 User's Guide

 IRP Layout

R o u t in e th a t d o e s p ro g ra m in i t i a l i za t io n .

R o u t i n e th a t c l o s e s a f i l e .

R o u t i n e t h a t o p e n s a f i l e .

R o u t i n e th a t c a n c e l s a p r o g r a m .

R o u t in e th a t d o e s i n i t i a l i za t io n .

R o u t in e th a t te rm in a te s a p ro g ra m .

R o u t i n e th a t c l o s e s a l l f i l e s .. CLOSALL

. END

* I N I T

* C A N C L

. OPEN

. CLOSE

. START

GENERATED OUTPUT

GENERATED CODEOFFSETINSTSEQ BREAK

Figure 205 (Part 2 of 2). IRP Layout

 Appendix A. RPG Compiler and Auto Report Program Service Information 517

 Auto Report Program

Auto Report Program
The automatic report program consists of the phases listed in Table 23. Those
phases that have a U in the third column of Table 23 process unconditionally, and
those phases that have a C in the third column process only if they are required for
the program being compiled. Figure 206 on page 519 shows the order in which
the phases run.

The automatic report program major data areas are a common area (XREGN), a field
name table (FLDTBL), and two buffers (BUFFER1 and BUFFER2).

Table 23. Automatic Report Program Phases

Phase
Name

Phase Description

Called:
Unconditionally (U)
Conditionally (C)

QRPT0000 Command interface phase U

QRPT0001 Root controlling phase U

QRPT0002 I/O control phase and /COPY function U

QRPT0003 Diagnostic phase for *AUTO C

QRPT0004 Diagnostic phase for *AUTO C

QRPT0005 *AUTO generation phase C

QRPT0008 Wrap-up phase U

518 RPG/400 User's Guide

 Auto Report Program

Q R P T 0 0 0 0

Q R P T 0 0 0 1

Q R P T 0 0 0 2

Q R P T 0 0 0 3

Q R P T 0 0 0 4

Q R P T 0 0 0 5

Q R P T 0 0 0 8

Q R P T 0 0 0 1

T o p h a s e Q R G 1

* A u t o

Y e s

N o

Figure 206. Order of Processing of Automatic Report Program Phases

 Appendix A. RPG Compiler and Auto Report Program Service Information 519

 Auto Report Program

520 RPG/400 User's Guide

 Language Enhancements

Appendix B. RPG/400 and AS/400 RPG II
System/36-Compatible Functions

This appendix contains information about additional RPG/400 functions that are not
available with the AS/400 RPG II System/36-Compatible compiler.

 Language Enhancements
The enhancements to the RPG/400 language over the AS/400 RPG II
System/36-Compatible compiler are:

¹ Externally described data: Fields of a file are described to the OS/400 system
through data-description specifications (DDS). The advantage of externally
described data is that the fields of the file need be described only once to the
OS/400 system and need not be described for each program that uses the file.
If the file description changes, you can change its description in one place and
then recompile the programs that use it.

The following file processing operation codes are available to the RPG/400 pro-
gramming language:

– DELET (Delete Record)
– SETGT (Set Greater Than)
– UPDAT (Change Existing Record)
– WRITE (Create New Records)
– REDPE (Retrieve Prior Equal Record).

The following control operation codes are available to the RPG/400 program-
ming language:

– CLOSE (Close Files)
– FEOD (Force End of Data)
– OPEN (Open File for Processing).

¹ Work station support: Allows the specification of the RPG/400 device name,
WORKSTN, which is used for input and output from the display work station. The
operation codes that support direct control over specific work station formats
include:

– EXFMT (Execute Format)
– WRITE (Create New Records).

In addition, the RPG/400 programming language supports the subfile capability
in WORKSTN support with the following operation codes:

– CHAIN (Random Retrieval from a Subfile)
– READC (Read Next Changed Record)
– UPDAT (Change Existing Record)
– WRITE (Create New Records).

See Chapter 8, Using WORKSTN Files for further information on the WORKSTN
device.

¹ ANDxx/ORxx operations: Allow you to specify a more complex decision condi-
tion than a simple A to B comparison with the IFxx, DOUxx, and DOWxx oper-
ations.

 Copyright IBM Corp. 1994 521

 Language Enhancements

¹ CABxx (compare and branch) operation: Allows you to do a compare and
branch in one operation and eliminates the need to set and test resulting indi-
cators.

¹ CLEAR operation code: Allows you to set elements in a data structure or a
variable to zero, blank, or 0 (for indicators), depending on the field type.

¹ Commitment control: Allows you to group file operations by using the COMIT
and ROLBK operation codes. See Chapter 6, “Commitment Control” for informa-
tion.

¹ The compiler /COPY function: Allows the merging of members from more than
one source file during a compile. No sorting or modification of records can be
done.

¹ Data area operations: The IN (Retrieve a Data Area) and OUT (Write a Data
Area) operations allow you to access a data area and optionally allow you to
lock or unlock a data area. The UNLCK operation (Unlock a Data Area) unlocks
one or all locked data areas in a program.

¹ Data structures: The RPG/400 programming language supports two additional
data structures:

– Program status data structure, which provides program exception and error
information to the program

– Externally described data structures.

¹ Data structure initialization: Allows you to initialize an entire data structure,
characters to blank, numerics to zero.

¹ Date, time and timestamp SAA data types are supported.

¹ DSPLY (Display Function) operation: Allows access to a display device without
the use of a display device file and allows access to the message handler.

¹ DSPPGMREF: The referenced object information provided via the CL
command DSPPGMREF now includes called programs in addition to files and data
areas (not data structures).

¹ ENDyy operation: Provides for improved program readability by allowing you to
indicate the type of structure (CASxx, DO, DOUxx, DOWxx, IFxx, or SELEC) the
END operation is closing.

Note: When the result field is too small to hold the value of the limit (factor 2)
plus the increment (END factor 2), a numeric data overflow may cause your
RPG/400 program to loop forever. A System/36 RPG II program, however, will
loop the required number of times specified by the start, limit, and increment
values.

¹ Exception/error handling: Allows you to control the program logic by using the
program exception/error subroutine *PSSR if program exception/errors occur
while the program is running. See “Exception/Error Handling” on page 70 for
detailed information on program exception and error handling.

¹ Figurative constants: Allow you to use additional RPG/400 reserved words that
can be specified without specifying length and decimal positions because the
implied length and decimal positions of a figurative constant are the same as
that of the associated field. They are:

 – *ALL'a..'

 – *ALLX'x1x2..'

 – *HIVAL

522 RPG/400 User's Guide

 Language Enhancements

 – *LOVAL

 – *ON

 – *OFF

¹ Floating minus edit codes: Four new edit codes (N, O, P, and Q) are provided
for editing negative numbers with a floating minus (−) sign. The minus sign, if
specified, is printed to the left of the most significant digit or floating currency
symbol.

¹ Graphic SAA data types are supported.

¹ Hexadecimal literals are supported.

¹ Indicators referred to as data (*IN, *INxx): Allows you an alternative method of
referring to and manipulating indicators. The indicator array of indicators 01
through 99 (*IN) and the indicator field (*INxx) reduce coding and provide a
simplified approach to many program processing requirements.

¹ Indentation bars: Allow you to specify that DO and SELEC statements and
IF-ELSE clauses be indented on program listings for enhanced program read-
ability.

¹ Initialization subroutine: Allows you to specify a particular subroutine to be run
at program initialization time.

¹ ITER and LEAVE operations: ITER allows you to end the current iteration of a
DO-group and start the next iteration. The LEAVE operation allows you to
transfer control from within a DO-group to the statement following the corre-
sponding ENDyy operation.

¹ KLIST (Define a Composite Key)/KFLD (Define Parts of a Key) operations:
Allow you to indicate the name by which a composite key can be specified and
the fields that comprise the composite key.

¹ Multiple occurrence data structures: A data structure can appear n times in a
program. See “Multiple Occurrence Data Structure” on page 223 for further
information on multiple occurrence data structures.

¹ Named constants: Allows you to specify a name to a constant. This name
represents a specific value which cannot be changed when the program is
running. You can specify named constants in Factor 1 and Factor 2 in the
calculation specifications and in Constant or Edit Word fields in the output
specifications. See “Named Constants” on page 237 for more information on
the use of named constants.

¹ Null-capable field support.

¹ Numeric variables: The RPG/400 programming language supports numeric
variables up to and including 30 digits. The maximum number of decimal digits
allowed remains 9.

¹ Operation Extender (position 53): N allows you to specify reading records
without locking them. This is supported on five operations: READ, READE,
READP, REDPE and CHAIN. P allows you to pad the result field after performing a
CAT, SUBST,XLATE, MOVE, MOVEL or MOVEA operation.

¹ Overflow indicators: You can use indicators 01 through 99 as overflow indica-
tors on both program-described and externally described PRINTER files (in addi-
tion to 0A through 0G and 0V for program described files). See Chapter 5,
“General File Considerations” for further information on overflow indicators.

 Appendix B. RPG/400 and RPG II S/36-Compatible Functions 523

 Language Enhancements

¹ Printer control (PRTCTL) option: You can (1) dynamically specify space and
skip operations instead of using values on the output specifications, and (2)
access the current line value within the program. This option is allowed only
with program-described files. See Chapter 5, “General File Considerations” for
further information on the PRTCTL options.

¹ Program Initialization Parameter. Allows you to pass parameters in a pre-
started program.

¹ Program Initialization Parameters Data Area. Allows you to predefine and store
Program Initialization Parameters.

¹ REDPE operation code: Allows you to retrieve the prior sequential record from
a full procedural file if the key of the record matches the search argument in
Factor 1 (positions 18 to 27). You must also specify a file name or record
name in Factor 2. You can also specify in the Result field a data structure into
which the record can be read.

¹ RESET operation code: Allows you to set elements in a data structure, or a
field, back to their values at the end of program initialization. When RESET is
specified for a structure or a variable, a snapshot of that variable or structure is
taken at the end of the *INIT cycle. The value is then used to reset the struc-
ture or variable.

¹ Resulting indicators with MOVE and MOVEL operations: You can specify
resulting indicators on MOVE and MOVEL statements. They eliminate the need for
additional operations to check for blank, zero, or plus/minus conditions.

¹ Retry on timeout: The RPG1218 error message has been updated to allow a
retry to be requested when a timeout occurs on a record lock request.

¹ The SELEC operation allows you to specify the conditions to select which
group of operations will be processed.

– SELEC operation begins the SELEC group.

– WHxx operation of a SELEC group allows you to determine where control
passes after the SELEC operation is processed.

– OTHER operation allows you to specify the sequence of operations to be
processed if no WHxx condition is satisfied.

¹ SEQ files: Allow you to perform sequential input/output to any sequentially
organized file, such as database, diskette, tape, savefile, or printer file. The
actual device used is specified by an AS/400 Control Program Facility override
command.

¹ SPECIAL file with PLIST operation: Allows you to specify an input/output
device that is not directly supported by the RPG/400 programming language.
You can add additional parameters to the RPG/400-created parameter list with
the use of the PLIST and PARM operation codes. See “Special File” on
page 101 for information on the SPECIAL device.

¹ String operations CAT, CHECK , CHEKR, SCAN, SUBST, and XLATE: The CAT
operation allows you to concatenate two character strings. The result field can
be a field name, array element, data structure, or table name. The SCAN opera-
tion allows you to scan a character string for a specified substring starting at a
specific location for a specific length. The SUBST operation allows you to extract
a substring from a specified source string starting at a specific location. The
XLATE operation allows you to translate characters in factor 2 according to the
FROM and TO strings in factor 1. The CHECK operation allows you to verify that

524 RPG/400 User's Guide

 Language Enhancements

each character in factor 2 is among the valid characters in factor 1. The CHEKR
operation provides similar function to CHECK but in the reverse direction (right to
left).

¹ SUBR23R3: The message-retrieving subroutine has been enhanced to allow
the system maximum of 3000 characters of second level text to be retrieved
and will support message I containing 0-9 or A-F for the message identifier.

¹ Subfield initialization: Allows you to initialize a data structure subfield to a spe-
cific value.

¹ TESTN (Test Numeric) operation: Allows you to validity check a character field
to ensure that it contains zoned decimal digits and blanks.

¹ User-defined edit codes (5 through 9): Allow for unique customer- or nation-
oriented editing. The user-defined edit codes are defined to the AS/400
system.

¹ TIME operation: Allows for 14 digits.

¹ UNLCK operation: Allows the last locked record to be unlocked for an update
disk file. Records can still be unlocked by processing output operations defined
by output specifications with no field names included.

¹ Variable length fields are supported.

¹ 4-digit year is supported.

Note: For more information on RPG/400 enhancements, see the RPG/400
Reference.

 Appendix B. RPG/400 and RPG II S/36-Compatible Functions 525

 Language Enhancements

526 RPG/400 User's Guide

 Communications Error Recovery

 Appendix C. Data Communication

The AS/400 system RPG/400 operations allow data communication through the
WORKSTN file using ICF. There are no RPG/400 operations or specifications
unique to data communication. The kinds of data communication supported
through the WORKSTN file using ICF include APPC, Asynchronous, BSCEL,
Finance, Intrasystem communications, Retail, and SNUF. The WORKSTN file used
for data communication must be defined as a full procedural file (F in position 16 of
the file-description specifications). Here is a list of some operation codes and cor-
responding data communication functions supported by the WORKSTN file:

For more information on remote communication, see the ICF Programmer’s Guide.
For information on RPG/400 operations, see the RPG/400 Reference.

Operation Codes Data Communication Functions

OPEN (Open File for Processing) Open (Input and Output), error recovery

CLOSE (Close Files) Close (Permanent), error recovery

EXFMT (Execute Format) Write/Read (Wait)

READ (Read a Record) Read (Wait)

WRITE (Create New Records) Write (Wait)

ACQ (Acquire) Acquire a device, error recovery

REL (Release) Release a device, error recovery

Exception and Error Handling with ICF Files
When a program has a run-time error, you can cancel the program. (See
“Exception/Error Handling” on page 70.) If you do, all of the program’s files are
closed abnormally. For ICF files, the other end of the communications line is noti-
fied that there is a failure and the communication has ended abnormally. For a
shared ICF file, the notification is sent when the last program closes the file.

Instead of canceling a program, you can continue processing (for example, in an
error handling subroutine). It is your responsibility to recover from the error.

Communications Error Recovery
You may be able to recover from a device communications error, when using a
multiple device file, by processing a REL (Release) operation followed by an ACQ
(Acquire) operation for the device in error.

You may be able to recover from a file communications error by processing a CLOSE
operation followed by an OPEN operation for the file in error. With shared files, the
program must be closed for all the programs sharing the file, and then opened
again.

For further information, see the ICF Programmer’s Guide.

 Copyright IBM Corp. 1994 527

 Communications Error Recovery

528 RPG/400 User's Guide

 Distributed Data Management (DDM) Files

Appendix D. Distributed Data Management (DDM) Files

Distributed Data Management (DDM) allows you to access data files that reside on
remote systems with a communications network that supports DDM. The RPG/400
compiler supports DDM files: you can retrieve, add, update or delete data records
in a file that resides on another system.

For more information about accessing remote files, refer to the DDM Guide.

 Copyright IBM Corp. 1994 529

 Distributed Data Management (DDM) Files

530 RPG/400 User's Guide

 System/38 Environment Option of the RPG Compiler

Appendix E. System/38 Environment Option of the RPG
Compiler

This appendix describes how the System/38 environment option of the RPG com-
piler supports the same RPG syntax as the System/38 RPG III compiler, and the
System/38 object naming conventions. The remainder of the appendix discusses
differences between the System/38 RPG and the System/38 environment option of
the RPG compiler, differences between the System/38 environment option of the
RPG compiler, and the AS/400 system RPG/400 compiler, and the file types sup-
ported by each compiler.

Differences between System/38 RPG III and the System/38
Environment Option of the RPG Compiler

The System/38 environment option of the RPG compiler differs from the System/38
RPG III compiler in the following ways:

¹ The source-member name on the create command is used for the name of the
spooled file that contains the compiler output.

¹ The format of the date used when the program is run is in the format described
in the job value (set by the job description or by the CHGJOB command) rather
than the system value.

¹ Numeric arrays are allowed on the MOVEA operation code.

¹ 30 digit numerics are supported.

¹ Card devices are not supported. If the RPG source specifies any of the card
device syntax, an error of severity 30 occurs when you compile the program.

¹ Listing format differs.

¹ Message format is different for both compile and run time messages.

For those items that are the same as System/38 RPG III support, see the
System/38 RPG III Reference Manual and Programmer’s Guide, SC21-7725.

Differences between the System/38 Environment Option of the RPG
Compiler and RPG/400 Compiler

Use RPG38 as the source type for the member containing the RPG source state-
ments. The programs created will have the same values in the object attribute.

If you are using the CRTRPGPGM or CRTRPTPGM command directly, be sure to
use the command in the QSYS38 library.

Most of the information in this User's Guide is applicable to the System/38 environ-
ment option of the RPG compiler support, with the following exceptions:

¹ The enhancements to the RPG/400 compiler over System/38 environment
option of the RPG compiler are:

– CLEAR operation code: Allows you to set elements in a data structure or a
variable to zero, blank, or 0 (for indicators), depending on the field type.

 Copyright IBM Corp. 1994 531

 System/38 Environment Option of the RPG Compiler

– Date, time and timestamp SAA data types are supported.

– DSPPGMREF: The referenced object information provided via the CL
command DSPPGMREF now includes called programs in addition to files and
data areas (not data structures).

– ENDyy operation: Provides for improved program readability by allowing
you to indicate the type of structure (CASxx, DO, DOUxx, DOWxx, IFxx, or

SELEC) the END operation is closing.

– Figurative constants: Allow you to use additional RPG/400 reserved words
that can be specified without specifying length and decimal positions
because the implied length and decimal positions of a figurative constant
are the same as that of the associated field. They are:

 - *ALLX'x1x2..'

 - *ON

 - *OFF

– Floating minus edit codes: Four new edit codes (N, O, P, and Q) are pro-
vided for editing negative numbers with a floating minus (−) sign. The
minus sign, if specified, is printed to the left of the most significant digit or
floating currency symbol.

– Graphic SAA data types are supported.

– Hexadecimal literals are supported.

– Indentation bars: Allow you to specify that DO and SELEC statements and
IF-ELSE clauses be indented on program listings for enhanced program
readability.

– ITER and LEAVE operations: ITER allows you to end the current iteration
of a DO-group and start the next iteration. The LEAVE operation allows you
to transfer control from within a DO-group to the statement following the cor-
responding ENDyy operation.

– Named constants: Allows you to specify a name to a constant. This name
represents a specific value that cannot be changed when the program is
running. See “Named Constants” on page 237 for more information on the
use of named constants.

– Null-capable fields are supported.

– Operation Extender (position 53): 'N' allows you to specify reading
records without locking them. This is supported on five operations: READ,
READE, READP, REDPE, and CHAIN. 'P' allows you to pad the result field
after performing a CAT, SUBST, XLATE, MOVE, MOVEL, or MOVEA operation.

– Override to print file (OVRPRTF): When using the RPG/400 compiler, the
OVRPRTF CL command causes a spool file with the same name as the
file in the OVRPRTF command to be generated when the program is exe-
cuted. The generated spool file name can then be changed by specifying a
value for the SPLFNAME keyword in the OVRPTRF command. The SPLFNAME
keyword is not available in the System/38 environment.

– Program Initialization Parameters (PIP). Allows you to pass parameters in
a pre-started program.

– Program Initialization Parameter Data Area (PDA). Allows you to predefine
and store Program Initialization Parameters.

532 RPG/400 User's Guide

 System/38 Environment Option of the RPG Compiler

– REDPE operation code: Allows you to retrieve the prior sequential record
from a full procedural file if the key of the record matches the search argu-
ment in Factor 1 (positions 18 to 27). You must also specify a file name or
record name in Factor 2. You can also specify in the Result field a data
structure into which the record can be read.

– RESET operation code: Allows you to set elements in a data structure, or
a field, back to their values at the end of program initialization. When
RESET is specified for a structure or a variable, a snapshot of that variable
or structure is taken at the end of the *INIT cycle. The value is then used
to reset the structure or variable.

– Retry on timeout: The RPG1218 error message has been updated to allow a
retry to be requested when a timeout occurs on a record lock request.

– The SELEC operation allows you to specify the conditions to select which
group of operations will be processed.

- SELEC operation begins the SELEC group.

- WHxx operation of a SELEC group allows you to determine where control
passes after the SELEC operation is processed.

- OTHER operation allows you to specify the sequence of operations to be
processed if no WHxx condition is satisfied.

– String operations CAT, CHECK, CHEKR, SCAN, SUBST, and XLATE: CAT

allows you to concatenate two character strings. The result field can be a
field name, array element, data structure, or table name. SCAN allows you
to scan a character string for a specified substring starting at a specific
location for a specific length. SUBST allows you to extract a substring from a
specified source string starting at a specific location. XLATE allows you to
translate characters in factor 2 according to the FROM and TO strings in
factor 1. The CHECK operation allows you to verify that each character in
factor 2 is among the valid characters in factor 1. The CHEKR operation
provides similar function to the CHECK operation code, but in the reverse
direction (right to left).

– SUBR23R3: The message-retrieving subroutine has been enhanced to
allow the system maximum of 3000 characters of second level text to be
retrieved and will support message I containing 0-9 or A-F for the message
identifier.

– TIME operation: Allows for 14 digits.

– UNLCK operation: Allows the last locked record to be unlocked for an
update disk file. Records can still be unlocked by processing output oper-
ations defined by output specifications with no field names included.

– Variable-length fields are supported.

– 4-digit year is supported.

¹ File and program names must follow the System/38 naming convention
(object.library) on the /COPY statement and in the FREE, CALL, and DSPLY opera-
tion codes.

¹ The System/38 environment option of the RPG compiler allows you to write to
an existing relative record number while the RPG/400 compiler does not
support this function and will give a run-time error.

 Appendix E. System/38 Environment Option of the RPG Compiler 533

 System/38 Environment Option of the RPG Compiler

¹ The format of the information returned from a POST operation to a specific
device is the same as the support on System/38.

¹ The create commands are the same as the System/38.

Table 24 shows the differences between the RPG/400 compiler and the System/38
environment option of the RPG compiler environments.

Table 24 (Page 1 of 2). Differences between the RPG/400 Compiler and the System/38 Environment Option of
the RPG Compiler

RPG/400
Compiler
Parameter

System/38
Environ-
ment
Option of
the RPG
Compiler
Parameter

RPG/400
Compiler
Options

System/38
Environ-
ment
Option of
the RPG
Compiler
Options

Comments

REPLACE N/A New parameter

 *YES N/A New option

 *NO N/A New option

TGTRLS N/A New parameter

 *CURRENT N/A New option

 *PRV N/A New option

 release-level N/A New option

AUT PUBAUT AUT replaces PUBAUT

 *LIBCRTAUT N/A New option

 *CHANGE *NORMAL *CHANGE replaces *NORMAL

 *USE N/A New option

 *ALL N/A New option

 *EXCLUDE *NONE *EXCLUDE replaces *NONE

 authorization
list-name

N/A New option

PGM PGM Existing parameter

 *CURLIB N/A New option/new default

SRCFILE SRCFILE Existing parameter

 *CURLIB N/A New option

PRTFILE PRTFILE Existing parameter

 *CURLIB N/A New option

OPTION OPTION Existing parameter

 *SECLVL N/A New option

 *NOSECLVL N/A New option

SAAFLAG N/A New parameter

 *NOFLAG N/A New option

 *FLAG N/A New option

INDENT N/A New parameter

534 RPG/400 User's Guide

 File Types Supported by Each Compiler

Table 24 (Page 2 of 2). Differences between the RPG/400 Compiler and the System/38 Environment Option of
the RPG Compiler

RPG/400
Compiler
Parameter

System/38
Environ-
ment
Option of
the RPG
Compiler
Parameter

RPG/400
Compiler
Options

System/38
Environ-
ment
Option of
the RPG
Compiler
Options

Comments

 *NONE N/A New option

 character-
value

N/A New option

CVTOPT N/A New parameter

 *NONE N/A New option

 *VARCHAR N/A New option

 *DATETIME N/A New option

 *GRAPHIC N/A New option

ALWNULL N/A New parameter

 *NO N/A New option

 *YES N/A New option

When you convert a System/38-compatible program to an AS/400 program, you
can, and in some cases, must, use the support as described in this manual for the
above list of items.

File Types Supported by Each Compiler
Similar to programs, files (object type *FILE) can be created with a System/38 or an
OS/400 system attribute. System/38 files have a 38 added to their object attribute.
OS/400 system files do not. See the System/38 Environment Programmer’s
Guide/Reference for information on object attributes for the various types of files.

Any type of RPG/400 program can use files created with either attribute. The
System/38 environment option of the RPG compiler programs are not restricted to
using System/38 files. RPG/400 programs are not restricted to using OS/400 files.
For example, a System/38 environment option of the RPG compiler program can
use an OS/400 system display file or database file. An AS/400 system RPG/400
program can use a System/38 display file or database file.

The ability to mix file types and program types also applies to the communications
file types for an RPG/400 program, even though the System/38 file types are dif-
ferent from the OS/400 system file types. An AS/400 program can use a communi-
cations, BSC or mixed device file.

There are some items worth noting about such combinations. An AS/400 program
that uses an BSC, communications, or mixed-device file uses the AS/400 system
RPG/400 *STATUS values. Some of these values are set based on major/minor
return codes. Also, the format of the information returned from a POST operation to
a specific device is the AS/400 RPG/400 version. Some of the items, such as

 Appendix E. System/38 Environment Option of the RPG Compiler 535

 File Types Supported by Each Compiler

remote-location name, are not returned because the file types do not support a
remote-location name.

Note: ICF files are not supported with a System/38 environment option of the
RPG/400 compiler program. Using an ICF file in the System/38 environment may
cause unpredicted results.

536 RPG/400 User's Guide

 Examples of Using Arrays

Appendix F. Examples of Using Arrays

This appendix gives several examples of using arrays. For detailed information on
how to code an array, how to specify the initial values of the array elements, and
how to change the values of an array, refer to the RPG/400 Reference.

The following figures illustrate the ways of using arrays:

Table 25. List of Figures for Array Examples

Figure Array Examples

Figure 207 on page 538 Building an array using fields as indexes

Figure 208 on page 539 Building an array using fixed indexes

Figure 209 on page 540 Calculating totals without arrays

Figure 210 on page 542 Calculating totals with arrays

Figure 211 on page 543 Using arrays to format field output

Figure 212 on page 545 Printing one array element per line

Figure 213 on page 546 Printing more than one array element per line

 Copyright IBM Corp. 1994 537

 Examples of Using Arrays

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
E*
E* This example illustrates a method of building an array using
E* fields in input records as indexes. The array has 12 elements;
E* each element is 5 positions long. The array could be defined with
E* any number of elements (to a maximum of 99) without additional
E* input specifications.
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*
E AR 12 5
.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
I*
I* To build an array using field indexes, assign different values to
I* fields X1 through X10 on each input record type 03 and to fields
I* X1 and X2 on each input record type 04. Succeeding type 03
I* records can then load 10 additional elements in array AR, up to
I* the maximum defined in the array; each type 04 record can load
I* two additional elements. Blanks and other fields can appear on
I* the input records because the array elements and their indexes
I* are identified by the From and To entries. To set up the array
I* in this manner requires a minimum of coding and no calculations.
I* However, extra work is required to set up the indexing scheme for
I* the input records.
I*
IFilenameSqNORiPos1NCCPos2NCCPos3NCC.PFromTo++DField+L1M1FrPlMnZr...*
IFILE1 AA 03 80 C1
I....................................PFromTo++DField+L1M1FrPlMnZr...*
I 2 30X1
I 4 8 AR,X1
I 9 100X2
I 11 15 AR,X2
I 16 170X3
I 18 22 AR,X3
I " ┌─────────────────────┐
I " │ More Array Elements │
I " └─────────────────────┘

Figure 207 (Part 1 of 2). Building an Array Using Input Fields as Indexes

538 RPG/400 User's Guide

 Examples of Using Arrays

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 54 550X10

I 56 60 AR,X10

I BB 04 80 C2

I 2 30X1

I 4 8 AR,X1

I 9 100X2

I 11 15 AR,X2

I*

Figure 207 (Part 2 of 2). Building an Array Using Input Fields as Indexes

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
E*
E* This example shows how eighteen 5-character elements of array
E* AR1 are loaded with only two specification lines.
E*
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*
E AR1 30 5
E*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
I*
I* In these input specifications, the remaining elements of AR1
I* are loaded one after another until the array is full. Each
I* additional element is coded on a separate line. Each new record
I* requires a separate means of identification. For example, if
I* another 03 record followed the first, the fields on the second
I* record would overlay the fields read in from the first record.
I* This method works well for small arrays.
I*
IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*
IFILE1 AA 03 100 C1
I....................................PFromTo++DField+L1M1FrPlMnZr...*
I 1 90 AR1
I BB 04 100 C2
I 1 5 AR1,19
I 6 10 AR1,20
I "
I " ┌─────────────────────┐
I " │ More Array Elements │
I " └─────────────────────┘
I "

Figure 208. Building an Array Using Fixed Indexes

 Appendix F. Examples of Using Arrays 539

 Examples of Using Arrays

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* The specifications in this example calculate three levels of

C* totals. As they are read from input records, the fields FIELDA,

C* FIELDB, FIELDC, and FIELDD are added to the first-level totals

C* L1A, L1B, L1C, and L1D. These first-level totals are added at

C* the time of an L1 control break to totals L2A, L2B, L2C, and L2D.

C* Similarly, at an L2 control break, the second-level totals are

C* added to third-level totals L3A, L3B, L3C, and L3D. In addition,

C* as control breaks occur, L1, L2, and L3 total output is processed;

C* and total fields are set to zeros after they are written to the

C* output device.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C FIELDA ADD L1A L1A 62 ADD TO L1 TOTLS

C FIELDB ADD L1B L1B 62

C FIELDC ADD L1C L1C 62

C FIELDD ADD L1D L1D 62

CL1 L1A ADD L2A L2A 62 ADD TO L2 TOTLS

CL1 L1B ADD L2B L2B 62

CL1 L1C ADD L2C L2C 62

CL1 L1D ADD L2D L2D 62

CL2 L2A ADD L3A L3A 62 ADD TO L3 TOTLS

CL2 L2B ADD L3B L3B 62

CL2 L2C ADD L3C L3C 62

CL2 L2D ADD L3D L3D 62

C*

Figure 209 (Part 1 of 2). Calculating Totals without Arrays

540 RPG/400 User's Guide

 Examples of Using Arrays

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

O T 20 L1

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O L1A KB 15

O L1B KB 30

O L1C KB 45

O L1D KB 60

O T 20 L2

O L2A KB 15

O L2B KB 30

O L2C KB 45

O L2D KB 60

O T 20 L3

O L3A KB 15

O L3B KB 30

O L3C KB 45

O L3D KB 60

Figure 209 (Part 2 of 2). Calculating Totals without Arrays

 Appendix F. Examples of Using Arrays 541

 Examples of Using Arrays

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E*

E* The three levels of totals shown in this example are calculated

E* with arrays.

E*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E SL1 4 6 2 L1 TOTALS

E SL2 4 6 2 L2 TOTALS

E SL3 4 6 2 L3 TOTALS

E*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* Note the reduction in coding required to specify the functions.

C* For example, the L1 control break in the following calculation

C* specifications fills the same function as the 4 lines of L1

C* in the calculation specifications shown in the previous example.

C*

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C FIELDA ADD SL1,1 SL1,1 ADD FOR L1 TOTL

C FIELDB ADD SL1,2 SL1,2

C FIELDC ADD SL1,3 SL1,3

C FIELDD ADD SL1,4 SL1,4

CL1 SL1 ADD SL2 SL2 ADD FOR L2 TOTL

CL2 SL2 ADD SL3 SL3 ADD FOR L3 TOTL

C*

Figure 210 (Part 1 of 2). Calculating Totals with Arrays

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

O*

O* Similarly, the output specifications are reduced from 15 lines

O* to 6. The method using arrays results in only two positions

O* between array elements.

O*

OName++++DFBASbSaN01N02N03Excnam....................................*

O T 20 L1

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O SL1 KB 60

O T 20 L1

O SL2 KB 60

O T 20 L1

O SL3 KB 60

O*

Figure 210 (Part 2 of 2). Calculating Totals with Arrays

542 RPG/400 User's Guide

 Examples of Using Arrays

The following figure shows an example of using arrays to format field output.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E ARA 4 5 0

E ARB 5 10

E ARC 6 4 2

E*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

IFilenameSqNORiPos1NCCPos2NCCPos3NCC................................*

IIN AA 01 80 C

I OR 02 80 C1

I....................................PFromTo++DField+L1M1FrPlMnZr...*

I 51 74 ARC

I 1 20 ARA 01

I 1 50 ARB 02

I*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OOUT D 1 01

O OR 02

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O ARC 84 '0 . &CR'

O 01 ARA,1 Z 89

O 02 ARB,X1 100

O*

Figure 211 (Part 1 of 2). Using Arrays to Format Field Output

 Appendix F. Examples of Using Arrays 543

 Examples of Using Arrays

Record Array Array Contents

Array

Name

Number of

Elements

Element

Length

ARA

ARC

ARB

ARC

12345678901234567890

01234567890123456789876N

(note that N equals minus 5)

JOHNbDOEbbJOEbSMITHb

LEEbMARXbbJIMbKNOTSb

TIMbTYLERb

(the same as record 1)

1

2

ARA

ARB

ARC

This figure illustrates the use of three arrays to format field output. The arrays are

defined as follows:

4

5

6

5

10

4

Array ARA is contained in the input records with record identifying indicator 01, ARB

in the records with record identifying indicator 02, and ARC in both types of records.

Array ARC and the element of array ARA are to be included together in an output

record as are arrays ARC and an element (identified by X1) of array ARB. Every

element in array ARC is edited according to the edit word 'Ob.bb&CR' (b = blank).

The contents of the arrays in the first two input records are as follows:

Array Location Contents

12345

b1.23bbb45.67bbb

89.01bbb23.45bbb

67.89bbb87.65bCR

Array Location Contents

JIMbKNOTSb

b1.23bbb45.67bbb

89.01bbb23.45bbb

67.89bbb87.65bCR

85-89

37-84

91-100

37-84

ARB

(fourth

element)

ARC

ARA

(first

element)

ARC

In the first output record, the location and contents of the arrays are as

follows (b = blank):

For the second output record assume that the content of field X1 is 4;

the locations and contents of the arrays are as follows:

Figure 211 (Part 2 of 2). Using Arrays to Format Field Output

544 RPG/400 User's Guide

 Examples of Using Arrays

The figure below shows a method of printing one array element per line on the
printer output device.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E AR2 5 21 15 0

E*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

CLR DO 21 IN 30 DO 21 TIMES

CLR EXCPTTOTAL

CLR END

C*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OARFILE E 1 TOTAL

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O AR2,IN 20

O*

Figure 212. Printing One Array Element per Line

 Appendix F. Examples of Using Arrays 545

 Examples of Using Arrays

The following figure shows a method of printing more than one array element per
line on the printer output device.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++*

E AR1 6 10 10

E AR2 6 50 10

E*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C DO 50 IN 20 DO THRU IN=50

C MOVEAAR2,IN AR1 MOVE TO ARRAY

C EXCPTTOTAL PRINT

C END 10 ADD 10 TO IN

C*

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

OName++++DFBASbSaN01N02N03Excnam....................................*

OARFILE E 1 TOTAL

O................N01N02N03Field+YBEnd+PConstant/editword+++++++++...*

O AR1 B 100

O*

Figure 213. Printing More than One Element per Line

546 RPG/400 User's Guide

 Glossary of Abbreviations

Appendix G. Glossary of Abbreviations

Abbreviation Stands For Definition

CL Control Language The set of all commands with which a user requests
functions.

CPF The system
support licensed
program for
System/38.

It provides many functions that are fully integrated in
the system such as work management, database, data
management, job control, message handling, security,
programming aids, and service. The equivalent function
in the AS/400 system is the OS/400 system.

ICF Intersystem Com-
munications Func-
tion

A function of the OS/400 system that allows a program
to interactively communicate with another program or
system.

DBC Double Byte
Characters (DBC)
Variables

Variables that can contain double-byte data (Japanese,
Simplified Chinese, Traditional Chinese, and Korean
ideograms).

DDS Data Description
Specifications

A description of the user’s database for device files
that is entered into the system using a fixed-form
syntax. The description is then used to create files.

DDM Distributed Data
Management

A function of the operating system that allows an appli-
cation program or user on a source system to access
data files on remote systems connected by a communi-
cations network that also uses DDM.

GDDM Graphical Data
Display Manager

A group of routines that allows pictures to be defined
and displayed procedurally through function routines
that correspond to graphics primitives. Contrast with
Presentation Graphics Routines.

OS/400 N/A The operating system for the AS/400 system. It pro-
vides many functions that are fully integrated in the
system. These are work management, database, data
management, job control, message handling, security,
programming aids, and service.

PGR Presentation
Graphics Routines

A group of routines that allows business charts the be
defined and displayed procedurally through function
routines. Contrast with Graphical Data Display
Manager.

SNA Systems Network
Architecture

The description of the logical structure, formats, proto-
cols, and operational sequences for transmitting infor-
mation units through and controlling the configuration
and operation of Systems Network Architecture net-
works.

Note: The layered structure of SNA allows the ulti-
mate origins and destinations of information (that is,
the end users) to be independent of, and unaffected
by, the specific SNA network services and facilities
used for information exchange.

SQL Structured Query
Language

A language that can be used within programs written in
other languages, or interactively to access database
manager data and to control access to database
manager resources.

 Copyright IBM Corp. 1994 547

 Glossary of Abbreviations

548 RPG/400 User's Guide

 Bibliography

Publications Guide, GC41-9678, which contains a brief
description of each manual in the AS/400 library and
information on how to order additional publications.

Data Management Guide, SC41-9658, which contains
information about managing key aspects of the system.

Data Description Specifications Reference, SC41-9620,
which describes data description specifications that are
used for describing files.

Distributed Data Management Guide, SC41-9600, which
contains information about remote communication for
the RPG/400 programmer.

Database Guide, SC41-9659, which contains a detailed
discussion of the AS/400 database structure. This
manual also describes how to use data description
specifications (DDS) keywords.

Communications: Intersystem Communications Func-
tion Programmer’s Guide, SC41-9590, which provides
information an application programmer needs to write
applications that use AS/400 communications and the
Intersystem Communications Function file.

Programming: GDDM Programming Guide SC41-0536,
and Programming: GDDM Programming Reference,

SC41-0537, which provide guidance on the Graphical
Data Display Manager (GDDM) for programmers who
need to write graphics applications.

Programming: System/38 Environment Programmer’s
Guide and Reference, SC41-9755, which describes
migrating from System/38 and converting to an AS/400
system.

Software Installation, SC41-3120, which describes how
to install the RPG/400 licensed program on your system.

System Operation, SC41-3203, which describes how to
operate the AS/400 System.

Systems Application Architecture* Structured Query
Language/400 Reference, SC41-9608, which describes
SQL on the AS/400 system.

Languages: RPG Reference Summary, SX09-1164,
which contains a summary of operation codes, edit
codes, indicators, and status codes.

RPG Debugging Template, GX21-9129, which provides
a template of the RPG specifications.

RPG/400 Reference, SC09-1817,, which provides a ref-
erence for the RPG/400 compiler.

 Copyright IBM Corp. 1994 549

550 RPG/400 User's Guide

 Index

Special Characters
/END EXEC delimiter 4
/EXEC SQL delimiter 4
* (asterisk)

generated specifications 271, 284
** (double asterisk)

generated specifications 271, 284
*** (triple asterisk)

generated specifications 271, 284
*ALL value 41
*ATR, GENOPT parameter 498
*CHANGE value 41
*CTLSPEC value 32
*CURLIB value 32, 33, 39
*CURRENT value 40
*DATETIME value 38
*DUMP value 35
*ENTRY PLIST 259
*EXCLUDE value 41
*FLAG value 39
*GEN value 35
*GRAPHIC value 38
*LIBCRTAUT value 41
*LIBL value 33, 39
*LSTDBG value 36
*NODUMP value 35
*NOFLAG value 39
*NOGEN value 35
*NOLSTDBG value 36
*NONE value 37, 38
*NOOPTIMIZE value 36, 499
*NOSECLVL value 35
*NOSOURCE value 34
*NOSRCDBG value 35
*OPTIMIZE value 36
*OPTIMIZE, GENOPT parameter 499
*OWNER value 40
*PATCH, GENOPT parameter 498
*PGM value 33
*PRV 40
*SECLVL value 35
*SOURCE 34, 498
*SRCDBG value 35
*SRCMBRTXT value 34
*USE value 41
*USER value 40
*VARCHAR value 38
& (ampersand)

auto-report copy function 277

Numerics
01-99 indicators

See field and field record relation indicators
See indicators conditioning calculations and output
See resulting indicators

A
A$$SUM subroutine (auto report) 285
abbreviations of terms 547
access path

example of 120
for externally described DISK file iii, 114
for indexed file 119

ALL value 41
allow null values parameter 44
alternate collating sequence
ALWNULL parameter 44
ampersand (&)

auto-report copy function 277
AND relationship
application design 15
area parameter for SPECIAL PLIST 102
array

alternating
binary format 217
compile-time
examples of using iii, 537—546
fixed indexes, using 539
formatting field output 543
initialization 241
packed format 215
prerun-time arrays
printing elements of 545, 546
run-time

See run-time array
arrival sequence access path 114
ascending sequence
asterisk (*)

generated specifications 271, 284
indication on auto report total lines 280

AUT parameter 41
authority parameter 41
authorization-list name value 41
*AUTO output specifictions

See also auto report function
generated end positions 281
generated RPG/400 specifications 284
group printing 271
report format 280
spacing and skipping 280

 Copyright IBM Corp. 1994 551

auto report function
See also AUTO output
/COPY 276
/COPY statement

format 276
general description 275
modifying copied specifications iii, 276, 277

A$$SUM subroutine 285
AUTO 282
column headings and fields, placement 281
compilation of a source program 25
CRTRPTPGM command 294
definition 271
examples 299—320
format 280
generated specifications

calculation 285
output 285

order of specifications included with /COPY 275
page headings 281
phases 518
placement of /COPY statement in program 275
print lines, overflow 283
programming aids 291
report body 283
service information 493
sorting of specifications with /COPY 275
spacing and skipping 280
using 271

B
bibliography 549
binary field 217

data structure subfield specifications 221
defintion 217

binary format
definition 217
input field specification 217
output field specification 217

Binary Synchronous Communication 527
blank after
blocking/unblocking records 82
body of a report 283
breakpoints iii, 54, 57
BSC

See Binary Synchronous Communication

C
calculation specifications 22

general description 22
program-described WORKSTN file 155

calculations generated by auto report iii, 285
CALL (call a program) operation code

a subroutine 261

CALL (call a program) operation code (continued)
DSPPGMREF 258
GDDM 260
message-retrieving subroutine (SUBR23R3) 261
moving double byte data and adding control charac-

ters (SUBR41R3) 264
moving double byte data and deleting control charac-

ters (SUBR40R3) 263
other programs 258
program communication 258
query names of called programs 258

CHANGE value 41
character
CL programs

See control language (CL) program
clear command 147
CLEAR operation code 240
CODE/400

compiler options 35
CODELIST parameter 42, 499
coding form

See calculation specifications
See control specifications
See data description specifications
See extension specifications
See file description specifications
See input specifications
See line counter specifications
See output specifications

collating sequence
See alternate collating sequence

column headings in auto report 281, 283
combined file 156
COMIT (commit) operation code

commitment control 108
system considerations 108
with multiple devices 108

command attention (CA) keys 143
command function (CF) keys 143
comments

/COPY statement 275
commitment control 107
common area

VCOMMON 496
XREGN 518

Common Programming Interface 263
communication

accessing other programs and systems 143
between objects 255
data 527
error recovery 527
exception/error handling 527
with objects in system 255

compile time array or table
See also array
initialization 241

552 RPG/400 User's Guide

compiler
data areas 496
debugging options 498, 500
differences between RPG/400 and the System/38

Environment Option of the RPG Compiler 531
differences between System/38 RPG III and

System/38 Environment Option of the RPG Com-
piler 531

directives
error message organization 496
file types, supported 535
phase descriptions 493
phases 494, 495, 518
service information 493
System/38 environment option 531

compiling
auto report source program 294
CRTRPGPGM 25
CRTRPTPGM 294
RPG source program 25

composite key operation codes
See search argument

conditional branching 6
conditioning files

See external indicators
conditioning output

overflow indicators 92
consecutive processing 124
constants

See named constants
constants, figurative

See *ALL'X..',
See *BLANK/*BLANKS
See *HIVAL
See *LOVAL
See *ZERO/*ZEROS

control break
control field
control language (CL) program

calling 255
commands used with RPG/400 2
commonly used commands 2
definition 547

control level (L1-L9) indicators
control specifications 21

general description 21
control-record format, subfile 150
controlled loop

do until operation 13
do while operation 11
general description 9

CoOperative Development Environment/400
compiler options 35

/COPY statement
See auto report function

copy function, auto report
See auto report function

CPI support 263
Create Auto Report Program (CRTRPTPGM)

command 294, 295
Create RPG/400 Program (CRTRPGPGM)

command 25, 498
cross-reference listing

CRTRPTPGM 297
how to request for RPG source program 35

CRTRPTPGM command 295
CTLSPEC value 32
CURLIB value 32, 33, 39
CURRENT value 40
CVTOPT parameter 38

D
D-*AUTO

See also AUTO output
overflow of print lines 283

data area data structure
general information 223
initialization 242
statement

externally described 220
program described 220
rules 222
specifications 222

subfields
rules 226
specifications 224

used to access data area 267
data areas

compiler 496
general information 267
how to access 267
printing 498
restrictions 267
retrieval

implicit 223
RETURNCODE 26
unlocking

implicit 223
writing

implicit 223
data communication 527
data description specifications (DDS)

See the DDS Reference
data field formats 215
data structure statement

externally described 220
program-described 220
rules 223
rules for specifying 222
specifications 221, 222

 Index 553

data structure subfields
format 221
overlapping 226
rules 226
specifications 224

data structures 215
data area 223
examples of 226
examples of initialization 243
externally described 236
file information 224
format 221
general information 220
initialization 241
length of 222
multiple occurrences of 222, 223
program-status 224
special 223
special considerations when initializing 241
special types

data area 223
file information (INFDS) 223
program status 223

statement
See data structure statement

subfields
overlapping 226

database data
date fields 250
DBCS-graphic fields 251
null values 252
time fields 250
timestamp fields 250
variable-length fields 247

date data fields (SAA data type) 250
DATETIME value 38
DBCS-graphic data type 251
DDM (distributed data management) files 529
DDS

See the DDS Reference
debugging

examples 500
general discussion 47
using DEBUG 60
using DUMP 60

descending sequence
designing your program

See also application design
overview 5
structured programming 6

detail lines
See AUTO output

detail printing, auto report
See AUTO output

device files
device dependence 75

device files (continued)
device independence 75
DISK files 113
multiple-device 157
PRINTER files 90
SEQ files 99
SPECIAL files 101
WORKSTN files 143

device name, function of 75
DISK file

externally described
access path 114
as program-described 123
examples 114
general description 113
processing 118
record format specifications 113

file operation codes allowed
for keyed processing methods 141
for non-keyed processing methods 141

general description 113
processing charts
processing methods

consecutive processing 124
overview 123
random-by-key processing 133
relative-record-number processing 123
sequential-by-key processing 124
sequential-within-limits processing 132

program described
indexed file 119
processing 123
record-address file 122
sequential file 122

record-format specifications 113
displaying messages 47
distributed data management (DDM) 529, 549
DO operation code

flowchart and summary 9
double asterisk (**)

generated specifications 271, 284
double byte character set

moving 263, 264
DOUxx (do until) operation code

and structured programming 13
DOWxx (do while) operation code

and structured programming 11
DS

See data structures
DSPPGMREF 258, 522
*DUMP

GENOPT parameter 498
GENOPT parameter value 36
OPTION parameter value 36, 498

DUMP value 35

554 RPG/400 User's Guide

dump, formatted 60
duplicate field names on /COPY modifier

statement 279

E
edit codes
edit source (STRSEU) command 23
edit word
encapsulated program 493
ending a program 265, 266
ENDSR (end subroutine) operation code
environment

System/38 3, 531
error handling 253

See also exception/error handling
error messages

organization 496
using, displaying, and printing 47

error parameter for SPECIAL PLIST 101
exception/error handling 70

communications files 527
device communications 527
RPG default 70
with ICF files 527

EXCLUDE value 41
extension specifications 22

general description 22
external (U1-U8) indicators
externally described data structure 236
externally described file

access path 114
adding to external description 84
advantages 78
as program-described 123
as WORKSTN file 143, 144
data format 215
definition 78
file description specifications for 84
output specifications for 88
overriding 87
processing methods 118
record format specifications 113
renaming record format 85
specifications 84

F
fetch overflow

See also overflow (OA-OG, OV) indicators
general description 94
logic 95

field
binary 217
format in file 215
in auto report 281

field (continued)
packed 215

field name
table

FLDTBL 518
XFDTAB 496

field-reference file, example of 115
file

array
See array

database
See DISK file

deleting records from
device dependence 75
device independence 75
DISK

See DISK file
externally described 78

See also externally described file
externally described disk 113
field format 215
general considerations 75
indexed 119
locking 81
name

externally described 78
override 87
program-described 90

open options 83
override 87
PRINTER 90
processing charts

PRINTER file 98
sequential file 100
SPECIAL file 104

program-described 78, 90
redirection 76
SEQ 99, 122
sharing 83
SPECIAL 101
types

supported by RPG/400 535
supported by System/38 environment RPG com-

piler 535
valid keys 117
WORKSTN 143

file condition
See external indicators, UC

file considerations
general 75

file description specifications 22
CFILE continuation line option 143
commitment control 108
for externally described files 85
general description 22
modifying 277

 Index 555

file description specifications (continued)
using the copy function with automatic report 276

file information data structure
general information 224
statement

externally described 220
program-described 220
rules 222
specifications 221

subfields
rules 226
specifications 223

file locking 81
file name table, XFLTAB 495
file operation codes

allowed with DISK file 141
allowed with PRINTER file 90, 98
allowed with sequential file 100
allowed with SPECIAL file 103, 104
allowed with WORKSTN file 147, 150

file sharing 83
FLAG value 39
floating minus edit codes, specifying 523, 532
floating-point fields 86
flowchart

fetch-overflow logic 95
format

external processing 220
internal processing 220
signs 219

format name 154
format of data

binary 217
data in fields 215
packed-decimal 215
zoned-decimal 216

formatted dump, using 60
formatting report (auto report) 280
FREE (deactivate a program) operation code

program communication 261
function keys

indicators 146
with WORKSTN file 146

G
GDDM 260
GEN value 35
generated RPG/400 program, auto report

calculations 285
examples 299
group printing 271
output specifications 285
reformatting *AUTO page headings 281
source of specifications 275
subroutine (A$$SUM) 285

generated specifications, auto report 271, 284
generation of program

See compiling
generation options parameter 36
generation severity level parameter 33
GENLVL parameter 33
GENOPT parameter 36

*ATR 498
*DUMP 498
*LIST 498
*OPTIMIZE 499
*PATCH 498
*XREF 498

Grant Object Authority command 41
graphic data type 251
GRAPHIC value 38
Graphical Data Display Manager 260
graphics 260
graphics support 260
group printing

examples 271
specifications 271

GRTOBJAUT command 41

H
H1-H9

See halt (H1-H9) indicators
halt (H1-H9) indicators

used to end a program 266
handling, exception/error

See exception/error handling
header specifications

See control specifications
help command key 147
home command key 147

I
ICF communications file 143
ideographic (IGC) variables

Double Byte Characters (DBC) variables 265
subroutines SUBR40R3 263
subroutines SUBR41R3 264

If-Then-Else structure 6
IGC

See ideographic (IGC) variables
IGNDECERR parameter 44
ignore decimal data error parameter 44
IGNORE option 86
ignoring record format 86
INDENT parameter 37
indexed file

access path 119
general description 119
valid search arguments 119

556 RPG/400 User's Guide

indicators
control level (L1-L9)
external (U1-U8)
function key (KA-KN, KP-KY)

with WORKSTN file 146
halt (H1-H9)

used to end a program 266
last record (LR)

used to end a program 266
overflow

examples 93, 95
fetch overflow logic 94
general description 90
presence or absence of 92
relation to program cycle 95
setting of 95
with PRINTER file 90

return (RT)
used to end a program 266

table, XINTAB 496
INFDS

See file information data structure
information
initialization

of data structure subfields 242
of data structures 241
of data structures, examples 243
overview 240
special considerations for data structures 241

initialization subroutine (*INZSR)
initialization overview 240

input
designing 6
file 156

input field specifications
binary format 217
modifying 277

input record
unblocking 82

input specifications 22
general description 22
program-described WORKSTN file 155

intermediate text
description 493
listing 493

intermediate text dump parameter 42
interprogram communication 255
Intersystem Communications Function (ICF) iii, 143
IRP listing, layout 36, 515
ITDUMP parameter 42, 499

K
KA-KN KP-KY indicators

See function key indicators

key
composite 118
for a record or a file 117
partial 118

keyed processing
access path 114
examples 133
indexed file 119
record-address limits file 122
sequential 123
sequential-within-limits 132

keyed-sequence access path 114
keywords

DDS 113
for continuation line 113

CLEAR 147
HELP 147
HOME 147
PRINT 147
ROLLDOWN 147
ROLLUP 147

for display device file
CLEAR 147
HELP 147
HOME 147
PRINT 147
ROLLDOWN 147
ROLLUP 147

L
L1-L9 (control level) indicators

See control level (L1-L9) indicators
last record (LR) indicator

used to end a program 266
level checking 80
LIBCRTAUT value 41
LIBL value 33, 39
limits records 114
line counter specifications 22

general description 22
linkage to other programs

CALL/FREE/RETRN 255
SPECIAL device 101

*asterisk.LIST
GENOPT parameter value 498

listing, sample of source and cross-reference 50
locking

file 81
read without locking 81
record locking wait time 81
retry on timeout 81
standalone 81
under commitment control 109
UNLCK 81

 Index 557

logical file
See DISK file

LR (last record) indicator
See last record (LR) indicator

LSTDBG value 36

M
merging of members 522
message retrieval 265
message-retrieving subroutine (SUBR23R3) 261
messages

displaying 47, 49
printing 47, 49
SAA 49
using 47

modifier statements (/COPY function)
file description specifications 277
input-field specifications 277

monitor message (MONMSG) command 26
moving double-byte data and adding control characters

(SUBR41R3) 264
moving double-byte data and deleting control characters

(SUBR40R3) 263
multiple devices attached to application program 108
multiple-device file 157

N
named constants 237

rules 237
specifying 237, 523

NODUMP value 35
NOFLAG value 39
NOGEN value 35
NOLSTDBG value 36
NONE value 37, 38
nonkeyed processing 140
NOOPTIMIZE value 36
NOSECLVL value 35
NOSOURCE value 34
NOSRCDBG value 35
NOXREF value 35
null value support 252
numeric fields

auto report
centering column headings 281
format 215, 216

O
OA-OG, OV (overflow) indicators

See overflow (OA-OG, OV) indicators
objects

communication 255

online information
open data path 83

sharing 83
operation codes 147, 150

allowed with DISK file 141
allowed with PRINTER file 90
allowed with sequential file 99
allowed with SPECIAL file 104

OPTIMIZE value 36
OPTION parameter 34, 498

*DUMP 498
*SOURCE 498
*XREF 498

option parameter for SPECIAL PLIST 101
output

designing 5
generated 285
specifications 88

output field specifications
binary format 217

output file 156
output record

blocking 82
output specifications

general description 23
program-described WORKSTN file 154

output spooling 77
overflow

D/T-*AUTO print lines 283
indicators 92
page 91

overflow indicators
conditioning output 92
examples 93, 95
fetch-overflow logic 94
general description 92
presence or absence of 92
relation to program cycle 95
setting of 95
with PRINTER file 90

overlapping subfields 226
override, file 87, 140
overriding external description 87
OWNER value 40

P
packed decimal format

array/table field 215
definition 215
description 215
input field 215
length in bytes 216
length in digits 216
output field 215

558 RPG/400 User's Guide

page headings
AUTO 282
in auto report 281

page number, in PRINTER file 91
page overflow, in PRINTER file 91
parameter list

See also PARM (identify parmeters) operation code
created by PARM 259
created by SPECIAL 101
identifying 259
rules for specifying

PARM (identify parameters) operation code
program communication 259
rules for specifying 260

partial key 118
processing methods

externally described DISK files 118
PDA (PIP data areas)

description 269
initialization 242

PGM parameter 32
PGM value 33
PGR (Presentation Graphics Routines) 260
phase trace 499
phase trace parameter 41
phase-name value 42
phases

auto report program 518
compiler 494
trace 499

PHSTRC parameter 41, 499
physical file
PIP (Program Initialization Parameters) data area

and data areas (PDA) 269
initialization 242

PLIST (identify a parameter list) operation code
program communication 259
rules for specifying 259

PLIST keyword for SPECIAL file
description of parameters 101

prerun-time array or table
description of parameters 101
initialization 241

Presentation Graphics Routines 260
prestart jobs 269
preventing printing over perforation 94
print command key 147
print file parameter 39
print lines in an auto report 283
print messages 47
printer control option

See PRTCTL
PRINTER file

access current line value 96
fetch-overflow logic 94
file operation codes allowed 90

PRINTER file (continued)
maximum number of files allowed in program 90
modify forms control 96
overflow indicators 90
page overflow 91
processing chart 98
PRTCTL (printer control) 96

processing methods
consecutive 124
for DISK file 118, 123
for externally described file 118
keyed

See keyed processing
nonkeyed 140
relative-record-number 123
sequential only 124, 140
sequential-by-key 124
sequential-within-limits 132

program
abnormal ending 266
data areas 267
deactivating 261
entering 23
normal ending 266
return without an end 267
samples 321
template 493

program communication
CALL/FREE/RETRN 255
data 527
returning from a called program 265
SPECIAL 101

program cycle
commitment control 109
fetch overflow logic 95
initialization 243

program design
applications 15
RPG 5

program ending 265
program exception/error subroutine

example 74
program identification

See program name
program initialization parameters

and data areas (PDA) 269
Program Initialization Parameters data area

initialization 242
program name

*PGM parameter 33
program parameter 32
program status data structure

general information 223
multiple occurrences of 223
statement

externally described 220
program-described 220

 Index 559

program status data structure (continued)
statement (continued)

rules 222
specifications 221

subfields
rules 226
specifications 224

program-described file 78
as DISK file 119
as WORKSTN file 154, 156
data format 215
definition 78
valid search arguments 119

programming aids 291
prompt screens

CRTRPGPGM command 29
protecting records/files

See file locking by RPG
PRTCTL (printer control)

example 98
general information 96

PRTFILE parameter 39
PRV value 40
*PSSR

See program exception/error subroutine
public authority for an object 41

Q
QRPGSRC value 33
QSYSPRT value 39
query names of called programs 258

R
random by key processing iii, 132
RCLRSC command 84
READ (read a record) operation code

with data communication 527
READC (read next modified record) operation code

with WORKSTN subfile 152
Reclaim Resources (RCLRSC) command 84
RECNO

with relative-record-number processing 123
record

limits 122
locking 81
name table, XRCTAB 496
releasing 82
valid keys 117

record address file
relative-record number 122
sequential-within-limits 122
with limits records 122
with relative record numbers 122

record address limits file
See record address file

record address relative record number file
See record address file

record format
for a subfile 150
ignoring 86
renaming 85
specifications for externally described file 113

record locking 81
record sharing

See file locking by RPG
redirection, file

definition 76
general description 76

relative record number record address file
See record address file

relative-record-number 123
relative-record-number processing 123
release-level parameter 40
releasing a locked record 82
RENAME option 85
renaming record-format names 85
RESET operation code 240
retrieval of data area

implicit 223
RETRN (return to caller) operation code

program communication 265
retry on a record lock timeout 82
return (RT) indicator

used to end a program 266
return status parameter 102
RETURNCODE data area 26
returning from a called program iii, 265
Revoke Object Authority command 41
rolldown command key 147
rollup command key 147
RPG II S/36-Compatible and RPG/400 521
RPGOBJ 32
RT (return) indicator

See return (RT) indicator
run-time array

See array
run-time subroutines 497
RVKOBJAUT command 41

S
SAA data types

date, time and timestamps 250
DBCS-graphic data type 251
null value support 252
overview 247
variable-length fields 247

SAA flagging parameter 39

560 RPG/400 User's Guide

SAA messages, flagging 49
SAA support 263
sample programs 321

checklist 321
control file maintenance 383

data descriptions 384
data area control file 326, 336
data area control file maintenance 326
data entry 166
data maintenance 174
database design 324
database field definition 332
database reference master file 333
employee master file 324, 337
format name on output specifications 206
inquiry 159
inquiry by zip code and search on name 196
master file maintenance 326, 346, 347, 382

data descriptions 354
employee master maintenance 349
employee master selection 348
project master maintenance 351
project master selection 350
reason code master maintenance 353
reason code master selection 352
select format 347

master file maintenance RPG/400 program
PRG01 364
PRG02 386

monthly processing 444
employee summary report data descriptions 449
master file monthly update and clear RPG/400

program 487
monthly time file update and reporting 444
project summary report data descriptions 464
project summary report RPG/400 program 468
reason code summary report data

descriptions 476
reason code summary report RPG/400

program 479
time reporting employee summary report 453
time reporting employee summary report

layout 448
time reporting project summary report layout 463
time reporting reason code summary report

layout 475
monthly time-entry file reporting and update

process 330
monthly transaction entry file 341
project master file 324, 338
read operation with time-out 211
reason-code master file 325, 339
subfile processing 187
time file transaction entry 394
time reporting menu design 343
time reporting transaction entry 395

data descriptions 397

sample programs (continued)
time reporting transaction entry (continued)

employee selection display 395
time reporting transaction entry RPG/400 program

PRG03 401
time-file entry process 327
transaction history files 325
variable start line 208
weekly time file update 418

master file update 428
time file entry edit 421
weekly employee transaction report layout 427
weekly transaction report 428

weekly time-file update process 328
weekly transaction entry file 340
year end processing 491

save-while-active 50
screen design aid (SDA) 4
SDA

See screen design aid (SDA)
search argument

externally described file
description 117
referencing a partial key 118
valid 117

program-described file 119
SECLVL value 35
SEQ file

example 99
file operation codes allowed 100
general description 99
processing chart 100
restrictions 99
variable-length 99

sequence
sequence, collating

See alternate collating sequence
sequence checking

on input specifications 90
sequential file 122
sequential operation 6
sequential-by-key processing iii, 124
sequential-only processing 124
sequential-within-limits processing iii, 132, 133
service information

auto report function 493
compiler 493

SEU
See source entry utility (SEU)

severity-level-value 34
sharing an open data path for a file 83
signs

external format 219
internal format 219

snap dump parameter 42

 Index 561

SNPDUMP parameter 42, 499
source and cross-reference listing example 50
source entry utility (SEU) iii, 3, 23
source file parameter 32
source listing indentation parameter 37
source listing options parameter 34
source member parameter 33
source program

compiling
in System/38 environment 45
using CRTRPGPGM command 26, 27

entering into system 23
listing 498
running 49

SOURCE value 34
special command keys 147
SPECIAL file

definition 101
deleting records from 104
device name 101
general description 101
parameter list 101
valid file operations 104

specifications
/COPY statement 275
copied, modifying 276
data structure statement 221
data structure subfields 224
data structure subfields, rules for 226
entering and coding 21
externally described file 84
file description 85
file description, modifying 277
forms 21
generated 284
group printing 271
input-field, modifying 277
output 88
output, generated by auto report 285
record format 113

spooling 77
SRCDBG value 35
SRCFILE parameter 32
SRCMBR parameter 33
SRCMBRTXT value 34
starting commitment control 107

ending commitment control 107
status parameter for SPECIAL PLIST 101
STRSEU (edit source) command 23
Structured Query Language (SQL) 4
subfields

for data structure subfield specifications 224
for file information data structure 61
for PRTCTL 97
rules for 226
rules for initializing 242

subfields (continued)
within a data structure 224

description 224
specifications for 224

subfile
control-record format 150
descriptions 150
examples 152, 153
file operation codes allowed with 151
general description 150, 151
record format 150
uses of 152

subfiles
SUBR23R3 (message retrieval) 261
SUBR40R3 (manipulating Double Byte Characters vari-

ables) 263
SUBR41R3 (manipulating Double Byte Characters vari-

ables) 264
subroutines

A$$SUM (auto report) 285
calling special subroutines 261
run-time 497
SUBR23R3 (message retrieval) 261
SUBR40R3 (manipulating DBC variables) 263
SUBR41R3 (manipulating DBC variables) 264

summary tables
file operation codes allowed with

DISK 140
PRINTER 90, 98
sequential 100
SPECIAL 103, 104
WORKSTN 147, 150

PRINTER file processing 98
sequential file processing 100
SPECIAL file processing 104
WORKSTN file processing 150

syntax
CRTRPGPGM command 29
CRTRPTPGM command 295

system functions
spooling 77

System/36-Compatible RPG II and RPG/400 521
System/38 environment

differences between RPG/400 and the System/38
Environment Option of the RPG Compiler 531

differences between System/38 RPG III and
System/38 Environment Option of the RPG Com-
piler 531

environment on the AS/400 system 3
RPG/400 compiler 531
source program compiling 45

T
T-*AUTO

See AUTO output

562 RPG/400 User's Guide

table
See array
searching

See LOKUP operation
tape file 122
target release parameter 40
techniques for efficient coding 6
template, program 493
test library, using iii, 51, 54
testing

breakpoint 54
fields

See field indicators
test library 51
trace 58

TEXT parameter 34
TGTRLS parameter 40
time data fields (SAA data type) 250
timestamp data fields (SAA data type) 250
trace, using iii, 58
triple asterisk (***)

generated specifications 271, 284
type conversion options parameter 38

U
U1-U8

See external (U1-U8) indicators
unblocking/blocking records 82
usage of indicators

See indicators
USE value 41
user profile parameter 40
USER value 40
USRPRF parameter 40
utilities

screen design aid (SDA) 4
source entry utility (SEU) 3

V
valid file operations

SPECIAL file 104
WORKSTN file

valid keys
for file 117
for records 117

VARCHAR value 38
variable-length fields 247
variable-length records 99
VCOMMON 496

W
WORKSTN file

definition 143

WORKSTN file (continued)
examples 158
externally described 143

processing 144
file operation codes allowed with 147
function key indicators with 146
multiple-device 157
processing 147
program-described 154

calculation specifications 155
combined file 156
considerations 156
input file 156
input specifications 155
output file 156
output specifications 154
with format name 154
without format name 156

sample data entry program 166
sample data maintenance program 174
sample format name program 206
sample inquiry and search program 196
sample inquiry program 159
sample read with time-out program 211
sample subfile processing program 187
sample variable start line program 208
subfiles

control-record format 150
examples 152
for display-device file 150
record format 150
uses of 152

using 143
WRITE (create new records) operation code

with data communication 527

X
XFDTAB 496
XFLTAB 496
XINTAB 496
XRCTAB 496
*XREF

GENOPT parameter 498
GENOPT parameter value 35
OPTION parameter value 35

XREF value 35

Z
zoned decimal format

definition 216
description 216

 Index 563

ÉÂÔÙ

Program Number: 5763-RG1

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-1816-00

	Contents
	Notices
	About This Manual
	Chapter 1. An Introduction to RPG/400 and the AS/400 System
	Chapter 2. Entering RPG/400 Specifications
	Chapter 3. Compiling an RPG/400 Program
	Chapter 4. Error Messages, Testing, and Debugging
	Chapter 5. General File Considerations
	Chapter 6. Commitment Control
	Chapter 7. Using DISK Files
	Chapter 8. Using WORKSTN Files
	Chapter 9. Data Field Formats and Data Structures
	Chapter 10. Named Constants, Initialization, and SAA Data Types
	Chapter 11. Communicating with Objects in the System
	Chapter 12. Auto Report Feature
	Chapter 13. RPG/400 Sample Programs
	Appendix A. RPG Compiler and Auto Report Program Service Information
	Appendix B. RPG/400 and AS/400 RPG II System/36-Compatible Functions
	Appendix C. Data Communication
	Appendix D. Distributed Data Management (DDM) Files
	Appendix E. System/38 Environment Option of the RPG Compiler
	Appendix F. Examples of Using Arrays
	Appendix G. Glossary of Abbreviations
	Bibliography
	Index

