..ll!

Application System/400

RPG/400 User’s Guide

SC09-1816-00

— Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page Xi.

First Edition (June 1994)

This edition applies to the licensed program IBM* ILE* RPG/400* (Program 5763-RG1), Version 3 Release 0 Modification 5, and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the proper edition for
the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. Publications are not stocked at the
address given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, you can address your
comments to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to IBM.
See "Communicating Your Comments to IBM" for a description of the methods. This page immediately precedes the Readers'
Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Xi
Programming Interface Information Xi
Trademarks and Service Markso Xi
About This Manual Xiii
Who Should Use This Manual Xiii
How to Interpret Syntax Diagrams Xiv
Chapter 1. An Introduction to RPG/400 and the AS/400 System 1
The OS/400 System 1
The AS/400 Control Language 1
Commonly Used Control Language Commands 2
System/38 Environment on the AS/400 System 3
AS/400 Utilities and Languages 3
The Source Entry Utility 3
The Screen Design Aid 4
The Structured Query Language 4
Restrictions 4
Designing Your RPG/400 Program 5
Designing the Output 5
Designing the Processing 6
Designing the Input 6
Structured Programming in the RPG/400 Programming Language 6
Sequential Operation 6
Conditional Branching 6

If Else Structure 6
SELEC Structure 8
Other Conditional Branching Structures 9
Repeating an Operation 9
Do Operation e 9

Do While Operation 11

Do Until Operation 13
Summary of Structured Programming Operation Codes 14
Designing Applications 15
Single Program Design 15
Modular Program Design 16
Examples of Application Design 17
Chapter 2. Entering RPG/400 Specifications 21
The RPG/400 Specifications 21
The Control Specification 21
File Description Specifications 22
Extension Specifications 22
Line Counter Specifications L 22
Input Specifications 22
Calculation Specifications 22
Output Specifications 23
Entering Your Program 23
Chapter 3. Compiling an RPG/400 Program 25

© Copyright IBM Corp. 1994 ili

iv

RPG/400 User's Guide

Create RPG400 Program (CRTRPGPGM) Command 26

Using the CRTRPGPGM Command 27
Elements of the CRTRPGPGM Command Lines 28
Entering Elements from the CRTRPGPGM Command Display 28
Entering Only Certain Parameters 28
Entering Only the Parameter Values 29

CRTRPGPGM Command 29
Compiling under the System/38 Environment 45
Chapter 4. Error Messages, Testing, and Debugging 47
Using, Displaying, and Printing Messages 47
Using Messages e 47
Systems Application Architecture Flagging Messages 49
Displaying and Printing Messages 49
How to Run an RPG/400 Program 49

Save-While-Active Support 50
Using a Test Library 51
Using Breakpoints 54

Example of Using Breakpoints 54

Considerations for Using Breakpoints 57
UsingaTrace e 58

Example of Usinga Trace 59

Considerations for Using a Trace 60
Using the DEBUG Operation Codes 60
Using the RPG/400 Formatted Dump 60
Exception/Error Handling 70
Chapter 5. General File Considerations 75
Device Independence/Device Dependence 75
Spooling 77

Output Spool 77
Externally Described and Program-Described Files 78
Level Checking 80
File Locking by an RPG/400 Program 81
Record Locking by an RPG/400 Program 81
Unblocking Input Records and Blocking Output Records 82
Sharing an Open Data Path 83
Using the Control Language Command RCLRSC 84
Specifications for Externally Described Files 84

File Description Specifications, 85

Renaming Record-Format Names 85

Ignoring Record Formats 86

Floating-Point Fields 86

Overriding or Adding RPG/400 Functions to an External Description 87

Output Specifications 88

Program-Described Files 90
Printer Files 90

Page Overflow 91

Overflow Indicators 92

Fetch-Overflow Logic 94

PRTCTL (Printer Control) Option 96

Sequential File 99
Special File 101

Chapter 6. Commitment Control 107

Using Commitment Control 107
Starting and Ending Commitment Control 107
Specifying Files for Commitment Control 108
Commitment Control Operations 108
Commitment Control Locks 109
Commitment Control in the Program Cycle 109
Example of Using Commitment Control 110

Chapter 7. Using DISK Files 113

Externally Described Disk Files 113
Record Format Specifications 113
Access Path 114
Valid Keys for a Record or File 117

Valid Search Arguments 117
Referringto a Partial Key 118
Processing Methods for Externally Described DISK Files 118

Program-Described Disk Files L. 119

Indexed File 119
Valid Search Arguments 119
Sequential Files 122
Record Address File 122
Limits Records 122
Relative Record Numbers 123
Externally Described File as Program Described 123

Methods for Processing Disk Files 123
Relative-Record-Number Processing 123
Consecutive Processing 124
Sequential-by-Key Processingo 124
Sequential-within-Limits Processing 132
Keyed Processing Examples 132

Valid File Operations 140

Chapter 8. Using WORKSTN Files 143

Intersystem Communications Function 143

Externally Described WORKSTN Files 143
Processing an Externally Described WORKSTN File 144
Function Key Indicators on Display Device Files 146
Command Keys on Display Device Files 147

Processing WORKSTN Files 147

EXFMT Operation 147
READ Operation 147
WRITE Operation 147
WORKSTN file 148
Subfiles 150
Use of Subfiles 152

Program-Described WORKSTN File 154

Program-Described WORKSTN File with a Format Name 154
Output Specifications 154
Input Specifications 155
Calculation Specifications 155
Additional Considerations 156

Program-Described WORKSTN File without a Format Name 156
Input File 156

Contents V

Vi

RPG/400 User's Guide

Output File 156

Combined File 156
Multiple-Device Files, 157
WORKSTN File Examples 158

Sample Program 1-Inquiry 159
Sample Program 2—-Data Entry with Master Update 166
Sample Program 3—Maintenance 174
Sample Program 4-WORKSTN Subfile Processing 187
Sample Program 5-Inquiry by Zip Code and Search on Name 196
Sample Program 6—Program-Described WORKSTN File with a FORMAT
Name on Output Specifications 206
Sample Program 7—Variable StartLine 208
Sample Program 8—Read Operation with Time-Out 211
Chapter 9. Data Field Formats and Data Structures 215
Format of Fieldsin Files 215
Packed-Decimal Format 215
Zoned-Decimal Format 216
Binary Format 217
Program-Described File 217
Externally Described File 218
SIgNS . . e 219

External Formats 220

Internal Format 220
Data Structures L 220

Format of Data Structure Subfields in Storage 221
Data Structure Statement Specifications 221
Rules for Specifying Data Structure Statements 222
Multiple Occurrence Data Structure 223
Special Data Structures 223
Data Area Data Structure 223
File Information Data Structure 224
Program-Status Data Structure 224
Data Structure-Subfield Specifications 224
Rules for Subfield Specifications 226
Data Structure Examples 226
Chapter 10. Named Constants, Initialization, and SAA Data Types ... 237
Named Constants 237
Rules for Named Constants 237
Initialization 240
Initialization Subroutine (*INZSR) 240
CLEAR and RESET Operation Codes 240
Data Structure Initialization 241
Special Considerations for Initializing Data Structures 241
Rules for Initializing Subfields 242
Initialization and the Program Cycle 243
Initialization Examples 243
SAA Data Types e 247
Variable-Length Fields 247
Date, Time, and Timestamp Fields 250
DBCS-Graphic Data Type Support 251
Null Value Support 252
Error Handling for SAA Data Types 253

Chapter 11. Communicating with Objects in the System 255

Calling Other Programs 255
CALL (Call a Program) 258
PLIST (Identify a Parameter List) and PARM (Identify Parameters) 259

Rules for Specifying PLIST 259
Rules for Specifying PARM 260
0OS/400 Graphics Support 260
FREE (Deactivate a Program) 261

Calling Special Subroutines 261
Message-Retrieving Subroutine (SUBR23R3) 261
SAA Common Programming Interface Support 263
Moving Bracketed Double-byte Data and Deleting Control Characters

(SUBR40OR3) 263
Moving Bracketed Double-byte Data and Adding Control Characters
(SUBR41R3) 264

Returning from a Called Program 265
A Normal End 266
An Abnormal End 266
Return withoutan End 267

Data Areas 267
Program Initialization Parameters (PIP) Data Area 269

Chapter 12. Auto Report Feature 271

Group Printing 271
Specifications 271
Examples 271

/COPY Statement Specifications, 275
Changing Copied Specifications 276

Changing File Description Specifications 277
Changing Input-Field Specifications 277

Report Format 280
Spacing and Skipping 280
Placement of Headings and Fields 281

Page Headings 281
Reformatting *AUTO Page Headings 282
Body of the Report 283
Overflow of the D/T-*AUTO Print Lines 283

Generated Specifications 284
Generated Calculations 285
Generated Output Specifications 285

Programming Aids 291

Using CRTRPTPGM to Compile an Auto Report Program 294
Using the CRTRPTPGM Command 295
CRTRPTPGM Command 295

Examples of Using Automatic Report 299

EXAMPLE 1 - Sales Report 299
EXAMPLE 2 - Sales Report with Three Levels of Totals 304
EXAMPLE 3 - Sales Report with Group Indication 307
EXAMPLE 4 - Sales Report with Cross-Column Totals 310
EXAMPLE 5 - Sales Report Using Copied Specifications 314
EXAMPLE 6 - Override Copied Input Specifications 317
Chapter 13. RPG/400 Sample Programs 321
Checklist of Program Examples 321

Contents Vil

viii

Database Design
Employee Master File
Project Master File
Reason-Code Master File

Transaction History Files

Data Area Control File

Master File Maintenance

Data Area Control File Maintenance

Time-File Entry

Weekly Time-File Update

Monthly Time-Entry File Reporting and Update

Database Field Definition

Database Reference Master File - REFMST

Data Area Control File - CTLFIL

Employee Master File - EMPMST

Project Master File - PRIMST

Reason-Code Master File - RSNMST

Weekly Transaction Entry File - TRWEEK

Monthly Transaction Entry File - TRMNTH

Time Reporting Menu Design
Master File Maintenance

Master File Maintenance Display - PRGO1FM
SELECT Format - Maintenance Selection

Employee Master Selection - EMPSEL Format

Employee Master Maintenance - EMPMNT Format

Project Master Selection - PRJSEL Format

Project Master Maintenance - PRIMNT Format

Reason Code Master Selection - RSNSEL Format

Reason Code Master Maintenance - RSNMNT Format

Master File Maintenance Data Descriptions - PRGO1FM

Master File Maintenance RPG/400 program - PRGO1

Control File Maintenance

Control File Maintenance - PRGO2FM

Control File Maintenance Data Descriptions - PRGO2FM

Control File Maintenance RPG/400 Program - PRG02

Time File Transaction Entry

Time Reporting Transaction Entry - PRGO3FM
Employee Selection Display

Time Reporting Transaction Entry Data Descriptions - PRGO3FM

Time Reporting Transaction Entry RPG/400 Program - PRG0O3

Weekly Time File Update

Time File Entry Edit RPG/400 Program - PRGO5

Weekly Employee Transaction Report Layout - PRG09

Master File Update and Weekly Transaction Report - PRG09

Monthly Processing

Monthly Time File Update and Reporting

Time Reporting Employee Summary Report Layout - PRGO6RP

Employee Summary Report Data Descriptions - PRGO6RP

Employee Summary Report RPG/400 Program - PRGO6

Time Reporting Project Summary Report Layout - PRGO7RP

Project Summary Report Data Descriptions - PRGO7RP

Project Summary Report RPG/400 Program - PRGO7

Time Reporting Reason Code Summary Report Layout - PRGO8SRP . . .

Reason Code Summary Report Data Descriptions - PRGOSRP

RPG/400 User's Guide

Reason Code Summary Report RPG/400 Program - PRG0O8 479
Master File Monthly Update and Clear RPG/400 Program - PRG04 487
Year End Processing 491

Appendix A. RPG Compiler and Auto Report Program Service

Information 493
Compiler Overview 493
Compiler Phases 494
Major Compiler Data Areas 496
Compiler Error Message Organization 496
Run-Time Subroutines 497
Compiler Debugging Options 498
*SOURCE Value for the OPTION Parameter 498
*XREF Value for the OPTION Parameter 498
*DUMP Value for the OPTION Parameter 498
*LIST Value for the GENOPT Parameter 498
*ATR Value for the GENOPT Parameter 498
*XREF Value for the GENOPT Parameter 498
*DUMP Value for the GENOPT Parameter 498
*PATCH Value for the GENOPT Parameter 498
*OPTIMIZE Value for the GENOPT Parameter 499
ITDUMP Parameter o 499
SNPDUMP Parameter 499
CODELIST Parameter 499
PHSTRC Parameter 499
Examples of Using Compiler Debugging Options 500
IRP Layout 515
Auto Report Program 518

Appendix B. RPG/400 and AS/400 RPG Il System/36-Compatible

Functions 521
Language Enhancements 521
Appendix C. Data Communication 527
Exception and Error Handling with ICF Files 527
Communications Error Recovery 527
Appendix D. Distributed Data Management (DDM) Files 529
Appendix E. System/38 Environment Option of the RPG Compiler ... b3l
Differences between System/38 RPG Il and the System/38 Environment

Option of the RPG Compiler 531
Differences between the System/38 Environment Option of the RPG Compiler

and RPG/400 Compiler 531
File Types Supported by Each Compiler 535
Appendix F. Examples of Using Arrays 537
Appendix G. Glossary of Abbreviations 547
Bibliography 549
Index . . . 551

Contents X

X RPG/400 User's Guide

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, Conecticut, USA
06904-2501.

Changes or addition to the text are indicated by a vertical line (|) to the left of the
change or addition.

This publication contains examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information

This RPG/400 User's Guide is intended to help you create RPG/400 programs.
This RPG/400 User's Guide documents general-use programming interfaces and
associated guidance information provided by the RPG/400 compiler.

General-use programming interfaces allow the customer to write programs that
request or receive services of the RPG/400 compiler.

Trademarks and

© Copyright IBM Corp. 1994

Service Marks

The following terms, denoted by an asterisk (*), used in this publication, are trade-
marks of the IBM Corporation in the United States or other countries:

Application System/400 AS/400

IBM ILE

Operating System/2 Operating System/400
0Ss/2 0S/400

RPG/400 SAA

Systems Application Architecture SQL/400

400

Xi

Xii RPG/400 User's Guide

About This Manual

About This Manual

This manual is a guide for the RPG/400* programming language on the AS/400
system using the Operating System/400* (OS/400*) system. The RPG/400 com-
piler is a Systems Application Architecture* (SAA*) compiler that adheres to SAA
conventions.

The topics covered in this manual include:

e Designing RPG/400 programs

e Coding RPG/400 programs

e Entering and compiling RPG/400 programs

e Testing and debugging RPG/400 programs

e Studying coded RPG/400 examples and sample programs.

This manual may refer to products that are announced but are not yet available.

You may need to refer to other IBM* manuals for more specific information about a
particular topic. The Publications Guide, GC41-9678, provides information on all of
the manuals in the AS/400* library. For a list of related publications, see the
“Bibliography” on page 549.

Who Should Use This Manual

© Copyright IBM Corp. 1994

This manual is intended for people who have a basic understanding of data proc-
essing concepts and of the RPG/400 programming language. It is also designed to
guide the programmer in the use of RPG/400 programs and compilers on the
AS/400 system. RPG/400 specifications and operations are frequently mentioned.
For a detailed description of RPG/400 specifications and operation codes, see the
RPG/400 Reference, SC09-1817.

Before you use this manual, you should be familiar with certain information:

¢ You should know how to use data management support to work with files,
display stations, printers, tapes, and diskettes, as well as spooling support.
This information is contained in the Data Management Guide.

e You should be familiar with your display station (also known as a work station)
and its controls. Some elements of its display and certain keys on the key-
board are standard regardless of the software system currently running at the
display station or the hardware system the display station is connected to.
Some of these keys are:

— Cursor movement keys
Command keys

Field exit keys

Insert and delete keys
The Error Reset key.

This information is contained in the New User’s Guide, SC41-8211.

e You should know how to operate your display station when it is connected to
the IBM AS/400 system and running AS/400 software. This means knowing
about the 0S/400 system and the Control Language (CL) to perform the tasks
of:

Xiii

Reading Syntax

— Sign on and sign off of the AS/400 system
— Interact with displays

— Use Help

— Enter control commands

— Call utilities

— Respond to messages.

To find out more about control language, refer to these IBM AS/400
publications:

— CL Programmer’s Guide
— Control Language Reference

e You should be familiar with the RPG/400 program cycle, how indicators affect
the program cycle, and how to code entries on the RPG/400 specification
sheets.

The sample application programs contained in this manual are scaled in such a
way that you can use the RPG Debugging Template, GX21-9129 to check the
coding in the programs.

These general items about the RPG/400 programming language are taught in
an RPG/400 coding class. Detailed information on the RPG/400 programming
language can be found in the RPG/400 Reference.

How to Interpret Syntax Diagrams

The syntax diagrams in this book use the following conventions:

»»—PARAMETER—(

r o user-defined-value—)———— =
PREDEFINED-VALUE

Figure 1. Structure of a Syntax Diagram

Read the syntax diagram from left to right, from top to bottom, following the path of
the line.

The »— symbol indicates the beginning of the syntax diagram.

The —< symbol indicates the end of the syntax diagram.

The — symbol indicates that the statement syntax is continued on the next line.
The »— symbol indicates that a statement is continued from the previous line.

The —(—)— symbol indicates that the parameter or value must be entered in
parentheses.

Required parameters appear on the base line and must be entered. Optional
parameters appear below the base line and do not have to be entered. In the
following sample, you must enter REQUIRED-PARAMETER and a value for it, but
you do not have to enter OPTIONAL-PARAMETER or a value for it.

XIV RPG/400 User's Guide

Reading Syntax

v

»»—REQUIRED—PARAMETER—(—EPREDEZI;\ICI::D-(\;ALUﬁ N)
user-dejinea-vaiue

\ 4
A

|—OPTIONAL-PARAMETER—(—EPREDEFINED-VALUE—_,—)J
ue

user-defined-val

Default values appear above the base line and do not have to be entered. They
are used when you do not specify a parameter. In the following sample, you can
enter DEFAULT-VALUE, OTHER-PREDEFINED-VALUE, or nothing. If you enter
nothing, DEFAULT-VALUE is assumed.

\
A

DEFAULT-VALUE—l
>>—PARAMETER—(—EOTHER-PREDEFINED—VALUE)

Optional values are indicated by a blank line. The blank line indicates that a value
from the first group (OPTIONAL-VALUEL, OPTIONAL-VALUEZ2, user-defined-value)
does not have to be entered. For example, based on the syntax below, you could
enter: KEYWORD(REQUIRED-VALUE).

PTIONAL-VALUEl—
|—O 0 U

»»>—PARAMETER—(REQUIRED-VALUE——)——>«

OPTIONAL-VALUE2
user-defined-value—

Repeated values can be specified for some parameters. The , in the following
sample indicates that each user-defined-value must be separated by a comma.

A

\ 4

»—KEYWORD—(—r—,user‘-defined-value |)

About This Manual XV

Reading Syntax

XVi RPG/400 User's Guide

Chapter 1. An Introduction to RPG/400 and the AS/400

System

The RPG/400 programming language is designed to make it easier for you to
create business software applications.

RPG is a language under evolution. A slightly different version of RPG is available
on each machine that supports it. The AS/400 system is the most recent of these
computing systems. You should know that, as well as offering a new enhanced
version of RPG, the AS/400 system also supports the previous versions of RPG
available on System/38 and System/36. For more information, see Appendix B,
“RPG/400 and AS/400 RPG Il System/36-Compatible Functions,” and Appendix E,
“System/38 Environment Option of the RPG Compiler.”

This chapter provides an overview of the following subjects:

e The OS/400 system and Control Language (CL)

e RPG/400 functions on the AS/400 system

e The System/38 environment on the AS/400 system
¢ Available languages and utilities

e The RPG/400 programming cycle

e RPG/400 program design

e Structured programming in RPG/400 programs

e Application design.

The OS/400 System

The operating system that controls all of your interactions with the AS/400 system
is called the Operating System/400 (OS/400) system. From your work station, the
0S/400 system allows you to:

e Sign on and sign off

e Interact with the displays

e Use the online help information

e Enter control commands and procedures
* Respond to messages

e Manage files

¢ Run utilities and programs.

Refer to the Publications Guide for a complete list of publications that discuss the
0S/400 system.

The AS/400 Control Language

© Copyright IBM Corp. 1994

You can manipulate the OS/400 system with the CL. You interact with the system
by entering or selecting CL commands. The AS/400 system often displays a series
of CL commands or command parameters appropriate to the situation on the
screen. You then select the desired command or parameters.

2

RPG/400 User's Guide

Commonly Used Control Language Commands
The following table lists some of the most commonly used CL commands, their
function, and the reasons you might want to use them.

Table 1. RPG/400 Functions and Associated CL Commands

RPG/400 Function

Associated Control Language Commands and their

Uses

Calling

CALL program-name

Run an RPG/400 program

CALL QCL Access the System/38 environment
Commitment Control CRTJRN Prepare to use commitment control.
CRTJRNRCV Prepare to use commitment control.
ENDCMTCTL Notify the system you want to end
commitment control.
JRNPF Prepare to use commitment control.
STRCMTCTL Notify the system you want to begin
commitment control.
Communications CRTICFDEVE Create ICF Device
OVRICFDEVE Override ICF Device
Compiling CRTRPGPGM Create RPG Program
CRTRPTPGM Create Auto Report Program
Consecutive Processing OVRDBF Override with Database file
Control Specification CRTDTAARA Create Data Area
Data Area DSPDTAARA Display Data Area
Debugging ADDBKP Add Breakpoint
ADDTRC Add Trace
DSPBKP Display Breakpoint
STRDBG Start Debug
Edit Codes CRTEDTD Create Edit Description (For User
Defined Edit Code)
DSPDTAARA Display Data Area
Printer Files CRTPRTF Create Print File
OVRPRTF Override Print File
System Editor STRSEU Start Source Entry Utility

The Control Language and all of its commands are described in detail in the CL

Reference manual.

AS/400 Utilities and Languages

System/38 Environment on the AS/400 System

The AS/400 system offers increased function over System/38. Because many
RPG/400 language programs are written for the System/38, and because many
programmers are already familiar with System/38, the AS/400 system also supports
these programs under the System/38 environment. The CL command CALL QCL
changes the AS/400 system display to appear to the user as a System/38 display.
This is known as the System/38 environment. When you are in this environment,
you can enter and compile RPG/400 programs as if you were using a System/38.
The file naming conventions are the same as in System/38. You can also enter
AS/400 CL commands in the System/38 environment. You can enter System/38
environment commands from the AS/400 system by library qualifying commands.
The QSYS38/CRTRPGPGM command calls the System/38 environment RPG |l
compiler. For more information on the System/38 environment, see the System/38
Environment Programmer’s Guide/Reference.

You can use the Source Entry Utility (SEU) to enter your RPG/400 source program
interactively. Enter the CL command STRSEU to call SEU. If you specify the
TYPE(RPG) parameter on this command, the RPG/400 syntax checker is called
and detects RPG/400 syntax errors, statement by statement, while the source
program is entered. Alternatively, you can enter a source program on diskettes and
upload the program into a source file.

— Note
To find out how to use RPG lll in the System/38 environment, refer to the
following:

e Appendix E, “System/38 Environment Option of the RPG Compiler” on
page 531

e the System/38 RPG Ill Reference Manual and Programmer's Guide
SC21-7725.

For information on System/38 devices and commands, refer to the appropriate
manuals in the System/38 library.

AS/400 Utilities and Languages

The AS/400 system offers two utilities and a language that you may find useful for
programming. They are the Screen Design Aid (SDA) utility, the Source Entry
Utility (SEU), and the Structured Query Language (SQL).

The Source Entry Utility

You use the SEU to enter your code into the system. SEU also provides extensive
syntax checking. For more information about SEU, refer to the SEU User's Guide
and Reference.

Chapter 1. An Introduction to RPG/400 and the AS/400 System 3

AS/400 Utilities and Languages

The Screen Design Aid

The SDA utility makes it easier for you to create the displays your program
requires. For more information about SDA, refer to the SDA User's Guide and Ref-
erence.

The Structured Query Language

4

RPG/400 User's Guide

The AS/400 system allows you to insert SQL/400 statements into RPG/400 pro-
grams. You enter SQL/400 statements on a calculation specification. The syntax
is shown in Figure 2. You must observe the following rules:

¢ The starting delimiter /EXEC SQL must be entered into columns 7-15, with the
slash in column 7.

e SQL/400 statements can be started on the same line as the starting delimiter.

e SQL/400 statements can be continued on any number of subsequent continua-
tion lines. The continuation line delimiter is the + in column 7.

e SQL/400 statements cannot go past column 74.

e The ending delimiter /END-EXEC must be entered in columns 7-15, with the
slash in column 7, on a separate line. This signals the end of the SQL/400
statements. It must be entered by itself, with no SQL/400 statements following
it.

C

C |

C

C/EXEC SQL (the starting delimiter)

C+

C+ (continuation Tines containing SQL statements)
C+

C/END-EXEC (the ending delimiter)
C |
C |
C |

Figure 2. Syntax for Entering SQL/400 Statements into an RPG/400 Program
You must enter a separate command to process the SQL/400 statements.

Refer to the SQL/400* Programmer’s Guide and the Programming: Structured
Query Language Reference for the descriptions of how to code SQL/400 state-
ments.

Restrictions
In the RPG/400 programming language, SQL/400 statements cannot be specified in
the referred source member of a /COPY statement.

Designing Your RPG/400 Program

You should not use SQL/400 statements in an RPG automatic report program.
Instead, you should use the CRTRPTPGM command to process your RPG auto-
matic report programs and to save the generated RPG/400 source. Automatic
report will generate RPG/400 source, to which you can add SQL/400 statements.
To process your SQL/400 statements and generate an RPG object program, you
should use the SQL/400 preprocessor. If SQL/400 statements are processed by
the RPG/400 automatic report preprocessor, unpredictable results may occur.

Refer to the SEU User's Guide and Reference for information on how the SEU
handles SQL/400 statement syntax checking, and to the SQL/400* Programmer’s
Guide and the Programming: Structured Query Language Reference for more infor-
mation on the SQL/400 preprocessor.

Designing Your RPG/400 Program
Designing a program includes:

e Deciding what output you need from your program
e Deciding what processing will produce the output you need
e Deciding what input is required by and available to your program.

This sequence may seem backwards because it starts at the results (the output)
and ends at the beginning (the input). Designing the output first is like knowing
where you are going before you set out on a trip: it helps you decide the best way
to get there.

Designing the Output

Your program produces output records. You must decide what to do with those
records. In general, you have three choices (or any combination of the three
choices):

¢ You can display them.
e You can print them.
e You can store them.

If you want to display the output records at your display station, you have to decide
what information you want displayed and how you want it laid out. To define how
you want your displays laid out, you use the display layout sheet. You can then
use the SDA utility to create your own displays. For more information about SDA,
refer to the SDA User's Guide and Reference.

If you want to print the output records, you have to decide what information you
want printed (which fields from which records) and how you want that information
laid out on the printed report. To indicate how you want the printed report laid out,
use the printer layout sheet.

If you want to keep the output records in storage, you have to decide what informa-
tion you want to keep and how you want to organize the fields in the output
records.

After you design all your output records, you code those records on the RPG/400
file description specifications and output specifications.

Chapter 1. An Introduction to RPG/400 and the AS/400 System 5

Structured Programming

Designing the Processing

Designing the processing means planning the calculations that produce the neces-
sary output. When you design the processing, you must be aware of how the
RPG/400 program cycle works. The RPG/400 program cycle controls certain read
and write operations done on each record. As a result, the program cycle partly
determines how you can process your data.

Designing the Input

After you decide what output you need and the calculations that produce the
output, the next step is to determine where the input data for your program will
come from. It might come from one or more files already on the system, from one
or more display stations on your system, from one or more other systems, or from
a combination of these sources. You have to know the names used for input files,
the location of fields in the input records, the sequence of record types, the formats
of numeric data, and the indicators used. When you know all these kinds of infor-
mation, you can describe your input records on the RPG/400 input specifications.

Structured Programming in the RPG/400 Programming Language
Structured programming is an approach to design and coding that makes programs
easy to understand, debug, and modify.
Three structures used in every computer program are:

e Sequential operation
e Conditional branching
e Repeating an operation based on a certain condition.

Ideally, a structured program is a hierarchy of modules that can have a single entry
point and a single exit point. Control is passed downward through the structure
without unconditional branches to higher levels of the structure.

The following discuss how the three structures can be accomplished in the
RPG/400 programming language.

Sequential Operation
Sequential operation means any series of instructions that is processed one instruc-
tion after another, without transferring control to another part of the program.

Conditional Branching

If Else Structure
An example of an If-Then-Else conditional branching structure in simple English is:

IF the weather is cold,
THEN | will wear my coat;

ELSE, | will leave my coat at home.

Figure 3 is a flowchart of a conditional branch.

6 RPG/400 User's Guide

Cx*
Cx*
C*
C=*
C*
Cx*

Structured Programming

CONDITION TRUE

EXI§T§7?

¢FA[5E
Y

MODULE L MOoODULE 2

Figure 3. Flowchart of a Conditional Branch

In the RPG/400 programming language, the If-Then-Else structure is carried out
through the operation codes IFxx, ELSE, and END. Figure 4 shows a design for a
conditional branch using the IFxx, ELSE, and END operation codes.

B R A . R . TEN AV - BEPIE, P s IR Y A

In this example, if CENTR equals Y or if CENTR equals N, then
indicator 52 is set off by moving '0' to *IN52. If CENTR equals
neither Y nor N, then indicator 52 is set on by moving '1' to
*IN52. The END statement ends the IF/THEN/ELSE group.

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*

C

OOOOO

CENTR IFEQ 'Y'
CENTR OREQ 'N’

MOVE '0' *IN52
ELSE
MOVE '1' *IN52
END

Figure 4. Design for a Conditional Branch Using the IF/ELSE/END Operations

Chapter 1. An Introduction to RPG/400 and the AS/400 System

7

Structured Programming

SELEC Structure
An example of a SELEC-WHEN-OTHER conditional branching structure in simple
english is:

SELEC
WHEN the weather is warm
| will wear my sunhat
| will go to the beach
WHEN the weather is cool
I will wear my jacket
OTHERwise, | will not go outside

Figure 5 is a flowchart of a SELEC-WHEN-OTHER conditional branch.

v

First condition

exlsts?

Module 1 —»

Module 2 —

othar
moduls

Figure 5. Flowchart of a SELEC-WHEN-OTHER Conditional Branch

In the RPG/400 programming language, the SELEC-WHEN-OTHER structure is
carried out through the operation codes of SELEC, WHxx, and OTHER. Figure 6
shows conditional branching using the SELEC, WHxx, and OTHER operation
codes.

8 RPG/400 User's Guide

Structured Programming

L R P UG R DU ST PP TP U - B Y A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
Cx*

Cx If X equals 1 then do the operations in sequence 1; if

Cx X does not equal 1, then if Y=2 and X<10 do the operations

C* in sequence 2. If neither condition is true, then do the

C* operations in sequence 3.

C=*

()

SELEC
X WHEQ 1
: seq 1
WHEQ 2
ANDLT10
: seq 2
OTHER

>< =<

: seq 3
ENDSL

*

OOOOOOOO0O

Figure 6. Conditional Branching Using the SELEC/WHxx/OTHER Operations

Other Conditional Branching Structures
There are three other ways you can create conditional branches:

e The CASxx operation
e The GOTO operation and conditioning indicators
e The CABxx operation.

You can also create a branch to a subroutine with the EXSR operation and condi-
tioning indicators.

Repeating an Operation
The RPG/400 programming language implements three repeat structures—Do, Do

While, and Do Until-by means of the DOWxx, DOUxx, and DO operation codes and the

END operation code.
Do Operation

Figure 7 on page 10 is a flowchart of a Do operation, and Figure 8 on page 11
illustrates the coding.

Chapter 1. An Introduction to RPG/400 and the AS/400 System

9

Structured Programming

10

following END

Incrementing

Figure 7. Flowchart of a Do Operation

This is how the Do operation works:

1.
2.

RPG/400 User's Guide

Set the index field (result field) to the starting value (factor 1).
Test if the index field value is greater than the ending value (factor 2).

If the index field value is greater than the ending value, control passes to the
statement following the END statement.

. If the index field value is not greater than the ending value, the operations

between the DO statement and the END statement are processed.

. At END, the index field value is increased by the increment value specified in

factor 2 on the END statement, or by 1 if the increment is not specified.

. Control passes to step 2 above.

*o
Cx*
Cx*
Cx*
Cx*
Cx*
C*
C=*

Structured Programming

R N A . R . SN R - R P ¢ JEPI P A

The following example illustrates a Do operation. Because factor
1 of the DO statement is blank, the starting value of Y is 1, and
because factor 2 of the END statement is blank, the increment
value of Y is 1. Factor 2 of the DO statement contains the value
10, which is the ending value for the DO routine.

CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

c

OOOOOOOOO

Z-ADD1 X 20
DO 10 Y 30
X LOKUPTABA TABR 50
50 TABR MULT 1.04 RATE 72
MOVE '1' *IN9O
EXCPT
MOVE '0' *IN90
ADD 1 X
END

Figure 8. Design for a Do Operation Using the DO and END Operation Codes

Do While Operation

If you test the condition first and then process the operations, the structure is called

a Do While. An example of a Do While operation is:
1. Compare a sum with 5.
2. If the sum is less than 5, add 1 to the sum.
3. Repeat steps 1 and 2 until the sum is equal to or greater than 5.

Figure 9 is a flowchart of a Do While operation, and Figure 10 on page 12 illus-
trates the coding of a Do While operation.

Figure 9. Flowchart of a Do While Operation

Chapter 1. An Introduction to RPG/400 and the AS/400 System

11

Structured Programming

Cx*

Cx The following code determines if the subfile has been filled.
C+ If indicator 32 is off (*IN32 equal 0), the DOWEQ operation
Cx processes until the remainder of the subfile is filled with
Cx blank records.

C*

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
C *IN32 DOWEQ'0'

C MOVE *BLANKS STATUS

c MOVE *BLANKS PRCDEX

C MOVE *BLANKS RSCDEX

C Z-ADDO EHWRKX

C Z-ADDO ACDATX

C Z-ADDO TFRRN

C ADD 1 RECNO

C WRITEEMPFIL 32

C END

C* The preceding END denotes the end of the Do While operation.

Figure 10. Design for a Do While Operation Using the DOWxx Operation Code

Notice in Figure 10 (the Do While) that the program first tests if the condition is
true. If it is true, the code between the DOW and the END operations is processed.
The program then goes back to test again if the condition is still true, and the entire
cycle is repeated. If the condition is no longer true, control passes to the instruc-
tion immediately following the END operation.

12 RPG/400 User's Guide

Structured Programming

Do Until Operation
If you process the operations first and then test the condition, the structure is called
a Do Until operation. An example of a Do Until operation is:

1. Add 1 to a sum.
2. Compare the sum with 5.
3. If the sum is less than 5, repeat steps 1 and 2 .

Figure 11 is a flowchart of a Do Until operation, and Figure 12 on page 14 illus-
trates the coding.

CoDE
Te b
EXECVTED

PhLYE

ConNpiITio N
[REERERI

Figure 11. Flowchart of a Do Until Operation

Chapter 1. An Introduction to RPG/400 and the AS/400 System 13

Structured Programming

L R P UG R DU ST PP TP U - B Y A
CL0N01N02N03Factor1+++OpcdeFactor2+++Resu1tLenDHH1LoEqumments++++++*
Cx*

Cx The following lines of code perform a Do Until condition. The

C* program Toops between the DOUEQ statement and the END statement
Cx until end of file (*IN50 equal 1) is reached.

C EMPSR BEGSR

C=*

C *IN50 DOUEQ'1’

C READ RCEMP 50

Cx The following Tines of code add current month hours to the year-
Cx to-date hours for the employee master file. Since factor 1 is
Cx not specified in the statements, factor 2 is added to the result
Cx field and the result is placed in the result field. If *INU4

Cx 1is on, this session is being run for year end, and the current
C+ year hours are moved to the prior year hours.

C ADD EPHRC EPHRY
c ADD EPNRC EPNRY
C Uu4 MOVE EPHRY EPHRP
C Uu4 MOVE EPNRY EPNRP

Cx The following code clears the current month hours fields by

C+x zeroing them and adding 0 to them. If *INU4 is on, this session
Cx 1is being run for year end, and the current year hours must be

Cx zeroed as well.

C Z-ADDO EPHRC
C Z-ADDO EPNRC
C U4 Z-ADDO EPHRY
C u4 Z-ADDO EPNRY

Cx The following code updates the employee master file using the
Cx RCEMP format.

C UPDATRCEMP

C END

Cx The preceding END statement is associated with the DOUEQ

Cx statement.

Figure 12. Design for a Do Until Operation Using the DOUxx Operation Code

Summary of Structured Programming Operation Codes
The structured programming operation codes are:

IFxx (If/Then)
ELSE (Else Do)
ENDyy (End)

DO (Do)

DOWxx (Do While)
DOUxx (Do Until)

14 RPG/400 User's Guide

Designing Applications

e ANDxx (And)

e ORxx (Or)

e CASxx (Conditional Invoke Subroutine)
e SELEC (Select a module)

e WHxx (When)

e QTHER (Otherwise).

where xx can be:

GT Factor 1 is greater than factor 2.

LT Factor 1 is less than factor 2.

EQ Factor 1 is equal to factor 2.

NE Factor 1 is not equal to factor 2.

GE Factor 1 is greater than or equal to factor 2.
LE Factor 1 is less than or equal to factor 2.

Blanks Factor 1 is not compared to factor 2 (unconditional processing). This is
valid for CASxx operation only.

and where yy can be:

CS End a CAS group.

DO End a DO, DO UNTIL, or DO WHILE group.
IF End an IF group.

SL End a SELEC group.

Designing Applications

Single Program

Application design involves determining whether to create one program to do all of
the required functions, or to create multiple programs to make up an application.

Design

In a single program design, all functions are done within one program. Single
program design applies to both batch and interactive programs. It is best used
when there are few, relatively simple functions.

For example, an interactive inquiry program that accepts a customer number from
an operator, finds the corresponding record in a customer master file, and displays
the record as a simple program that could have a single program design.

Cust. No. 1578

Address

RPG

Inquiry S hip to

Cust. No. 1578 Program

L HI-E

A slightly more complex program that might also have a single program design is a
file maintenance program that allows an operator to:

¢ Inquire into a record
e Change a record

e Delete a record

e Add a record.

Chapter 1. An Introduction to RPG/400 and the AS/400 System 15

Designing Applications

RPG

Ingquire
Program
Change

1
2
3. Delete
a

Add

Prompt
o D

An example of a batch program that has a single program design is a program that
prints a list of orders that each operator entered during the day.

Batch
Order RPG
File Program

> > Orders |
Modular Program Design

Modular program design includes using multiple programs to do multiple functions,
one function per program. Modular program design can be applied to both batch
and interactive programs. For example, the order entry application shown in
Figure 13 is designed to have four programs:

¢ An RPG/400 or CL mainline program

¢ An RPG/400 program that prompts for the customer number and shows cus-
tomer information on the display

¢ An RPG/400 program that accepts input of line items from the order

e An RPG/400 program that calculates totals for the order.

16 RPG/400 User's Guide

Designing Applications

Mainline Program

Program
Call
—> —_— <«—— Prompt for
Customer
Number
<+
Program
Call
e <«<—— Line Item
Input
<+
Program
Call
—_— <«— Totals

Figure 13. Modular Design for an Order Entry Application

A modular program design has several potential advantages:

e Designing, coding, testing, and maintaining several small programs can be
easier than designing, coding, testing, and maintaining one large, complex
program. This choice is a matter of personal preference, but it is often benefi-
cial to keep your programs small and as simple as possible.

e CL functions can be requested from RPG/400 programs because the AS/400
system allows RPG/400 programs and CL programs to call one another.

A single, long-running program might have sections of code that run infrequently. A
modular design could arrange to have the seldom-used code called only when
needed.

A potential disadvantage of modular program design is the additional calling of pro-
grams that is required. These calls take time to code and might require additional
system overhead for program processing.

Examples of Application Design
Following are descriptions of modular programs that illustrate some design
approaches.

The order entry function shown in Figure 14 has three sub-functions:

* Accepting heading information about an order
e Accepting line item input from the order
e Calculating totals for the order.

One way to design this application is to have a CL mainline program call RPG/400
programs to do the functions.

Chapter 1. An Introduction to RPG/400 and the AS/400 System 17

Designing Applications

Control Language
Mainline Program

HEADER Program

Call
—> — | Open files
Put prompt
Get header

Process header
Close Files
<+«—— | Return

ITEM Program

Call
—— | Open files
Put prompt
Get item

Process item
Close Files
<«— | Return

TOTALS Program

Call
— | Open files
Put prompt
Get total
information
Calculate

Close files
— <«— | Return

Figure 14. Example of Application Design for an Order Entry Function

Each of the RPG/400 programs:

e Opens files

e Displays a prompt for user information and input
e Accepts input from the user

* Processes the information

e Closes the files

¢ Returns to the mainline program.

The following events occur after a user enters input:

1. The input is processed.

2. Files are closed.

3. Control returns to the mainline program.

4. The mainline program calls the next program.
5. That program prompts for user input.

All processing of input and output from work stations and all opening and closing of
files occurs in the RPG/400 programs. Therefore, the user might have to wait for a
while after entering a display before seeing the next display.

A change in the previous design that might shorten response times and make more
efficient use of system resources is shown in Figure 15.

18 RPG/400 User's Guide

Designing Applications

Control Language
Mainline Program

HPROMPT Program

—> Call HPROMPT — | Open files

Put prompt for header
Close files

<«— | Return

HEADER Program

Call HEADER — | Open files

Get header input

Process header

Put prompt for
line item

Close Files

<«— | Return

ITEM Program (see Note)

Call ITEM —— | Open files

Get line item input

Process line item

Put prompt for next
line item or put
totals prompt

Close Files

<+«—| Return

TOTALS Program

— Call TOTALS —— | Open files

Get totals input
Calculate totals
Close Files
<«— | Return

Figure 15. Example of Changed Application Design for an Order Entry Function

Note: Rather than returning unconditionally to the mainline program, the ITEM
program could be designed to loop within itself as long as line items are being
entered.

This modification allows user data entry to occur while programs are started and
files are opened and closed. The overlap of data entry and AS/400 system proc-
essing occurs at points [}, B.and F.

For the previous two examples of modular program design, all input from and

output to work stations occurs in the programs. For the example in Figure 16, a
series of operations occur in an RPG/400 mainline program.

Chapter 1. An Introduction to RPG/400 and the AS/400 System 19

Designing Applications

20

Figure 16. Example of Application Design with Input and Output in Mainline Program

The input from the display determines the program to call. If a header is read,
HEADER is called and the header record is passed as a parameter. If a line item is
read, ITEM is called and a line item record is passed as a parameter. If total infor-
mation is read, TOTALS is called and a total record is passed as a parameter.

The programs leave files open until the job ends, thereby eliminating open and
close processing time for the files. The programs do not end when they return to

RPG
Mainline Program

1

Put header prompt

Get input from display

Call HEADER
Put item prompt

Call ITEM

Call TOTALS

RPG Programs

HEADER Program

Open files

(first time only)
Process header
Return

ITEM Program

Open files

(first time only)
Process line item
Return

TOTALS Program

Open files
(first time only)
Process Totals

the mainline program.

RPG/400 User's Guide

Return

The RPG/400 Specifications

Chapter 2. Entering RPG/400 Specifications

After designing your program, you must write the individual statements that you will
combine into a source program. These statements are coded on RPG/400 specifi-
cation sheets. Each line coded on a specification sheet represents a statement in
the source program. Each specification sheet contains 80 columns. Column
headings indicate the kind of information to code in particular columns.

This chapter describes the kinds of specifications you can enter when creating an
RPG/400 source program. This chapter also describes how to use a text editor,
such as SEU, to enter this information directly into the system and thus begin cre-
ating your source program online.

The RPG/400 Specifications

There are seven kinds of RPG/400 specifications. When your source program is
compiled, these specifications must be in the following sequence:

1. Control specifications

. File description specifications
. Extension specifications

. Line counter specifications

. Input specifications

. Calculation specifications

. Output specifications.

No oW

Each of these specifications is described briefly in this chapter. The RPG/400
Reference provides detailed descriptions for these specifications.

RPG/400 programs do not have to use all specifications. A typical program may
use file description, input, calculation, and output specifications.

The Control Specification

The control specification provides the RPG/400 compiler with information about
your program and your system. This includes:

* Name of the program
e Date format for the program
 If an alternative collating sequence or file translation is used.

Note: The control specification is optional.

© Copyright IBM Corp. 1994 21

The RPG/400 Specifications

File Description Specifications

File description specifications describe all the files that your program uses. The
information for each file includes:

e Name of the file

e How the file is used

e Size of records in the file

e Input or output device used for the file

 |If the file is conditioned by an external indicator.

Extension Specifications

Extension specifications describe all record address files, table files, and array files
used in the program. The information includes:

* Name of the file, table, or array

e Number of entries in a table or array input record
¢ Number of entries in a table or array

¢ Length of the table or array entry.

Line Counter Specifications

Line counter specifications describe the page or form on which output is printed.
The information includes:

e Number of lines per page
e Line of the page where overflow occurs.

Input Specifications

Input specifications describe the records, fields, data structures and named con-
stants used by the program. The information in the input specifications includes:

¢ Name of the file

e Sequence of record types

¢ Whether record-identifying indicators, control-level indicators, field-record-
relation indicators, or field indicators are used

e Whether data structures, lookahead fields, record identification codes, or match
fields are used

¢ Type of each field (alphanumeric or numeric; packed-decimal, zoned-decimal,
or binary format)

e Location of each field in the record

¢ Name of each field in the record

¢ Named constants.

Calculation Specifications

Calculation specifications describe the calculations to be done on the data and the
order of the calculations. Calculation specifications can also be used to control
certain input and output operations. The information includes:

e Control-level and conditioning indicators for the operation specified

* Fields or constants to be used in the operation

e The operation to be processed

¢ Whether resulting indicators are set after the operation is processed.

22 RPG/400 User's Guide

Entering Your Program

Output Specifications
Output specifications describe the records and fields in the output files and the con-
ditions under which output operations are processed. The information includes:

e Name of the file

e Type of record to be written

e Spacing and skipping instructions for PRINTER files

e Qutput indicators that condition when the record is to be written
* Name of each field in the output record

e Location of each field in the output record

e Edit codes and edit words

e Constants to be written

e Format name for a WORKSTN file.

Entering Your Program

After you have written your RPG/400 program on the specifications forms, you must
enter it into source files in the system. You can enter the source program in two
ways:

 Interactively by using SEU:

’

/
F :
H

The SEU User's Guide and Reference provides a complete description of how
to enter or update an RPG/400 source program using SEU.

RPG
Source
Program

¢ In a batch manner (that is, from diskette) by using either the OS/400 system
copy or spooling functions:
Copy

’

/

Diskette
F RPG
H Keying [————— Source

Spooling

The Data Management Guide provides more information on how to use the
copy or spooling function for batch entry of the source program.

Note: Whichever method of source entry you use, you can use lowercase letters
only in literals, constants, comments, array data, and table data. All other informa-
tion must be in uppercase letters.

Chapter 2. Entering RPG/400 Specifications 23

Entering Your Program

24 RPG/400 User's Guide

Chapter 3. Compiling an RPG/400 Program

There are two environments that you can compile source programs from: the
AS/400 system environment, and the System/38 environment. Consequently, there
are two ways of compiling source programs. This chapter describes:

¢ Using the CL command CRTRPGPGM to compile an RPG/400 source program
in AS/400 system environment

¢ Using the CL commands CALL QCL and CRTRPGPGM to compile an
RPG/400 source program in the System/38 environment.

This chapter also contains information on interpreting a compiler listing.

To compile a program, you must ensure that the library QTEMP is in the library list.
The CL command CRTRPGPGM calls the compiler to create an RPG/400 program
object and a listing. (If externally described files are used in the program, the
0S/400 system provides information about the files to the program during compila-
tion.) The following figure shows an overview of the compilation process:

RPG
Source
Program

RPG Compiler

0S5/400
System

Executable
RPG
Program

DDS for
Externally
Described
Files

Listing:

® Compiler options

® Control specifications

® [nformation from DDS

® Source DDS

® Resulting indicator usage

® Nested levels of DOIIF groups

® Cross-reference listing for
tiles, fields and indicators

® Errorindications

Figure 17. Overview of the Compilation Process

The compiler checks the syntax of the RPG/400 source program line by line and
the interrelationships between the lines. For example, it checks that all field names
are defined and, if a field is multiply defined, that each definition has the same attri-
butes.

The RPG/400 compiler supports a source file record length of 102. In addition to
the usual fields of sequence number (6 characters), last-changed date (6 charac-
ters), and the data (80 characters), a field of 10 characters that can contain addi-

© Copyright IBM Corp. 1994 25

Create RPG/400 Program (CRTRPGPGM) Command

tional information is placed at the end of the record (positions 93-102). This
information is not used by the RPG/400 compiler but is placed on the extreme right
of the compiler listing. You, the programmer, place information into this field. If
you want to use the additional field, create a source file with a record length of 102.
The AS/400 system has an IBM-supplied RPG/400 source file called QRPGSRC,
which has a record length of 92.

Create RPG400 Program (CRTRPGPGM) Command

26

To compile an RPG/400 source program into a program object, you must enter the
CL command CRTRPGPGM (Create RPG/400 Program) to call the RPG/400 com-
piler. RPG/400 program objects are created with the public authority of
*LIBCRTAUT. You may want to change this authority to maintain greater security
on your system.

If the RPG/400 compiler stops because of errors, the escape message QRG9001 is
issued. A CL program can monitor for this exception by using the CL command
MONMSG (Monitor Message). See Chapter 4, “Error Messages, Testing, and
Debugging.”

The compiler creates and updates a data area with the status of the last compila-
tion. This data area is named RETURNCODE, is 400 characters long, and is
placed into library QTEMP. You can access the RETURNCODE data area by
specifying RETURNCODE in factor 2 of an *NAMVAR DEFN statement. The data area
RETURNCODE has the following format:

Table 2 (Page 1 of 2). Contents of the Data Area RETURNCODE

Byte Content and Meaning
1 Character 1 means a program was created.
2 Character 1 means the compilation failed because of

compiler errors.

3 Character 1 means the compilation failed because of
source errors.

4 Character 1 means compiled from source generated by
automatic report.

5 Character 1 means program resolution monitor was not
called because *NOGEN option was selected on
CRTRPGPGM command.

6-10 Number of source statements.

11-12 Severity level from command.

13-14 Highest severity on message diagnostic.
15-20 Number of errors found in program.
21-26 Compile date.

27-32 Compile time.

33-100 Not set.
101-110 Program name.
111-120 Program library name.

121-130 Source file name.

RPG/400 User's Guide

Create RPG/400 Program (CRTRPGPGM) Command

Table 2 (Page 2 of 2). Contents of the Data Area RETURNCODE

Byte

Content and Meaning

131-140
141-150
151-160
161-170
171-180
181-190
191-200
201-210
211-370
371-378

379
380-384
385
386-390
391-395
396-400

Source file library name.

Source file member name.
Compiler listing file name.
Compiler listing library name.
Compiler listing member name.
Automatic report source file name.
Automatic report library name.
Automatic report member name.
Not set.

Size of intermediate representation of program passed to
program resolution monitor.

Not set.

Total compile time.

Not set.

Time used by compiler.

Time used by program resolution monitor.

Time used by translator.

All object names specified on the CRTRPGPGM command must be composed of
alphanumeric characters, the first of which must be alphabetic. The full 0S/400
system naming convention is allowed. The length of the names cannot exceed 10
characters. See the CL Programmer’s Guide for a detailed description of OS/400
object naming rules and for a complete description of 0S/400 command syntax.

It is unlikely that the system internal size limits for a program will be exceeded.
However, if these limits are exceeded, the program must be rewritten, usually as
multiple programs.

Using the CRTRPGPGM Command

You can call the RPG/400 compiler in one of three ways:

¢ Interactively from the CRTRPGPGM command display screen using prompts.
You start the display, illustrated in Figure 19 on page 31 and Figure 20 on
page 37, by typing the CL command CRTRPGPGM and then pressing F4.

e Entering CRTRPGPGM followed by only those parameters by keyword that
override the default settings. This statement is entered on the command line
interactively or as part of a batch input stream.

Chapter 3. Compiling an RPG/400 Program 27

Create RPG/400 Program (CRTRPGPGM) Command

28

e Entering CRTRPGPGM followed only by the parameter values, in the proper
sequence. This method is most often used when you are submitting the com-
piling request as part of a batch input stream, or if you are including the com-
piling request as part of a CL program. This method can also be used
interactively, but you are limited by CL to entering only the first three parameter
values.

Note: Any default on the CRTRPGPGM command or any other CL command can
be changed using the CL command CHGCMDDFT (Change Command Default).
Refer to the CL Reference for more information.

Elements of the CRTRPGPGM Command Lines
The descriptions that follow refer to the three elements of the compiler command
line:

e The CL compiler command word CRTRPGPGM.

e The parameter, which is referred to by a keyword such as PGM, SRCFILE,
GENOPT, and so on.

e The value for the parameter. This can be a predefined value or an object
name.

All object names specified must consist of alphanumeric characters. The first char-
acter must be alphabetic, and the length of the name cannot exceed 10 characters.
You can use the full 0S/400 system naming convention.

Entering Elements from the CRTRPGPGM Command Display

Type CRTRPGPGM, and press F4. The CRTRPGPGM prompt screens appear. Press
F10 to get additional parameters. These screens, and the values you can enter on
them, are described later in this chapter.

Each parameter on the screen displays a default value. Move the cursor past
items where you want the default value to apply. Type over any items where you
want to set a different value or option. If you are not sure about what to set a
particular parameter to, type a question mark (?) as the first character in that field
and press Enter to receive more detailed information. The question mark must be
followed by a blank.

When you have set all values to your satisfaction, press Enter.

Entering Only Certain Parameters

All of the CRTRPGPGM parameters have default values. Simply type CRTRPGPGM,
followed only by those parameters (specified by keyword) whose default settings
you want to override. Separate parameters by spaces; enter values for each
parameter by enclosing the value or values in parentheses.

For example, to change the program and library name, and accept default values
for all other parameters, enter:

CRTRPGPGM PGM(newlibrary/newname)

RPG/400 User's Guide

CRTRPGPGM Command

Entering Only the Parameter Values

You have the choice of entering only the parameter values without specifying the
parameter keywords. Because there is no keyword to tell the system which value
belongs to which parameter, you must enter all the values in the sequence shown
below. You need not enter the entire set of options, but you must enter the options
for all the parameters up to the one you want. The system uses the default values
for the remaining parameters.

For example, to compile a source program in member ABC in file QRPGSRC in
library SRCLIB, enter:

CRTRPGPGM QTEMP/ABC SRCLIB/QRPGSRC *PGM
Notice that you also had to enter names for the program and library for the com-
piled program. The system recognizes which option belongs to which parameter by

the position of the value on the compiler command line. You can enter a maximum
of three parameter values positionally.

For more information on AS/400 system commands, see the CL Reference.

CRTRPGPGM Command

The entire syntax diagram for the CRTRPGPGM command is shown in Figure 18
on page 30.

Read the syntax diagram from left to right, from top to bottom, following the path of
the line.

Control Language (CL) commands , parameters , and keywords can be entered
in either uppercase or lowercase characters. In this manual they are shown in
uppercase (for example, PARAMETER, PREDEFINED-VALUE). Variables appear
in lowercase italic letters (for example, user-defined-value). Variables are
user-defined names or values.

For information on how to read syntax diagrams, see “How to Interpret Syntax
Diagrams” on page Xxiv.

Chapter 3. Compiling an RPG/400 Program 29

CRTRPGPGM Command

Job: B, Pgm: B,] REXX: B,l Exec

\ 4

»»>—CRTRPGPGM L >
*CURLIB/ *CTLSPEC J
o} P
library-name/: program-name
> (P) >
* IBL/———— QRPGSRC—| ‘l L *PGM J
|'SRCFILE—([||: o) SRCMBR—(—Esource—file-member—name—l—)
t*CURLIB/ source-file-name

library-name/—

\ 4

|—0PTION—(—| OPTION Details |—)J |—GENOPT—(—-| GENOPT Details l—)J

\

*NONE—_| J L *NONE J
|—INDENT—(—Echaracter—vaZue) CVTOPT—(—E{ CVTOPT Details }:‘—)

*NOFLAG J \—G 9 J
|—SAAFLAG—(—E*FLAG—_I—) ENLV L—(—I—severi ty-level —valueJ—)

\ 4

v

|'PRTFI LE—(

*LIBL/——— QSYSPRT *YES
- madi Y V=
t*CURLIB/ -file-name

library-name/—

\ 4

\

*CURRENT—| *USER
|—TGTRLS—([¢PRV)J |~USRPRF—(—J:*0WN ERj—)J

release-leve ZJ

quthorization-1list-name—

* L IBCRTAUT——— J L *SRCMBRTXT—| J L *N J]
|—AUT—(’_¢CHANGE) TEXT—([¢BLANK N) PHSTRC—(—[*Y(I-?S_—I—)

*USE 'description’

*ALL

*EXCLUDE

oA e 1]
ITDUMP—(phase-name) SNPDUMP—(phase-name)

\

Notes:

OPTION Details:

*SRC
| l:*SOURCE—

|~CODELIST—(

coe——— | [oorcem 0% Lo %51,

1 A maximum of 25 repetitions
P All parameters preceding this point can be specified by position.

|—*XREF—| ’—*GEN—| I—*NODUMP—| |—*NOSECLVL—| |—*NOSRCDBG—| |—*NOLSTDBG—| |

[
|:*NOSRC—
*NOSOURCE—

| |—*NOLIST—l

GENOPT Details:
*NOXREF *NOATR: *NODUMP- *NOPATCH * PTIMZE

|
|—*NOXREFJ l—*NOGENJ l—*DUMP—I |—*SECLVL—I |—*SRCDBG.—I |—*LSTDBG.—I

D Lerst—

CVTOPT Details:
|

l—*XREFJ |—*ATRJ |—*DUMPJ |—*PATCHJ |—*OPTIMIZEJ l

|—*DATET I MEJ |—*VARCHARJ |—*G.RAPH I CJ

Figure 18. Syntax of the CRTRPGPGM Command

Following are examples of the prompt screens for the CRTRPGPGM command.
The example screens are provided in sets. The first screen in the set describes the
values you can enter, the second screen presents the keywords and defaults. You

30 RPG/400 User's Guide

can switch between the values and keywords screens by pressing F11. The text

CRTRPGPGM Command

that follows the screens describes those keywords and defaults.

In the description of the parameters, all defaults are explained first and highlighted.
The parameters are presented in sequence. Follow this sequence if you are

entering only the parameter values without the corresponding parameter abbrevi-

ation.

Note: For a description of the differences between compiling RPG/400 and

System/38 environment RPG IIl programs, see Appendix E, “System/38 Environ-

ment Option of the RPG Compiler.”

Type choices, press Enter.

Program

Library
Source file

Library
Source member
Generation severity level .
Text 'description'

Source listing options
+ for more values
Generation options
+ for more values
Source Tisting indentation . . .

F3=Exit F4=Prompt F5=Refresh
F24=More keys

Create RPG/400 Program (CRTRPGPGM)

*NONE Character value, *NONE

*CTLSPEC__ Name, *CTLSPEC
*CURLIB Name, *CURLIB

QRPGSRC___ Name, QRPGSRC
*LIBL Name, *LIBL, *CURLIB
*PGM Name, *PGM
9 0-99
*SRCMBRTXT

*SOURCE, *NOSOURCE, =SRC...

*LIST, *NOLIST, *XREF...

More...
F12=Cancel F13=How to use this display

Figure 19 (Part 1 of 2). First Set of CRTRPGPGM Prompt Screens

Chapter 3. Compiling an RPG/400 Program

31

CRTRPGPGM Command

32

Create RPG/400 Program (CRTRPGPGM)

Type choices, press Enter.

Program PGM *CTLSPEC_
Library *CURLIB__

Source file SRCFILE QRPGSRC__
Library oo *LIBL__

Source member SRCMBR *PGM

Generation severity level . . . GENLVL 9

Text 'description' TEXT *SRCMBRTX

Additional Parameters

Source Tisting options OPTION

+ for more values
Generation options GENOPT

+ for more values
Source Tisting indentation . . . INDENT *NONE

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 19 (Part 2 of 2). First Set of CRTRPGPGM Prompt Screens

PGM
Specifies the library and program name by which the compiled RPG/400
program is to be known. If no library is specified, the created program is stored
in the current library.

*CTLSPEC

The program name specified in positions 75 through 80 of the control spec-
ification is used.

If the program name is not specified on the control specification, but the
source program is from a database file, the member name, specified by the
SRCMBR parameter, is used as the program name. If the source is not
from a database file, the program name defaults to RPGOBJ.

program-name

Enter the name by which the program is to be known.

*CURLIB

The compiled program is stored in the current library. If you have not spec-
ified a current library, QGPL is used.

library-name

Enter the name of the library where the compiled program is to be stored.

SRCFILE

Specifies the name of the source file that contains the RPG/400 source
program to be compiled and the library where the source file is located.

RPG/400 User's Guide

CRTRPGPGM Command

QRPGSRC

The default source file QRPGSRC contains the RPG/400 source program
to be compiled.

source-file-name

Enter the name of the source file that contains the RPG/400 source
program to be compiled.

*LIBL

The system searches the library list to find the library where the source file
is located.

*CURLIB
The current library is used to find the source file. If you have not specified
a current library, QGPL is used.

library-name

Enter the name of the library where the source file is stored.

SRCMBR

Specifies the name of the member of the source file that contains the RPG/400
source program to be compiled. This parameter can be specified only if the
source file named in the SRCFILE parameter is a database file.

*PGM

Use the name specified by the *PGM parameter as the source file member
name. The compiled program will have the same name as the source file
member. If no program name is specified by the *PGM parameter, the
command uses the first member created in or added to the source file as
the source member name.

source-file-member-name

Enter the name of the member that contains the RPG/400 source program.

GENLVL

Specifies whether or not a program object is generated, depending on the
severity of the errors encountered. A severity-level value corresponding to the
severity level of the messages produced during compilation can be specified
with this parameter. If errors occur in a program with a severity value less than
30, and if a severity-level greater than that of the program is specified for this
parameter the program is compiled; however, the program may contain errors

Chapter 3. Compiling an RPG/400 Program 33

CRTRPGPGM Command

34

that cause unpredictable results when the program is run. For program errors
equal to or greater than severity 30, the compilation of the program may be
ended or the program object may not be generated, regardless of the value of
this parameter. Specifying a value greater than 30 is not recommended for this
parameter.

9

A program object will not be generated if you have messages with a
severity-level greater than or equal to 9.

severity-level-value:

Enter a number, 0 through 99.

Note: The severity-level value of RPG/400 compile messages does not
exceed 50.

TEXT

Lets the user enter text that briefly describes the program and its function. The
text appears whenever program information is displayed.

*SRCMBRTXT

The text of the source member is used.

*BLANK

No text appears.

'description’

Enter the text that briefly describes the program and its function. The text

can be a maximum of 50 characters and must be enclosed in apostrophes.
The apostrophes are not part of the 50-character string. Apostrophes are

not required if you are entering the text on the prompt screen.

OPTION

RPG/400 User's Guide

Specifies the options to use when the source program is compiled. You can
specify any or all of the options in any order. Separate the options with a blank
space.

*SOURCE

Produces a source listing, consisting of the RPG/400 program input and all
compile-time errors.

*NOSOURCE

A source listing is not produced. If *NOSOURCE is specified, the system

CRTRPGPGM Command

assumes that you also don't want a cross-reference listing and *NOXREF is
also specified.

The acceptable abbreviation for *SOURCE is *SRC, and for *NOSOURCE is
*NOSRC.

*XREF

Produces a cross-reference listing and key-field-information table (when
appropriate) for the source program.

Note: If you also want to specify *NOSOURCE or *NOSRC, you must explicitly
specify *XREF or else *NOXREF is assumed.

*NOXREF

A cross-reference listing is not produced.

Note: If either *NOSOURCE or *NOSRC is also specified, the usual default
(*XREF) is overridden and *NOXREF is the default.

*GEN

Creates a program object that can be run after the program is compiled.

*NOGEN

Do not create a program object.

*NODUMP

Do not dump major data areas when an error occurs during compilation.

*DUMP

Dump major data areas when an error occurs during compilation.

*NOSECLVL

Do not print second-level message text on the line following the first-level
message text.

*SECLVL

Print second-level message text.

*NOSRCDBG

Do not generate source level error and debug information.

Chapter 3. Compiling an RPG/400 Program 35

CRTRPGPGM Command

36

*SRCDBG

Generate source level error and debug information. Produce an event file
even if the compiler completes without error.

*NOLSTDBG

Do not generate error and debug information.

*LSTDBG

Generate a listing view and error and debug information required for the
listing view.

Note: You can only use the *NOSRCDBG, *SRCDBG, *NOLSTDBG and
*LSTDBG options if you are using the AD/Cycle CoOperative Devel-
opment Environment/400 product to compile your program. If you
specify one or more of these options but do not have the AD/Cycle
CODE/400 product installed, the RPG/400 compiler will not continue
processing and an error message is issued. For more information
on these options, see the CODE Debug Tool User's Guide and Ref-
erence, SC09-1622.

GENOPT

RPG/400 User's Guide

Specifies the options to use to create the program object: the printing of the
intermediate representation of a program (IRP), a cross-reference listing of
objects defined in the IRP, an attribute listing from the IRP, and the program
template. You can also specify options in the GENOPT parameter to reserve a
program patch area, and to improve a program for more efficient running.
These results may be useful if a problem occurs when you are trying to run the
compiled program. You can specify any or all of the options in any order.
Separate the values with a blank. For a description of the GENOPT parameter
and the information it provides, see “Compiler Debugging Options” on

page 498 in Appendix A, “RPG Compiler and Auto Report Program Service
Information.”

*NOOPTIMIZE

Do not process program optimization.

*0PTIMIZE

Process program optimization. With *OPTIMIZE, the compiler generates a
program for more efficient processing and one that will possibly require less
storage. Specifying *OPTIMIZE can substantially increase the time required
to create a program. Existing program objects can be optimized with the
CL command CHGPGM.

CRTRPGPGM Command

INDENT
Specifies whether or not the compiled RPG/400 program's source listing is gen-
erated with the indentation of structured operations for enhanced readability.
Also specifies the characters that are used to mark the structured operation
clauses.

*NONE
A listing without indentation will be produced by the compiler.

character-value

The source listing is indented for structured operation clauses. Alignment
of statements and clauses are marked using the characters you choose.
You can choose any character string up to 2 characters in length. If you
want to use a blank in your character string, you must enclose it in single
guotation marks.

Note: The indentation may not appear as expected if there are errors in
the RPG/400 program.

The second set of prompt screens shown in Figure 20 provides more values
and keywords that you can enter for the CRTRPGPGM command.

Create RPG/400 Program (CRTRPGPGM)
Type choices, press Enter.
Type conversion options *NONE *NONE, *DATETIME, *VARCHAR...
+ for more values
SAA flagging *NOFLAG *NOFLAG, *FLAG
Print file QSYSPRT___ Name
Library *LIBL Name, *LIBL, *CURLIB
Replace program *YES *YES, *NO
Target release *CURRENT *CURRENT, *PRV, V2RIMO...
User profile *USER_ *USER, *OWNER
Authority *LIBCRTAUT Name, *LIBCRTAUT, =*ALL...
Phase trace *NO_ *NO, *YES
Intermediate text dump *NONE
Snap dump *NONE
Codelist *NONE
More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 20 (Part 1 of 2). Second Set of CRTRPGPGM Prompt Screens

Chapter 3. Compiling an RPG/400 Program 37

CRTRPGPGM Command

38

Create RPG/400 Program (CRTRPGPGM)

Type choices, press Enter.

Type conversion options CVTOPT *NONE___
+ for more values
SAA flagging SAAFLAG *NOFLAG
Print file PRTFILE QSYSPRT___
Library *LIBL
Replace program REPLACE *YES
Target release TGTRLS *CURRENT
User profile USRPRF *USER_
Authority AUT *IBCRTAUT
Phase trace PHSTRC *NO_
Intermediate text dump ITDUMP *NONE
Snap dump SNPDUMP *NONE
Codelist CODELIST *NONE

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 20 (Part 2 of 2). Second Set of CRTRPGPGM Prompt Screens

CVTOPT

RPG/400 User's Guide

Specifies how the RPG/400 compiler handles date, time, and timestamp data-
base data types, and variable-length data types which are retrieved from
externally-described files. See “SAA Data Types” on page 247 for a detailed
description of how the RPG/400 compiler supports SAA data types.

*NONE
Date, time, timestamp and variable-length database data types are ignored
and not accessible in the RPG/400 program. A severity 0, compile-time

informational message is issued when a record format contains ignored
fields.

*DATETIME
Specifies that date, time, and timestamp database data types are to be

declared as fixed length character fields and are accessible in the RPG/400
program.

*VARCHAR
Specifies that variable-length database data types are to be declared as
fixed length character fields and are accessible in the RPG/400 program.
*GRAPHIC
Specifies that double-byte character set (DBCS) graphic data types are to

be declared as fixed length character fields and are accessible in the
RPG/400 program.

Note: Choose both of the parameters *VARCHAR and *GRAPHIC if you want
variable-length DBCS graphic data types to be declared in your program.

CRTRPGPGM Command

SAAFLAG

Specifies if there will be flagging of specifications not supported by SAA RPG.
For more information on SAA flagging, how and why to use it, see “Systems
Application Architecture Flagging Messages” on page 49.

*NOFLAG
No flagging will be performed.

*FLAG
Flagging will be performed. Messages will be listed under the heading of
SAA Message Summary. No SAA message will be issued for a specifica-
tion if a message of severity 30 or above is issued for that specification.

PRTFILE

Specifies the name of the file where the compiler listing is to be placed, and the
library where the file is located. If you specify a file whose record length is less
than 132, information will be lost.

QSYSPRT
If a file name is not specified, the compiler listing is placed in the

IBM-supplied file, QSYSPRT. The file QSYSPRT has a record length of
132.

file-name

Enter the name of the file where the compiler listing is to be placed.

*LIBL

The system searches the library list to find the library where the file is
located.

*CURLIB

The current library will be used to find the file. If you have not specified a
current library, QGPL will be used.

library-name

Enter the name of the library where the file is located.

REPLACE
Specifies whether or not a new program object is to be created if a program
with the same name already exists in the specified library.

*YES
A new program object will be created and any existing program object of
the same name in the specified library will be moved to library QRPLOBJ.

Chapter 3. Compiling an RPG/400 Program 39

CRTRPGPGM Command

40

*NO
A new program object will not be created if a program object of the same
name already exists in the specified library.

TGTRLS

Specifies the release level of the operating system on which you intend to use
the object being created.

You can specify an exact release level in the format VxRxMx, where VX is the
version, Rx is the release, and Mx is the modification level.

Note: To use the object on the target system, you must save the object to the
target release level specified on the create command and then restore it
on the target system.

*CURRENT
The object is to be used on the release of the operating system currently
running on your system.

*PRV
The object is to be used on the previous release with modification level O of
the operating system.

release-level
Specify the release in the format VXRxMx. The object can be used on a

system with the specified release or with any subsequent release of the
operating system installed.

Valid values depend on the current version, release, and modification level,
and they change with each new release.

USRPRF

RPG/400 User's Guide

Specifies the user profile the compiled RPG/400 program runs under. This
profile controls which objects can be used by the program (including what
authority the program has for each object). If the program already exists, the
USRPRF parameter will not be updated to a new profile.

*USER

The program runs under the user profile of the program’s user.

*OWNER

The program runs under the user profiles of both the program’s owner and
user. The collective sets of object authority in both user profiles are used
to find and access objects while the program is running. Any objects that
are created during the program are owned by the program’s user.

CRTRPGPGM Command

Note: The USRPRF parameter reflects the security requirements of your
system. The security facilities available on the AS/400 system are
described in detail in the Security Reference and the CL Reference.

AUT

Specifies the authority given to users who do not have specific authority to the
object, who are not on the authorization list, and whose user group has no spe-
cific authority to the object. The authority can be altered for all or for specified
users after program creation with the CL commands Grant Object Authority
(GRTOBJAUT) or Revoke Object Authority (RVKOBJAUT). For further informa-
tion on these commands, see the CL Reference.

*LIBCRTAUT

The public authority for the object is taken from the CRTAUT keyword of
the target library (the library that contains the object). The value is deter-
mined when the object is created. If the CRTAUT value for the library
changes after the create, the new value will not affect any existing objects.

*CHANGE

The public has object operational authority and all the data authorities for
the compiled program. Any user can run, debug,change and perform basic
functions on the program.

*USE

The public can run the compiled program, but cannot debug or change it.

*ALL

The public has complete authority for the program.

*EXCLUDE

The public cannot use the program.

authorization-list name

Name of an authorization list to which the program is added. For a
description of the authorization list and how to create it, see the CL Refer-
ence.

Note: Use the AUT parameter to reflect the security requirements of your
system. The security facilities available are described in detail in the
Security Reference manual.

PHSTRC

Specifies if information about compiler phases is provided on the listing. See

Chapter 3. Compiling an RPG/400 Program 41

CRTRPGPGM Command

Appendix A, “RPG Compiler and Auto Report Program Service Information” for
a detailed explanation of this parameter.

*NO

Do not provide information about compiler phases.

*YES

Provide information about compiler phases.

ITDUMP

This parameter specifies if a dynamic listing of intermediate text for one or
more specified phases is to be printed at compile time as each IT record is
being built. This parameter also specifies if a flow of the major routine runs in
one or more specified phases is to be printed. See Appendix A, “RPG Com-
piler and Auto Report Program Service Information” for a detailed explanation
of this parameter.

*NONE

No intermediate text dump is produced.
phase-name
Enter the last two characters of phase name. See Appendix A, “RPG

Compiler and Auto Report Program Service Information” for a detailed
explanation of this parameter.

SNPDUMP
Specifies if the major data areas are to be printed after the running of one or

more specified phases. See Appendix A, “RPG Compiler and Auto Report
Program Service Information” for a detailed explanation of this parameter.

*NONE

No snap dump is produced.

phase-name

Enter the last two characters of phase name. See Appendix A, “RPG
Compiler and Auto Report Program Service Information” for a detailed
explanation of this parameter.

CODELIST

Specifies if a dynamic listing of the IRP is to be printed during compilation of

42 RPG/400 User's Guide

CRTRPGPGM Command

one or more specified phases of the source program. See Appendix A, “RPG
Compiler and Auto Report Program Service Information” for a detailed explana-
tion of this parameter.

*NONE

Do not produce a code listing for each of the code generating phases run.

*ALL

Produce a code listing for each of the code generating phases run.
phase-name
Enter the last two characters of phase name. See Appendix A, “RPG

Compiler and Auto Report Program Service Information” for a detailed
explanation of this parameter.

The third set of prompt screens shown in Figure 21 provides more values and
keywords that you can enter for the CRTRPGPGM command.

Create RPG/400 Program (CRTRPGPGM)
Type choices, press Enter.

Ignore decimal data error . . . *NO_ *NO, *YES
Allow null values *NO_ *NO, *YES

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 21 (Part 1 of 2). Third Set of CRTRPGPGM Prompt Screens

Chapter 3. Compiling an RPG/400 Program 43

CRTRPGPGM Command

Type choices, press Enter.

Ignore decimal data error . IGNDECERR *NO_
Allow null values ALWNULL *NO_
Bottom
F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F3=Exit
F24=More keys

Create RPG/400 Program (CRTRPGPGM)

Figure 21 (Part 2 of 2). Third Set of CRTRPGPGM Prompt Screens

IGNDECERR

Specifies if decimal data errors detected by the system are ignored by the
program.

*NO

Do not ignore decimal data errors. When a numeric operation is attempted
on a numeric field that contains decimal data that is not valid, a program
exception is raised. Decimal data errors will be detected only for fields
defined in packed decimal format. For more information on packed decimal
format, see Chapter 11, “Communicating with Objects in the System” on
page 255.

*YES

Ignore decimal data errors. The effect of decimal data errors on processing
is not readily predicted. The compiler only generates an error message on
the compiler listing to notify the user that this option was specified. When
this option is specified, incorrect results that occur while a program is
running are the user’s responsibility.

ALWNULL

Specifies whether an RPG/400 program will accept null values from null-
capable fields in an externally described input-only file. A severity 0, compile-
time message is issued when a record format contains null-capable fields. See
“Null Value Support” on page 252 for a detailed description of how the
RPG/400 compiler supports null-capable fields.

*NO

Specifies that the RPG/400 program will not process null value fields from
externally-described files. If you attempt to retrieve a record containing null
values, no data in the record is accessible to the RPG/400 program and a
data-mapping error occurs.

*YES

44 RPG/400 User's Guide

Specifies that an RPG/400 program will accept null value fields for an
externally-described input-only file. When a record containing null values is
retrieved from an externally-described input-only file, no data mapping

Compiling under the System/38 Environment

errors occur and the database default values are placed into any fields
which contain null values.

Compiling under the System/38 Environment

You can also compile an RPG/400 source program from the System/38 environ-
ment. You call the compiler with the same commands as you use in the AS/400
system environment (CRTRPGPGM to call up the RPG/400 compiler, and
CRTRPTPGM to call up the automatic report function). To compile a program from
the System/38 environment, use the CL command CALL QCL to call up the
System/38 environment before you enter the CRTRPGPGM command. You can
also enter System/38 environment commands from the native environment by
library qualifying commands. The QSYS38/CRTRPGPGM command calls the
System/38 environment RPG IIl compiler.

For more information on the differences between the RPG/400 program in the
AS/400 environment and in the System/38 environment, see Appendix E,
“System/38 Environment Option of the RPG Compiler.”

For further information about programming in the System/38 environment, refer to
the System/38 RPG Il Reference Manual and Programmer's Guide.

Chapter 3. Compiling an RPG/400 Program 45

Compiling under the System/38 Environment

46 RPG/400 User's Guide

Using, Displaying, and Printing Messages

Chapter 4. Error Messages, Testing, and Debugging

This chapter describes error messages you may receive from RPG/400 compiler,
explains their meaning, and how you can display and print them. This chapter also
describes testing and debugging an RPG/400 program using functions provided by
the RPG/400 compiler and OS/400 system.

0S/400 System RPG

e Test library ¢ DEBUG operation code
e Breakpoints ¢ DUMP operation code
e Traces

The OS/400 system functions allow you to use CL commands to test programs
while protecting your production files, and let you observe and debug operations as
a program runs. See the CL Reference for more information on using CL com-
mands.

No special source code is required to use the OS/400 system functions. The
RPG/400 compiler functions can be used independently of the OS/400 system func-
tions or in combination with them either to:

e Debug a program
e Produce a formatted dump of indicator settings and the contents of fields, data
structures, arrays, and tables.

Special source code is required to use the RPG/400 DEBUG and DUMP operation
codes. You can also obtain a formatted dump in response to a run-time message.

A file information data structure and a program status data structure can provide
additional debugging information. These data structures are described later in this
chapter. Following this is information on exception/error handling.

Using, Displaying, and Printing Messages

Using Messages

This manual refers to the messages you receive during compilation and run-time.
These messages are displayed on your screen or printed on your compiler listing.
This product has no message manuals.

© Copyright IBM Corp. 1994 47

Using, Displaying, and Printing Messages

48

Each message contains a minimum of three parts as illustrated in the following
sample message:

A

ﬂ Message: Syntax of Program-Identification entry is not valid. Defaults to RPGOBJ.

Cause: The Program-Identification entry (positions 75-80) of a control
specification has a not valid syntax: the first character is not
alphabetic or it is not Teft-justified, or it contains embedded blanks
or special characters. Defaults to RPGOBJ.

Recovery: Specify RPGOBJ or a valid entry (positions 75-80) for the
Program-Identification option. Recompile.

I} A number indicating the severity of the error. The severity-level value of the
RPG/400 compile-time messages does not exceed 50.

Severity Meaning

00 An informational message displayed during entering, compiling, and
running. No error has been detected and no corrective action is neces-
sary.

10 A warning message displayed during entering, compiling, and running.

This level indicates that an error is detected but is not serious enough to
interfere with the running of the program. The results of the operation
are assumed to be successful.

20 An error message displayed during compiling. This level indicates an
error, but the compiler is attempting a recovery that might yield the
desired code. The program may not work as the author intends.

30 A severe error message displayed during compiling. This level indicates
that an error too severe for automatic recovery is detected. Compilation
is complete, but the program does not run.

40 An abnormal end-of-program or function message displayed during com-
piling or running. This level indicates an error that forces cancelation of
processing. The operation ended either because it could not handle
valid data, or because the user canceled it.

50 An abnormal end-of-job message displayed during compiling or running.
This level indicates an error that forces cancelation of job. The job
ended either because a function failed to perform as required, or
because the user canceled it.

99 A user action to be taken during running. This level indicates that some
manual action is required of the operator, such as entering a reply,
changing diskettes, or changing printer forms.

[} The text you see online or on a listing. This text is a brief, generally one-
sentence, description of the problem.

This text is printed on your listing if you specify *SECLVL in your compile-time
options. It contains an expanded description of the message and a section
detailing the correct user response. The IBM-supplied default for this option is
*NOSECLVL.

RPG/400 User's Guide

How to Run an RPG/400 Program

At run time, you can enter D to obtain an RPG/400 formatted dump, S to obtain
system dump, C to cancel, G to continue processing at *GETIN, or F to obtain a
RPG/400 full-formatted dump.

Systems Application Architecture Flagging Messages

In addition to the messages described above, the RPG/400 compiler also has a set
of messages that flag those RPG/400 compiler features not supported by SAA
RPG. These messages are requested with a compiler option, SAAFLAG, described in
“CRTRPGPGM Command” on page 29. The default value for this option is
*NOFLAG. If you select *FLAG, these messages are printed separately under the
heading SAA Message Summary.

The SAA flagging messages are to help the programmer when writing portable
code. If you are seeking maximum portability, you should eliminate the flagged
codes from your program. A program that has only SAA messages will compile
and run correctly on the AS/400 system. SAA messages are informational mes-
sages only. Severe error messages may suppress SAA messages.

SAA messages are divided in the same way as the other messages described
here. A sample message is:

Ao
E Message: SAA RPG does not support numeric fields with more than 15 digits.

Cause: Systems Application Architecture
Common Programming
Interface RPG does not support numeric fields with more than 15 digits.

Recovery: If SAA RPG adherence is required, change the program
and recompile.

These messages flag RPG/400 compiler specific functions only.

Displaying and Printing Messages
To display or print particular messages, use the DSPMSGF or DSPMSGD com-
mands. The compile-time messages are stored in a file called QRPGMSG in
library QRPG. The run-time messages are stored in a file called QRPGMSGE in
library QSYS.

In the System/38 environment, all the compile-time messages are in file
QRPG3MSG in library QRPG38. The run-time messages are in fle QRPG3MSGE
in library QSYS.

Note: If you have any comments or suggestions concerning the messages, please
use the Reader Comment Form included with this manual to send them to us.

How to Run an RPG/400 Program

There are many ways to run an RPG/400 program, depending on how the program
is written and who is using the program. See the CL Programmer’s Guide for the
various ways to run an RPG/400 program. The three most common ways of
running an RPG/400 program are through:

* A high-level language CALL statement or operation

Chapter 4. Error Messages, Testing, and Debugging 49

How to Run an RPG/400 Program

e An application-oriented menu
e A user-created command.

The CL statement CALL can be part of a batch job, be entered interactively by a
work station user, or be included in a CL program. An example is CALL
PAYROLL. PAYROLL is the name of either a CL program or an RPG/400 program
that is called and then run. An RPG/400 program can call another program with
the CALL operation code. See Chapter 11, “Communicating with Objects in the
System.”

Another way to run an RPG/400 program is through an application-oriented menu.
You can request an application-oriented menu and then select an option that will
call the appropriate program. Figure 22 is an example of an application-oriented
menu:

PAYROLL DEPARTMENT MENU
1. Inquire into employee master
2. Change employee master
3. Add new employee

4. Return

Option:__

Figure 22. Example of an Application-Oriented Menu

This menu is normally written as a CL program where each option calls a separate
RPG/400 program. When an RPG/400 program ends, the system returns control to
the calling program or to the user. This could be a work station user, a CL
program (such as the menu handling program), or another RPG/400 program.

You can also create a command yourself to run an RPG/400 program by using a
command definition. See the CL Programmer’s Guide for a description of how to
define a command. For example, you can create a PAY command that calls a
PAYROLL program. A user-created command can be entered into a batch job, or it
can be entered interactively by a workstation user.

Save-While-Active Support
Application programs that change objects or data may run while the objects or data
are being saved. Refer to the Advanced Backup and Recovery Guide for possible
programming considerations related to save-while-active support.

50 RPG/400 User's Guide

Using a Test Library

Using a Test Library

The basic concept of testing and debugging is that of a separate testing environ-
ment. Programs running in a normal operating environment or in a test environ-
ment can read, update, and write records that are in either test or production
libraries. To prevent database files in production libraries from being changed unin-
tentionally, you can specify the UPDPROD (*NO) option on the CL command STRDBG
(Start Debug).

On the AS/400 system, you can copy production files into the test library or you can
create special files for testing in this library. A test copy of a file and its production

copy can have the same name if the files are in different libraries. You can use the
same file name in the program for either testing or normal processing.

Figure 23 shows an example of using a separate test environment.

Normal Environment

Job Production Library
— | Production Files <«

Program 1

Program 5 |<+—»

Test Environment

Program 10

Test Library
> Test Files L

Figure 23. Using a Separate Test Environment

Chapter 4. Error Messages, Testing, and Debugging 51

Using a Test Library

For testing, you must place the test library name ahead of the production library
name in the library list for the job that contains the program to be tested as shown

in Figure 24.
TESTING
ENVIRONMENT
Test
—>| Library
Library List
Test Library
Production Production
Program —| Library 1 »| Library 1
Production
Library 2
QTEMP
Production

—»| Library 2

Figure 24. Testing Environment

52 RPG/400 User's Guide

Using a Test Library

For normal program running, the production library should be the only library

named in the library list for that job. (That is, the test library should not be named.)

See Figure 25 below.

NORMAL
ENVIRONMENT

Production
Library List| —| Library 1

Production
Library 1
Program —»
Production [
Library 2

QTEMP
Production
—| Library 2

Figure 25. Normal Environment

No special statements for testing are contained within the program being tested.

The same program being tested can be run normally without modifications. All
testing functions are specified within the job that contains the program and not
within the program.

JOB

Testing Functions| <«——(These functions are specified
via 0S/400 system commands.)

Programs

Figure 26. Testing Functions

Chapter 4. Error Messages, Testing, and Debugging

53

Using Breakpoints

Testing functions apply only to the job in which they are specified. A program can
be used concurrently in two jobs: one job that is in a test environment and another
job that is in a normal processing environment.

The OS/400 system testing functions let you interact with a program while it is
running so as to observe its processing. These functions include using breakpoints
and traces.

Using Breakpoints

You can use breakpoints to stop your program at a specified point. A breakpoint
can be a statement number or a label in your program. If you use a label as a
breakpoint rather than a statement number, the label can be:

e On a TAG statement in the program

» Associated with a step in the RPG/400 program cycle. For example, *TOTC
indicates the beginning of total calculations, and *TOTL indicates the beginning
of total output.

e Associated with a function done by your RPG/400 program. For example, SQRT
indicates the square root function.

When a breakpoint is encountered in an interactive job, the system displays the
breakpoint at which the program stops and, if requested, the values of program
variables. After getting this information (displayed), you can go to a Command
Entry Screen and enter CL commands to request other functions (such as dis-

playing or changing a variable, adding a breakpoint, or adding a trace).

When a breakpoint is encountered in a batch job, a breakpoint program can be
called. You must create this breakpoint program to handle the breakpoint informa-
tion.

Example of Using Breakpoints

Figure 27 shows a source listing of a sample RPG/400 program, DBGPGM, and
the CL commands that add breakpoints at statements 1200 and 1500. The value
of variable *IN is displayed when the breakpoint at statement 1200 is reached, and
the value of variables FLD1 and PART are displayed when the breakpoint at state-
ment 1500 is reached.

CL Commands
STRDBG PGM(EXAMPLES/DBGPGM)

ADDBKP STMT(1200) PGMVAR((*IN))
ADDBKP STMT(1500) PGMVAR((FLD1) (PART)) OUTFMT (*HEX)

54 RPG/400 User's Guide

Using Breakpoints

5763RG1 V3ROM5 940125 IBM RPG/400 QGPL/DBGPGM 01/25/94 13:42:19 Page 2
SEQUENCE IND DO LAST PAGE ~ PROGRAM
NUMBER L B T P T O P TRy A V] - NUM UPDATE LINE ID

H *kkkk
100 FTESTX IF F 5 DISK 01/01/94
200 FTESTA UF F 10 DISK 01/01/94
300 ITESTX NS 01 01/01/94
400 I 1 5 PART 01/01/94
500 ITESTA NS 02 01/01/94
600 I 1 5 FLD1 01/01/94
700 01/01/94
800 = MAINLINE 01/01/94
900 E e P P e 01/01/94
1000 C LOOP TAG 01/01/94
1100 C READ TESTX 66 3 01/01/94
1200 C 66 GOTO ENDPGM 01/01/94
1300 C READ TESTA 67 3 01/01/94
1400 C No67 MOVE PART FLD1 01/01/94
1500 C No67 EXCPTMAST 01/01/94
1600 C N66 GOTO LOOP 01/01/94
1700 C ENDPGM TAG 01/01/94
1800 C SETON LR 1 01/01/94
1900 OTESTA E MAST 01/01/94
2000 0 FLD1 5 01/01/94

% %%+ END OF SOURCE **%%=x
Figure 27. Sample RPG/400 Program DBGPGM

The first breakpoint shows you where you are in the program. Figure 28 shows
the two displays as a result of reaching the first breakpoint.

Chapter 4. Error Messages, Testing, and Debugging 55

Using Breakpoints

Display Breakpoint

Press Enter to continue.

F3=Exit program F10=Command entry

Statement/Instruction : 1200 /004A
Program : DBGPGM
Recursion Tevel : 1
Start positiono 1
Format *CHAR
Length 000 *DCL
Variable =*IN
Lower/upper bounds : (1:99)
Type . . « « « = v « v « v v« <. . CHARACTER
length 1
Element = —----mmmmmmmeeee o Values ----------oommmmmom .
1 Ill IOI IOI IOI IOI IOI IOI IOI IOI IOI
11 IOI IOI IOI IOI IOI IOI IOI IOI IOI IOI
21 IOI IOI IOI IOI IOI IOI IOI IOI IOI IOI
31 IOI IOI IOI IOI IOI IOI IOI IOI IOI IOI
Press Enter to continue.
More...
F3=Exit program F10=Command entry
Display Breakpoint
Statement/Instruction : 1200 /004A
Program : DBGPGM
Recursion Tevel : 1
Start position L 1
Format 0000 *CHAR
Length: =*DCL
41 IGI IOI IOI IGI IOI IOI IGI IOI IOI IGI
51 '9' 'e' '@' '@' '®' '®' '@' '0' '8' '®
61 IOI IOI IOI IOI IOI IOI IOI IOI IOI IOI
71 IGI IOI IOI IGI IOI IOI IGI IOI IOI IGI
81 'e' 'e' '0' '®' ‘'®' '@' '0' '®' ‘'®' '0'
91 IOI IOI IOI IOI IOI IOI IOI IOI IOI

Figure 28. First Breakpoint Display for DBGPGM

56 RPG/400 User's Guide

Using Breakpoints

Figure 29 shows the two displays as a result of reaching the second breakpoint.

Display Breakpoint

Statement/Instruction : 1500 /0060
Program : DBGPGM
Recursion level 1
Start positiono 1
Format *HEX
Length 0000 *DCL
Variable L FLD1
Type . « v « v « v « v « v « v« .« . CHARACTER
length: b
* L. L+, 1 + .. kLt 1 +
404000063F ! !
Variable0 L PART
Type . « v « v « v « v « v « v« .« . CHARACTER
length: b

Press Enter to continue.
More...
F3=Exit program F10=Command entry

Display Breakpoint

Statement/Instruction : 1500 /0060

Program : DBGPGM

Recursion Tevel : 1

Start position L 1

Format *HEX

Length 000 *DCL
R L TS U P BN N
404000063F ! !

Press Enter to continue.

F3=Exit program F10=Command entry

Figure 29. Second Breakpoint Display for DBGPGM

At this point, you can change the value of one of these variables to alter how your
program runs. After getting to the Command Entry Screen by pressing F10, you
can use the CL command CHGPGMVAR (Change Program Variable) to change the
value of a variable.

Considerations for Using Breakpoints
You should know the following characteristics of breakpoints before using them:

e |f a breakpoint is part of a conditional statement, that breakpoint request is
processed even if the condition is not met.

Chapter 4. Error Messages, Testing, and Debugging 57

Using a Trace

If a breakpoint is bypassed by a GOTO operation, that breakpoint request is not
processed.

Some statements that are not processed do not represent a definite position in
the logic flow of your program. Avoid putting breakpoints on PLIST, PARM,
KLIST, KFLD, and DEFN operations.

When a breakpoint is requested for a statement, the breakpoint occurs before
that statement is run.

When a breakpoint is requested for a statement that is not processed, such as
a TAG operation, the breakpoint is set on the next statement.

Breakpoint functions are specified using CL commands. You can use CL com-
mands to add breakpoints to programs, display breakpoint information, remove
breakpoints from programs and start a program after a breakpoint has been
displayed. Refer to the CL Reference for descriptions of these commands and
for a further description of breakpoints.

Input fields not used in your program cannot be specified in the PGMVAR
parameter of the debug commands. You can display the entire input or output
buffer for a record by using the variable name ZZnnBIN (input buffer) or
ZZnnBOUT (output buffer). The nn value is the sequence number corresponding
to the order in which the files are defined in your specifications. This number
also appears in the cross reference section of the compiler listing. Thus you
can display the input buffer for the second file in your program by specifying
PGMVAR (ZZ02BIN).

Using a Trace

58

You can use a trace to record the statements that are run in a program and the
values of the variables used in the statements.

To use a trace, you specify what statements and variables the system should trace.
You can also specify that variables be traced only when their values change. You
can specify a trace of one statement, a group of statements, or an entire program.
You must request a display of the traced information. The display shows the
sequence in which the statements were run and, if requested, the values of vari-
ables used in the statements. Figure 30 on page 59 shows the setup of a trace
for program statements and their order of processing.

RPG/400 User's Guide

Program

Statement

CONOOT B WN =

Using a Trace

Trace

Order of Processing Variables

NOONNOY0ONOY -

Figure 30. Program Statements and Order of Processing

Example of Using a Trace

Figure 27 on page 55 shows a portion of a listing of RPG/400 program DBGPGM.
The CL command that adds a trace of statements 1000 through 1800 in that

program is:

ADDTRC STMT((1000 1800))

Figure 31 is an example of a display of the traced information. The CL command
to display this information is:

DSPTRCDTA QUTPUT (*)

Program
DBGPGM
DBGPGM
DBGPGM
DBGPGM
DBGPGM
DBGPGM
DBGPGM
DBGPGM
DBGPGM

Statement/
Instruction Recursion Level Sequence Number

1000
1200
1300
1400
1500
1600
1000
1200
1800

Press Enter to continue.
F3=Exit Fl2=Cancel

Display Trace Data

1

i e
OCOoONOOTPEWN —

Figure 31. Trace Data Display for DBGPGM

Chapter 4. Error Messages, Testing, and Debugging

59

Using the RPG/400 Formatted Dump

Considerations for Using a Trace

You should know the following characteristics of traces before using them:
e A conditional statement is recorded in the trace even if the condition is not met.
e Statements bypassed by GOTO operations are not included in the trace.

» Trace functions are specified with CL commands in the job that contains the
traced program. These functions include adding trace requests to a program,
removing trace requests from a program, removing data collected from previous
traces, displaying trace information, and displaying the traces that have been
specified for a program.

e You cannot display a variable that is not referenced in your RPG/400 program.

Using the DEBUG Operation Codes

You can code one or more DEBUG operation codes among your RPG/400 calcu-
lations to help you debug a program that is not working properly. Whenever the
DEBUG operation is processed, one or two records with debugging information are
provided. The first record contains a list of all indicators that are set on at the time
the DEBUG operation was encountered. The second record is optional and shows
the contents of the result files specified for the DEBUG operation.

The DEBUG operation can be coded at any point or at several points in the calcu-
lation specifications. The output records are written whenever the DEBUG operation
occurs.

You should know the following characteristics of the DEBUG operation code before
using it:
e The DEBUG operation runs (are active) only if position 15 of the control specifica-
tion contains a 1.
* If the DEBUG operation is conditioned, it occurs only if the condition is met.

 If a DEBUG operation is bypassed by a GOTO operation, the DEBUG operation does
not occur.

You can apply the OS/400 system testing and debugging functions to programs
that use DEBUG operations; a breakpoint can be on a DEBUG operation, and a DEBUG
operation can be traced.

Using the RPG/400 Formatted Dump

60

To obtain an RPG/400 formatted dump (printout of storage) for a program while it is
running, you can code one or more DUMP operation codes in your calculations, or
you can respond to a run-time message with a D or F option. It is also possible to
automatically reply to make a dump available. Refer to the “System Reply List”
discussion in the CL Programmer’s Guide.

The formatted dump includes field contents, data structure contents, array and table
contents, the file information data structure, and the program status data structure.
The dump is written to the file called QPPGMDMP. (A system abnormal dump is
written to the file QPSRVDMP.)

RPG/400 User's Guide

Using the RPG/400 Formatted Dump

If you respond to an RPG/400 run-time message with an F option, the dump also
includes the hexadecimal representation of the open data path (ODP, a data man-
agement control block). If position 15 of the control specification contains a 1, the
F option also provides a list of compiler-generated fields.

Information from the file information data structure (INFDS) is provided for each file
in the program. Not all the information that is contained in the INFDS is printed in

the dump. Remember that, to use any information from the INFDS in your
program, you must define the INFDS in your program.

The same characteristics as described for the DEBUG operation apply to the DUMP

operation.

Figure 32 shows an example of an RPG/400 formatted dump.

— Note

Only selected pages of an RPG/400 formatted dump are presented below.

RPG/400 FORMATTED DUMP

Program Status Area:

Program Name : QGPL/SAMPLE A
Program Status : 00000]
Previous Status : 00000 C
Statement in Error : 00000000 D
RPG Routine DETC E
Number of Parameters : 000
Message Type « . o ¢ o o . .
MI Statement Number:
Additional Message Info : Program
Message Data Status
Last File Used : QSYSPRT -— Information
Last File Status 01235
Error in PRTCTL entries occurred in (C G S D).

Last File Operation : OPENI
Last File Routine: *INIT
Last File Statement : *INIT
Last File Record Name : -
Job Name E53 -«
User Name QPGMR
Job Number 000811
Date Entered System : 092592
Date Startedt 092592
Time Started 111143
Compile Date 052592
Compile Time 111125
Compiler Level : 0001
Source File : QRPGSRC

Library QGPL
Member SAMPLE -

Figure 32 (Part 1 of 8). RPG/400 Formatted Dump

Chapter 4. Error Messages, Testing, and Debugging 61

Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP

File FILEINl
FileOpen YES
Fileat EOF YES
Commit Active NO
File Status 00011
RPGOO11 End of file (input).
File Operation : READR
File Routine *DETC
Statement Number : 2500
Record Name FILEA

Message Identifier :
MI Instruction Number :

ODP type: DB

File Name FILEIN
Library QGPL

Member FILEIN1

Record Format

Primary Record Length : 45

Secondary Record Length: 0

Input Block Length : 4125

Qutput Block Length : 0

Device Class v v v v v v v v ot '0000'X

Lines per Page 0

Columns per Line: 0

Number of Records in File : 0

Access Type: ARRIVAL SEQ

Allow Duplicate Keys : NO

Source File NO

UFCB Parameters : 'A2000000000000500000"'X

UFCB Overrides : '00000000000000000000"'X

Records to Transfer: 74

Number of Puts: 0

Number of Gets: 0

Number of Put/Gets: @

Number of other I/O0: @

Current Operation: '4040'X

Device Class '4040'X

Device Name

Length of Last Record: 0

DDS Information:

Relative Record Number: 0

Records Transferred: 0

Current Line Number: 0

Input Buffer:
0000 80000000 00000000 0007COOD BDOOO88O 0000004A 0037002D
0020 40404040 40404040 40404040 40404040 40404040 40404040
0040 40404040 40404040 40404040 40404040 40404040 40404040
0060 40404040 40404040 40404040 40404040 40404040 40404040
0080 40404040 40404040 40404040 40404040 40404040 40404040
00A0 40404040 40404040 40404040 40404040 40404040 40404040
00CO 40404040 40404040 40404040 40404040 40404040 40404040
00EO 40404040 40404040 40404040 40404040 40404040 40404040
0100 40404040 40404040 40404040 40404040 40404040 40404040
0120 40404040 40404040 40404040 40404040 40404040 40404040
0140 40404040 40404040 40404040 40404040 40404040 40404040
0160 40404040 40404040 40404040 40404040 40404040 40404040

Figure 32 (Part 2 of 8). RPG/400 Formatted Dump

62 RPG/400 User's Guide

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

EE I R I

* ok b ok ok ok % % ok ok *

RPG/400 FORMATTED DUMP

0180
01A0
01Co
01E0
0200
0220
0240
0260
0280
02A0
02C0
02E0
0300
0320
0340
0360
0380
03A0
03C0
03E0
0400
0420
0440
0460
0480
04A0
04C0
04E0
0500
0520
0540
0560
0580
05A0
05C0
05E0
0600
0620
0640
0660
0680
06A0
06C0O
06E0
0700
0720
0740
0760
0780
07A0
07C0
07E0
0800
0820
0840
0860

Figure 32 (Part 3

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

of 8). RPG/400 Formatted Dump

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

Chapter 4. Error Messages, Testing, and Debugging

Using the RPG/400 Formatted Dump

40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040
40404040

EE I I S R I R I S R RN N R RN R N T R R I I e

¥k b ok R 3k ok ok 3k ok b R 3k o b F 3k ok b 3k ok b F 3k o b b 3k ok ok %k ok b R 3k o ok %k ok ok % % ok ok Rk ok ok X % % %

63

Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP

File o o o v v v oo oo o .t QSYSPRT
FileOpen YES
Fileat EOF: NO
Commit Active NO

File Status 01235

Error in PRTCTL entries occurred in (C G S D).
File Operation: PEN I
File Routine *INIT
Statement Number *INIT
Record Name
Message Identifier :
MI Instruction Number :
ODP type . . v« v v o oo oo e SP
File Name : QSYSPRT
Library o . . ot QSYS
Member Q713784701
Record Format
Spool File (04079N00O1
Library QSPL
Spool File Number e e e e e e e 19
Primary Record Length : 132
Secondary Record Length : 0
Input Block Length : 0
Output Block Length : 132
Device Class : PRINTER
Lines per Page 10
Columns per Line: 132
Number of Records in File : 0
Access Type o o oo .. 0
Allow Duplicate Keys : NO
Source File NO

UFCB Parame
UFCB Overri

ters . .
des . . .

c e e e o ...t 'A4121000000000000000' X
e e e e o ... '00000000000000000000'X

Number of Puts: 0

Number of Gets: O K]

Number of Put/Gets: @

Number of other I/0: 0

Current Operation e e e e e e e e '4040'X

Device Class o v . o . '4040'X

Device Name

Length of Last Record : 0

DDS Information:

Relative Record Number: 0

Current Line Number: 0

Input Buffer:
0000 E2C1D4AD7 D3C54040 4040D8C7 D7D34040 40404040
0020 00000000 00000000 00000000 00000000 00000000
0040 00000000 00000000 00000000 00000000 00000000
0060 00000000 00000000 00000000 00000000 00000000
0080 00000000

Output Buffer:
0000 00000000 00000000 00000000 00000000 00000000
0020 00000000 00000000 00000000 00000000 00000000
0040 00000000 00000000 00000000 00000000 00000000
0060 00000000 00000000 00000000 00000000 00000000
0080 00000000

Figure 32 (Part 4

of 8). RPG/400 Formatted Dump

64 RPG/400 User's Guide

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

File information.

This information is repeated
for each file in the program.
For a detailed description of
these entries, see the S/38 RPG.

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

*SAMPLE QGPL

*

* % %

L

E

E

RPG/400 FORMATTED DUMP

Open Data Path:

0000 64800000
0020 00000530
0040 00000000
0060 80000000
0080 80000000
00A0 08000000
00CO 40404040
00EO D8F7F1F3
0100 0000D5A4
0120 0005A000
0140 00010001
0160 07A10045
0180 5CD54040
01A0 00000000
01C0 00000000
01E0 00000000
0200 00000000
0220 00000000
0240 00000000
0260 00000000
0280 00000001
02A0 00000000
02CO0 80000000
02E0 80000000
0300 00000000
0320 OFCCOOD6
0340 000186A0
0360 40404040
0380 80000000
03A0 80000000
03C0 00000000
03E0 00000000
0400 40404040
0420 FOF1FOFO
0440 OOO10FEF
0460 00000000
0480 00000000
04A0 13007FFF
04CO0 00000000
04E0 00000000
0500 00000000
0520 00000000
0540 00000000
0560 5404040
0580 00000080
05A0 00840009
05C0 C7404040
O5E0 00000000
0600 00000000
0620 00000000
0640 D7C94040
0660 00000000
0680 80000000
06A0 80000000
06C0 00000000

Figure 32 (Part 5

L
000010A4
00000000
00000016
00000A80
00000000
00000000
4040D8FO
F7F8F4F7
12100000
5CD54040
5CD54040
00450045
40404040
00000001
00000090
02080000
00000000
00000000
00000000
00000000
00300000
00000000
0000004F
00000000
00000700
005E0000
6000000
40400000
00000000
00000000
00000000
00000000
40400049
00000000
7FFFO001
00000000
0000000C
00000000
00000000
00000000
00000000
00000000
0000008C
00000000
00000000
0D405CC4
40404040
009E0000
00000000
00000000
40404040
00000000
000001F0
00000000
00000000

00001100
00000000
0007C00D
0007C001
0007C00D
00000000
FAFOF7F9
FOF10000
00000000
40404040
40404040
00700045
40400208
(2200000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
0007C00D
0007C00D
000502DB
0001DECO
5CD1D6C2
00000000
0007C00D
0007C00D
00000000
00000000
00000000
00000000
00840004
00000000
C0000A00
00000000
00000000
00000000
00000000
00000000
000002C0O
00010000
00000000
C5E5C440
40404040
01001000
00000000
00000000
00000000
00000000
00060382
00060382
00000000

000000B0O
00000140
BAOO19FF
DB001710
BA001120
00100000
D5FOFOF1
00000000
00000000
40400001
40400000
00450045
00000000
00059A00
00000000
00000000
00000000
00000000
00000000
00000000
00003000
00000000
BB001824
BB00086O
2700195F
00000000
40404040
000001F0
BB000860
BB000460
00000000
00000000
00000000
00000000
00010001
00000000
84000E00
00000000
00000000
00000000
00000000
00000000
00005C00
00000000
00000000
40404040
4040060A
00C1D7D7
00000000
00000000
00000000
00000000
3B000562
3B00015C
00000000

00000140
00000000
00000000
00000000
01900000
E2D7D8E2
D8E2D7D3
00840002
00000000
00000000
06700000
00450045
20000000
00000000
00000000
00000084
00000000
00000000
00000000
00000000
00000000
41100000
80000000
80000000
00000000
00000000
40404040
80000000
80000000
80000000
00000000
D8FOF4F0
00004040
00000000
DBE2E8E2
FFF30000
06000F00
00000000
00000000
00000000
00000000
006A0800
0002FFFF
00000000
DBE2E8E2
40404040
060F100F
D3D7C7D4
00000000
00000000
A4121000
80000000
80000000
80000000
00000000

of 8). RPG/400 Formatted Dump

000001C6
00000000
00000000
00000000
00010000
E8E2D7D9
40404040
00000000
00000000
00000000
00000000
00450045
00000000
00000000
00000000
00000000
00000000
00000000
00000001
00000000
0000001C
00000000
00000000
00000000
00000000
00000000
40404040
000081F0
00000000
00000000
00000000
F7F9D5F0
40404040
00000000
D7D9E340
00000000
09001000
00000000
00000000
00000000
00000000
00000000
00010001
00000000
D7D9E340
40404040
00000000
40000000
00000000
00000000
00000000
00000018
00000000
00000000
00000000

00000280
00000000
00000000
00000000
00000084
E3404040
40400013
0A008400
00000100
00000000
00450045
002F0030
00000000
00000000
00000000
00000000
00000000
00000000
00000001
FOFOFOFO
000502B5
00000000
0007C00D
0007C00D
OFEF0000
00000000
40404040
0007C00D
0007C00D
0007C00D
00000000
FOF10048
40404040
00000000
A040FFF5
00000000
00110000
00000000
00000000
00000000
00000000
00000650
00015CC3
00000000
404000AE
40405CD7
00000000
00000000
00000000
00100000
00000000
0007C00D
00060382
0007C00D
00000000

Using the RPG/400 Formatted Dump

000002C0O
00000000
00000000
00000000
00000000
DBE2E8E2
00840000
00000000
09000000
00000000
00450045
00040005
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
D90019FF
00000000
BB000860
BB001838
30700000
00010000
5CE2E3C4
BBOOO3BO
BBO00860
BBO00576
00000000
D8E2D7D3
00010100
00000000
00000000
00000000
12C04000
00000000
00000000
00000000
00000000
00000000
C8C1D5C7
00000000
0601000A
DIE3CID4
00000000
00000000
00000000
00015CC3
40000000
BBO0086O
3B000OA72
BA001000
00000000

* F *
* *
* *
* *
* *
* SPQSYSPRT ~ QSYS*
* Q04079NOO1QSPL *
*Q713784701 *
* N *
* *
* *
* *
* N *
* B *
* *
* *
* *
* *
* *
* 0000
* R *
* *
* *
* *
* *
* 0 *
* JoB STD*
* 0 0 *
* *
* *
* *
* Q04079N001 QSPL*
* *
%0100 *
* QSYSPRT 5
* 3 *
* *
* *
* *
* *
* *
* *
* CHANG=*
*E *
* QSYSPRT *
* DEVD PRTIM=*
*G *
* APPLPGM *
* *
* Cx
*PI *
* *
* 0 *
* *
* *

Chapter 4. Error Messages, Testing, and Debugging

65

Using the RPG/400 Formatted Dump

RPG/400 FORMATTED DUMP

NAME
. .MDFDEV
. .MDFDVP

. .MDFNDI
.ACTPTR

.ACTPTRC
.BINF1
.BINF2
.BINRF
.BLANKS
.BPCA
.BPCAPTR

.BUFFER

.BUFPTR

.CALLERR

.CALLSW
.CLOSASW
.CLOSPTR

.C001001

.€002002

.CURROP

.DBFIND

.DBFINX
.DBICNT
.DEACTSW
.DMCBF

OFFSET
000980
0009A0

001990
001A60

001A60
000610
000614
000618
000282
0004B0
000A00

0004D0O
0004D0O
0004FD
00052A
000557
000980

001BFO

001B2D
001B5A
0000A0

001980

0019C0

000598
0003A7
0003A7
0003A9
0003AB
0003AD
0003A7
0003AF
001CC1
000190
000190
000214
000298
00031C
0003A0

ATTRIBUTES
CHAR(10)
POINTER(SPP)
SPACE OFFSET
OBJECT
CHAR(1)
POINTER(SYP)
CONTEXT
OBJECT
CHAR(16)
BINARY (4)
BINARY (4)
BINARY (4)
CHAR (140)
CHAR(32767)
POINTER(SPP)
SPACE OFFSET
OBJECT
CHAR(148)
VALUE IN HEX
+46

+91

+136
POINTER(SPP)
SPACE OFFSET
OBJECT
POINTER(IP)
INSTR #
CONTEXT
OBJECT
CHAR(1)
CHAR(1)
POINTER(SYP)
CONTEXT
OBJECT
POINTER(SPP)
SPACE OFFSET
OBJECT
POINTER(SPP)
SPACE OFFSET
OBJECT
CHAR(5)
CHAR(2)

(1)

(2)

(3)

(4)
CHAR(8)
BINARY(2)
CHAR(1)
CHAR(2)

(1)

(2)

(3)

(4)

(5)

VALUE <

! ! '00000000000000000000 ' X
2480 '000009B0 ' X

PSSA

19!

QGPL

SAMPLE

! ! '0000000000000000000703AA08000238 ' X
0

0

0

CANNOT DUMP - SPACE ADDRESSING OR BOUNDARY ALIGNMENT EXCEPTION

1200
FILEIN2

'000004B0 "' X

QGPL FILEIN2

'4000010000' X
'00010000000040 ' X
'40 ' X
'40404040404040404040404040"' X

1232
FILEIN2

'000004D0 " X
QGPL FILEIN2
14
QGPL
SAMPLE
K
9

QSYS
QDMCLOSE

6480
PSSA

'00001950'X

6545

PSSA

'"WRITE'
DIMENSION(4)
oy

y

oy

LR
'OVIV2VLR'

4

Iry
DIMENSION(256)

'00001991'X

'2000'X
'0000'X
'0005'X
'3070'X
'8000'X

Figure 32 (Part 6 of 8). RPG/400 Formatted Dump

66

RPG/400 User's Guide

RPG/400 FORMATTED DUMP

.UO3LBLN
.UO3LIBN
.UO3NXTU
.U030DPB

.UO30FBK

.UB30VFL
.UO3PCB

.UO3PCBL
.UO3PCBP
.UO3RECL
.UO3RLEN
.UO3SEQK
.UO3SIA
.U03sQCK
.WCBUIND
.WORK

.WORKBC
.WORKB2
.WORKB3
.WORKB4
*DATE
*DAY
*IN

*INIT
*INLR
*INOV
*INXX
*IN1V
*IN2V
*IN98
*IN99
*MONTH
*YEAR
ARR

C.NUM

CURLIN
FILE1
FIL1DS
FIL2DS
NUM

00169A
00169C
001660
001610

001640

001702
001709
001768
001709
001736
001713
001709
0016E0
0016E2
0016F0
001670
0016EE
001B25
000520
000520
00054D
00057A
00051C
00051C
00051E
00051C
012190
012192
000344
0003A4
0003A5
0003A6
00033E
000343
000340
00033F
000341
000342
0003A5
0003A6
012190
012194
000441
00046D
0003B1
000410
000516
0004CF
000BBC
000FCC
0003B1
0003B1
0003BA
0003C3
0003CC
0003D5
0003DE
0003E7

BINARY (2)
CHAR(10)
POINTER(SPP)
POINTER(SPP)
SPACE OFFSET
OBJECT
POINTER(SPP)
SPACE OFFSET
OBJECT
BINARY(2)
CHAR(393)
+96
VALUE IN HEX
+46
CHAR(10)
CHAR(10)
BINARY(2)
BINARY(2)
CHAR(1)
POINTER(SPP)
BINARY(2)
CHAR(8)
CHAR(120)
VALUE IN HEX
+46

+91
CHAR(4)
BINARY(2)
BINARY(2)
BINARY (4)
ZONED(8,0)
ZONED(2,0)
CHAR(1)

(1-97)

(98)

(99)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
ZONED(2,0)
ZONED(4,0)
CHAR(1)

(1-45)
CHAR(144)

+96
ZONED(3,0)
CHAR(8)
CHAR(45)
CHAR(45)
CHAR(9)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Using the RPG/400 Formatted Dump

-75
'xLIBL !
NULL

0 '00000000"' X
QSYSPRT QSYS *N

176 '000000B0O ' X
QSYSPRT ~ QSYS *N
9

'SAMPLE QGPL

4 LINES OF BLANKS SUPPRESSED

' E2C1D4D7D3C540404040D8C7D7D340404040404000 ' X
8 LINES OF ZEROS SUPPRESSED

"QGPL '

'SAMPLE

1

132

> '08'X
NULL

6

'000040 ' X
'40 ' X
'40' X

! ! '00000000"'X

0

0

0 <«

9251992 B
25 — 1
DIMENSION(99) <+—
R m
o

9

o

9

9

o

"o

o

o

o

s
b

DIMENSION(45) [

'20 09 35 07 05 02 44 21 17 26 19 43 11 24 41 10 28 49 37 24 16 13 01 16 47 42 18 15 31 27 45 12'

' 04 03 29 48 39 23 14 08 32 40 06 46 30 22 34 38'
'404040'X

'"FILEIN1 1100011READ R*DETC 2500 FILEA ' :::::::] n
'FILEIN2 1000000READ R*DETC 2900 FILEB '

DIMENSION(16)

'20 09 35 '

'07 05 02 '
'44 21 17 '
'26 19 43 '
'11 24 41"
'10 28 49 '
'37 24 16 '

Figure 32 (Part 7 of 8). RPG/400 Formatted Dump

Chapter 4. Error Messages, Testing, and Debugging

67

Using the RPG/400 Formatted Dump

v 8

RPG/400 FORMATTED DUMP

NUMX
0CCRDS
0CCRDS.0

OPCDE1
PRNTDS
REC
RECFM1
RECFM2
REC1
RTNE1
SKAFTR
SKBEFR
SPAFTR
SPBEFR
STAT
UDATE
UDAY
UMONTH
UYEAR
WORK.

X
ZIGNDECD

ZPGMSTUS

ZZO1BIN
Z701BOUT

ZZ02BIN
7702B0UT

Z703BIN

0003F0
0003F9
000402
000408
000414
00041D
000426
00042F
000438
000470
0004CF
0004A2
0004A2
0004CF
0004DF
000510
0004CF
000BE1
000FF1
0004D7
0004EA
000514
000512
000511
000510
0004E5
00061C
00061E
00061C
000620
00051C
00051C
000549
000576
00046E
001B51

000622
000681
0006E0
00073F
0004B0
0004B0
000A30
000A30

0004D0
000A30
000A30
001709
001768
001709
001736

8

7703BOUT

001020
00107F
001020
00104D

(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
CHAR(9)
CHAR(45)
CHAR(45)
(1)
(2)
CHAR(6)
CHAR(9)
CHAR(45)
CHAR(8)
CHAR(8)
CHAR(8)
CHAR(8)
CHAR(2)
CHAR(2)
CHAR(1)
CHAR(1)
CHAR(5)
ZONED(6,0)
ZONED(2,0)
ZONED(2,0)
ZONED(2,0)
CHAR(124)
VALUE IN HEX
+46
+91
PACKED(3,0)
CHAR(1)

CHAR (400)

+96

+191

+286
CHAR(45)
VALUE IN HEX
CHAR(45)
VALUE IN HEX

CHAR(41)

CHAR(41)

VALUE IN HEX

CHAR(132)
+96

VALUE IN HEX
+46

CHAR(132)
+96

VALUE IN HEX
+46

'13 01 16 '
'47 42 18 '
'15 31 27 '
'45 12 04 '
'03 29 48 !
'39 23 14 '
'08 32 40 '
'06 46 30 '
'22 34 38 '
'20 09 35 '

DIMENSION(2)
' FILEB ' R}

134 !
'FILEA
'FILEB

v

92592 —
25 S|
9

92 PRI,
'00000000000040 ' X
'40 ' X
'40 ' X

2

o W

'SAMPLE 000000000000000000*DETC 000 QGPL

' 1235

! QSYSPRT 012350PEN I«INIT *INIT E53 QPGMR 0008110115880115881111
'430115881111250001QRPGSRC QGPL SAMPLE

¢
'80000000000000000007COODBDOOO88OOOOOOO4A0037002D40 ' X

'00 ' X

'9000000008060000000000000080000000000000800000000000000008000000000000000080000000" X

'SAMPLE QGPL

' E2C1D4D7D3C540404040D8C7D7D340404040404000000000000000000006000000000000000000000000000000 " X
2 LINES OF ZEROS SUPPRESSED

'00 ' X
2 LINES OF ZEROS SUPPRESSED

STATIC STORAGE FOR PROGRAM SAMPLE BEGINS AT OFFSET 000290 IN THE PROGRAM STATIC STORAGE AREA (PSSA)
AUTOMATIC STORAGE FOR PROGRAM SAMPLE BEGINS AT OFFSET 0015B0 IN THE PROGRAM AUTOMATIC STORAGE AREA (PASA)
RPG/400 FORMATTED DUMP
* Kk Kk Kk * END

OF RPG DUMP * % %%«

Figure 32 (Part 8 of 8). RPG/400 Formatted Dump

68

RPG/400 User's Guide

E B0 BEREENEOEEA

=QN<B-N-R-E~Bol-Nol=]

Using the RPG/400 Formatted Dump

Qualified program name and library.

Current status code.

Previous status code.

RPG/400 source statement in error.

RPG/400 routine in which the exception or error occurred.
CPF or MCH for a machine exception.

Machine instruction number.

Information about the last file used in the program before an exception or
error (RPG1235) occurred.

Program information.
Error in the file.

The number of times the RPG/400 compiler requested I/O of the system (not
the number of 1/0O operations requested by the program).

The open data path is included in the dump if the user responds to an
RPG/400 run-time message with an F option.

A list of compiler-generated fields is also included in the dump if the user
responds to an RPG/400 run-time message with an F option and if the
program was compiled with a 1 in position 15 of the control specification.

General indicators 1-99 and their current status (1 is on, 0 is off).
Beginning of user fields.

Incorrect zoned field printed in hexadecimal.

File information data structures for FILEIN1 and FILEINZ2.
Double-occurrence data structure.

System date values.

IGNDECERR(*NO) was specified in the CRTRPGPGM command.
Program status data area.

Input buffer for file 02.

This is the file number. See the cross-reference section of the compiler listing
for the corresponding file name. The files are assigned a sequence number
corresponding to the order in which they are defined in your specifications.
Thus, the file number 03 corresponds to the FILEIN2 file described in this
program.

Output buffer for file 03.

Chapter 4. Error Messages, Testing, and Debugging 69

Exception/Error Handling

Exception/Error Handling

The RPG/400 compiler handles two types of exception or errors: program exception
or errors and file exception or errors. Some examples of program exception or
errors are division by zero, not valid array index, or SQRT of a negative number.
Some examples of file exception or errors are undefined record type or a device
error.

Figure 33 shows an example of a file information data structure (INFDS) and a file
exception/error subroutine. For further information on exception/error handling by
the RPG/400 compiler, see the RPG/400 Reference manual.

S O . T e R PP TP A - RS P AR
F+

Fx Three files are defined on the file description specifications.
Fx You want to control the program logic if an exception or error

F* occurs on the TRNFIL file or on the MSTFIL file. Therefore, a

Fx unique INFDS and a INFSR are defined for each file. They are

Fx not defined for the AUDITFIL file.

F=

FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FTRNFIL OF E K DISK KINFDS FILDS1

F KINFSR ERRRTN

FMSTFIL UF E K DISK KINFDS FILDS2

F KINFSR MSTERR
FAUDITFILOF E K DISK

Figure 33 (Part 1 of 4). Example of File Exception/Error Handling

70 RPG/400 User's Guide

I*

Exception/Error Handling

Ix The location of the subfields in the file information data

I[* structures is defined by special keywords in positions 44

I* through 51. To access these predefined subfields, you must

I[* assign a name to each subfield in positions 53 through 58.

I If an exception or error occurs, you can test the information
I in the data structure to determine, for example, what exception
I* or error occurred (*STATUS) and on which operation it occurred
I (*OPCODE). You can then use that information within the file

I* exception/error subroutine to determine the action to take.

I*

IFiTenameSgNORiPoSINCCPOSZNCCPOS3NCC. . oot i e ii et iiiiinieeeennnnnnnns *
IFILDS1 DS

Lttt ittt iieeeeeteennnnnnnns PFromTo++DField+LIM1FrPIMnZr.. . .*
I *FILE FIL1

I *RECORD REC1

I *QPCODE OP1

I *STATUS STS1

I *ROUTINE RTN1

IFILDS2 DS

I *FILE FIL2

I *RECORD REC2

I *QPCODE 0P2

I *STATUS STS2

I *ROUTINE RTN2

Figure 33 (Part 2 of 4). Example of File Exception/Error Handling

Chapter 4. Error Messages, Testing, and Debugging

71

Exception/Error Handling

Cx*

C+x On the WRITE operation to the TRNREC record in the TRNFIL file,
C+ an exception/error indicator is specified in positions 56 and 57.
Cx This indicator is set on if an exception or error occurs on this
Cx operation. The ERRRTN subroutine (the file exception or error

Cx subroutine for the TRNFIL file) is explicitly called by the EXSR
C+ operation when indicator 71 is on. Because factor 2 of the ENDSR
C+ operation for the ERRRTN is blank, control returns to the next

C+ sequential instruction following the EXSR operation after the

C* subroutine has run.

Cx*

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
C WRITETRNREC 71

c 71 EXSR ERRRTN |

C " Calculations

Cx !

Cx*

C+ No exception/error indicator is specified in positions 56 and 57
C+ of the WRITE operation to the AUDITREC record in the AUDITFIL

C+ file. No exception/error subroutine was defined for this file

C* on the file description specifications. Therefore, any exception/
Cx errors that occur on this operation to the AUDITFIL file are

Cx handled by the default RPG default error handler.

Cx*

C WRITEAUDITREC |

C " Calculations

Cx !

Figure 33 (Part 3 of 4). Example of File Exception/Error Handling

72 RPG/400 User's Guide

Cx

Cx*
Cx*
Cx*
Cx*
C*
Cx*
C*
Cx*
Cx*
Cx*
Cx*
C*
Cx*

Exception/Error Handling

No exception/error indicator is specified in positions 56 and 57
of the CHAIN operation to the MSTREC record in the MSTFIL file.
However, a file exception/error subroutine (MSTERR) is defined
for the file on the file description specifications. Therefore,
when an exception or error other than no record found occurs on
the CHAIN operation, RPG passes control to the MSTERR subroutine.
On the ENDSR operation for this subroutine, factor 2 contains a
field name. This allows the programmer to alter the return point
from the subroutine within the subroutine based on the exception
or error that occurred. The field must contain one of the values
described under File Exception/Error Subroutine earlier in

this chapter.

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

OOOOOOOOOOOOO0O

MSTKEY CHAINMSTREC 61
61 GOTO NOTFND

MSTERR BEGSR

Calculations

ENDSRRTRPNT

ERRRTN BEGSR

Calculations

ENDSR

Figure 33 (Part 4 of 4). Example of File Exception/Error Handling

Figure 34 on page 74 shows an example of a program exception/error subroutine.

Chapter 4. Error Messages, Testing, and Debugging

73

Exception/Error Handling

R R A . R | T B, AP ¢ NEPRP DR AR

IDsname....NODsExt-filet+............. Ocerlent. . ceeiiiiinnnnnnennn. *
I SDS

I *ROUTINE LOC

I *STATUS ERR

I *PARMS PARMS

I *PROGRAM NAME

I R USRS, OO TP O S T TEPUPIPS DUPOVR ¢ PR DT A |
CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*
c *PSSR BEGSR

c ERR COMP 102 20 DIV BY ZERO?
C 20 ADD 1 DIVSR

C 20 MOVE '*DETC' RETURN 6

C N20 MOVE '=*CANCL' RETURN

C ENDSRRETURN

Figure 34. Example of *PSSR Subroutine

The program-status data structure is defined on the input specifications. The pre-
defined subfields *STATUS, *ROUTINE, *PARMS, and *PROGRAM are specified, and
names are assigned to the subfields.

The *PSSR subroutine is coded on the calculation specifications. If a program
exception/error occurs, the RPG/400 compiler passes control to the *PSSR subrou-
tine. The subroutine checks to determine if the exception or error was caused by a
divide operation in which the divisor is zero. If it was, indicator 20 is set on, 1 is
added to the divisor (DIVSR), and the literal ‘*DETC"'. is moved to the field RETURN.
Moving the literal into the RETURN field, which is specified in factor 2 of the ENDSR
operation, allows you to control the return point within the subroutine. In this
example, control returns to the beginning of the detail calculations routine, unless
the exception or error was not a divide by zero. In that case, the literal ‘*CANCL' is
moved into the RETURN field, and the program is ended.

74 RPG/400 User's Guide

Device Independence/Device Dependence

Chapter 5. General File Considerations

This chapter describes:

e The device-independent and device-dependent characteristics of the RPG/400
program on the AS/400 system

e AS/400 spooling functions

e The extent to which externally described and program-described files are
defined in the RPG/400 program

» Level checking functions

¢ File locking by the RPG/400 program

e Record locking by the RPG/400 program

e Unblocking and blocking records to improve performance
e Sharing an open data path

¢ General information about the use of externally described files and how this
external description can be changed in the RPG/400 program

¢ Program-described files
e RPG/400 functions that relate specifically to an RPG/400 PRINTER device,
SEQ device, and SPECIAL device.

On the AS/400 system, files are made up of members. These files are organized
into libraries. The convention for naming files is 1ibrary-name/file-name.

Device Independence/Device Dependence

The key element for all input/output operations is the file. All files used on the
system are defined to the OS/400 system. The OS/400 system maintains a
description of each file that is accessed by a program when it uses the file.

The OS/400 file descriptions are kept online and serve as the connecting link
between a program and the device used for /0. The data is read from or written to
the device when the file is used for processing. In some instances, this type of I/O
control allows you to change the type of file (and, in some cases, change the
device) used in a program without changing the program.

On the AS/400 system, the file name specified in positions 7 through 14 of the file
description specification is used to point to the file, rather than the device name
specified in positions 40 through 46. The file name points to the OS/400 file
description that contains the specifications for the actual device:

——RPG program §\~FILEX
File name = FILEX

Device = WORKSTN device type =
DISPLAY

© Copyright IBM Corp. 1994 75

Device Independence/Device Dependence

76

The RPG/400 device name in positions 40 through 46 defines the RPG/400 func-
tions that can be processed on the associated file. At compilation time, certain
RPG/400 functions are valid only for a specific RPG/400 device name. In this
respect, the RPG/400 function is device dependent. One example of device
dependency is that the EXFMT operation code is valid only for a WORKSTN device.

For another example, assume that the file name FILEY is specified in the RPG/400
program with the SEQ device. The device SEQ is an independent device type.
When the program is run, the actual I/O device is specified in the description of
FILEY. For example, the device might be PRINTER.

——RPG program E\kHLEY
File name = FILEY file type =

Device = SEQ DEVICE ok o
device type = Dﬁu
PRINTER .

0S/400 commands can be used to override a parameter in the specified file
description or to redirect a file at compilation time or run time. File redirection
allows you to specify one file at compilation time and another file at run time:

AN
I \\
! FILEY
I .
Compile \ file type =
Tim e
! PHYSICAL
RPG program = 1
4/
File name = FILEY Override Command:
Device = DIS K OVRDBF FILE (FILEY) TOFILE (FILEA)
FILEA
file type =
Diskette
E xecution PEVICE _> O
Tim e device type =
DISKETTE I

In the preceding example, the CL command OVRDBF (Override With Database
File) allows the program to run with an entirely different device file than was speci-
fied at compilation time.

Not all file redirections or overrides are valid. At run time, checking ensures that
the specifications within the RPG/400 program are valid for the file being proc-
essed. The OS/400 system allows some file redirections even if device specifics
are contained in the program. For example, if the RPG/400 device name is
PRINTER, and the actual file the program connects to is not a printer, the OS/400
system ignores the RPG/400 print spacing and skipping specifications. There are
other file redirections that the OS/400 system does not allow and that cause the
program to end. For example, if the RPG/400 device name is WORKSTN and the
EXFMT operation is specified in the program, the program is stopped if the actual file
the program connects to is not a display or ICF file.

RPG/400 User's Guide

Spooling

See the Data Management Guide for more detailed information on valid file redi-
rections and file overrides.

Spooling

Output Spool

Spooling is a system function that puts data into a storage area to wait for proc-
essing. The AS/400 system provides for the use of input and output spooling func-
tions. The RPG/400 program is not aware that spooling is being used. The actual
physical device from which a file is read or to which a file is written is determined
by the spool reader or the spool writer. For more detailed information on spooling,
see the Data Management Guide.

Output spooling is valid for batch or interactive jobs. The description of the file that
is specified in the RPG/400 program by the file name contains the specification for
spooling as shown in the following diagram:

—Spooled
File

PRINT i Spooling

Q

0L (*YES)
UE (QPRINT)
% | QPRINT

RPG program

Filename = QPRINT S
Device = PRINTER 0

PO
UE Queue

Execution Time

Star
P rin
writ

r e}

© —
— @

Start Printer
writer Tim e

Device

File override commands can be used at run time to override the spooling options
specified in the file description, such as the number of copies to be printed. In
addition, AS/400 spooling support allows you to redirect a file after the program has
run. You can direct the same printed output to a different device such as a
diskette.

Chapter 5. General File Considerations 77

Externally Described and Program-Described Files

Externally Described and Program-Described Files

78

All files on the AS/400 system are defined to the OS/400 system. However, the
extent to which files can be defined differs:

* An externally described file is described to the OS/400 system at the field level.
The description includes information about where the data comes from, such as
the database or a specific device, and a description of each field and its attri-
butes.

e A program-described file is described at the field level within the RPG/400
program on input/output specifications. The description of the file to the
0S/400 system includes information about where the data comes from and the
length of the records in the file.

An externally described file does not have to be redefined in an RPG/400 program
on input/output specifications. In a program-described file, the fields and their attri-
butes must be described on input/output specifications.

Externally described files offer the following advantages:

e Less coding in RPG/400 programs. If the same file is used by many programs,
the fields can be defined once to the OS/400 system and used by all the pro-
grams. This practice eliminates the need to code input and output specifica-
tions for RPG/400 programs that use externally described files.

¢ Less maintenance activity when the file’s record format is changed. You can
often update programs by changing the file’s record format and then recom-
piling the programs that use the files without changing any coding in the
program.

e Improved documentation because programs using the same files use consistent
record-format and field names.

If an externally described file (identified by an E in position 19) is specified for the
devices SEQ or SPECIAL, the RPG/400 program uses the field descriptions for the
file, but the interface to the OS/400 system is as though the file were a program-
described file. Externally described files cannot specify device-dependent functions
such as forms control.

You can choose to use an externally described file within the program by specifying
the file as program-described (F in position 19 of the file description specifications).
The compiler does not copy in the external field-level description of the file at com-
pilation time. This approach is used in conversion where existing programs use
program-described files and new programs use externally described files to refer to
the same file.

Figure 35 shows some typical relationships between an RPG/400 program and files
on the AS/400 system.

RPG/400 User's Guide

Externally Described and Program-Described Files

Program and Files on the AS/400 System

0S/400 0S/400
Field-Level Record-Level 0S/400
Description of Description of
a File a File Field-Level
Description of
a File
RPG 2] RPG RPG 4]
Externally Program-Described Program-Described Externally
Described File File (F in position File (F in position Described File
(E in position 19) 19) — The compiler 19) (E in position 19)

does not copy in
field-Tevel
description

Figure 35. Typical Relationships between an RPG/400

The RPG/400 program uses the field-level description of a file that is defined
to the OS/400 system. An externally described file is identified by an E in
position 19 of the file description specifications. At compilation time, the
compiler copies in the external field-level description.

H An externally described file is used as a program-described file in the
RPG/400 program. A program-described file is identified by an F in position
19 of the file description specifications. This entry tells the compiler not to
copy in the external field-level descriptions. This file does not have to exist
at compilation time.

El Afile is described only to the record level to the OS/400 system. The fields
in the record are described within the RPG/400 program; therefore, position
19 of the file description specifications must contain an F. This file does not
have to exist at compilation time.

Bl A file name can be specified for compilation time, and a different file name
can be specified for run time. The E in position 19 of the file description
specifications indicates that the external description of the file is to be copied
in at compilation time. At run time, a file override command can be used so
that a different file is accessed by the program. To override a file at run
time, you must make sure that record names in both files are the same. The
RPG/400 program uses the record-format name on the input/output oper-
ations, such as a READ operation where it specifies what record type is
expected.

The following example shows the use of a file override at compilation time.
Assume that you want to use an externally described file for a TAPE device that
the system does not support. You must:

e Define a physical file named FMT1 with one record format that contains the
description of each field in the record format. The record format is defined on
the data description specifications (DDS). For a tape device, the externally
described file should contain only one record format.

» Create the file named FMT1 with a Create Physical File CL command.

Chapter 5. General File Considerations 79

Level Checking

e Specify the file name of QTAPE (which is the IBM-supplied device file name for
magnetic tape devices) in the RPG/400 program. This identifies the file as
externally described (indicated by an E in position 19 of the file description
specifications), and specifies the device name SEQ in positions 40 through 46.

e Use an override command—0VRDBF FILE(QTAPE) TOFILE(FMT1)—at compilation
time to override the QTAPE file name and use the FMT1 file name. This
command causes the compiler to copy in the external description of the FMT1
file, which describes the record format to the RPG/400 compiler.

* Create the RPG/400 program using the CRTRPGPGM command.

e Call the program at run time. The override to file FMT1 should not be in effect
while the program is running. Use the CL command DLTOVR (Delete Override).

Note: You may need to use the CL command OVRTAPF before you call the
program to provide information necessary for opening the tape file.

Compile Time

Override File FMT1
QTAPE to

File FM T1

©
o
>
°
m

i

©
1©

Level Checking

Because RPG/400 programs are dependent on receiving an externally described
file whose format agrees with what was copied into the program at compilation
time, the system provides a level-check function that ensures that the format is the
same.

The RPG/400 program always provides the information required by level checking
when an externally described DISK, WORKSTN, or PRINTER file is used. The
level-check function can be requested on the create, change, and override file com-
mands. The default on the create file command is to request level checking. Level
checking occurs on a record-format basis when the file is opened unless you
specify LVLCHK(*NO) when you issue an override command or create a file. If the
level-check values do not match, the program is notified of the error. The RPG/400
program then handles the OPEN error as described in “Exception/Error Handling” on
page 70.

The RPG/400 program does not provide level checking for program-described files
or for files using the devices SEQ or SPECIAL.

For more information on how to specify level checking, see the Data Management
Guide.

80 RPG/400 User's Guide

Record Locking by an RPG/400 Program

File Locking by an RPG/400 Program

The OS/400 system allows a lock state (exclusive, exclusive allow read, shared for
update, shared no update, or shared for read) to be placed on a file used during a
job. Programs within a job are not affected by file lock states. A file lock state
applies only when a program in another job tries to use the file concurrently. The
file lock state can be allocated with the CL command ALCOBJ (Allocate Obiject).
For more information on allocating resources and lock states, see the Data Man-
agement Guide.

The OS/400 system places the following lock states on database files when it
opens the files:

File Type Lock State

Input Shared for read
Update Shared for update
Add Shared for update
Output Shared for update

The shared-for-read lock state allows another user to open the file with a lock state
of shared for read, shared for update, shared no update, or exclusive allow read,
but the user cannot specify the exclusive use of the file. The shared-for-update
lock state allows another user to open the file with shared-for-read or shared-for-
update lock state.

The RPG/400 program places an exclusive-allow-read lock state on device files.
Another user can open the file with a shared-for-read lock state.

The lock state placed on the file by the RPG/400 program can be changed if you
use the Allocate Object command.

Record Locking by an RPG/400 Program

When a record is read by a program, it is read in one of two modes: input or
update. If a program reads a record for update, a lock is placed on that record.
Another program cannot read the same record for update until the first program
releases that lock. If a program reads a record for input, no lock is placed on the
record. A record that is locked by one program can be read for input by another
program.

In RPG/400 programs, you use an update file to read records for update. A record
read from a file with a type other than update can be read for inquiry only. By
default, any record is read from an update file will be read for update. For update
files, you can specify that a record be read for input by using one of the input oper-
ations CHAIN, READ, READE, READP, or REDPE and specifying an N in column 53 of
the calculation specification.

When a record is locked by an RPG/400 program, that lock remains until one of the
following occurs:

 the record is updated.

» the record is deleted.

¢ another record is read from the file (either for inquiry or update).

Chapter 5. General File Considerations 81

Unblocking Input Records and Blocking Output Records

e a SETLL or SETGT operation is performed against the file
e an UNLCK operation is performed against the file.

e an output operation defined by an output specification with no field names
included is performed against the file.

Note: An output operation that adds a record to a file does not result in a
record lock being released.

If your program reads a record for update and that record is locked through another
program in your job or through another job, your read operation will wait until the
record is unlocked. If the wait time exceeds that specified on the WAITRCD param-
eter of the file, an exception occurs. If the default error handler is given control
when a record lock timeout occurs, an RPG1218 error message will be issued.
One of the options listed for this message is to retry the operation on which the
timeout occurred. For programs compiled for version 2 (or higher) this will cause
the operation on which the timeout occurred to be re-issued, allowing the program
to continue essentially as if the record lock timeout had not occurred. Note that if
the file has an INFSR specified in which an 1/O operation is performed on the file
before the default error handler is given control, unexpected results can occur if the
input operation that is retried is a sequential operation, since the file cursor may
have been modified.

With programs compiled using version 1 of the RPG/400 compiler, the retry option
is still displayed, but it is not valid. If a retry is requested for a version 1 program,
an additional error message (RPG1918) is issued indicating that a retry is not valid
for programs compiled using version 1. In all cases, if control is returned to the
program by specifying a return to *GETIN, the RPG STATUS value is set to 1218. If a
retry is specified and the subsequent read operation is successful, the STATUS
returns as if the record lock and subsequent retry did not occur.

If no changes are required to a locked record, you can release it from its locked
state using the UNLCK operation or by processing output operations defined by
output specifications with no field names included. These output operations can be
processed by EXCPT output, detail output, or total output.

(There are exceptions to these rules when operating under commitment control.
See Chapter 6, “Commitment Control” on page 107 for more information.)

Unblocking Input Records and Blocking Output Records

82

The RPG/400 compiler unblocks input records and blocks output records to
improve run-time performance in SEQ or DISK files if:

* The file is an output-only file (0 is specified in position 15 of the file description
specifications) and contains only one record format if the file is externally
described.

e The file is a combined table file. (C is specified in position 15, and T in position
16 of the file description specifications.)

e The file is an input-only file. (I is specified in position 15 of the file description
specifications.) It contains only one record format if the file is externally
described, and uses only the OPEN, CLOSE, FEOD, and READ operation codes.

RPG/400 User's Guide

Sharing an Open Data Path

The RPG/400 compiler generates object program code to block and unblock
records for all SEQ or DISK files that satisfy these conditions. Certain OS/400
system restrictions may prevent blocking and unblocking. In those cases, perform-
ance is not improved and the input/output feedback area is updated for each
input/output operation.

The contents of positions 60 through 65 of the RECNO option in the file description
specifications continuation line may not be valid when the RPG/400 compiler blocks
and unblocks records.

The input/output and device-dependent sections of the file information data struc-
ture are not updated after each read or write for files in which the records are
blocked and unblocked by the RPG/400 compiler. The feedback area is updated
each time a block of records is transferred. (See the RPG/400 Reference for more
information.)

Sharing an Open Data Path

An open data path is the path through which all input and output operations for a
file are defined. Usually a separate open data path is defined each time a file is
opened. If you specify SHARE (*YES) for the file creation or on an override, the first
program'’s open data path for the file is shared by subsequent programs that open
the file concurrently. The position of the current record is kept in the open data
path for all programs using the file. If you read a record in one program and then
read a record in a called program, the record retrieved by the second read depends
on whether the open data path is shared. If the open data path is shared, the
position of the current record in the called program is determined by the current
position in the calling program. If the open data path is not shared, each program
has an independent position for the current record.

If your program holds a record lock in a shared file and then calls a second
program that reads the shared file for update, you can release the first program's
lock by performing a READ operation on the update file by the second program, or
by using the UNLCK or the read-no-lock operations.

Sharing an open data path improves performance because the OS/400 system
does not have to create a new open data path. However, sharing an open data
path can cause problems. For example, an error is signaled in the following cases:

e |If a program sharing an open data path attempts file operations other than
those specified by the first open (for example, attempting input operations
although the first open specified only output operations)

e If a program sharing an open data path for an externally described file tries to
use a record format that the first program ignored

e If a program sharing an open data path for a program described file specifies a
record length that exceeds the length established by the first open.

When several files in one RPG/400 program are overridden to one shared file at
run time, the file opening order is important. In order to control the file opening
order, you should use a programmer-controlled open or use a CL program to open
the files before calling the RPG/400 program.

Chapter 5. General File Considerations 83

Specifications for Externally Described Files

If a program shares the open data path for a primary or secondary file, the program
must process the detail calculations for the record being processed before calling
another program that shares that open data path. Otherwise, if lookahead is used
or if the call is at total time, sharing the open data path for a primary or secondary
file may cause the called program to read data from the wrong record in the file.

You must make sure that when the shared file is opened for the first time in a job,
all of the open options that are required for subsequent opens of the file are speci-
fied. If the open options specified for subsequent opens of a shared file are not
included in those specified for the first open of a shared file, an error message is
sent to the program.

Table 3 details the system open options allowed for each of the open options you
can specify.

Table 3. System Open Options Allowed with User Open Options

RPG User System

Open Options Open Options

INPUT INPUT

OUTPUT OUTPUT (program created file)
UPDATE INPUT, UPDATE

DELETE DELETE

ADD OUTPUT (existing file)

For additional information about sharing an open data path, see the Database
Guide.

Using the Control Language Command RCLRSC

The Reclaim Resources (RCLRSC) CL command is designed for use in the control-
ling program of an application. It frees the static storage and closes any files that
were left open by other programs in the application that are no longer active. This
command will not always free program static storage or close all files. Using
RCLRSC may close some files but keep their static storage. When this occurs,
static storage indicates that these files are open, but their open data path (ODP)
does not exist. When 1/O is attempted with these files, an error occurs. For addi-
tional information, refer to the CL Reference.

Specifications for Externally Described Files

84

You can use the DDS to describe files to the OS/400 system. Each record type in
an externally described file is identified by a unique record-format name.

The following text describes the special entries that you can use on the file
description, input, and output specifications for externally described files.
Remember that input and output specifications for externally described files are
optional.

RPG/400 User's Guide

Specifications for Externally Described Files

File Description Specifications

An E entry in position 19 of the file description specifications identifies an externally
described file. The E entry indicates to the compiler that it is to retrieve the external
description of the file from the system when the program is compiled.

The information in this external description includes:

* File information, such as file type, and file attributes, such as access method
(by key or relative record number)

e Record-format description, which includes the record format name and field
descriptions (names, locations, and attributes).

The information the RPG/400 compiler retrieves from the external description is
printed on the compiler listing when the program is compiled.

Renaming Record-Format Names

Many of the functions that you can specify for externally described files (such as
the CHAIN operation) operate on either a file name or a record-format name. Con-
sequently, each file and record-format nhame in the program must be a unique sym-
bolic name.

To rename a record-format name, use the RENAME option on the file description
specifications continuation line for the externally described file as shown in

Figure 36. You cannot specify the RENAME option on the main file description spec-
ifications line. The RENAME option is generally used if the program contains two
identical record-format names or if the record-format name exceeds eight charac-
ters, which is the maximum length allowed in an RPG/400 program.

LN R N UG R DA/ S S s TR AP S R AN
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+......KExit++Entry+A....Ul.*

FITMMSTL IP E K DISK
F ITEMFORMAT KRENAMEMSTITM
F+

Figure 36. RENAME Option for Record Format Names in an Externally Described File

To rename a record format in an externally described file, use a file description
specifications continuation line to specify the RENAME option. (The RENAME option
cannot be specified on the main file description line because the external name
positions overlap some of the entries on the main file description line.) On the
continuation line, enter the external name of the record format, left-adjusted, in
positions 19 through 28. Specify K in position 53, RENAME in positions 54 through
59, and the program name for the record format, left-adjusted, in positions 60
through 67. The remaining positions of the continuation line must be blank.

In this example, the record format ITEMFORMAT in the externally described file
ITMMSTL is renamed MSTITM for use in this program.

Chapter 5. General File Considerations 85

Specifications for Externally Described Files

Ignoring Record Formats

If a record format in an externally described file is not to be used in a program, you
can use the IGNORE option to make the program run as if the record format did not
exist in the file. For logical files, this means that all data associated with that
format is inaccessible to the program. Use the IGNORE option on a file description
specifications continuation line for the externally described file as shown in

Figure 37.

The file must have more than one record format, and not all of them can be
ignored; at least one must remain. Except for that requirement, any number of
record formats can be ignored for a file.

If a record-format name is specified on a continuation line for the IGNORE option, it
cannot be specified on a continuation line for any other option (SFILE, RENAME, or
PLIST), or on a continuation line for another IGNORE.

Ignored record-format names appear on the cross-reference listing, but they are
flagged as ignored.

LI R AN SSTU. RPN, VY SRR PR TPt UV BEPIPIPE, DO SRS
FFilenameIPEAF....R1enLK1AIOvKTocEDevice+...... KExit++Entry+A....Ul.*
FITMMSTL UF E K DISK

F NOTUSED KIGNORE

F+

Figure 37. IGNORE Option for Record Formats in an Externally Described File

To ignore a record format from an externally described file, use a file description
specifications continuation line to specify the IGNORE option. (The IGNORE option
cannot be specified on the main file description line because the external name
positions overlap some of the entries on the main file description line.) On the
continuation line, enter the external name of the record format, left-adjusted, in
positions 19 through 28, K in position 53, and IGNORE in positions 54 through 59.
The remaining positions of the continuation line must be blank.

In this example, the record format NOTUSED in the externally described file
ITMMSTL is ignored.

Floating-Point Fields

86

The RPG/400 program does not support the use of floating-point fields. If you
process an externally described file with floating-point fields, the following happens:

e You cannot access the floating-point fields.

¢ When you create a new record, the floating-point fields in the record have the
value zero.

¢ When you update existing records, the floating-point fields are unchanged.

* |f you attempt to use a floating-point field as a key field, your program receives
a compile-time error.

RPG/400 User's Guide

Specifications for Externally Described Files

Overriding or Adding RPG/400 Functions to an External Description

You can use the input specifications to override certain information in the external
description of an input file or to add RPG/400 functions to the external description.
On the input specifications, you can:

* Assign record identifying indicators to record formats as shown in Figure 38.
e Rename a field as shown in Figure 38.
e Assign control level indicators to fields as shown in Figure 38.

» Assign match-field values to fields for matching record processing as shown in
Figure 39 on page 88.

* Assign field indicators as shown in Figure 39 on page 88.

You cannot use the input specifications to override field locations in an externally
described file. The fields in an externally described file are placed in the records in
the order in which they are listed in the data description specifications. Also,
device-dependent functions such as forms control, are not valid in an RPG/400
program for externally described files.

I A AP T TP, AR’ SRR AP JEPUPUPE JUPRVRN ¢ SEPPRPE DOPRPRY A |
I 2o L= 1= I PP
IMSTR1IIEM 01

Teeeevnennenn Ext-field+...ooovviienneno. .. Field+LIML. .PIMnZr. . .%
I ITEMNuMB H ITem L1 H

I*

IMSTRWHSE 02

I ITEMNUMB ITEM L1

I*

I*

Figure 38. Overriding and Adding RPG/400 Functions to an External Description

To assign a record identifying indicator to a record in an externally described
file, specify the record-format name in positions 7 through 14 of the input
specifications and assign a valid record identifying indicator in positions 19
and 20. A typical use of input specifications with externally described files is
to assign record identifying indicators.

In this example, record identifying indicator 01 is assigned to the record
MSTRITEM and indicator 02 to the record MSTRWHSE.

H 7o rename a field in an externally described record, specify the external
name of the field, left-adjusted, in positions 21 through 30 of the field-
description line. In positions 53 through 58, specify the name that is to be
used in the program.

In this example, the field ITEMNUMB in both records is renamed ITEM for
this program because ITEMNUMB exceeds the maximum length of six char-
acters that is allowed for an RPG/400 field name.

El 7o assign a control-level indicator to a field in an externally described record,
specify the name of the field in positions 53 through 58 and specify a control
level indicator in positions 59 and 60.

Chapter 5. General File Considerations 87

Specifications for Externally Described Files

*,. 1 ...

+

2

In this example, the ITEM field in both records MSTRITEM and MSTRWHSE
is specified to be the L1 control field.

. T N T TR DOV RPN DR A

IFiTenameSgNORiPoSINCCPOSZNCCPOS3NCC. . oot i i i e it iiinieeeennnnnnnns *

IMSTREC

01

liiiiiiiiiiiiieeeeeeeeeennneannnneesPFromTo++DField+LIMIFrPIMnZr.. . .*

I

I+
IWKREC
I

I

I*

02

CUSTNO M1

CUSTNO M1
BALDUE 98 H

Figure 39. Adding RPG/400 Functions to an External Description

To assign a match value to a field in an externally described record, specify
the record-format name in positions 7 through 14 of the record identification
line. On the field-description line specify the name of the field in positions 53
through 58 and assign a match-level value in positions 61 and 62.

In this example, the CUSTNO field in both records MSTREC and WKREC is
assigned the match-level value M1.

A To assign a field indicator to a field in an externally described record, specify
the record-format name in positions 7 through 14 of the record identification
line. On the field-description line, specify the field name in positions 53
through 58, and specify an indicator in positions 65 through 70.

In this example, the field BALDUE in the record WKREC is tested for zero
when it is read into the program. If the field’s value is zero, indicator 98 is
set on.

Output Specifications

Output specifications are optional for an externally described file. The RPG/400
program supports file operation codes such as WRITE and UPDAT that use the
external record-format description to describe the output record without requiring
output specifications for the externally described file.

You can use output specification to control when the data is to be written, or to
specify selective fields that are to be written. The valid entries for the field-
description line for an externally described file are output indicators (positions 23
through 31), field name (positions 32 through 37), and blank after (position 39).
Edit words and edit codes for fields written to an externally described file are speci-
fied in the DDS for the file. Device-dependent functions such as fetch overflow
(position 16) or space/skip (positions 17-22) are not valid in an RPG/400 program
for externally described files. The overflow indicator is not valid for externally
described files either. For a description of how to specify editing in the DDS, see
the DDS Reference.

If output specifications are used for an externally described file, the record-format
name is specified in positions 7 through 14 instead of the file name.

88 RPG/400 User's Guide

Specifications for Externally Described Files

If all the fields in an externally described file are to be placed in the output record,
enter *ALL in positions 32 through 37 of the field-description line. If *ALL is speci-
fied, you cannot specify other field description lines for that record.

If you want to place only certain fields in the output record, enter the field name in
positions 32 through 37. The field names you specify in these positions must be
the field names defined in the external record description, unless the field was
renamed on the input specifications. See Figure 40.

You should know about these considerations for using the output specifications for
an externally described file:

¢ In the output of an update record, only those fields specified in the output field
specifications and meeting the conditions specified by the output indicators are
placed in the output record to be rewritten. Fields not specified in the output
specifications are rewritten using the values that were read. This technique
offers a good method of control as opposed to the UPDAT operation code that
updates all fields.

¢ In the creation of a new record, the fields specified in the output field specifica-
tions are placed in the record. Fields not specified in the output field specifica-
tions or not meeting the conditions specified by the output indicators are written
as zeros or blanks depending on the data format specified in the external
description.

*,,0 1 .oo+..02 Jote.o 3 L tal 4 Ll 0D Lol B Ll T LR
OName++++DFBASHSaNOINOZNOZEXCNAM. ¢ v vttt vttt e eeeeeeoeeeeessnnnaasss
OITMREC D 20

Ovevvnn. veeee....NOINO2NO3Field+YBEnd+PConstant/editword+++++++++, . . %
0 *ALL

(0E3

(0E3

OSLSREC D 30

0 sLsNnav 3

0 COMRAT

0 15 BONUS

0=*

(0E3

Figure 40. Output Specifications for an Externally Described File

For an update file, all fields in the record are written to the externally
described record ITMREC using the current values in the program for all
fields in the record.

For the creation of a new record, all fields in the record are written to the
externally described record ITMREC using the current values in the program
for the fields in the record.

H To update a record, the fields SLSNAM and COMRAT are written to the
externally described record SLSREC when indicator 30 is on. The field
BONUS is written to the SLSREC record when indicators 30 and 15 are on.
All other fields in the record are written with the values that were read.

Chapter 5. General File Considerations 89

Printer Files

To create a new record, the fields SLSNAM and COMRAT are written to the
externally described record SLSREC when indicator 30 is on. The field
BONUS is written when indicators 30 and 15 are on. All other fields in the
record are written as zeros or blanks, depending on whether the field is
numeric or character.

Program-Described Files

Program-described files are files whose records and fields are described on
input/output specifications in the program that uses the file.

Figure 41 shows how to specify sequence checking when your input data must
contain exactly one record of the first type (01 in positions 15 and 16), followed by
at least one record of another type (02 through 04 in positions 15 and 16) in each
group of records read. When the specifications shown in Figure 41 are used and
two consecutive records of the first type are read, a run-time error occurs.

If each group of input records must contain exactly one record of a particular type,
but that record need not be followed by any records of other types, specify no
sequence checking (alphabetic entry in positions 15 and 16).

Write operations to a program-described file require a data structure name in the
result field.

L T T R . TR R BT R AN
IFiTenameSqNORiPOSINCCPOSZNCCPOS3NCC. v vt e i ie it i eennnrnnnnnanaas®
IINPUT 011 106 1 CA

[ttt iiieiieieeeeansannanass PFromTo++DField+LIMIFrPIMnZr. . .*

I 2 60TYPE

I 02N020 1 CB

I 2 11 KEY

I 03N030 1 CC

I 2 21 NAME

I 04NO40 1 CD

I 2 6 NUMBER
I*

Figure 41. Input Specifications for Sequence Checking

Printer Files

The PRINTER file allows you to print the output file. A maximum of eight printer files
is allowed per program. You must assign PRINTER as the device name for the file,
and each file must have a unique file name. You can use the CL command
CRTPRTF (Create Print File) to create a printer file (see the CL Reference for
further information on the CRTPRTF command); or you can also use the
IBM-supplied file names. See the Data Management Guide for more information on
these file names.

90 RPG/400 User's Guide

Page Overflow

Printer Files

The file operation codes that are valid for a PRINTER file are WRITE, OPEN, CLOSE, and
FEOD. For a complete description of these operation codes, see the RPG/400
Reference.

PRINTER files can be either externally described or program described. Overflow
indicators 0A-0G and 0V, fetch overflow, space/skip entries, and the PRTCTL option
are not allowed for an externally described PRINTER file. See the RPG/400
Reference for the valid output specification entries for an externally described file.
See the DDS Reference for information on the DDS for externally described printer
files.

For an externally described PRINTER file, you can specify the DDS keyword INDARA.
If you try to use this keyword for a program-described PRINTER file, you get a run-
time error.

An important consideration when you use a PRINTER file is page overflow. For an
externally described PRINTER file, you are responsible for handling page overflow.
Do one of the following:

e Count the number of output lines per page.

» Check for a file exception/error by specifying an indicator in positions 56 and 57
of the calculation specifications that specify the output operation, or by speci-
fying an INFSR that can handle the error. The INFDS has detailed information
on the file exception/error. See “Exception/Error Handling” on page 70 for
further information on exception and error handling.

¢ Specify an indicator 01 through 99 as the overflow indicator in positions 33 and
34 of the file description specifications.

e Check INFDS for line number and page overflow. Refer to the RPG/400
Reference for more information.

For either a program-described or an externally described file, you can specify an
indicator 01 through 99 in positions 33 and 34 of the file description specifications.
This indicator is set on when a line is printed on the overflow line, or the overflow
line is reached or passed during a space or skip operation. Use the indicator to
condition your response to the overflow condition. The indicator does not condition
the RPG/400 overflow logic as an overflow indicator (0A through 0G, 0V) does. You
are responsible for setting the indicator off.

For both program-described and externally described files, the line number and
page number are available in the file's INFDS. To access this information, specify
an INFDS for the file using a file continuation specification. On the specification,
define the line number in positions 367-368 and define the page number in posi-
tions 369-372 of the data structure. Both the line number and the page number
fields must be defined as binary with no decimal positions. Because the INFDS will
be updated after every output operation to the printer file, these fields can be used
to determine the current line and page number without having line-count logic in the
program.

For a program-described PRINTER file, the following sections on overflow indicators
and fetch overflow logic apply.

Chapter 5. General File Considerations 91

Printer Files

Overflow Indicators

An overflow indicator (0A through 0G, 0V) is set on when the last line on a page has
been printed or passed. An overflow indicator can be used to specify the lines to
be printed on the next page. Overflow indicators can be specified only for program-
described PRINTER files and are used primarily to condition the printing of heading
lines. An overflow indicator is defined in positions 33 and 34 of the file description
specifications and can be used to condition operations in the calculation specifica-
tions (positions 9 through 17) and output specifications (positions 23 through 31). If
an overflow indicator is not specified, the RPG/400 compiler assigns the first
unused overflow indicator to the PRINTER file. Overflow indicators can also be spec-
ified as resulting indicators on the calculation specifications (positions 54 through
59).

The RPG/400 compiler sets on an overflow indicator only the first time an overflow
condition occurs on a page. An overflow condition exists whenever one of the fol-
lowing occurs:

e A line is printed past the overflow line.
e The overflow line is passed during a space operation.
e The overflow line is passed during a skip operation.

Table 4 on page 93 shows the results of the presence or absence of an overflow
indicator on the file description and output specifications.

The following considerations apply to overflow indicators used on the output
specifications:

e Spacing past the overflow line sets the overflow indicator on.

e Skipping past the overflow line to any line on the same page sets the overflow
indicator on.

e Skipping past the overflow line to any line on the new page does not set the
overflow indicator on unless a skip-to is specified past the specified overflow
line.

e A skip to a new page specified on a line not conditioned by an overflow indi-
cator sets the overflow indicator off after the forms advance to a new page.

 |f you specify a skip to a new line and the printer is currently on that line, a skip
does not occur. The overflow indicator is set to off, unless the line is past the
overflow line.

¢ When an OR line is specified for an output print record, the space and skip
entries of the preceding line are used. If they differ from the preceding line,
enter space and skip entries on the OR line.

e Control level indicators can be used with an overflow indicator so that each
page contains information from only one control group. See Figure 42 on
page 94.

e For conditioning an overflow line, an overflow indicator can appear in either an
AND or an OR relationship. For an AND relationship, the overflow indicator must
appear on the main specification line for that line to be considered an overflow
line. For an OR relationship, the overflow indicator can be specified on either
the main specification line or the OR line. Only one overflow indicator can be
associated with one group of output indicators. For an OR relationship, only the

92 RPG/400 User's Guide

Printer Files

conditioning indicators on the specification line where an overflow indicator is
specified is used for the conditioning of the overflow line.

e [f an overflow indicator is used on an AND line, the line is not an overflow line.
In this case, the overflow indicator is treated like any other output indicator.

e When the overflow indicator is used in an AND relationship with a record identi-
fying indicator, unusual results are often obtained because the record type
might not be the one read when overflow occurred. Therefore, the record iden-
tifying indicator is not on, and all lines conditioned by both overflow and record
identifying indicators do not print.

¢ An overflow indicator conditions an exception line (E in position 15), and condi-
tions fields within the exception record.

Table 4. Results of the Presence or Absence of an Overflow Indicator

File

Description Output

Specifications Specifications Action

Positions Positions

33-34 23-31

No entry No entry First unused overflow indicator used to condition
skip to next page at overflow.

No entry Entry Error at compile time; overflow indicator dropped
from output specifications. First unused over-
flow indicator used to condition skip to next
page at overflow.

Entry No entry Continuous printing; no overflow recognized.

Entry Entry Processes normal overflow.

The first part of the following figure is an example of the coding necessary for
printing headings on every page: first page, every overflow page, and each new
page to be started because of a change in control fields (L2 is on). The first line
allows the headings to be printed at the top of a new page (skip to 06) only when
an overflow occurs (0A is on and L2 is not on).

The second line allows printing of headings on the new page only at the beginning
of a new control group (L2 is on). This way, duplicate headings caused by both L2
and 0A being on at the same time do not occur. The second line allows headings
to be printed on the first page after the first record is read because the first record
always causes a control break (L2 turns on) if control fields are specified on the
record.

The second part of the figure is the necessary coding for the printing of certain
fields on every page; a skip to 06 is done either on an overflow condition or on a
change in control level (L2). The NL2 indicator prevents the line from printing and
skipping twice in the same cycle.

Chapter 5. General File Considerations 93

Printer Files

R R A . R | T B, AP ¢ NEPRP DR AR

OName++++DFBASHSaNOINOZNO3EXCNAM. « v vt v vttt ettt eeennnnneeeeeennnnnns *
OPRINT H 306 O0ANL2

Ovenieniennnnnnnn NOINO2NO3Field+YBEnd+PConstant/editword+++++++++.. . %
0 OR L2

0 8 'DATE'

0 18 'ACCOUNT'

0 28 'NAME'

0 46 'BALANCE'

(0E3

LN R AR AR S A S TIPS A A ¢ SR Y A
OName++++DFBASHSaNOINOZNO3EXCNAM. « vttt v vttt ettt eeennnnneeseeennnnns *
OPRINT D 306 O0ANL2

0 OR L2

Ovevnninnnnnnnnns NOINO2NO3Field+YBEnd+PConstant/editword+++++++++, . *
0 ACCT 8

(0E3

Figure 42. Using Control Level Indicators with an Overflow Indicator

Fetch-Overflow Logic

When there is not enough space left on a page to print the remaining detail, total,
exception, and heading lines conditioned by the overflow indicator, the fetch over-
flow routine can be called. This routine causes an overflow. To determine when to
fetch the overflow routine, study all possible overflow situations. By counting lines
and spaces, you can calculate what happens if overflow occurs on each detail,
total, and exception line.

The fetch-overflow routine allows you to alter the basic RPG/400 overflow logic to
prevent printing over the perforation and to let you use as much of the page as
possible. During the regular program cycle, the RPG/400 compiler checks only
once, immediately after total output, to see if the overflow indicator is on. When the
fetch overflow function is specified, the RPG/400 compiler checks overflow on each
line for which fetch overflow is specified. See Figure 43 on page 95.

Specify fetch overflow with an F in position 16 of the output specifications on any
detail, total, or exception lines for a PRINTER file. The fetch overflow routine does
not automatically cause forms to advance to the next page.

During output, the conditioning indicators on an output line are tested to determine
if the line is to be written. If the line is to be written and an F is specified in position
16, the RPG/400 compiler tests to determine if the overflow indicator is on. If the
overflow indicator is on, the overflow routine is fetched and the following operations
occur:

1. Only the overflow lines for the file with the fetch specified are checked for
output.

2. All total lines conditioned by the overflow indicator are written.

94 RPG/400 User's Guide

Printer Files

3. Forms advance to a new page when a skip to a line number less than the line
number the printer is currently on is specified in a line conditioned by an over-
flow indicator.

4. Heading, detail, and exception lines conditioned by the overflow indicator are
written.

5. The line that fetched the overflow routine is written.

6. Any detail and total lines left to be written for that program cycle are written.
Position 16 of each OR line must contain an F if the overflow routine is to be used
for each record in the OR relationship. Fetch overflow cannot be used if an overflow

indicator is specified in positions 23 through 31 of the same specification line. If
this is the case, the overflow routine is not fetched.

Figure 44 on page 96 shows the use of fetch overflow.

Overflow Overflow printing and Setting of the OA Overflow Indicator
Occurs

During Without Fetch With Fetch
Normal Output Exception Output Normal Output Exception Output
Get a
Record Detail Total Detail Total Detail Total Detail Total
Output Output Calc Calc Output Output Calc Calc
\ \ \
1 1 1
Total ‘ ‘ ‘ OA
Calculations ! ! 0A |
| | | Print
| | |
\ \ \
l l l
\ \ \
Total ' ' |
output ‘ OA ‘ 0A ‘
i i Print i
| | |
¢ \ \ \
| | |
Overflow ‘ ‘ ‘
Printing | | |
T = Total ! ! !
H = Heading Print Print Print Print
|[Brind] | [prind |[rind] \
D = Detail i i i
E = Exception ! ! !
‘ \ \ \
| | |
\ \ \
| | |
Detail ‘ ‘ ‘
i OA OA
Calculations i i @i
l l l
\ \ \
‘ 1 1 1
Heading ‘ ‘ ‘
and | | |
Detail 0A ‘ ‘ ‘
Output ! | |
\ \ \
l l l
\ \ \
l l l
Set Off | | |
overtiow Y A Y SR
Indicators off off \J off Off off \J Off off

(A ®

Figure 43. Overflow Printing: Setting of the Overflow Indicator

Chapter 5. General File Considerations 95

Printer Files

[} When fetch overflow is not specified, the overflow lines print after total
output. No matter when overflow occurs (0A is on), the overflow indicator 0A
remains on through overflow output time and is set off after heading and
detail output time.

B When fetch overflow is specified, the overflow lines are written before the
output line for which fetch overflow was specified, if the overflow indicator 0A
is on. When 0A is set on, it remains on until after heading and detail output
time. The overflow lines are not written a second time at overflow output
time unless overflow is sensed again since the last time the overflow lines
were written.

R R T T | TP B, U s NP S A

OName++++DFBASbSaNOINOZNO3EXCNAM. v v v v v v vt e e et eeeeeennnnnnnnnnnnnnnns *
OPRINTER H 305 0A

Ovenieniennnnnnns NOINO2NO3Field+YBEnd+PConstant/editword+++++++++, . . *
0 15 '"EMPLOYEE TOTAL'

0 TF 1 L1

0 EMPLTOT 25

0 T 1 L1

0 EMPLTOT 35

0 T 1 L1

0 EMPLTOT 45

0 TF 1 L1

0 EMPLTOT 55

0 T 1 L1

0 EMPLTOT 65

0 T 1 L1

0 EMPLTOT 75

0 T 1 L1

o
P

Figure 44. Use of Fetch Overflow

The total lines with an F coded in position 16 can fetch the overflow routine. They
only do so if overflow is sensed prior to the printing of one of these lines. Before
fetch overflow is processed, a check is made to determine whether the overflow
indicator is on. If it is on, the overflow routine is fetched, the heading line condi-
tioned by the overflow indicator is printed, and the total operations are processed.

PRTCTL (Printer Control) Option

The PRTCTL (printer control) option allows you to change forms control information
and to access the current line value within the program for a program-described
PRINTER file.

Specify the PRTCTL option on a file description specifications continuation line for the
PRINTER file with the following:

Note: If the file has a share ODP or user-controlled open, the line count value
may be incorrect.

96 RPG/400 User's Guide

Printer Files

Position Entry

6 F

7-52 Blank if the information is specified on a separate continuation line

53 K (indicates a continuation line)

54-59 PRTCTL

60-65 Name of the data structure used to contain the printer control and line

count information

66-74 Blank if the information is specified on a separate continuation line.

The data structure specified in positions 60 through 65 of the file description specifi-
cations continuation line must be specified on the input specifications and must
contain at least the following five subfields specified in the following order:

Data

Structure Subfield

Positions Contents

1 A one-position character field that contains the space-before value
2 A one-position character field that contains the space-after value
3-4 A two-position character field that contains the skip-before value
5-6 A two-position character field that contains the skip-after value

7-9 A three-digit numeric field with zero decimal positions that contains

the current line count value.

The values contained in the first four subfields of the data structure are the same
as those allowed in positions 17 through 22 (space and skip entries) of the output
specifications. If the space/skip entries (positions 17 through 22) of the output
specifications are blank, and if subfields 1 through 4 are also blank, the default is to
space 1 after. If the PRTCTL option is specified, it is used only for the output records
that have blanks in positions 17 through 22. You can control the space and skip
value (subfields 1 through 4) for the PRINTER file by changing the values in these
subfields while the program is running. See Figure 45 on page 98.

Subfield 5 contains the current line count value. The RPG/400 compiler does not

initialize subfield 5 until after the first output line is printed. The RPG/400 compiler
then changes subfield 5 after each output operation to the file.

Chapter 5. General File Considerations 97

Printer Files

Figure 46 on page 99 is a processing chart for PRINTER files.

N A A A R ST SEP AU TR TP SRS A AR
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FPRINT 0 F 132 PRINTER KPRTCTLLINE

F=

P A R . TP ' SR SR JEPIPIPE RN ¢ S SO S
IDsname....NODsExt- f11e++ Ocecrlent. . e iiiiiiiinnnnnnn.
ILINE DS

Ext-field+............ PFromTo++DField+............... *
I 1 1 SPBEFR

I 2 2 SPAFTR

I 3 4 SKBEFR

I 5 6 SKAFTR

I 7 90CURLIN

I*

L R A T: RN DY SN DU I NP - BRI SR A S
CL0N91N02N03Factor1+++OpcdeFactor2+++Resu1tLenDHH1LoEqumments++++++*
cC o1 CURLIN COMP 10 49

C o149 MOVE '3' SPAFTR

Cx*

Cx*

L O A R B R S TP TR AP - SRS AR AR |
0Name++++DFBASbSaN01N02N03Excnam *
OPRINT 01

Oveveiiiiennnnnn. NOINO2NO3Field+YBEnd+PConstant/editword+++++++++,, *
0 DATA 25

(0E3

Figure 45. Example of the PRTCTL Option

On the file description specifications, the PRTCTL option is specified for the PRINT
file. The name of the associated data structure is LINE.

The LINE data structure is defined on the input specifications as having only those
subfields that are predefined for the PRTCTL data structure. The first four subfields
in positions 1 through 6 are used to supply space and skip information that is gen-
erally specified in positions 17 through 22 of the output specifications. The PRTCTL
option allows you to change these specifications within the program.

In this example, the value in the SPAFTR subfield is changed to 3 when the value in
the CURLIN (current line count value) subfield is equal to 10. (Assume that indicator
01 was set on as a record identifying indicator.)

98 RPG/400 User's Guide

Sequential File

File Description Specifications

File Type Mode of Processing File Addition /Unordered

F File Designation Length of Key Field or
of Record Address Field

Extent Exit
for DAM

Number of Tracks

for Cylinder Overflow
Record Ad

Name of
Label Exit

Number of Extents

symbolic
eeeee

Device 2 Tape Rewind

storage Index

nsion Code E/L
o

uuuuuu

F/V/S/M/D/E
@
E
a

AIPIIIK

.
H
g
< E\(Continuation Lines z uc —
£ S <
=YY Externa Re K Option Entry < P
2 X
0|2 F) N
o] [¢] | ,
ol F[‘
ols| |¢ y ’
ole F’ '

Figure 46. Processing Chart for PRINTER Files

Valid File Operations:
1. WRITE, OPEN, CLOSE, FEOD

Note: Shaded positions must be blank. Positions without entries are program
dependent.

Sequential File

A sequential (SEQ) device specification, positions 40 through 46 in the file
description specification, indicates that the input or output is associated with a
sequentially organized file. Refer to Figure 47. The actual device to be associated
with the file while running the RPG/400 program can be specified by a OS/400
override command (see the CL Reference for further information), or by the file
description that is pointed to by the file name.

N R A ARG R S TP A TR TP SRS A AR
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+......KExit++Entry+A....Ul.*

FTIMECDS IP E DISK
FPAYOTIMEO F 132 SEQ
F=

F=

Figure 47. SEQ Device

A SEQ device is specified for the PAYOTIME file. When the program is run, you can
use a 0S/400 override command to specify the actual device (such as printer, tape,
or diskette) to be associated with the file while the program is running. For
example, diskette can be specified for some program runs while printer can be
specified for others. The file description, pointed to by the file name, can specify
the actual device, in which case an override command need not be used.

Any sequentially organized file, such as diskette, tape, database, savefile, or
printer, can be associated with the SEQ device. If SEQ is specified in an RPG/400
program, no device-dependent functions such as space/skip, or CHAIN can be speci-
fied.

Use the SEQ device specifications whenever you write to a tape file. To write
variable-length records to a tape file, also use the RCDBLKFMT parameter of either

Chapter 5. General File Considerations 99

Sequential File

100

the CL command CRTTAPF or OVRTAPF. (See the CL Reference.) When you
use the RCDBLKFMT parameter, the length of each record that your program
writes to the tape file is determined by the highest end position specified in posi-
tions 40 through 43 of the output specifications for that record. If you do not
specify an end position, the RPG/400 compiler calculates the record length from the
length of the fields in the record.

Read variable-length tape records as you would read records from any sequentially
organized file. Be sure the record length specified on the file description specifica-
tion accommodates the longest record in the file.

The following figure shows the operation codes allowed for a SEQ file.

File Description
Specifications Calculation Specifications
Positions Positions
15 16 28-32
I P/S CLOSE, FEOD
I F READ, OPEN, CLOSE,
FEOD
0 WRITE, OPEN, CLOSE,
FEOD

Note: No print control specifications are allowed for a
sequential file.

Figure 48. Valid File Operation Codes for a Sequential File

Figure 49 on page 101 is a processing chart for SEQ files.

RPG/400 User's Guide

Special File

File Description Specifications

F File Type Mode of Processing File Addition/Unordered
File Designation Length of Key Field or = Extent Exit Number of Tracks
of Record Address Field S for DAM
tnd of File ~ for Cylinder Overflow
Record Address Type |2 2l Name of
Sequence w @ Number of Extents
Type of File
~ Dv:; ! e R symbolic - Label Exit
Filename File For 5 Qreanzation or evice °
. L, File Format 5 Additional Area o Device 2 Tape Rewind
Line S 3 < 3} © storage Index
o < « |Overflow Indicator | © - o
o o2 2| slock Record <2 2 on
H NP > N Key Field| 2 Condition
> og 2| Length tength | NE starting | & u1-us
S|e < < N H Continuation Lines z| e
£ 2|3 S S Location | X Z
E MR ol 3 <|>] 5 3
“ S[efu]< External Record Name K Option Entry < @
0|2 F
0|3 F
ofa E
o|s F
o|e F
0|7 F
o|s F
0|9 F
1|0 E
1)1 E
1|2 E
1|3 F
1|4 F
1|5 F
1|6 F
1|7 F
1|8 E
1|9 F
2|0 F
2|1 F

Figure 49. Processing Chart for SEQ Files

Valid File Operations:

1. CLOSE, FEQOD

2. READ, OPEN, CLOSE, FEQOD
3. OPEN, CLOSE, FEOD

4. WRITE, OPEN, CLOSE, FEOD

Note: Shaded positions must be blank. Positions without entries are program
dependent.

Special File

SPECIAL in positions 40 through 46 of the file description specifications allows you
to specify an input and/or output device that is not directly supported by the
RPG/400 functions. The input and output operations for the file are controlled by a
user-written routine. Positions 54 through 59 of the file description specifications
line that contains SPECIAL in positions 40 through 46 must contain the name of the
user-written routine.

Chapter 5. General File Considerations 101

Special File

102

RPG/400 calls this user-written routine to open the file, read and write the records,
and close the file. RPG/400 creates a parameter list for use by the user-written
routine. The parameter list contains an option code parameter (option), a return
status parameter (status), an error-found parameter (error), and a record area
parameter (area). This parameter list is accessed by the RPG/400 program and by
the user-written routine; it cannot be accessed by the RPG/400 program that con-
tains the SPECIAL file.

The following describes the parameters in this RPG-created parameter list:

Option: The option parameter is a one-position character field that indicates the
action the user-written routine is to process. Depending on the operation being
processed on the SPECIAL file (OPEN, CLOSE, READ, WRITE, DELET, UPDAT),

one of the following values is passed to the user-written routine from RPG/400:

Value

Passed Description

0] Open the file.

C Close the file.

R Read a record and place it in the area defined by the area parameter.

W The RPG/400 program has placed a record in the area defined by the
area parameter; the record is to be written out.

D Delete the record.

The record is an update of the last record read.

Status: The status parameter is a one-position character field that indicates the
status of the user-written routine when control is returned to the RPG/400
program. Status must contain one of the following return values when the
user-written routine returns control to the RPG/400 program:

RPG/400 User's Guide

Return

Value Description

0 Normal return. The requested action was processed.

1 The input file is at end of file, and no record has been returned. If the
file is an output file, this return value is an error.

2 The requested action was not processed; error condition exists.

Error: The error parameter is a five-digit zoned numeric field with zero decimal
positions. If the user-written routine detects an error, the error parameter con-
tains an indication or value representing the type of error. The value is placed
in the first five positions of location *RECORD in the INFDS when the status
parameter contains 2.

Area: The area parameter is a character field whose length is equal to the
record length associated with the SPECIAL file. This field is used to pass the
record to or receive the record from the RPG/400 program.

Special File

You can add additional parameters to the RPG-created parameter list. Specify
PLIST in positions 54 through 59 and the name of the PLIST in positions 60 through
65 of a file description specifications continuation line for the SPECIAL file. See
Figure 50. Then use the PLIST operation in the calculation specifications to define
the additional parameters.

The user-written routine, the name that is specified in positions 54 through 59 of
the file description specifications for the SPECIAL file, must contain an entry
parameter list that includes both the RPG-created parameters and the user-
specified parameters.

If the SPECIAL file is specified as a primary file, the user-specified parameters
must be initialized before the first primary read. You can initialize these parameters
with a factor 2 entry on the PARM statements or by the specification of a compile-
time array or an array element as a parameter.

*,.0 1 .40 2 Lo 3 Lo hea 4 Lo HlL0 S Lok Ll B LauHlll T LU
FFilenameIPEAF....R1enLK1AIOvKTocEDevice+......KExit++tEntry+A....Ul.*

FEXCPTN 1 F SPECIAL USERIO

F KPLIST SPCL
F+

F+

I A A A . TEPUPUNT. AV’ TP AP . JEPUIPE. UMV BEPIPIPE DO A |
CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*
C SPCL PLIST

C PARM FLD1
C PARM FLD2
C PARM FLD3
C*
Cx*

Figure 50. SPECIAL Device

The file EXCPTN is assigned to the device SPECIAL. The I/O operations for the
SPECIAL device are controlled by the user-written routine USERIO. The parameters
specified for the programmer-defined PLIST SPCL are added to the end of the
RPG-created parameter list for the SPECIAL device. The programmer-specified
parameters can be accessed by the user RPG/400 program and the user-written
routine; whereas the RPG-created parameter list can be accessed only by internal
RPG/400 logic and the user-written routine.

Chapter 5. General File Considerations 103

Special File

Figure 51 shows the file operation codes that are valid for a SPECIAL file.

File Description
Specifications Calculation Specifications
Positions Positions
15 16 28-32
I P/S CLOSE, FEOD
C P/S WRITE, CLOSE, FEOD
U P/S UPDAT, DELET, CLOSE
FEOD
0 WRITE, OPEN, CLOSE,
FEOD
I F READ, WRITE, OPEN,
CLOSE, FEOD
C F READ, WRITE, OPEN,
CLOSE, FEOD
U F READ, UPDAT, DELET,
OPEN, CLOSE, FEOD

Figure 51. Valid File Operations for a SPECIAL File

104 RPG/400 User's Guide

Special File

is a processing chart for SPECIAL files.

Figure 52

File Description Specifications

File Addition/Unordered

of Tracks

Number

Cylinder Overflow

for

N

File
Condition
ui-us
uc

Tape Rewind

N

/nsy

Number of Extents

Extent Exit

for DAM

Index

storage

Lines

Entry

Name of

Exit

Label

Continuation

option

W/3/N/s sieqen

symbolic
Device

XA

AN

Device

S|PEIC|IAIL

S|PEIC|I|AIL

s|P|E|C|1|AIL[R

S|P|E|IC|I|A|L

S|P|E|C|I |A[L

/3

9poo uoisusIxg

s S|P E|C|[I|A[L[sN>

Mode of Processing

Key Field or

Length of

Field

Record Address

Type

Record Address

of File
organization or
Additional Area

indicator

Type

ey Field
starting

Location

3
H
H
3
[

o

/17arx

71

NI1rdsY

Type

File

Designation

File

of File

End

Record
Length

External Record Name

Format

File

Block
Length

QNN

sequence

3/Q/W/SINIS

asv

3

4/Q/1/8/0/574

aso/nron

Filename

edAL

wioy

Line

Figure 52. Processing Chart for SPECIAL Files

105

Chapter 5. General File Considerations

Special File

Valid File Operations:

1. CLOSE, FEOD

. WRITE, CLOSE, FEOD

. UPDAT, DELET, CLOSE, FEOD

READ, OPEN, CLOSE, FEOD

READ, WRITE, OPEN, CLOSE, FEOD

READ, DELET, UPDAT, OPEN, CLOSE, FEOD
. WRITE, OPEN, CLOSE, FEOD

N o oA w N

Notes:

1. Shaded positions must be blank. Positions without entries are program
dependent.

2. Positions 54 through 59 must contain the name of the user-written routine that
controls the input/output operations for the file.

106 RPG/400 User's Guide

Using Commitment Control

Chapter 6. Commitment Control

This chapter describes how to use commitment control to process file operations as
a group. With commitment control, you ensure one of two outcomes for the file
operations: either all of the file operations are successful or none of the file oper-
ations has any effect. In this way, you process a group of operations as a unit.

Using Commitment Control

To use commitment control, you do the following:

e Use the CL commands CRTJRN (Create Journal), CRTJRNRCV (Create
Journal Receiver) and STRIRNPF (Journal Physical File) to prepare for using
commitment control, and the CL commands STRCMTCTL (Start Commitment
Control) and ENDCMTCTL (End Commitment Control) to notify the system
when you want to start and end commitment control. See the CL Reference for
information on these commands.

e Specify commitment control on the file-description specifications of the files you
want under commitment control.

e Use the COMIT (Commit) operation code to apply a group of changes to files
under commitment control, or use the ROLBK (Roll Back) operation code to elim-
inate the pending group of changes to files under commitment control.

Starting and Ending Commitment Control

The CL command STRCMTCTL notifies the system that you want to process files
under commitment control.

The LCKLVL (Lock Level) parameter allows you to select the level at which records
are locked under commitment control. See “Commitment Control Locks” on
page 109 and the CL Programmer’s Guide for further details on lock levels.

When you complete a group of changes with a COMIT operation, you can specify a
label to identify the end of the group. In the event of an abnormal job end, this
identification label is written to a file, message queue, or data area so that you
know which group of changes is the last group to be completed successfully. You
specify this file, message queue, or data area on the STRCMTCTL command.

Before you call any program that processes files specified for commitment control,

issue the STRCMTCTL command. If you call a program that opens a file specified
for commitment control before you issue the STRCMTCTL command, the opening

of the file will fail.

The CL command ENDCMTCTL notifies the system that your routing step has fin-

ished processing files under commitment control. See the CL Reference for further
information on the STRCMTCTL and ENDCMTCTL commands.

© Copyright IBM Corp. 1994 107

Using Commitment Control

Specifying Files for Commitment Control

On the file-continuation specifications, enter a K in position 53 and the word COMIT
in positions 54 through 59. On the file-description specifications, describe the file
as having device DISK in positions 40 through 46.

When a program specifies commitment control for a file, the specification applies
only to the input and output operations made by this program for this file. Commit-
ment control does not apply to operations other than input and output operations. It
does not apply to files that do not have commitment control specified in the
program doing the input or output operation.

When more than one program accesses a file as a shared file, all or none of the
programs must specify the file to be under commitment control.

Commitment Control Operations

108

The COMIT (Commit) operation tells the system that you have completed a group of
changes to the files under commitment control. The ROLBK (Roll Back) operation
eliminates the current group of changes to the files under commitment control. For
information on how to specify these operation codes and what each operation does,
see the RPG/400 Reference.

If the system fails, it implicitly issues a ROLBK operation. You can check the identity
of the last successfully completed group of changes using the label you specify in
factor 1 of the COMIT operation code, and the notify-object you specify on the
STRCMTCTL command.

At the end of a routing step, or when you issue the ENDCMTCTL command, the
0S/400 system issues an implicit ROLBK, which eliminates any changes since the
last ROLBK or COMIT operation that you issued. To ensure that all your file oper-
ations have effect, issue a COMIT operation before ending a routing step operating
under commitment control.

The OPEN operation permits input and output operations to be made to a file and the
CLOSE operation stops input and output operations from being made to a file.
However, the OPEN and CLOSE operations do not affect the COMIT and ROLBK oper-
ations. A COMIT or ROLBK operation affects a file, even after the file has been
closed. For example, your program may include the following steps:

1. Issue COMIT (for files already opened under commitment control).
. Open a file specified for commitment control.
. Perform some input and output operations to this file.

. Close the file.

ga A W N

. Issue ROLBK.

The changes made at step 3 are rolled back by the ROLBK operation at step 5, even
though the file has been closed at step 4. The ROLBK operation could be issued
from another program in the same routing step.

A program does not have to operate all its files under commitment control, and to
do so may adversely affect performance. The COMIT and ROLBK operations have no
effect on files that are not under commitment control.

RPG/400 User's Guide

Using Commitment Control

Note: When multiple devices are attached to an application program, and commit-
ment control is in effect for the files this program uses, the COMIT or ROLBK oper-
ations continue to work on a file basis and not by device. The database may be
updated with partially completed COMIT blocks or changes that other users have
completed may be eliminated. It is your responsibility to ensure this does not
happen.

Commitment Control Locks
On the STRCMTCTL command, you specify a level of locking, either LCKLVL (*ALL)
or LCKLVL (*CHG). When your program is operating under commitment control and
has processed an input or output operation on a record in a file under commitment
control, the record is locked by commitment control as follows:

e Your program can access the record.

e Another program in your routing step, with this file under commitment control,
can read the record. If the file is a shared file, the second program can also
update the record.

e Another program in your routing step that does not have this file under commit-
ment control cannot read or update the record.

e Another program in a separate routing step, with this file under commitment
control, can read the record if you specified LCKLVL (*CHG), but it cannot read
the record if you specified LCKLVL (*ALL). With either lock level, the next
program cannot update the record.

e Another program that does not have this file under commitment control and that
is not in your routing step can read but not update the record.

e Commitment control locks are different than normal locks, depend on the
LCKLVL specified, and can only be released by the COMIT and ROLBK operations.

The COMIT and ROLBK operations release the locks on the records. The UNLCK oper-
ation will not release records locked using commitment control. See the CL Refer-
ence for details on lock levels.

The number of entries that can be locked under commitment control before the
COMIT or ROLBK operations are required may be limited. For more information, see
the Advanced Backup and Recovery Guide

Note: The SETLL and SETGT operations lock a record where a read operation (not
for update) would lock a record for commitment control.

Commitment Control in the Program Cycle

Commitment control is intended for full procedural files, where the input and output
is under your control. Do not use commitment control with primary and secondary
files, where input and output is under the control of the RPG/400 program cycle.
The following are some of the reasons for this recommendation:

e You cannot issue a COMIT operation for the last total output in your program.

e |tis difficult to program within the cycle for recovery from a locked-record condi-
tion.

e Level indicators are not reset by the ROLBK operation.

e After a ROLBK operation, processing matching records may produce a sequence
error.

Chapter 6. Commitment Control 109

Using Commitment Control

Example of Using Commitment Control
The following is an example of the specifications and CL commands for a program

operating under commitment control.
To prepare for using commitment control, you issue the following CL commands:
e CRTJRNRCV JRNRCV (RECEIVER)
The above command creates a journal receiver named RECEIVER.
e CRTJRN JRN(JOURNAL) JRNRCV(RECEIVER)

The above command creates a journal named JOURNAL and attaches the journal
receiver named RECEIVER.

e STRJRNPF FILE(MASTER) JRN(JOURNAL)

The above command directs journal entries for the file MASTER to the journal
JOURNAL.

In your program, you specify COMIT for the file MASTER:.

L R A T T e TP B, U s NP SR A

FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FMASTER UF E K DISK KCOMIT
F=

LI R A ARPUE. SAA. T PO S I, TEDUPIPS APV RIS, SO A
Cx*

Cx In the calculation specifications, use the COMIT operation to

C+ complete a group of operations.

C*

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
C KEY CHAINMASTER 50

C N50 UPDATRECORD 99

C N99 COMIT

C*

C+ If an operation within a group fails, use the ROLBK operation
Cx to eliminate the entire group of operations.

C*

c 99 ROLBK

Cx*

Figure 53. Example of Using Commitment Control
To operate your program (named REVISE) under commitment control, you issue the
commands:
e STRCMTCTL LCKLVL(*ALL)

The above command starts commitment control, with the highest level of
locking.

e CALL REVISE

The above command calls your program (named REVISE).

110 RPG/400 User's Guide

Using Commitment Control

e ENDCMTCTL

The above command ends commitment control, and causes an implicit Roll
Back operation.

Chapter 6. Commitment Control 111

Using Commitment Control

112 RPG/400 User's Guide

Externally Described Disk Files

Chapter 7. Using DISK Files

Database files, which are associated with the RPG/400 device DISK in positions 40
through 46 of the file description specifications, can be:

e Externally described files, whose fields are described to the OS/400 system
through the data description specifications (DDS)

e Program-described files, whose fields are described on input/output specifica-
tions in the program that uses the file.

All database files are created by the OS/400 create file commands. See the CL
Reference for a description of the OS/400 commands that relate to database files.

Externally Described Disk Files

Externally described DISK files are identified by an E in position 19 of the file
description specifications. The E indicates that the compiler is to retrieve the
external description of the file from the system when the program is compiled.
Therefore, you must create the file before the program is compiled.

The external description for a DISK file includes:

* The record-format specifications that contain a description of the fields in a
record

e Access path specifications that describe how the records are to be retrieved.

These specifications result from the DDS for the file and the OS/400 create file
command that is used for the file.

Record Format Specifications

The record-format specifications allow you to describe the fields in a record and the
location of the fields in a record. The fields are located in the record in the order
specified in the DDS. The field description generally includes the field name, the
field type (character, binary, zoned decimal, or packed decimal), and the field
length (including the number of decimal positions in a numeric field). Instead of
specifying the field attributes in the record format for a physical or logical file, you
can define them in a field-reference file.

In addition, the DDS keywords can be used to:

» Specify that duplicate key values are not allowed for the file (UNIQUE)
e Specify a text description for a record format or a field (TEXT).

For a complete list of the DDS keywords that are valid for a database file, see the
Database Guide.

© Copyright IBM Corp. 1994 113

Externally Described Disk Files

Access Path

Figure 54 shows an example of the DDS for a database file, and Figure 55 on
page 115 for a field-reference file that defines the attributes for the fields used in
the database file. See the DDS Reference for more information on a field-
reference file.

The description of an externally described file contains the access path that
describes how records are to be retrieved from the file. Records can be retrieved
based on an arrival sequence (non-keyed) access path or on a keyed-sequence
access path.

The arrival sequence access path is based on the order in which the records are
stored in the file. Records are added to the file one after another.

For the keyed-sequence access path, the sequence of records in the file is based
on the contents of the key field that is defined in the DDS for the file. For example,
in the DDS shown in Figure 54, CUST is defined as the key field. The keyed-
sequence access path is updated whenever records are added, deleted, or when
the contents of a key field change.

For a complete description of the access paths for an externally described data-
base file, see the Database Guide.

R T T T P s R R A

Acvevione, T.Name++++++.Len++TDpB...... Functions+++++++t++t+tttttt++x
Ax* LOGICAL CUSMSTL CUSTOMER MASTER FILE

> > > > > > > >

UNIQUE

R CUSREC PFILE(CUSMSTP)

TEXT('Customer Master Record')

STATE

SRHCOD
CUSTYP
ARBAL
ORDBAL
LSTAMT
LSTDAT
CRDLMT
SLSYR
SLSLYR
K CUST

Figure 54. Example of the Data Description Specifications for a Database File

114 RPG/400 User's Guide

Externally Described Disk Files

The sample DDS are for the customer master logical file CUSMSTL. The file con-
tains one record format CUSREC (customer master record). The data for this file is
contained in the physical file CUSMSTP, which is identified by the keyword PFILE.
The UNIQUE keyword is used to indicate that duplicate key values are not allowed
for this file. The CUST field is identified by a K in position 17 of the last line as the
key field for this record format.

The fields in this record format are listed in the order they are to appear in the

record. The attributes for the fields are obtained from the physical file CUSMSTP.
The physical file, in turn, refers to a field-reference file to obtain the attributes for
the fields. The field-reference file is shown in Figure 55.

R R TP U R S I

Functions++++++++++++++++++++%

Ax*FLDRED DSTREF DISTRIBUTION APPLICATION FIELD REFERENCE

LI P DAV ST BRI R
Acveoinone, T.Name++++++RLen++TDpB
A R DSTREF

A= COMMON FIELDS USED AS REFERENCE
A BASDAT 6 0
A

A= FIELDS USED BY CUSTOMER MASTER FILE
A CUST 5

A

A NAME 20

A ADDR R

A

A CITY R

A

A STATE 2

A

A SRHCOD 6

A

A

A

A ZIP 5

A

A CUSTYP 1

A

A

A

A ARBAL 8

A

A ORDBAL R

A

A

TEXT('Distribution Field Ref')

EDTCDE(Y)
TEXT('Base Date Field')

cHeck(MF) H
COLHDG('Customer' 'Number')
COLHDG("'Customer Name')

REFFLD (NAME)
COLHDG(' Customer Address')
REFFLD (NAME)
COLHDG('Customer City')
CHECK(MF) H

COLHDG('State')

cHeck(MF) H

COLHDG('Search' 'Code')
TEXT('Customer Number Search +
Code')

cHeck(MF) H

COLHDG('Zip' 'Code')

RANGE(1 5) 3

COLHDG('Cust' 'Type')
TEXT('Customer Type 1l=Gov 2=Sch+
3=Bus 4=Pvt 5=0th')
COLHDG('Accts Rec' 'Balance') H
EDTCDE(J) A

REFFLD (ARBAL)

COLHDG('A/R Amt in' 'Order +
File')

Figure 55 (Part 1 of 2). Example of a Field Reference File

Chapter 7. Using DISK Files

115

Externally Described Disk Files

*

>

> > > > > >>

etels 2 Lt

K N T T O T Y A

....... T.Name++++++RLen++TDpB.Functions++++++++++++++++++++%
LSTAMT R REFFLD (ARBAL)
COLHDG('Last' 'Amount' 'Paid')
TEXT('Last Amount Paid in A/R')
LSTDAT R REFFLD (BASDAT)
COLHDG('Last' 'Date' 'Paid')
TEXT('Last Date Paid in A/R')
CRDLMT R REFFLD (ARBAL)
COLHDG('Credit' 'Limit')
TEXT('Customer Credit Limit')
SLSYR R+ 2 REFFLD (ARBAL)
COLHDG('Sales' 'This' 'Year')
TEXT('Customer Sales This Year')
SLSLYR R+ 2 REFFLD (ARBAL)

COLHDG('Sales' 'Last' 'Year')
TEXT('Customer Sales Last Year')

Figure 55 (Part 2 of 2). Example of a Field Reference File

116

This example of a field-reference file shows the definitions of the fields that are

used by the CUSMSTL (customer master logical) file as shown in Figure 54 on

page 114. The field-reference file normally contains the definitions of fields that
are used by other files. The following text describes some of the entries for this
field-reference file.

RPG/400 User's Guide

The BASDAT field is edited by the Y edit code, as indicated by the keyword
EDTCDE(Y). If this field is used in an externally described output file for an
RPG/400 program, the edit code used is the one specified in this field-
reference file; it cannot be overridden in the RPG/400 program. If the field is
used in a program-described output file for an RPG/400 program, an edit
code must be specified for the field in the output specifications.

The CHECK(MF) entry specifies that the field is a mandatory fill field when it is
entered from a display work station. Mandatory fill means that all characters
for the field must be entered from the display work station.

The ADDR and CITY fields share the same attributes that are specified for the
NAME field, as indicated by the REFFLD keyword.

The RANGE keyword, which is specified for the CUSTYP field, ensures that the
only valid numbers that can be entered into this field from a display work
station are 1 through 5.

The COLHDG keyword provides a column head for the field if it is used by the
Interactive Database Utilities (IDU).

The ARBAL field is edited by the J edit code, as indicated by the keyword
EDTCDE(J).

A text description (TEXT keyword) is provided for some fields. The TEXT
keyword is used for documentation purposes and appears in various listings.

Externally Described Disk Files

Valid Keys for a Record or File
For a keyed-sequence access path, you can define one or more fields in the DDS
to be used as the key fields for a record format. (These fields must not be floating-
point fields.) All record types in a file do not have to have the same key fields. For
example, an order header record can have the ORDER field defined as the key field,
and the order detail records can have the ORDER and LINE fields defined as the key
fields.

The key for a file is determined by the valid keys for the record types in that file.
The file’s key is determined in the following manner:

 If all record types in a file have the same number of key fields defined in the
DDS that are identical in attributes, the key for the file consists of all fields in
the key for the record types. (The corresponding fields do not have to have the
same name.) For example, if the file has three record types and the key for
each record type consists of fields A, B, and C, the file’s key consists of fields
A, B, and C. That is, the file’s key is the same as the records’ key.

 If all record types in the file do not have the same key fields, the key for the file
consists of the key fields common to all record types. For example, a file has
three record types and the key fields are defined as follows:

— REC1 contains key field A.
— REC2 contains key fields A and B.
— REC3 contains key fields A, B, and C.

The file’s key is field A—the key field common to all record types.

¢ If no key field is common to all record types, there is no key for the file.

In an RPG/400 program, you can specify a search argument on certain file opera-
tion codes to identify the record you want to process. The RPG/400 program com-
pares the search argument with the key of the file or record, and processes the
specified operation on the record whose key matches the search argument.

Valid Search Arguments
You can specify a search argument in the RPG/400 operations CHAIN, DELET,
READE, REDPE, SETGT, and SETLL that specify a file name or a record name.

For an operation to a file name, the maximum number of fields that you can specify
in a search argument is equal to the total number of key fields valid for the file's
key. For example, if all record types in a file do not contain all of the same key
fields, you can use a key list (KLIST) to specify a search argument that is composed
only of the number of fields common to all record types in the file. If a file contains
three record types, the key fields are defined as follows:

— REC1 contains key field A.
— REC2 contains key fields A and B.
— REC3 contains key fields A, B, and C.

The search argument can only be a single field with attributes identical to field A
because field A is the only key field common to all record types.

For an operation to a record name, the maximum number of fields that you can
specify in a search argument is equal to the total number of key fields valid for that
record type.

Chapter 7. Using DISK Files 117

Externally Described Disk Files

If the search argument consists of one field, you can specify a literal, a field name,
or a KLIST name with one KFLD. If the search argument is composed of more than
one field (a composite key), you must specify a KLIST with multiple KFLDs.

The attributes of each field in the search argument must be identical to the attri-
butes of the corresponding field in the file or record key. The attributes include the
length, the data type (character or numeric), and the number of decimal positions.
The attributes are listed in the key-field-information data table of the compiler
listing. See the example in Chapter 2, “Entering RPG/400 Specifications.”

In all these file operations (CHAIN, DELET, READE, REDPE, SETGT, and SETLL), you
can also specify a search argument that contains fewer than the total number of
fields valid for the file or record. Such a search argument refers to a partial key.

Referring to a Partial Key
The rules for the specification of a search argument that refers to a partial key are
as follows:

e The search argument is composed of fields that correspond to the leftmost
(high-order) fields of the key for the file or record.

¢ Only the rightmost fields can be omitted from the key list (KLIST) for a search
argument that refers to a partial key. For example, if the total key for a file or
record is composed of key fields A, B, and C, the valid search arguments that
refer to a partial key are field A, and fields A and B.

e Each field in the search argument must be identical in attributes to the corre-
sponding key field in the file or record. The attributes include the length, data
type (character or numeric), the number of decimal positions, and format (for
example, packed or zoned).

e A search argument cannot refer to a portion of a key field.

If a search argument refers to a partial key, the file is positioned at the first record
that satisfies the search argument or the record retrieved is the first record that
satisfies the search argument. For example, the SETGT and SETLL operations posi-
tion the file at the first record on the access path that satisfies the operation and
the search argument. The CHAIN operation retrieves the first record on the access
path that satisfies the search argument. The DELET operation deletes the first
record on the access path that satisfies the search argument. The READE operation
retrieves the next record if the portion of the key of that record (or the record of the
specified type) on the access path matches the search argument. The REDPE oper-
ation retrieves the prior record if the portion of the key of that record (or the record
of the specified type) on the access path matches the search argument. For more
information on the above operation codes, see the RPG/400 Reference.

Processing Methods for Externally Described DISK Files

118

You can process externally described DISK files sequentially by key, randomly by
key, randomly by relative record number, sequentially within limits, or consecutively
(without a key or relative record number). A K in position 31 of the file description
specifications for an externally described file indicates that the file is to be proc-
essed by key. If processing is sequential, records are retrieved in key sequence. If
processing is random, key values are used to identify the records. A blank in posi-
tion 31 indicates that the file is processed by relative record number, sequentially
(arrival sequence) or randomly. Random or sequential processing is determined by
the entries in positions 16 and 28 of the file description specifications and the oper-

RPG/400 User's Guide

Program-Described Disk Files

ation code used on the calculation specifications (for example, CHAIN, SETLL,
READ).

Program-Described Disk Files

Indexed File

Program-described files, which are identified by an F in position 19 of the file
description specifications, can be described as indexed files, as sequential files, or
as record-address files.

An indexed file is a program-described DISK file whose access path is built on key
values. You must create the access path for an indexed file by using data
description specifications.

An indexed file is identified by an I in position 32 of the file description specifica-
tions.

The key fields identify the records in an indexed file. You specify the length of the
key field in positions 29 and 30, the format of the key field in position 31, and the
starting location of the key field in positions 35 through 38 of the file description
specifications.

An indexed file can be processed sequentially by key, sequentially within limits, or
randomly by key.

Valid Search Arguments

For a program-described file, a search argument must be a single field. For the
CHAIN and DELET operations, the search argument must be the same length as the
key field that is defined on the file description specifications for the indexed file.
For the other file operations, the search argument may be a partial field.

The DDS specifies the fields to be used as a key field. Positions 35 through 38 of
the file description specifications specify the starting position of the first key field.
The entry in positions 29 and 30 of the file description specifications must specify
the total length of the key as defined in the DDS.

Figure 56 and Figure 57 show examples of how to use the DDS to describe the
access path for indexed files.

Chapter 7. Using DISK Files 119

Program-Described Disk Files

*,. 1 + A S R T SR s R U B R AR
Acoevan T.Name++++++,Len++TDpB...... Functions++++++++++++++++++++*
A R FORMATA PFILE(ORDDTLP)

A TEXT('Access Path for Indexed +
A File')

A FLDA 14

A ORDER 5 0

A FLDB 101

A K ORDER

A*

L R A ARG R P S U NEPUPIPE UDUPR ¢ SRR RN AR |
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FORDDTLL IP F 118 3PI 15 DISK

F=

Figure 56. Using Data Description Specifications to Define the Access Path for an Indexed File

You must use data description specifications to create the access path for a
program-described indexed file.

In the DDS for the record format FORMATA for the logical file ORDDTLL, the field
ORDER, which is five digits long, is defined as the key field, and is in packed format.
The definition of ORDER as the key field establishes the keyed access for this file.
Two other fields, FLDA and FLDB, describe the remaining positions in this record as
character fields.

The program-described input file ORDDTLL is described on the file description
specifications as an indexed file. Positions 29 and 30 must specify the number of
positions in the record required for the key field as defined in the DDS: three posi-
tions. Positions 35 through 38 specify position 15 as the starting position of the key
field in the record. Because the file is defined as program-described by the F in
position 19, the RPG/400 compiler does not retrieve the external field-level
description of the file at compilation time. Therefore, you must describe the fields
in the record on the input specifications.

120 RPG/400 User's Guide

Program-Described Disk Files

| S U R Y. ST O S U ¢ B U SRR
Acoeenn... T.Name++++++, Len++TDpB...... Functions+++++++tttttttttttttx
A R FORMAT PFILE(ORDDTLP)

A TEXT('Access Path for Indexed +
A File')

A FLDA 14

A ORDER 5

A ITEM 5

A FLDB 96

A K ORDER

A K ITEM

Ax*

L R T T | TP B R ¢ REPIN SR A

FFilenameIPEAF....R1enLK1AIOvKTocEDevice+...... KExit++Entry+A....Ul.*
FORDDTLL IP F 120 10AI 15 DISK
F*

Figure 57. (Part 1 of 2). Using Data Description Specifications to Define the Access Path (Composite Key) for an
Indexed File

In this example, the data description specifications define two key fields for the
record format FORMAT in the logical file ORDDTLL. For the two fields to be used
as a composite key for a program described indexed file, the key fields must be
contiguous in the record.

On the file description specifications, the length of the key field is defined as 10 in
positions 29 and 30 (the combined number of positions required for the ORDER and
ITEM fields). The starting position of the key field is described as 15 in positions 37
and 38. The starting position must specify the first position of the first key field.

L R T T | T B U ¢ BEPIM DY AR

IDsname....NODsExt-filet+............. Ocecrlent. .o iiiiiiiiiinnnnn. *
IKEY DS

Ext-field+............ PFromTo++DField+..........v.... *
I 1 5K1

I 6 10 K2

I*

LI R O ANPUPAE. DAAR. IR IPIT” SRPPIPE OV TP TP BEPIIPE, DO SRS
CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*

C MOVE ORDER K1

C MOVE ITEM K2

C KEY CHAINORDDTLL 99
Cx*

Figure 58. (Part 2 of 2). Using Data Description Specifications to Define the Access Path (Composite Key) for an
Indexed File

Chapter 7. Using DISK Files 121

Program-Described Disk Files

Sequential Files

When the DDS specifies a composite key, you must build a search argument in the
program to CHAIN to the file. (A KLIST cannot be used for a program-described file.)
One way is to create a data structure with subfields equal to the key fields defined
in the DDS. Then, in the calculations, set the subfields equal to the value of the
key fields, and use the data-structure name as the search argument in the CHAIN
operation.

In this example, the MOVE operations set the subfields K1 and K2 equal to the value
of ORDER and ITEM, respectively. The data-structure name (KEY) is then used as the
search argument in the CHAIN operation.

Sequential files are files where the order of the records in the file is based on the
order the records are placed in the file (that is, in arrival sequence). For example,
the tenth record placed in the file occupies the tenth record position.

Sequential files can be processed randomly by relative record number, consec-
utively, or by a record-address file. You can use either the SETLL or SETGT opera-
tion code to set limits on the file.

Record Address File

You can use a record-address file to process another file. A record-address file
can contain (1) limits records that are used to process a file sequentially within
limits, or (2) relative record numbers that are used to process a file by relative
record numbers. The record-address file itself must be processed sequentially.

A record-address file is identified by an R in position 16 of the file description spec-
ifications. If the record-address file contains relative record numbers, position 32
must contain a T. The name of the record-address file must also be specified in
positions 11 through 18 of the extension specifications, and the name of the file to
be processed by the record-address file must be specified in positions 19 through
26 of the extension specifications.

Limits Records

For sequential-within-limits processing, the record-address file contains limits
records. A limits record contains the lowest record key and the highest record key
of the records in the file to be read.

The format of the limits records in the record-address file is as follows:

e The low key begins in position 1 of the record; the high key immediately follows
the low key. No blanks can appear between the keys.

e Each record in the record-address file can contain only one set of limits. The
record length must be greater than or equal to twice the length of the record
key.

e The low key and the high key in the limits record must be the same length.
The length of the keys must be equal to the length of the key field of the file to
be processed.

e A blank entry equal in length to the record key field causes the RPG/400 com-
piler to read the next record in the record-address file.

122 RPG/400 User's Guide

Methods for Processing Disk Files

Relative Record Numbers

For relative-record-number processing, the record-address file contains relative
record numbers. Each record retrieved from the file being processed is based on a
relative record number in the record-address file. A record-address file containing
relative record numbers cannot be used for limits processing. Each relative record
number in the record-address file is a multi-byte binary field where each field con-
tains a relative record number. You can specify the record-address file length as 4,
3, or blank, depending on the source of the file. When using a record-address file
from the AS/400 environment, specify the record-address file length as 4, since
each field is 4 bytes in length. When using a record-address file from the
System/36 environment, specify the record-address file length as 3, since each field
is 3 bytes in length. If you specify the record-address file length as blank, the com-
piler will check the primary record length at run time and determine whether to treat
the record-address file as 3 byte or as 4 byte. A minus 1 (-1 or hexadecimal
FFFFFFFF) relative-record-number value stops the use of a relative-record-address
file record. End of file occurs when all records from the record-address file have
been processed.

Externally Described File as Program Described
A file that is externally described can be treated as a program-described file in an
RPG/400 program. Specify an F in position 19 of the file description specifications,
and describe the fields in the records on input and/or output specifications. When
an F is specified in position 19 of the file description specifications for an externally
described file, the compiler does not copy in the external description.

Methods for Processing Disk Files

The methods of disk file processing include:

¢ Relative-record-number processing
e Consecutive processing

e Sequential-by-key processing

¢ Random-by-key processing

e Sequential-within-limits processing.

Relative-Record-Number Processing

Random input or update processing by relative record number applies to full proce-
dural files only. The desired record is accessed by the CHAIN operation code.

Relative record numbers identify the positions of the records relative to the begin-
ning of the file. For example, the relative record numbers of the first, fifth, and
seventh records are 1, 5, and 7, respectively.

For an externally described file, input or update processing by relative record
number is determined by a blank in position 31 of the file description specifications
and the use of the CHAIN operation code. Output processing by relative record
number is determined by a blank in position 31 and the use of the RECNO option on
a file description specifications continuation line for the file.

You can use the RECNO option for the file description specifications continuation line
to specify a numeric field that contains the relative record number that specifies
where a new record is to be added to this file. The RECNO field must be defined as
numeric with zero decimal positions. The field length must be large enough to

Chapter 7. Using DISK Files 123

Methods for Processing Disk Files

contain the largest record number for the file. A RECNO field must be specified if
new records are to be placed in the file by using output specifications or a WRITE
operation. When you update or add a record to a file by relative record number,
the record must already have a place in the member. For an update, that place
can be a valid existing record; for a new record, that place can be a deleted record.
You can use the CL command INZPFM to initialize records for use by relative
record number. The current relative record number is placed in the RECNO field for
all retrieval operations or operations that reposition the file (for example, SETLL,
CHAIN, READ).

Consecutive Processing

During consecutive processing, records are read in the order they appear in the file.

For output and input files that do not use random functions (such as SETLL, SETGT,
CHAIN, or ADD), the RPG/400 compiler defaults to or operates as though

SEQONLY (*YES) had been specified on the CL command OVRDBF (Override with
Database File). (The RPG/400 compiler does not operate as though

SEQONLY (*YES) had been specified for update files.) SEQONLY (*YES) allows multiple
records to be placed in internal data management buffers; the records are then
passed to the RPG/400 compiler one at a time on input. If, in the same job, two
logical files use the same physical file, and one file is processed consecutively and
one is processed for random update, a record could be updated that has already
been placed in the buffer that is presented to the program. In this case, when the
record is processed from the consecutive file, the record does not reflect the
updated data. To prevent this problem, use the CL command OVRDBF and
specify the option SEQONLY (*NO), which indicates that you do not want multiple
records transferred for a consecutively processed file.

For more information on sequential only processing, see the Database Guide.

Sequential-by-Key Processing

124

For the sequential-by-key method of processing, records are read from the file in
key sequence.

The sequential-by-key method of processing is valid for keyed files used as
primary, secondary, or full procedural files.

For output files and for input files that do not use random functions (such as SETLL,
SETGT, CHAIN, or ADD) and that have only one record format, the RPG/400 compiler
defaults to or operates as though SEQONLY (*YES) had been specified on the CL
command OVRDBF. (The RPG/400 compiler does not operate as though

SEQONLY (*YES) had been specified for update files.) SEQONLY (*YES) allows multiple
records to be placed in internal data management buffers; the records are then
passed to the RPG/400 compiler one at a time on input. If, in the same job, two
files use the same physical file, and one file is processed sequentially and one is
processed for random update, a record could be updated that has already been
placed in the buffer that is presented to the program. In this case, when the record
is processed from the sequential file, the record does not reflect the updated data.
To prevent this problem, use the CL command OVRDBF and specify the option
SEQONLY (*NO), which indicates that you do not want multiple records transferred for
a sequentially processed file.

For more information on sequential only processing, see the Database Guide.

RPG/400 User's Guide

Methods for Processing Disk Files

Figure 59 on page 125 shows different ways a header record and the detail

records associated with the header record can be processed. Part 1 shows an

example of the file being read sequentially by key; parts 2 through 4 show exam-
ples in which the READ operation code is used; part 5 shows the processing of these

records by the matching record technique.

NP N SO N D SN SUURY SN SRR SR DUV : SR SO A
F=

F* In this example, the order header record (ORDHDR) and the order
Fx detail record (ORDDTL) are contained in the same file (ORDFIL).
Fx The ORDFIL file is defined as a primary input file and is read

F+ sequentially by key. In the data description specifications for
F+ the file, the key for the ORDHDR record is defined as the ORDER
F+ field, and the key for the ORDDTL record is defined as the ORDER

Fx field plus the LINE (T1ine number) field, which is a composite key.

F=
FFilenameIPEAF....R1enLK1AIOvKIocEDevice+...... KExit++Entry+A....Ul.*
FORDFILL IP E K DISK

LI R A A T TEPUPUPE. VY TP OV JEPUPIPE JUPVR BRI DOPPRY A |
I*

I*x A record-identifying indicator is assigned to each record; these
I* record-identifying indicators are used to control processing for
I+ the different record types.

3 ofs [11111 o 1 o TR *
IORDHDR 01

I*

IORDDTL 02

* 1 ...+4...2 .o.+.0. 3 oo+ 4 Lo+ L HlLo B Ll T *

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
*INO1 IFEQ '1'

Process header

END

*INO2 IFEQ '1'

Process detail

END
Figure 59 (Part 1 of 7). Processing Order Header and Order Detail Records

ﬁﬁﬁﬁﬁ(;ﬁﬁﬁﬁﬁ

Chapter 7. Using DISK Files

125

Methods for Processing Disk Files

F=
Fx This example is the same as the previous example except that the
Fx ORDFIL file is defined as a full-procedural file, and the reading
Fx of the file is done by the READ operation code.

F=

FFilenameIPEAF....R1enLK1AIOvKTocEDevice+...... KExit++Entry+A....Ul.*
FORDFILL IF E K DISK

F+

N R DO O BRI SPTY SEVIPE URE SEPRPE. PPN ¢ BEPAPPE AP SR
I*
I* The two records (ORDHDR and ORDDTL) are contained in the same
I file, and a record-identifying indicator is assigned to each
I* record. The record-identifying indicators are used to control
I[* processing for the different record types. No control levels
I* or match fields can be specified for a full-procedural file.
I*

IRCANAMET . i e eIt sttt ittt it ettt eeeeeooeeeeeoseenenssnsesassnnnnnns *
IORDHDR 01

I*

IORDDTL 02

I*

Figure 59 (Part 2 of 7). Processing Order Header and Order Detail Records

126 RPG/400 User's Guide

Cx

Cx*
Cx*
Cx*
Cx*
C*
Cx*
C*

Methods for Processing Disk Files

The READ operation code reads a record from the ORDFIL file. An
end-of-file indicator is specified in positions 58 and 59. If
the end-of-file indicator 99 is set on by the READ operation,
the program branches to the EOFEND tag and processes the end-of-
file routine. The record-identifying indicators control the
processing of the different record types.

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*
READ ORDFIL
99 GOTO EOFEND

* *

*

OOOOODOOOOOOOOOOOOOOOO0O

*INO1 IFEQ '1'

Process header

END

*INO2 IFEQ '1'

Process detail

EOFEND TAG

End-of-file routine

Figure 59 (Part 3 of 7). Processing Order Header and Order Detail Records

99

Chapter 7. Using DISK Files

127

Methods for Processing Disk Files

F=

Fx This example is similar to the one shown in Part 2 of this figure.
Fx However, the READ operation code is used to read each record

F+ (ORDHDR and ORDDTL) instead of reading the file. The program

F+* Tlogic controls when each READ occurs. No record-identifying

F+ indicators are needed because the program logic knows which

F+* record it is working with according to the record format name.

F=

FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FORDFILL IF E K DISK
F+
N R L. DU RS ST TP PR TR TP SRS A AR
CL0N01N02N03Factor1+++OpcdeFactor2+++Resu1tLenDHH1LoEqumments++++++*
READ ORDHDR 99
99 GOTO END
" Process header
*
READ ORDDTL 99

99 GOTO END

" Process detail

END TAG

OOOOODOOOOOOOOOOOOOOOO0O

Figure 59 (Part 4 of 7). Processing Order Header and Order Detail Records

128 RPG/400 User's Guide

Methods for Processing Disk Files

F=

Fx In this example, the order header records (ORDHDR) are contained
Fx in the ORDHDRL file, and the order detail records (ORDDTL) are
F+ contained in the ORDDTLL file. The ORDHDRL is defined as a

Fx primary input file, and the reading of records from the file is
Fx controlled by the program cycle. The ORDDTLL file is defined as
Fx a full-procedural file, and the READE operation is used to read
F+ records from the file.

F=

FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FORDDTLL IF E K DISK

FORDHDRL IP E K DISK

F=

Figure 59 (Part 5 of 7). Processing Order Header and Order Detail Records

Chapter 7. Using DISK Files 129

Methods for Processing Disk Files

C*

C+ The ORDER field in the SETLL operation is used to position the
C+ ORDDTLL file at the first ORDDTL record that has a key equal to
Cx or greater than the contents of the ORDER field. The ORDER

C+ field is used as the search argument for the READE operation.
Cx The READE operation retrieves the next ORDDTL record from the
Cx file if the key of the record is equal to the search argument
Cx specified in factor 1. If the key and the search argument are
C+* not equal, the indicator specified in positions 58 and 59 is

Cx set on.

Cx*
CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComment s++++++*

C n

C " Process header

C n

C n

C ORDER SETLLORDDTL 20
C N20 GOTO NONE

C LooP TAG

C ORDER READEORDDTL 21
c 21 GOTO ENDFIL

C n

c n

C " Process detail

C n

c n

C GOTO LOOP

C NONE TAG

c n

C n

C ENDFIL TAG

Figure 59 (Part 6 of 7). Processing Order Header and Order Detail Records

130 RPG/400 User's Guide

Methods for Processing Disk Files

F=

Fx In this example, the order header records (ORDHDR) are contained
Fx in the ORDHDRL file, and the order detail records (ORDDTL) are
Fx contained in the ORDDTLL file. The ORDHDRL is defined as a

Fx primary input file, and the ORDDTLL file is defined as a

Fx secondary input file. The order header and order detail records
Fx are processed as matching record, with the ORDER field in both
Fx records assigned the match level value of M1l. Record-identifying
F+ dindicators 01 and 02 are assigned to the records to control the
Fx processing for the different record types.

F+

FFilenameIPEAF....R1enLK1IAIOvKTocEDevice+...... KExit++Entry+A....Ul.*
FORDHDRL IP E K DISK

FORDDTLL IS E K DISK

F=

LS R AN, AU BRI ST TP SOV TP U BEPIPIS. O
2ol [T= 11T R I 4 I PP *
TIORDHDR 01

I ORDER M1

IORDDTL 02

I ORDER M1

I*

LI S A ST EPE. DOVY JEPE DUPE. PE. UM R UM A

CL0N01N02N03Factor1+++0pcdeFactor2+++Resu1tLenDHH1LoEqumments++++++*
C OINMR

C O1MR " Process header
C O1 MR "

C=*

C O02NMR "

C ©02 MR " Process detail
C 02 MR "

Figure 59 (Part 7 of 7). Processing Order Header and Order Detail Records

Chapter 7. Using DISK Files 131

Methods for Processing Disk Files

Sequential-within-Limits Processing

Sequential-within-limits processing by a record-address file is specified by an L in
position 28 of the file description specifications and is valid for a file with a keyed
access.

You can specify sequential-within-limits processing for an input or an update file
that is designated as a primary, secondary, or full-procedural file. The file can be
externally described or program-described (indexed). The file should have keys in
ascending sequence.

To process a file sequentially within limits from a record-address file, the program
reads:

¢ A limits record from the record-address file

e Records from the file being processed within limits with keys greater than or
equal to the low-record key and less than or equal to the high-record key in the
limits record. If the two limits supplied by the record-address file are equal,
only the records with the specified key are retrieved.

The program repeats this procedure until the end of the record-address file is
reached.

Figure 61 on page 134 shows an example of an indexed file being processed
sequentially within limits. Figure 62 on page 136 shows the same example with
externally described files instead of program-described files.

Keyed Processing Examples

132

Figure 63 on page 136 shows an example of processing certain records in a
group. Figure 64 on page 139 shows examples of how to process the first record
in a file and the last record in a file.

RPG/400 User's Guide

Methods for Processing Disk Files

L R DA ST RS DAY S S B S BEP J *

FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FCHANGE IP E K DISK

FMASTER UF E K DISK

F=

L R T R | TP B, U s REPINE SR A

2ol [T 1111 R I 4 *
IMSTREC 01

ICHGREC 02

I*

L R T T | T B U ¢ BEPRM DY AR
CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

C 02 ACCT CHAINMSTREC 03
C 02N03 MOVE NEW NAMADR

C 02N03 UPDATMSTREC

Cx*

Figure 60. Random Processing of an Externally Described DISK File by Key

The update file MASTER is to be processed by keys. The DDS for each of the
externally described files (MASTER and CHANGE) identify the ACCT field as the key
field. As each record is read from the primary input file, CHANGE, the account
number field (ACCT) is used as the search argument to chain to the corresponding
record in the MASTER file. Input specifications are used to assign record-
identifying indicators to the records in the CHANGE and MASTER files. The
MASTER file contains one record format MSTREC that contains two fields, ACCT
and NAMADR (name and address). The CHANGE file contains one record format
CHGREC that contains two fields, ACCT and NEW. The data in the NEW field must be
moved into the NAMADR field before the MSTREC can be updated.

Chapter 7. Using DISK Files 133

Methods for Processing Disk Files

F=

F*x The input file MASTER, which is a program-described file (F in
Fx position 19), is described as an indexed file to be processed

F*x by keys. (The access path for an indexed file must be created
F* by data description specifications.)

F=

F* MASTER is processed sequentially within Timits (L in position 28)
F+ by the record address file LIMITS. Each set of limits from the
F* record-address file consists of the Tow and high account numbers
Fx of the records in the MASTER file to be processed. Because the
F* account number key field (ACCT) is eight positions long, each

Fx set of limits consists of two 8-position keys.

F=

FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FLIMITS IR F 16 8 EDISK

FMASTER IP F 64L 8AI 1 DISK

FPRINT 0 F 96 OF PRINTER

F=

N R A DU R S S A s TR TT BEPAAPE A AR
Ex*

Ex The record-address file name LIMITS must be specified in positions
Ex 11 through 18 of the extension specifications. The name of the

Ex file to be processed by the record address file must be specified
Ex 1in positions 19 through 26 of the extension specifications.

E*
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++x
E LIMITS MASTER

E*

Figure 61 (Part 1 of 2). Processing an Indexed File Sequentially within Limits

134 RPG/400 User's Guide

Methods for Processing Disk Files

I*
I* Input specifications must be used to describe the records in the
I* program-described file MASTER.

I*

IFiTenameSgNORiPoSINCCPOSZNCCPOS3NCC. . v v et i i et i iiiieeeennnnnnnns *
IMASTER NS 01

P PFromTo++DField+LIM1FrPIMnZr.. . .*
I 1 8 ACCT

I 9 64 NAMADR

I*

LS R A . T R . TP DUV ¢ PP *
(0E3

0 As MASTER is processed within each set of Timits, the corres-

O0* ponding records are printed. Processing of the MASTER file is

0* complete when the record-address file LIMITS reaches end of file.
(0E3

OName++++DFBASbSaNOINOZNOSEXCNAM. ¢ v v vt v e vttt ettt eeeeeeeennnnnnnnnnns *
OPRINT D 1 01

Overinniennnnnnns NOINO2NO3Field+YBEnd+PConstant/editword+++++++++, . . *
0 ACCT 8

0 NAMADR 70

0=*

Figure 61 (Part 2 of 2). Processing an Indexed File Sequentially within Limits

Chapter 7. Using DISK Files 135

Methods for Processing Disk Files

I A A A . TRPUPINE. V' TP UV JEPIPIPS UMV BEPIPIPE, DO SRS
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*

FLIMITS IR F 16 8 EDISK

FMASTER IP E L K DISK

FPRINT 0 F 96 OF PRINTER

F=

*,,0 1 ,oo+..002 ooteo 3 Lo Fa 4 Ll D DLl B Ll T LR
2 ofs [111 o 1 o TR *
IMSTREC 01

I*

Figure 62. Processing an Externally Described File Sequentially within Limits

If the program shown in Figure 61 on page 134 used externally described files, the
file description specifications would be coded as shown above. The input specifica-
tions are used to assign a record-identifying indicator to the record in the externally
described file. The MASTER file contains the record format MSTREC. The
external descriptions for the file identify the key fields. These keys should be in
ascending sequence.

I R O ANPUE. RO. R R S T, TEPUPIPS JUPRVR ¢ REPPIPE, DOPRPR AR
C*

Cx This example shows how to retrieve the first record of a group.
Cx The SETLL operation is used to position the file at the first

C+ ORDDTL record that has a key equal to or greater than the search
C+ argument contained in the ORDER field. The READE operation reads
Cx the next ORDDTL record from the file if the key of the record is
C+ equal to the search argument (the ORDER field) specified in

Cx factor 1. If the key is not equal to the search argument, the

C+ indicator specified in positions 58 and 59 is set on.

Cx*

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

ORDER SETLLORDDTL
ORDER READEORDDTL 22

22 GOTO ENDFIL

" Process ORDDTL

OOOOOOOO

Figure 63 (Part 1 of 5). Processing Certain Records in a Group

136 RPG/400 User's Guide

Methods for Processing Disk Files

C*

Cx This example shows how to retrieve the last record of a group.

C+ The SETGT operation is used to position the file at the next

C+ ORDDTL record that has a key greater than the search argument

C+ contained in the ORDER field. The REDPE operation reads the next
C+ prior ORDDTL record from the file if the key of the record is

C+ equal to the search argument (the ORDER field) specified in

Cx factor 1. If the key is not equal to the search argument, the

C+ indicator specified in positions 58 and 59 is set on.

Cx*

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

C ORDER SETGTORDDTL

C ORDER REDPEORDDTL 22

C 22 GOTO ENDFIL

C n

c n

C " Process ORDDTL

C n

Figure 63 (Part 2 of 5). Processing Certain Records in a Group

LI RS A ST JEPUPE. Y S DU TR SO ¢ SO UMY SR
C=*

C+ This example shows how to retrieve the last record of the previous
C+ group. The ORDER field, which contains the key of the current
C* group, is used in the SETLL operation to position the file at the
Cx first ORDDTL record that has a key equal to or greater than the
C* search argument contained in the ORDER field. The READP operation
C+ then reads the prior record. If there is no prior record in the
C+ file, the program branches to the ENDFIL routine.
Cx*
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

ORDER SETLLORDDTL

READPORDDTL 22

22 GOTO ENDFIL

" Process ORDDTL

OOOOOOO

Figure 63 (Part 3 of 5). Processing Certain Records in a Group

Chapter 7. Using DISK Files 137

Methods for Processing Disk Files

C*
Cx*
Cx*
Cx*
Cx*
C*
Cx*
C*
Cx*
Cx*
Cx*
Cx*
C*
Cx*
Cx*
C*
Cx*
C*
Cx*
C*
C*
Cx*

This example retrieves the Tast record of a group. One or more
records for the group exist in the file. The SETGT operation
positions the file at the next record that contains a key value
greater than the search argument contained in the ORDER field.
For example, if the ORDER field contains a value of 10, SETGT
positions the file at the record that contains a key value
greater than 10:

Keys

9

9

10

10
SETGT —8™

11

The READP operation then reads the prior record of the ORDDTL
record format, thus reading the last record of the previous group.
READP requires an end-of-file indicator in positions 58 and 59;
therefore, if the beginning of the file is encountered, the halt
indicator H6 is set on and the program ends abnormally.

CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

OOOOOOOOO

ORDER SETGTORDDTL
READPORDDTL H6
H6 RETRN

" Process ORDDTL

Figure 63 (Part 4 of 5). Processing Certain Records in a Group

138

RPG/400 User's Guide

Methods for Processing Disk Files

C*
C* Reading the first record of the next group requires the SETGT
C+ operation to position the file and the READ operation. The ORDER
Cx field, which contains the key of the current group, is specified
C+ 1in factor 1 of the SETGT operation. The READ operation is then
C* wused to read the first record of the next group. An indicator
Cx must be specified in positions 58 and 59 of the READ operation to
C+ test for end of file. This technique can be used if the program
Cx knows the key value for a group of records or for a specific
Cx record and wants the next group. SETGT can be used to eliminate
C+* reading unwanted records that would be bypassed.
Cx*
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

ORDER SETGTORDDTL

READ ORDDTL 22

22 GOTO ENDFIL

" Process ORDDTL

OOOOOOOO

Figure 63 (Part 5 of 5). Processing Certain Records in a Group

N R O DU. BN SPTY SIS SO ¢ JEPIPIPE. P AR
C=*
Cx After the file is opened, the first record is retrieved by a
C+ subsequent READ operation. To access the first record in a file
Cx after some processing has been done, use the figurative constant
C+ =LOVAL (assuming ascending key sequence). Set the Tower Timits
C* by using the constant with the SETLL operation.
C+ Use the READ operation for the next record of the ORDDTL record
C+x format. If no records exist, end of file occurs, and the
Cx program branches to the NONE routine.
C=*
CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComment s++++++*

*LOVAL SETLLORDDTL

READ ORDDTL 22

22 GOTO NONE

" Process ORDDTL

OOOOOOO

Figure 64 (Part 1 of 2). Processing Certain Records in a File

Chapter 7. Using DISK Files

139

Valid File Operations

I R USRI, RSO SRR, RO O TN, TEPUPPS JUPOVR ¢ REPUPPE, DOPRPR A |
C+ Use the figurative constant *HIVAL (assuming ascending key
C* sequence to access the last record in a file. By using *HIVAL
C+ with a SETGT operation, the file is positioned at the next
Cx record that has a key field value greater than the value
Cx specified in factor 1.
Cx The READP operation reads the next prior record, which in this
Cx example is the Tast record in the file.
C*
CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*
*HIVAL SETGTORDDTL
READPORDDTL 22
22 GOTO NONE

" Process ORDDTL

OOOOOOOO

Figure 64 (Part 2 of 2). Processing Certain Records in a File

Valid File Operations

Figure 65 on page 141 shows the valid file operation codes allowed for DISK files
processed by keys and Figure 66 on page 142 for DISK files processed by non-
keyed methods. The operations shown in these figures are valid for externally
described DISK files and program-described DISK files.

Before running your program, you can override a file to another file. In particular,
you can override a sequential file in your program to an externally described, keyed
file. (The file is processed as a sequential file.) You can also override a keyed file
in your program to another keyed file, providing the key fields are compatible. For
example, the overriding file must not have a shorter key field than you specified in
your program.

140 RPG/400 User's Guide

Valid File Operations

file for an input or an update file.

File-Description Calculation

Specifications Positions Specifications Positions

15 16 281 312 66 28-32

I P/S KI/IAIP CLOSE, FEOD, FORCE

I P/S K/IAIP A WRITE, CLOSE, FEOD, FORCE

I P/S L K/IAIP CLOSE, FEOD, FORCE

U P/S K/A/P UPDAT, DELET, CLOSE, FEOD, FORCE

U P/S K/AIP A UPDAT, DELET, WRITE, CLOSE, FEOD, FORCE

U P/S L K/IAIP UPDAT, CLOSE, FEOD, FORCE

I F K/A/P READ, READE, REDPE, READP, SETLL, SETGT, CHAIN,
OPEN, CLOSE, FEOD

F K/A/P A WRITE, READ, REDPE, READE, READP, SETLL, SETGT,

CHAIN, OPEN, CLOSE, FEOD

I F L K/A/P READ, OPEN, CLOSE, FEOD

U K/A/IP READ, READE, REDPE, READP, SETLL, SETGT, CHAIN,
UPDAT, DELET, OPEN, CLOSE, FEOD

U F KIAIP A WRITE, UPDAT, DELET, READ, READE, REDPE, READP,
SETLL, SETGT, CHAIN, OPEN, CLOSE, FEOD

U F L K/A/P READ, UPDAT, OPEN, CLOSE, FEOD

(0] Blank K/IAIP A WRITE (add new records to a file), OPEN, CLOSE, FEOD

(@] Blank K/A/IP WRITE (initial load of a new file)3, OPEN, CLOSE, FEOD

Note: An L must be specified in position 28 to specify sequential-within-limits processing by a record-address

Note:

2Externally described files require a K in position 31; program-described files require an A or P in position
31 and an I in position 32.

Note:

3An A in position 66 is not required for the initial loading of records into a new file. If A is specified in
position 66, ADD must be specified on the output specifications. The file must have been created with the OS/400
CREATE FILE command.

Figure 65. Valid File Operations for Keyed Processing Methods (Random by Key, Sequential by Key, Sequential
within Limits)

Chapter 7. Using DISK Files 141

Valid File Operations

File-Description Calculation
Specifications Positions Specifications Positions
15 16 31 54-59 66 28-32
I P/S Blank CLOSE, FEOD, FORCE
I P/S Blank | RECNO CLOSE, FEOD, FORCE
U P/S Blank UPDAT, DELET, CLOSE, FEOD, FORCE
U P/S Blank | RECNO UPDAT, DELET, CLOSE, FEOD, FORCE
I F Blank READ, READP, SETLL, SETGT, CHAIN, OPEN, CLOSE, FEOD
I F Blank | RECNO READ, READP, SETLL, SETGT,
U F Blank READ, READP, SETLL, SETGT, CHAIN, UPDAT, DELET, OPEN,
CLOSE, FEOD
U F Blank | RECNO READ, READP, SETLL, SETGT, CHAIN, UPDAT, DELET, OPEN,
CLOSE, FEOD
R AIP/ OPEN, CLOSE, FEOD
Blank!
I R Blank2 OPEN, CLOSE, FEOD
(0] Blank | Blank | RECNO| A WRITE3 (add records to a file), OPEN, CLOSE, FEOD
(0] Blank | Blank | RECNO WRITE# (initial load of a new file), OPEN, CLOSE, FEOD
(0] Blank | Blank | Blank WRITE (sequentially load or extend a file), OPEN, CLOSE, FEOD
Note: 1If position 31 is blank for a record-address-limits file, the format of the keys in the record-address file is
the same as the format of the keys in the file being processed.
Note: 2A record-address file containing relative record numbers requires a T in position 32.
Note: 3The RECNO field that contains the relative record number must be set prior to the WRITE operation or if ADD
is specified on the output specifications.
Note: 4An A in position 66 is not required for the initial loading of the records into a new file; however, if A is
specified in position 66, ADD must be specified on output specifications. The file must have been created with the
0S/400 CREATE FILE command.

Figure 66. Valid File Operations for Non-keyed Processing Methods (Sequential, Random by Relative Record
Number, and Consecutive)

142 RPG/400 User's Guide

Externally Described WORKSTN Files

Chapter 8. Using WORKSTN Files

The WORKSTN file allows an RPG/400 program to communicate interactively with
a work-station user or to use the Intersystem Communications Function (ICF) to
communicate with other programs. This chapter describes:

¢ Intersystem Communications Function (ICF)
e Externally described WORKSTN files

* Program-described WORKSTN files

e Multiple-device files.

The chapter also includes a number of examples for using WORKSTN files.

Intersystem Communications Function

You can use the ICF to write programs that communicate with (send data to and
receive data from) other application programs on other systems.

To use the ICF, define a WORKSTN file in your program that refers to an ICF
device file. Use either the system supplied file QICDMF or a file created using the
0S/400 command CRTICFF.

You code for ICF by using the ICF as a file in your program. The ICF is similar to
a display file and it contains the communications formats required for the sending
and receiving of data between systems.

For further information on the ICF, refer to the ICF Programmer’s Guide.

Externally Described WORKSTN Files

© Copyright IBM Corp. 1994

An RPG/400 WORKSTN file can use an externally described display-device file or
ICF device file, which contains file information and a description of the fields in the
records to be written.

In addition to the field descriptions (such as field names and attributes), the DDS
for a display-device file are used to:

» Format the placement of the record on the screen by specifying the line-
number and position-number entries for each field and constant.

» Specify attention functions such as underlining and highlighting fields, reverse
image, or a blinking cursor.

e Specify validity checking for data entered at the display work station. Validity-
checking functions include detecting fields where data is required, detecting
mandatory fill fields, detecting incorrect data types, detecting data for a specific
range, checking data for a valid entry, and processing modules 10 or 11 check-
digit verification.

e Control screen management functions, such as if fields are to be erased, over-
laid, or kept when new data is displayed.

e Associate indicators 01 through 99 with command attention keys or command
function keys. If a function key is described as a command function key (CF),
both the response indicator and the data record (with any modifications entered

143

Externally Described WORKSTN Files

on the screen) are returned to the program. If a function key is described as a
command attention key (CA), the response indicator is returned to the program

but the data record remains unmodified. Therefore, input-only character fields

are blank and input-only numeric field are filled with zeros, unless these fields

have been initialized otherwise.

e Assign an edit code (EDTCDE) or edit word (EDTWRD) keyword to a field to specify

how the field’s values are to be displayed.

e Specify subfiles.

A display-device-record format contains three types of fields:

e Input fields. Input fields are passed from the device to the program when the

program reads a record. Input fields can be initialized with a default value. If
the default value is not changed, the default value is passed to the program.
Input fields that are not initialized are displayed as blanks into which the work-
station user can enter data.

Output fields. Output fields are passed from the program to the device when
the program writes a record to a display. Output fields can be provided by the
program or by the record format in the device file.

Output/input (both) fields. An output/input field is an output field that can be
changed. It becomes an input field if it is changed. Output/input fields are
passed from the program when the program writes a record to a display and
passed to the program when the program reads a record from the display.
Output/input fields are used when the user is to change or update the data that
is written to the display from the program.

If you specify the keyword INDARA in the DDS for a WORKSTN file, the RPG/400
program passes indicators to the WORKSTN file in a separate indicator area, and
not in the input/output buffer.

For a detailed description of an externally described data-device file and for a list of
valid DDS keywords, see the DDS Reference.

Figure 67 on page 145 shows an example of the DDS for a display-device file.

Processing an Externally Described WORKSTN File

When an externally described WORKSTN file is processed, the OS/400 system
transforms data from the program to the format specified for the file and displays
the data. When data is passed to the program, the data is transformed to the
format used by the program.

144

RPG/400 User's Guide

Externally Described WORKSTN Files

The OS/400 system provides device-control information for processing input/output
operations for the device. When an input record is requested from the device, the
0S/400 system issues the request, and then removes device-control information
from the data before passing the data to the program. In addition, the OS/400
system can pass indicators to the program indicating which fields, or if any fields, in
the record have been changed.

When the program requests an output operation, it passes the output record to the
0S/400 system. The OS/400 system provides the necessary device-control infor-
mation to display the record. It also adds any constant information specified for the
record format when the record is displayed.

..0 1l L+l 2 Lol 3 Ll 4 Lo H L LLHllL 6 .t 7 ..
AANOINO2ZNO3T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++%
A*x ITEM MASTER INQUIRY

A REF (DSTREF)

A R PROMPT TEXT('Item Prompt Format')

A 73N61 overLaY H

A CA01(98 'End of Program')
A 1 2'Item Inquiry'

A 3 2'Item Number'

A ITEM R I 3 15PUTRETAIN II

A 61 ERRMSG('Invalid Item Number' 61) F
A R RESPONSE TEXT('Response Format')

A overLAY H

A Lock 3

A 5 2'Description’

A DESCRP R 515

A 5 37'Price’

A PRICE R 5 44

A 7 2'Warehouse Location'

A WHSLOC R 7 22

A 9 2'0On Hand'

A ONHAND R 9 10

A 9 19'Allocated’ B}

A ALLOC R 9 30

A 9 40'Available’

A AVAIL R 9 51

A*

Figure 67. Example of the Data Description Specifications for a Display Device File

This display device file contains two record formats: PROMPT and RESPONSE.

The attributes for the fields in this file are defined in the DSTREF field refer-
ence file.

A The OVERLAY keyword is used so that both record formats can be used on
the same display.

El Function key 1 is associated with indicator 98, which is used by the pro-
grammer to end the program.

Chapter 8. Using WORKSTN Files 145

Externally Described WORKSTN Files

Il The PUTRETAIN keyword allows the value that is entered in the ITEM field to
be kept in the display. In addition, the ITEM field is defined as an input field
by the I in position 38. ITEM is the only input field in these record formats.
All of the other fields in the record are output fields since position 38 is blank
for each of them.

The ERRMSG keyword identifies the error message that is displayed if indicator
61 is set on in the program that uses this record format.

The LOCK keyword prevents the work-station user from using the keyboard
when the RESPONSE record format is initially displayed.

B B O

The constants such as ‘Description’, ‘Price’, and ‘Warehouse Location’
describe the fields that are written out by the program.

The line and position entries identify where the fields or constants are written
on the display.

When a record is passed to a program, the fields are arranged in the order in which
they are specified in the DDS. The order in which the fields are displayed is based
on the display positions (line numbers and position) assigned to the fields in the
DDS. The order in which the fields are specified in the DDS and the order in which
they appear on the screen need not be the same.

Function Key Indicators on Display Device Files

146

The function key indicators, KA through KN and KP through KY are valid for a
program that contains a display device WORKSTN file if the associated function
key is specified in the DDS.

The function key indicators relate to the function keys as follows: function key indi-
cator KA corresponds to function key 1, KB to function key 2 . . . KX to function key
23, and KY to function key 24.

Function keys are specified in the DDS with the CFxx (command function) or CAxx
(command attention) keyword. For example, the keyword CFO1 allows function key
1 to be used. When you press function key 1, function key indicator KA is set on in
the RPG/400 program. If you specify the function key as CF01 (99), both function
key indicator KA and indicator 99 are set on in the RPG/400 program. If the work-
station user presses a function key that is not specified in the DDS, the OS/400
system informs the user that an incorrect key was pressed.

If the work-station user presses a specified function key, the associated function
key indicator in the RPG/400 program is set on when fields are extracted from the
record (move fields logic) and all other function key indicators are set off. If a func-
tion key is not pressed, all function key indicators are set off at move fields time.
The function key indicators are set off if the user presses the Enter key.

RPG/400 User's Guide

Processing WORKSTN Files

Command Keys on Display Device Files

You can specify the command keys Help, Roll Up, Roll Down, Print, Clear, and
Home in the DDS for a display device file with the keywords HELP, ROLLUP,
ROLLDOWN, PRINT, CLEAR, and HOME.

Command keys can be processed by an RPG/400 program whenever the RPG/400
compiler processes a READ or an EXFMT operation on a record format for which the
appropriate keywords are specified in the DDS. When the command keys are in
effect and a command key is pressed, the OS/400 system returns control to the
RPG/400 program. If a response indicator is specified in the DDS for the command
selected, that indicator is set on and all other response indicators that are in effect
for the record format and the file are set off.

If a response indicator is not specified in the DDS for a command key, the following
happens:

e For the Print key without *PGM specified, the print function is processed.

* For the Roll Up and Roll Down keys used with subfiles, the displayed subfile
rolls up or down, within the subfile. If you try to roll beyond the start or end of
a subfile, you get a run-time error.

e For the Print Key specified with *PGM, Roll Up and Roll Down keys used
without subfiles, and for the Clear, Help, and Home keys, one of the *STATUS
values 1121-1126 is set, respectively, and processing continues.

Processing WORKSTN Files

This section explains the valid file operation codes for a WORKSTN file.

EXFMT Operation

The EXFMT operation is a combination of a WRITE followed by a READ to the same
record format. If you define a WORKSTN file on the file description specifications
as a full-procedural (F in position 16) combined file (C in position 15) that uses
externally described data (E in position 19) the EXFMT (execute format) operation
code can be used to write and read from the display.

READ Operation

The READ operation is valid for a full-procedural combined file or a full-procedural
input file that uses externally described data or program-described data. The READ
operation retrieves a record from the display. However, a format must exist at the
device before any input operations can occur. This requirement can be satisfied on
a display device by conditioning an output record with the 1P indicator, by writing
the first format to the device from another program, or, if the read is by record-
format name, by using the keyword INZRCD on the record description in the DDS.

WRITE Operation

The WRITE operation writes a new record to a display and is valid for a combined
file or an output file. Output specifications and the EXCPT operation can also be
used to write to a WORKSTN file. See the RPG/400 Reference for a complete
description of each of these operation codes.

Figure 68 on page 148 shows the valid file operation codes for a WORKSTN file.

Chapter 8. Using WORKSTN Files 147

Processing WORKSTN Files

File-Description Calculation

Specifications Specifications

Positions Positions

15 16 28-32

| P/S CLOSE, ACQ, REL, NEXT, POST, FORCE

| P/S WRITE!?, CLOSE, ACQ, REL, NEXT, POST, FORCE

| F READ, OPEN, CLOSE, ACQ, REL, NEXT, POST

C F READ, WRITE!, EXFMT2, OPEN, CLOSE, ACQ, REL, NEXT, POST, UPDATS3,
CHAIN3, READC?3

(0] Blank WRITE!, OPEN, CLOSE, ACQ, REL, POST

Note: !The WRITE operation is not valid for a program-described file used with a format name.

Note: 2If the EXFMT operation is used, the file must be externally described (an E in position 19 of the file

description specifications).

Note: 3For subfile record formats, the UPDAT, CHAIN, and READC operations are also valid.

Figure 68. Valid File Operation Codes for a WORKSTN File

WORKSTN file
Figure 69 on page 149 is a processing chart for WORKSTN files.

148 RPG/400 User's Guide

Processing WORKSTN Files

File Description Specifications

© ©
= = - =
o 22| o . ’ ” 254 .
o sl =] = 5 ’ ’ 2 7
ol e S &8 3 ERY o o AL |
AR)
° 2 w @ o £
s| =3 25y
S| HEAEEEE]
5 _ a
Sles| | & 7, 7
HEE KK N/n7y 4,74 W
2 gl s 7547
=l 52| & 7 /)
3l ed]s 2454 .
2| e z 70 /)
23 7, 7]
z -« 2,74
2 LA 25
- 2 :
x al ~
- o
% H x| <
& < >
-2 A s O S|w
c < of
s) 8l g Ol xS
X8] - wl 0] <
bl ° el ulZ
s
= H w
X | o«
o w = e]
£z & =
T g o ™
z 8
2
W/3/N/S s1eael « ¥
2 (o] -
]
38 Z o
s
£s O w
» 0
ooe w
. ‘s | uw
2 r4 |
7
- - ’
o ») 7
] .
s X X i
o
a o o ’
[¢] [¢] ¥
.
3 3 :
Y
/3 5P00 uoISULIXG w 4
7
BE
-2l sl 2258 |
59| 2| °g|s| el 7
HIE ol 8| = £3
Floce|] L g .
ERP A] H R |
salo|E2 5[5 258 2
I
of »3[3|°Zg|2 ’
NI ’
o 51K rd
o5 zl=|?o<] 2 td
I o M
HPE
ele sl 8| 20 rurirarxn]o /|
HIEE g -
. Ndrv | s
H ’
of%% 2 4
s H #
° o ’
N] -
o
w2 % 7
z 7
s d
s : ’
g -] |
o 5] ’
z 8
/)
P 7
’
3 < L
H o s o
slafle| @ e 2 .
=128 g /|
alTfe 2
< s| e
IR ’
@ of o 4
o| @ S| srarwssinss ;
2laf s~
2 2 arv /)
Zlofw o
z El c L
© = 7
2 4/Q/1/8/9/5/4 - 7
4 ”
aso/n/o/1 -
[0} Pl
0 /|
o 4
= 4
1) o rl
E /)
a]
< =
H = /)
2 Pt M
= a y
5 7
P .
.
adAL wioy wlw|uw u w w wiw|w
©
L c a| o <] w ~ © @ al ~f ™
- - — - — o~ o~ o~ o ™ ™

Chart for WORKSTN Files

. Processing

69

Figure

149

Chapter 8. Using WORKSTN Files

Processing WORKSTN Files

Subfiles

Valid File Operations:
1. CLOSE, FORCE

2. WRITE, CLOSE, FORCE

3. READ, OPEN, CLOSE

4. READ, WRITE, EXFMT, OPEN, CLOSE

5. WRITE, OPEN, CLOSE

6. READ, WRITE, OPEN, CLOSE

7. OPEN, CLOSE

8. READC, CHAIN, WRITE, UPDAT, (valid only for record defined as a
subfile)

Notes:

1. Shaded positions must be blank, and positions without entries are program
dependent.

2. WRITE operations to a program-described file require a data-structure name in
the result field; WRITE operations to a program-described file that uses a format
name on output specifications are not valid.

3. Subfile processing is valid only for an externally described file.

Subfiles can be specified in the DDS for a display-device file to allow you to handle
multiple records of the same type on the display. (See Figure 70 on page 151.) A
subfile is a group of records that is read from or written to a display-device file. For
example, a program reads records from a database file and creates a subfile of
output records. When the entire subfile has been written, the program sends the
entire subfile to the display device in one write operation. The work-station user
can change data or enter additional data in the subfile. The program then reads
the entire subfile from the display device into the program and processes each
record in the subfile individually.

Records that you want to be included in a subfile are specified in the DDS for the
file. The number of records that can be included in a subfile must also be specified
in the DDS. One file can contain more than one subfile, and up to 12 subfiles can
be active concurrently. Two subfiles can be displayed at the same time.

The DDS for a subfile consists of two record formats: a subfile-record format and a
subfile control-record format. The subfile-record format contains the field informa-
tion that is transferred to or from the display file under control of the subfile control-
record format. The subfile control-record format causes the physical read, write, or
control operations of a subfile to take place. Figure 71 on page 152 shows an
example of the DDS for a subfile-record format, and Figure 72 on page 153 shows
an example of the DDS for a subfile control-record format.

For a description of how to use subfile keywords, see the DDS Reference.

150 RPG/400 User's Guide

Processing WORKSTN Files

Customer Name Search

Search Code

Number Name Address City State
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

Figure 70. Subfile Display

To use a subfile for a display device file in an RPG/400 program, you must specify
the SFILE keyword in positions 54 through 59 on a file description specifications
continuation line for the WORKSTN file. The SFILE keyword must be specified on a
separate continuation line. The WORKSTN file must be an externally described file
(E in position 19).

You use positions 60 through 67 of the continuation line to specify the name of the
subfile record format (not the control-record format). Positions 47 through 52 must
specify the name of the field that contains the relative record nhumber to be used in
processing the subfile.

In an RPG/400 program, relative record number processing is defined as part of the
SFILE definition. The SFILE definition implies a full-procedural update file with ADD
for the subfile. Therefore, the file operations that are valid for the subfile are not
dependent on the definition of the main WORKSTN file. That is, the WORKSTN
file can be defined as a primary file or a full-procedural file.

Use the CHAIN, READC, UPDAT, or WRITE operation codes with the subfile record
format to transfer data between the program and the subfile. Use the READ, WRITE,
or EXFMT operation codes with the subfile control-record format to transfer data
between the program and the display device or to process subfile control oper-
ations.

Chapter 8. Using WORKSTN Files 151

Processing WORKSTN Files

*00

.2

Subfile processing follows the rules for relative-record-number processing. The
RPG/400 program places the relative-record number of any record retrieved by a
READC operation into the field nhamed in positions 47 through 52 of the file
description specifications SFILE continuation line. This field is also used to specify
the record number that the RPG/400 program uses for WRITE operation to the
subfile or for output operations that use ADD. The field name specified in positions
47 through 52 must be defined as numeric with zero decimal positions. The field
must have enough positions to contain the largest record number for the file. (See
the SFLSIZ keyword in the DDS Reference.) The WRITE operation code and the ADD
specification on the output specifications require that a relative-record-number field
be specified in positions 47 through 52 of the file description specifications SFILE
continuation line.

If a WORKSTN file has an associated subfile, all implicit input operations and
explicit calculation operations that refer to the file name are processed against the
main WORKSTN file. Any operations that specify a record format name that is not
designated as a subfile are processed on the main WORKSTN file.

If you press a specified function key during a read of a non-subfile record, subse-
guent reads of a subfile record will cause the corresponding function key indicator
to be set on again, even if the function key indicator has been set off between the
reads. This will continue until a non-subfile record is read from the WORKSTN file.

R R R T T P s B

AANOINOZNO3T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*
Ax* CUSTOMER NAME SEARCH

> > > > > > > > >

*

R SUBF

CUST
NAME
ADDR
CITY
STAT

REF (DSTREF)
IL sFrL A
TEXT('Subfile Record')

NO W

NN NN
N o1 W=
=

E

~N

Figure 71. Data Description Specifications for a Subfile Record Format

152

The data description specifications (DDS) for a subfile record format describe the
records in the subfile:

The attributes for the fields in the record format are contained in the field
reference file DSTREF as specified by the REF keyword.

H The SFL keyword identifies the record format as a subfile.

The line and position entries define the location of the fields on the display.

Use of Subfiles
Some typical ways you can make use of subfiles include:

e Display only. The work-station user reviews the display.

e Display with selection. The user requests more information about one of the
items on the display.

* Modification. The user changes one or more of the records.

RPG/400 User's Guide

Processing WORKSTN Files

Input only, with no validity checking. A subfile is used for a data entry function.

Input only, with validity checking. A subfile is used for a data entry function,
but the records are checked.

Combination of tasks. A subfile can be used as a display with modification,
plus the input of new records.

The following figure shows an example of data description specifications for a
subfile control-record format. For an example of using a subfile in an RPG/400
program, see “WORKSTN File Examples” on page 158.

oo 1 ookl 2 L.,

T T T O A

AANOINOZNO3T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*

A R FILCTL
A N70

A 70

A 71

A

A

A

A

A 71

A

A

A

A

A SRHCOD
A

A

A

A

A

A*

SFLCTL(SUBFIL)
SFLCLR
SFLDSPCTL
SFLDSP
SFLSIZ(15)
SFLPAG(15)
TEXT('Subfile Control Record')
OVERLAY
ROLLUP(97 'Continue Search')
CA01(98 'End of Program')
HELP(99 'Help Key')
2'Customer Name Search'
2'Search Code'
14PUTRETAIN
2'Number'
10'Name'
32'Address'
54'City'
76'State’

R I

1 U1 O O1 O W W =

Figure 72. Data Description Specifications for a Subfile Control-Record Format

The subfile control-record format defines the attributes of the subfile, the search
input field, constants, and function keys. The keywords you can use indicate the
following:

SFLCTL names the associated subfile (SUBFIL).
SFLCLR indicates when the subfile should be cleared (when indicator 70 is off).

SFLDSPCTL indicates when to display the subfile control record (when indicator
70 is on).

SFLDSP indicates when to display the subfile (when indicator 71 is on).
SFLSIZ indicates the total number of records to be included in the subfile (15).
SFLPAG indicates the total number of records in a page (15).

ROLLUP indicates that indicator 97 is set on in the program when the user
presses the Roll Up key.

Chapter 8. Using WORKSTN Files 153

Program-Described WORKSTN File

e HELP allows the user to press the Help key for a displayed message that
describes the valid function keys.

e PUTRETAIN allows the value that is entered in the SRHCOD field to be kept in the
display.

In addition to the control information, the subfile control-record format also defines
the constants to be used as column headings for the subfile record format.

Program-Described WORKSTN File

You can use a program-described WORKSTN file with or without a format name
specified on the output specifications. The format name, if specified, refers to the
name of a data description specifications record format. This record format
describes:

* How the data stream sent from an RPG/400 program is formatted on the
screen

e What data is sent

e What ICF functions to perform.

If a format name is used, input and output specifications must be used to describe
the input and output records.

You can specify the PASS option on the file description specifications continuation
line for a program-described WORKSTN file. Positions 60 through 65 must contain
*NOIND. The PASS *NOIND indicates that the RPG/400 program will not additionally
pass indicators to data management on output or receive them on input. It is your
responsibility to pass indicators by describing them as fields (in the form *INxx, *IN,
or *IN,x) in the input or output record. They must be specified in the sequence
required by the data description specifications (DDS). You can use the DDS listing
to determine this sequence.

Program-Described WORKSTN File with a Format Name

154

The following specifications apply to using a format name for a program-described
WORKSTN file.

Output Specifications

On the output specifications, you must specify the WORKSTN file name in positions
7 through 14. The format name, which is the name of the DDS record format, is
specified as a literal or named constant in positions 45 through 54 on the suc-
ceeding field description line. K1 through K8 must be specified (right-adjusted) in
positions 40 through 43 on the line containing the format name. The K identifies
the entry as a length rather than an end position, and the number indicates the
length of the format name. For example, if the format name is CUSPMT, the entry in
positions 40 through 43 is K6. (Leading zeros following the K are allowed.) The
format name cannot be conditioned (indicators in positions 23 through 31 are not
valid).

Output fields must be located in the output record in the same order as defined in

the DDS; however, the field names do not have to be the same. The end position
entries for the fields refer to the end position in the output record passed from the

RPG/400 program to data management, and not to the location of the fields on the
screen.

RPG/400 User's Guide

Program-Described WORKSTN File

To pass indicators on output, do one of the following:

¢ Specify the keyword INDARA in the DDS for the WORKSTN file. Do not use the
PASS *NOIND option on the file specifications continuation line and do not
specify the indicators on the output specifications. The program and file use a
separate indicator area to pass the indicators.

e Specify the PASS *NOIND option on the file specifications continuation line.
Specify the indicators in the output specifications as fields in the form *INxx.
The indicator fields must precede other fields in the output record, and they
must appear in the order specified by the WORKSTN file DDS. You can deter-
mine this order from the DDS listing.

Input Specifications

The input specifications describe the record that the RPG/400 program receives
from the display or ICF device. The WORKSTN file hame must be specified in
positions 7 through 14. Input fields must be located in the input record in the same
sequence as defined in the DDS; however, the field names do not have to be the
same. The field location entries refer to the location of the fields in the input
record.

To receive indicators on input, do one of the following:

» Specify the keyword INDARA in the DDS for the WORKSTN file. Do not use the
PASS *NOIND option on the file specifications continuation line and do not
specify the indicators on the input specifications. The program and file use a
separate indicator area to pass the indicators.

» Specify the PASS *NOIND option on the file specifications continuation line.
Specify the indicators in the input specifications as fields in the form *INxx.
They must appear in the input record in the order specified by the WORKSTN
file DDS. You can determine this order from the DDS listing.

A record identifying indicator should be assigned to each record in the file to iden-
tify the record that has been read from the WORKSTN file. A hidden field with a
default value can be specified in the DDS for the record identification code.

Calculation Specifications

The operation code READ is valid for a program-described WORKSTN file that is
defined as a combined, full-procedural file. See Figure 68 on page 148. The file
name must be specified in factor 2 for this operation. A format must exist at the
device before any input operations can take place. This requirement can be satis-
fied on a display device by conditioning an output record with 1P or by writing the
first format to the device in another program (for example, in the CL program). The
EXFMT operation is not valid for a program-described WORKSTN file. You can also
use the EXCPT operation to write to a WORKSTN file.

Chapter 8. Using WORKSTN Files 155

Program-Described WORKSTN File

Additional Considerations
When using a format name with a program-described WORKSTN file, you must
also consider the following:

e The name specified in positions 45 through 54 of the output specifications is
assumed to be the name of a record format in the DDS that was used to create
the file.

e |f a Kn specification is present for an output record, it must also be used for
any other output records for that file. If a Kn specification is not used for all
output records to a file, a run-time error will occur.

For an example of using a format name with a program-described display device
WORKSTN file, see “Sample Program 6—Program-Described WORKSTN File with a
FORMAT Name on Output Specifications” on page 206.

Program-Described WORKSTN File without a Format Name

156

When a record-format name is not used, a program-described display-device file
describes a file containing one record-format description with one field. The fields
in the record must be described within the program that uses the file.

When you create the display file by using the Create Display File command, the file
has the following attributes:

e A variable record length can be specified; therefore, the actual record length
must be specified in the using program. (The maximum record length allowed
is the screen size minus one.)

* No indicators are passed to or from the program.
¢ No function key indicators are defined.

e The record is written to the display beginning in position 2 of the first available
line.

Input File

For an input file, the input record, which is treated by the OS/400 device support as
a single input field, is initialized to blanks when the file is opened. The cursor is
positioned at the beginning of the field, which is position 2 on the display.

Output File

For an output file, the OS/400 device support treats the output record as a string of
characters to be sent to the display. Each output record is written as the next
sequential record in the file; that is, each record displayed overlays the previous
record displayed.

Combined File

For a combined file, the record, which is treated by the OS/400 device support as a
single field, appears on the screen and is both the output record and the input
record. Device support initializes the input record to blanks, and the cursor is
placed in position 2.

For more information on program-described-display-device files, see the Data Man-
agement Guide.

RPG/400 User's Guide

Multiple-Device Files

Multiple-Device Files

Any RPG/400 WORKSTN file with at least one of the keywords ID, IND, NUM, or
SAVDS specified (on the file specifications continuation line) is a multiple-device file.
Through a multiple-device file, your program may access more than one device.

The RPG/400 program accesses devices through program devices, which are sym-
bolic mechanisms for directing operations to an actual device. When you create a
file (using the DDS and commands such as the create file commands), you con-
sider such things as which device is associated with a program device, whether or
not a file has a requesting program device, which record formats will be used to
invite devices to respond to a READ-by-file-name operation, and how long this READ
operation will wait for a response. For detailed information on the options and
requirements for creating a multiple-device file, see the chapter on display files in
the Data Management Guide, and information on ICF files in the ICF Programmer’s
Guide, and the manuals you are referred to in these two publications.

With multiple-device files, you make particular use of the following operation codes:

 In addition to opening a file, the OPEN operation can acquire (at most) one
device for a multiple-device file. You specify which device when you create the
file.

* The ACQ (acquire) operation acquires any other devices for your file.
e The REL (release) operation releases a device from the file.

e The WRITE operation, when used with the DDS keyword INVITE, invites a
program device to respond to subsequent read-from-invited- program-devices
operations. See the section on inviting a program device in the ICF
Programmer’s Guide and the Data Management Guide.

e The READ operation either processes a read-from-invited-program-devices oper-
ation or a read-from-one-program-device operation. When no NEXT operation is
in effect, a program-cycle-read or READ-by-file-name operation waits for input
from any of the devices that have been invited to respond (read-from-invited-
program-device). Other input and output operations, including a READ-by-file-
name after a NEXT operation, and a READ-by-format-name, process a
read-from-one-program-device operation using the program device indicated in
a special field. (The field is named in the ID entry of the file specifications
continuation lines.)

This device may be the device used on the last input operation, a device you
specify, or the requesting program device. See the sections on reading from
invited program devices and on reading from one program device in the ICF
Programmer’s Guide and the Data Management Guide.

e The NEXT operation specifies which device is to be used in the next READ-by-
file-name operation or program-cycle-read operation.

e The POST operation puts information in the INFDS information data structure.
The information may be about a specific device or about the file. (The POST
operation is not restricted to use with multiple-device files.)

See the RPG/400 Reference for details of the RPG/400 operation codes.
On the file specifications continuation line, you can specify several options to

control the processing of multiple-device files.

Chapter 8. Using WORKSTN Files 157

WORKSTN File Examples

e The NUM entry indicates the maximum number of devices that can be acquired
for a file.

By using a value of 1 for NUM, it is possible to get functions associated with a
multiple-device file for a file that has only one device. For example, Figure 107
on page 211 illustrates the use of the time-out feature of the READ operation for
a multiple-device file.

e The ID entry specifies the hame of a field. The field can contain the name of a
program device to which some input and output operations are directed.

When a read-from-one-program-device or WRITE operation is issued, the device
used for the operation is the device identified by the field specified in the 1D
entry. This field is initialized to blanks and is updated with the name of the
device from which the last successful input operation occurred. It can also be
set explicitly by moving a value to it. The ACQ operation code does not affect
the value of this field. If there is no entry, the operation is performed against
the device from which the last successful input operation occurred. A blank
device name is used if a read operation has not yet been performed success-
fully from a device.

When a read-from-one-program device or WRITE operation is issued with a
blank device name, the RPG/400 compiler implicitly uses the device name of
the requestor device for the program. If you call an RPG/400 program interac-
tively and acquire an ICF device against which you want to perform one of
these operations, you must explicitly move the device name of the ICF device
into the field name specified with the ID entry prior to performing the operation.
If this is not done, the device name used will either be blank (in which case the
interactive requestor device name is used), or the device name used is the one
from the last successful input operation. Once you have performed an I/O
operation to the ICF device, you do not need to modify the value again unless
an input operation completes successfully with a different device.

e The SAVDS entry indicates a data structure that is saved and restored for each
device acquired to a file. The IND entry indicates a set of indicators to be
saved and restored for each device acquired to a file. Before an input opera-
tion, the current set of indicators and data structure are saved. After the input
operation, the RPG/400 compiler restores the indicators and data structure for
the device associated with the operation. This may be a different set of indica-
tors or data structure than was available before the input operation.

e The INFDS entry specifies the file information data structure for the WORKSTN
file. The RPG/400 *STATUS field and the major/minor return code for the I/O
operation can be accessed through this data structure. Particularly when ICF is
being used, both fields are useful for detecting errors that occurred during 1/0O
operations to multiple-device files.

Note: When specifying these control options, you must code the NUM option
before the ID, IND or SAVDS options.

WORKSTN File Examples

This section illustrates some common work station applications and their RPG/400
coding.

e “Sample Program 1-Inquiry” on page 159 is an example of a basic inquiry
program that uses the WORKSTN file in the RPG/400 compiler.

158 RPG/400 User's Guide

WORKSTN File Examples

e “Sample Program 2-Data Entry with Master Update” on page 166 is an
example of a data entry with master update program.

e “Sample Program 3—Maintenance” on page 174 is an example of a mainte-
nance program.

e “Sample Program 4-WORKSTN Subfile Processing” on page 187 is an
example of WORKSTN subfile processing.

e “Sample Program 5-Inquiry by Zip Code and Search on Name” on page 196 is
an example of an interactive program in which the search of a name field
occurs when the workstation user enters a zip code and a search string in
response to the first display written by the program. This sample program illus-
trates one approach to solving the typical problem of identifying a customer and
determining the correct customer number. In this example, the user knows the
zip code and something about the customer name, such as some of the char-
acters that constitute the name.

e “Sample Program 6—Program-Described WORKSTN File with a FORMAT
Name on Output Specifications” on page 206 is an example of a program-
described WORKSTN file with a format name on the output specifications.

e “Sample Program 7—Variable Start Line” on page 208 is an example of using
the variable start line to determine where a record format will appear on a
display.

e “Sample Program 8—Read Operation with Time-Out” on page 211 shows how
to use READ with a time-out.

Sample Program 1-Inquiry
The following figures illustrate a simple inquiry program using the WORKSTN file:

Table 5. List of Figures for WORKSTN Inquiry Program

Figure Contents

Figure 73 on page 160 DDS for database file and display device file
below and Figure 74 on

page 161

Figure 75 on page 164 File description and calculation specifications
Figure 76 on page 165 Prompt screen

Figure 77 on page 166 Customer information screen

Chapter 8. Using WORKSTN Files 159

WORKSTN File Examples

Lo T T | T T B R c B Y A

Acveveninn, T.Name++++++RLen++TDpB...... Functions+++++++++tt+tt+ttt+++*

Ax CUSTOMER MASTER FILE -- CUSMSTP

A R CUSREC

A CusT 5 TEXT('CUSTOMER NUMBER')

A NAME 20 TEXT('CUSTOMER NAME')

A ADDR 20 TEXT('CUSTOMER ADDRESS')

A CITY 20 TEXT('CUSTOMER CITY')

A STATE 2 TEXT('CUSTOMER STATE')

A ZIP 5 0 TEXT('CUSTOMER ZIP CODE')

A SRHCOD 3 TEXT('CUSTOMER NAME SEARCH CODE')
A CUSTYP 1 TEXT('CUSTOMER TYPE')

A ARBAL 10 2 TEXT('ACCOUNTS RECEIVABLE BALANCE')
A**

Ax FILE NAME : CUSMSTL *
A+ DESCRIPTION: LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMSTP) *
Ax BY CUSTOMER NUMBER (CUST) *
A**
Acceenoan. T.Name++++++.Len++TDpB...... Functions+++++++++tt+tt+tt+++*

A R CUSREC PFILE(CUSMSTP)

A K CUST

Figure 73. DDS for WORKSTN Inquiry-Program File CUSMSTP

The DDS for the database file used by this program describe one record format:
CUSREC. The logical file CUSMSTL keyed by customer number is based on the phys-
ical file CUSMSTP, as indicated by the PFILE keyword. Each field in the record format
is defined in the physical file CUSMSTP.

160 RPG/400 User's Guide

*"

A*

WORKSTN File Examples

Note: Normally, the field attributes, such as the number of decimal positions and
the data type, are defined in a field-reference file rather than in the DDS for the
record format. The attributes are shown on the DDS so you can see what they are.

| A I B T SR A S UM ¢ JRPUPR O AR
Ak khkhkhkhrkhhhhhhhhhhrhrhrhrhrhkhkhhhhhhhhhhrhrhrhrhrhrhkhrhhhhrhrhrk
FILE NAME : CUSFMT *
DESCRIPTION: DISPLAY FILE FOR CUSTOMER MASTER INQUIRY *

A*

A**
AANOINOZNO3T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++%

> > > > >>>>>>>>>> >

99

DSPSIZ(24 80 *DS3)
CHGINPDFT(CS)
CAO3(15 "END OF JOB')
PRINT
INDARA
R CUSHDG
OVERLAY
2 ATIME
DSPATR(HI)
2 29'Customer Master Inquiry'
DSPATR(HI)
DSPATR(UL)
2 70DATE
EDTCDE(Y)
DSPATR(HI)
R CUSFTG
23 20'ENTER - Continue'
DSPATR(HI)
23 49'F3 - End Job'
DSPATR (HI)
R CUSPMT
OVERLAY
CUST 5A I 10 50DSPATR(HI)
DSPATR(CS)
ERRMSG('Customer Number not Found'
99)
10 26'Enter Customer Number:'
DSPATR(HI)

Figure 74 (Part 1 of 2). DDS for WORKSTN Inquiry-Program Display Device File CUSFMT

Chapter 8. Using WORKSTN Files

161

WORKSTN File Examples

L R R T

Ltel 4.

I T O ¢ R Y A

AANOINO2NO3T.Name++++++RLen++TDpBLinPoSFUnctions++++++++++ttttttttttx

R CUSFLDS

NAME

ADDR

CITY

STATE

ZIP

ARBAL

> > > > > > > >

CUST

8

20A 0 8
10

20A 0 10
12

20A 0 12
14

2A 0 14

14

55 00 14

16

10Y 20 16
6

50 0 6

OVERLAY
25"'"Name'
35DSPATR(HI)
25'Address'
35DSPATR(HI)
25'City"
35DSPATR(HI)
25'State’
35DSPATR(HI)
41'Zip Code'
50DSPATR(HI)
25'A/R Balance'
42DSPATR(HI)

EDTCDE (J)
25'Customer'
35DSPATR(HI)

Figure 74 (Part 2 of 2). DDS for WORKSTN Inquiry-Program Display Device File CUSFMT

The DDS for the display device file CUSFMT to be used by this program specify file
level entries and describe four record formats: CUSHDG, CUSFTG, CUSPMT, and

CUSFLDS.

The file level entries define the screen size (DSPSIZ), input defaults (CHGINPDFT),
command attention key used to end the program, print key (PRINT), and a separate
indicator area (INDARA).

The CUSHDG record format contains the constant 'Customer Master Inquiry', which
identifies the display. It also contains the keywords TIME and DATE, which will
display the current date and time on the screen.

The CUSFTG record format contains the constants 'ENTER - Continue' and 'F3 -
End Job', which describe the processing options.

The CUSPMT record format contains the prompt “Enter Customer Number:” and the
input field CUST into which the workstation user enters the customer number.

Column separators define the input field on the screen where the user is to enter
the customer number. The error message “Customer Number not Found” is also
included in this record format. This message is displayed if indicator 99 is set on
by the program.

The CUSFLDS record format contains the constants 'Name', 'Address', 'City',
'State', 'Zip Code', 'A/R Balance', and 'Customer' that identify the fields to be
written out from the program. This record format also describes fields that corre-
spond to these constants. All of these fields are described as output fields because
they are filled in by the program; the user does not enter any data into these fields.
To enter another customer number, the user presses Enter in response to this

record.

162 RPG/400 User's Guide

WORKSTN File Examples

In addition to describing the constants, fields and attributes for the screen, the
record formats also define the display attributes for the constants and fields and the
line numbers and horizontal positions where the constants and fields are to be dis-
played.

Notice the use of the OVERLAY keyword; the CUSHDG, CUSPMT and CUSFLDS record
formats will overlay the CUSFTG record format. The CUSFTG format will remain on the
screen when any of the other formats are written to the screen.

Note: Normally, the field attributes are defined in a field-reference file instead of
the DDS for a file. However, they are shown here so you can see the field attri-
butes.

Chapter 8. Using WORKSTN Files 163

WORKSTN File Examples

S R A A G S AT SRR SN SN S s S Y AN
F**
F+ PROGRAM ID - CUSTINQ x
F«+ PROGRAM NAME - CUSTOMER MASTER INQUIRY x
F**
FFilenamelPEAF....R1enLK1AIOvKlocEDevice+. KEXit++Entry+A....Ul.*
FCUSMSTL IF E K DISK

FCUSFMT CF E WORKSTN

CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComment s++++++*
c *IN15 DOWEQ'0'

Cx*

C+ WRITE HEADING AND FOOTING EXCEPT IF ERROR HAS OCCURRED

C+ AND PROMPT FOR CUSTOMER NUMBER

C *IN99 CASEQ'0’ HEADNG
C END
C EXFMTCUSPMT

Cx IF NOT END OF JOB AND VALID CUSTOMER NUMBER
C+ DISPLAY CUSTOMER INFORMATION

C *IN15 IFEQ 'O’

C CUST CHAINCUSREC 99

C *IN99 IFEQ '0'

C EXFMTCUSFLDS

C END IF

C END IF

C END DO

C MOVE '1' *INLR

O R R R R R R R R T
C* SUBROUTINE - HEADNG *
C* PURPOSE - DISPLAY HEADING AND FOOTING *
Cohkkkkkkkdddddddodd ke koo ok kk ok kk kKKK KK R IR IR IR IR IR AR AR ARk ok
C HEADNG BEGSR

C WRITECUSFTG

C WRITECUSHDG

C ENDSR

Figure 75. File Description and Calculation Specifications for WORKSTN Inquiry Program

For this program, only the RPG/400 file description and calculation specifications
are required. Input and output specifications are not required because both files
are externally described files (as indicated by the E in position 19). Both files are
described as full-procedural files, as indicated by the F in position 16, because the
I/O operations are controlled by programmer-specified operation codes. In addition,
the K in position 31 of the file description specifications for the CUSMSTL file indicates
that the file is processed keys.

164 RPG/400 User's Guide

WORKSTN File Examples

The DOWEQ operation performs a loop until the user presses F3 to end the job. F3
sets indicator 15 on, as defined in the DDS. |If indicator 15 is on, the loop is ended,
the LR indicator is turned on, and the program ends.

The CASEQ operation performs subroutine HEADNG, which writes the heading and
footings to the screen. Headings and footings will not be written to the screen
when an error has occurred.

The EXFMT operation writes the CUSPMT record to the display. This record prompts
the user to enter a customer number. If the user enters a customer number and
presses Enter, the same EXFMT operation then reads the record back into the
program.

If the user does not end the job, the CHAIN operation retrieves a record from the
CUSMSTL file. Note that the record format name CUSREC is specified for the CHAIN
operation rather than the file name. If the record is not found, indicator 99 is set on
and the program loops back to display the CUSPMT record again. The message
Customer Number not Found is displayed, the ERRMSG keyword in the DDS is condi-
tioned by indicator 99, and the keyboard is locked. The user must press the Reset
key in response to this message to unlock the keyboard. The user can then enter
another customer number.

If the CHAIN operation retrieves a record from the CUSMSTL file, the EXFMT operation
writes the record CUSFLDS to the display work station. This record contains the
customer's name, address information, and accounts receivable balance.

The user then presses Enter, and the program loops back to the EXFMT operation
and writes record CUSPMT to the display work station. The user can enter another
customer number or end the program.

Figure 76 is the initial display written to the display WORKSTN by the EXFMT.

10:06:31 Customer Master Inquiry 01/25/94
Enter Customer Number: _ Al
ENTER - Continue F3 - End Job

Figure 76. Customer Inquiry Prompt Screen

Chapter 8. Using WORKSTN Files 165

WORKSTN File Examples

The following display appears if a record is found in the CUSTMSTL file with the same
customer number that was entered by the user in response to the first display:

10:06:31 Customer Master Inquiry 01/25/94

Customer Al

Name COLLINS

Address 12 MILLDON ROAD

City OLYMPIA

State WA Zip Code 50079

A/R Balance 11,111,111.00

ENTER - Continue F3 - End Job

Figure 77. Customer Inquiry Information Screen

Sample Program 2—-Data Entry with Master Update

The following figures illustrate a data-entry program that prompts the user, updates
a master record, and writes a transaction file:

Table 6. List of Figures for WORKSTN Data Entry Program

Figure Contents

Figure 78 on page 167 DDS for master file, transaction file, and display device
below and file

Figure 79 on page 168

Figure 80 on page 170 File description and calculation specifications

Figure 81 on page 172 Prompt screen

Figure 82 on page 173 Display of current information

Figure 83 on page 173 Updated screen

166 RPG/400 User's Guide

WORKSTN File Examples

Lo T T | T T B R c B Y A

Aooooeona.. T.Name++++++RLen++TDpB...... Functions+++++++++++++++++++++
A= PARTS MASTER FILE -- PARTMST

A R MSTREC

A PART# 58 0 TEXT (' PART NUMBER')

A DESCRP 20 TEXT('DESCRIPTION')

A ISSUE 75 0 TEXT('QTY ISSUED')

A RECPT 75 0 TEXT('QTY RECEIVED')

A ONHAND 9S 0 TEXT('QTY ON HAND')

A DTLUPD 6S 0 TEXT('DATE LAST UPDATE')
A K PART#

A*

A= PARTS TRANSACTION FILE -- TRNFIL

A R TRNREC

A PARTNO 58 0 TEXT (' PART NUMBER')

A QTYISS 75 0 TEXT('QTY ISSUED')

A QTYREC 75 0 TEXT('QTY RECEIVED')

A DATE 6S 0 TEXT('CURRENT DATE')

Figure 78. DDS for Data-Entry/Update Master File and Transaction File

The DDS for the database files used by this program describe two record formats:
MSTREC and TRNREC. The master file PARTMST is a keyed physical file; the transaction
file TRNFIL is a sequential file.

Note: Normally, the field attributes, such as the number of decimal positions and
the data type, are defined in a field-reference file rather than in the DDS for the
record format. The attributes are shown on the DDS so you can see what the field
attributes are.

Chapter 8. Using WORKSTN Files 167

WORKSTN File Examples

Lo T T | T T B R c B Y A

A**

A= FILE NAME : PRTUPD *
A= DESCRIPTION: TRANSACTION AND MASTER FILE UPDATE *
A**
AANOINOZNO3T.Name++++++RLen++TDpBLinPosFunctions+++++++tttttttttttt+x

CHGINPDFT(CS)

PRINT (QSYSPRT)

INDARA

CA03(63 'END OF JOB')
R PROMPT

N

4TIME DSPATR(HI)
28'PART TRANSACTION ENTRY'
DSPATR(HI UL)
70DATE EDTCDE(Y) DSPATR(HI)
4'Enter Part Number'
DSPATR(HI)
PART# R Y I 6 23REFFLD(PART# PARTMST)
DSPATR(CS) CHECK(RB)
61 ERRMSG('PART # NOT FOUND' +
61)
23 6'ENTER - Continue'
DSPATR(HI)
23 29'F3 - End Job'
DSPATR(HI)

N

AN

R TRNFMT
CA12(12 'CANCEL TRANS')
ATIME DSPATR(HI)
28'PART TRANSACTION ENTRY'
DSPATR(HI UL)
70DATE EDTCDE(Y) DSPATR(HI)
10'Part Number'
DSPATR(HI)

Figure 79 (Part 1 of 2). DDS for Data-Entry/Update PRTUPD Display Device File

NN

N

> > > > >>>>>>>>> > >
()]

168 RPG/400 User's Guide

L A .
A PART# R Y 0 6
A DESCRP R 0 7
A 9
A ONHAND R Y 0 9
A
A 11
A QTYISS R Y B1l
A
A
A 13
A QTYREC R Y B 13
A
A 23
A
A 23
A
A 23
A

WORKSTN File Examples

oo] L%

23REFFLD (PART# PARTMST)
23REFFLD(DESCRP PARTMST)
10'Qty On Hand'
23REFFLD (ONHAND PARTMST)
DSPATR(HI) EDTCDE(Z)
10'Qty Issued '
25REFFLD(QTYISS TRNFIL)
CHECK(RB)
DSPATR(HI CS)
10'Qty Received'
25REFFLD(QTYREC TRNFIL)
CHECK(RB) DSPATR(HI CS)
6'ENTER - Continue'
DSPATR(HI)
29'F3 - End Job'
DSPATR (HI)
46'F12 - Cancel Transaction'
DSPATR(HI)

Figure 79 (Part 2 of 2). DDS for Data-Entry/Update PRTUPD Display Device File

The DDS for the PRTUPD display device file contains two record formats: PROMPT and
TRNFMT. The PROMPT record prompts for the part number to be processed. If the
part is not found, an error message is displayed. The TRNFMT record is used to
enter issue and receipt quantities. The fields are defined as output/input (B in posi-
tion 38) and output (O in position 38).

F3 has been defined at the file level and is valid for all record formats. F12 is
defined at the record level for the TRNFMT record format and is not valid for any

other format.

Chapter 8. Using WORKSTN Files 169

WORKSTN File Examples

R R O . TPV PN S . SRV U - P U A
F**
F+ PROGRAM ID - DTAENT *
F+ PROGRAM NAME - TRANSACTION MAINTENANCE *
F+* THIS PROGRAM PERFORMS THE FOLLOWING FUNCTIONS: *
F* - ADDS NEW TRANSACTION RECORDS TO THE FILE TRNFIL *
F* - UPDATES PART MASTER FILE PARTMST *
F**
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FPARTMST UF E K DISK

FTRNFIL 0 E K DISK

FPRTUPD CF E WORKSTN

L R A G R Y S N NPT UDUPO ¢ SRR AR A
C**
C* MAINLINE *

C**

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*
c EXFMTPROMPT

C*

C *INO3 DOWEQ'0'

C*

C PART# CHAINMSTREC 61
C *IN61 CASEQ'0’ NXTSCN
C END

C*

C *INO3 IFEQ 'O’

C EXFMTPROMPT

C END

Cx*

C END

C MOVE '1' *INLR

Figure 80 (Part 1 of 2). File Description Specification and Calculation Specification for Data Entry/Update Program

170 RPG/400 User's Guide

*..

WORKSTN File Examples

R R R L T O EPIP PR c B O A

C**

Cx*
Cx*

SUBROUTINE - NXTSCN *

- ADD PART TRANSACTIONS *

C**

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComment s++++++*

C

OOOOOOOOOOOOOOOOOO

OMSTREC E

NXTSCN BEGSR

EXFMTTRNFMT

*INO3 IFEQ '0"
*IN12 ANDEQ'0"

ADD QTYISS ISSUE
ADD QTYREC RECPT
ADD QTYREC ONHAND
SUB QTYISS ONHAND
Z-ADDUDATE DTLUPD
Z-ADDUDATE DATE
UPDATMSTREC
WRITETRNREC
Z-ADD*ZERO QTYISS
Z-ADD*ZERO QTYREC
ELSE
EXCPTRLS
END
ENDSR

RLS

Figure 80 (Part 2 of 2). File Description Specification and Calculation Specification for Data Entry/Update Program

This program (data entry with master update) prompts the user for a transaction,
updates a master record, and writes a transaction record.

The program has two disk files (PARTMST and TRNFIL) and one WORKSTN file (PRTUPD).
The program begins by prompting the workstation user for a part number. The
user can press F3, which is associated with indicator 03 in the DDS, to end the
program.

The CHAIN operation retrieves the master record. If the record is not found, an error
message is displayed; otherwise, the record format TRNFMT is displayed. The user
can press F12 to cancel the transaction; the master record is released, and the
PROMPT record format is displayed again. The user can press F3 to end the
program, or the user can process the transaction. When the user presses ENTER
after entering issue or receipt quantities, the master file PARTMST is updated with the
current date, new on hand quantity, issues and receipts, and the transaction is
added to the transaction file TRNFIL.

The workstation user responds to the prompts on the first screen by entering a part
number as shown in Figure 81 on page 172.

Chapter 8. Using WORKSTN Files 171

WORKSTN File Examples

172

10:12:14

Enter Part Number

ENTER - Continue

1

PART TRANSACTION ENTRY

F3 - End Job

01/25/94

Figure 81. Prompt Screen for Data Entry/Update Program

RPG/400 User's Guide

WORKSTN File Examples

Because part number 1 is in the Customer Master File, the program displays the

following record for that part.

10:12:20 PART TRANSACTION ENTRY 01/25/94
Part Number 00001
ALPHABC
Qty On Hand 50
Qty Issued 20
Qty Received 50
ENTER - Continue F3 - End Job F12 - Cancel Transaction

Figure 82. TRNFMT Screen

The workstation user can press Enter to continue or F12 to cancel the transaction.

10:12:38 PART TRANSACTION ENTRY 01/25/94
Part Number 00001
ALPHABC
Qty On Hand 80
Qty Issued 0000000
Qty Received 0000000
ENTER - Continue F3 - End Job F12 - Cancel Transaction

Figure 83. TRNFIL Screen

Chapter 8. Using WORKSTN Files

173

WORKSTN File Examples

Sample Program 3—Maintenance
The following figures illustrate a simple inquiry program using the WORKSTN file:

A

> > > > > > > >

Figure 84. DDS for Maintenance Program Master File

174

Table 7. List of Figures for WORKSTN Inquiry Program

Figure

Contents

Figure 84 below and
Figure 85 on page 175

DDS for master file and display device file

Figure 86 on page 179

File description and calculation specifications

Figure 87 on page 184

Display mode prompt screen

Figure 88 on page 185

Add mode prompt screen

Figure 89 on page 186

Update mode prompt screen

Figure 90 on page 186

Delete mode prompt screen

R A T T ' S
e T.Name++++++RLen++TDpB....
Ax CUSTOMER MASTER FILE -- CUSTMSTR

R CSTMST
CUST# 55 0
CSTNAM 20
CSTAD1 20
CSTAD2 20
CSTCTY 20
CSTSTE 2
CSTZIP 550

K CUST#

+...5 ...+,
Functions++

TEXT (' CUSTOMER NUMBER')
TEXT (" CUSTOMER NAME')
TEXT (' CUSTOMER ADDRESS')
TEXT (' CUSTOMER ADDRESS')
TEXT (' CUSTOMER CITY')
TEXT (' CUSTOMER STATE')
TEXT (' CUSTOMER ZIP CODE')

The DDS for the database file used by this program describe one record format:
CSTMST. Each field in the record format is described, and the CUST# field is identified
as the key field for the record format.

Note: Normally, the field attributes, such as number of decimal positions and data
type, are defined in a field-reference file rather than in the DDS for the record
format. The attributes are shown on the DDS so you can see what the field attri-

butes are.

RPG/400 User's Guide

WORKSTN File Examples

L R A . T N T RIS N B Y A
A**
A~ FILE NAME : CSTENT *
A~ DESCRIPTION: DISPLAY FILE FOR CUSTOMER MASTER INQUIRY *
Ax SELECT OPTION SCREEN *
A**
AANOINOZNO3T.Name++++++RLen++TDpBLinPosFunctions++++++++tttttttttttts
REF (CUSTMSTR)

CHGINPDFT(CS)

PRINT (QSYSPRT)

INDARA

R HDRSCN
TEXT (' PROMPT FOR CUST NUMBER')
CA03(03 'END OF INQUIRY')
CAO5(05 'ADD MODE')
CA06(06 'UPDATE MODE')
CA07 (07 'DELETE MODE')
CAO8(08 'DISPLAY MODE')
MODE 8A 0 1 A4DSPATR(HI)

1 13'MODE’
DSPATR (HI)

2 ATIME
DSPATR (HI)

2 28'CUSTOMER FILE MAINTENANCE'
DSPATR(HI RI)

2 70DATE
EDTCDE (Y)
DSPATR (HI)

CUST# R Y I 10 25DSPATR(CS)
CHECK(RZ)
51 ERRMSG (' CUSTOMER ALREADY ON +
FILE' 51)
52 ERRMSG (' CUSTOMER NOT ON FILE' +

52)

Figure 85 (Part 1 of 4). DDS for Display Device File for Customer Master Inquiry

> > > > >>>>>>>> > >

Chapter 8. Using WORKSTN Files 175

WORKSTN File Examples

Lo T T | T T B R c B Y A

10 33'<--Enter Customer Number'
DSPATR(HI)

23 4'F3 End Job'

23 21'F5 Add'

23 34'F6 Update'

23 50'F7 Delete'

23 66'F8 Display'

R CSTINQ TEXT('DISPLAY CUST INFO')
CA12(12 'PREVIOUS SCREEN')
MODE 8 0 1 ADSPATR(HI)

1 13'MODE'
DSPATR(HI)

2 ATIME
DSPATR(HI)

2 28'CUSTOMER FILE MAINTENANCE'
DSPATR(HI RI)

2 70DATE
EDTCDE(Y)
DSPATR (HI)

Figure 85 (Part 2 of 4). DDS for Display Device File for Customer Master Inquiry

> > >> > >

176 RPG/400 User's Guide

*.. 1

04

04

04

04

04

04

> >3 >>>>>>>>>>>> > >

CUST#
CSTNAM

CSTAD1

CSTAD2

CSTCTY

CSTSTE

CSTZIP

MODE1
CSTBLD

MODE

4

4
6

10

10

23
23

(-

4

WORKSTN File Examples

U O - TP U ¢ RPN AR |
14'Customer:'
DSPATR(HI UL)
25DSPATR(HI)
25DSPATR(CS)
DSPATR(PR)
25DSPATR(CS)
DSPATR(PR)
25DSPATR(CS)
DSPATR(PR)
25DSPATR(CS)
DSPATR(PR)
25DSPATR(CS)
DSPATR(PR)
40DSPATR(CS)
EDTCDE(Z)
DSPATR(PR)
2'F12 Cancel'
20
TEXT('ADD CUST RECORD')
CA12(12 'PREVIOUS SCREEN')
4DSPATR(HI)
13'MODE' DSPATR(HI)
4TIME
DSPATR(HI)
28'CUSTOMER FILE MAINTENANCE'
DSPATR(HI RI)
70DATE
EDTCDE(Y)
DSPATR(HI)
14'Customer:' DSPATR(HI UL)

Figure 85 (Part 3 of 4). DDS for Display Device File for Customer Master Inquiry

Chapter 8. Using WORKSTN Files

177

WORKSTN File Examples

R R T U Ty S P S DR c IR DR A
AANOINO2NO3T.Name++++++RLen++TDpBLinPoSFUnctions++++++++++ttttttttttx

A CUST# R 0 4 25DSPATR(HI)

A 6 20'Name' DSPATR(HI)
A CSTNAM R I 625

A 7 17'Address' DSPATR(HI)
A CSTAD1 R I 7 25

A 8 17'Address' DSPATR(HI)
A CSTAD2 R I 825

A 9 20'City' DSPATR(HI)
A CSTCTY R I 925

A 10 19'State’ DSPATR(HI)
A CSTSTE R I10 25

A 10 36'Zip' DSPATR(HI)
A CSTZIP R Y I10 40

A 23 2'F12 Cancel Addition'

Figure 85 (Part 4 of 4). DDS for Display Device File for Customer Master Inquiry

The DDS for the CSTENT display device file contains three record formats: HDRSCN,
CSTINQ, and CSTBLD. The HDRSCN record prompts for the customer number and the
mode of processing. The CSTINQ record is used for the Update, Delete, and
Display modes. The fields are defined as output/input (B in position 38). The fields
are protected when Display or Delete mode is selected (DSPATR(PR)). The CSTBLD
record provides only input fields (I in position 38) for a new record.

The CUSHDG record format contains the constant 'Customer Master Inquiry'; the
ERRMSG keyword defines the messages to be displayed if an error occurs. The CA
keywords define the function keys that can be used and associate the function keys
with indicators in the RPG program.

178 RPG/400 User's Guide

WORKSTN File Examples

R R A . R | T B, AP ¢ NEPRP DR AR

F**

F+ PROGRAM ID - CUSTMNT *
F+ PROGRAM NAME - CUSTOMER MASTER MAINTENANCE *
F+ THIS PROGRAM ADDS, UPDATES, DELETES AND DISPLAYS *
F+ CUSTOMER RECORDS IN THE CUSTOMER MASTER FILE. *
F**
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FCUSTMSTRUF E K DISK A

FCSTENT CF E WORKSTN

L G R | UL TEPUE. DU - RPN P A
CL0N01N02N03Factor1+++OpcdeFactor2+++Resu1tLenDHH1LoEqumments++++++*
C CSTKEY KLIST

C KFLD CUST#
Cosksk ks sk s e ok kk ok kR kKA AR KRR IR R IR AR AR AR Ak k k&
C* MAINLINE *

C**

MOVE 'DISPLAY 'MODE
EXFMTHDRSCN

*INO3 DOWEQ' 0"
EXSR SETMOD

ﬁﬁ(;ﬁﬁ

>(.

CUST# IFNE *ZERO
MODE CASEQ'ADD' ADDSUB
MODE CASEQ'UPDATE' UPDSUB
MODE CASEQ'DELETE' DELSUB
MODE CASEQ'DISPLAY' INQSUB
END
END

)(_

EXFMTHDRSCN
END
MOVE '1' *INLR

Figure 86 (Part 1 of 5). File Description and Calculation Specifications for Maintenance Program

OOOOOOOOOOOO0

Chapter 8. Using WORKSTN Files

179

WORKSTN File Examples

R R A . R | T B, AP ¢ NEPRP DR AR
C**
C* SUBROUTINE - ADDSUB *
C* PURPOSE - ADD NEW CUSTOMER TO FILE *
C**
CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
c ADDSUB BEGSR

C CSTKEY CHAINCSTMST 50
C *IN50 IFEQ '0"

C MOVE '1° *IN51
C ELSE

C MOVE '@’ *IN51
C MOVE *BLANK CSTNAM
C MOVE *BLANK CSTAD1
C MOVE *BLANK CSTAD2
C MOVE *BLANK CSTCTY
C MOVE *BLANK CSTSTE
C Z-ADD*ZERO CSTZIP
C EXFMTCSTBLD

C *IN12 IFEQ 'O’

C WRITECSTMST

C END

C END

C ENDSR

Figure 86 (Part 2 of 5). File Description and Calculation Specifications for Maintenance Program

180 RPG/400 User's Guide

WORKSTN File Examples

I A A A . TRPUPINE. V' TP UV JEPIPIPS UMV BEPIPIPE, DO SRS
R R R R R L R R L R R R
Cx SUBROUTINE - UPDSUB *
Cx PURPOSE - UPDATE CUSTOMER MASTER RECORD *

C**

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
c UPDSUB BEGSR

MOVE '0’' *INO4
CSTKEY CHAINCSTMST 52
*IN52 IFEQ '0'

EXFMTCSTINQ
*IN12 IFEQ '0'

UPDATCSTMST

ELSE

EXCPTRLS

END

END
C ENDSR
C**
Cx* SUBROUTINE - DELSUB *
C* PURPOSE - DELETE CUSTOMER MASTER RECORD *
C**
C DELSUB BEGSR

MOVE '1' *INO4
CSTKEY CHAINCSTMST 52
*IN52 IFEQ 'O’

EXFMTCSTINQ
*IN12 IFEQ 'O’

DELETCSTMST

ELSE

EXCPTRLS

END

END

ENDSR

Figure 86 (Part 3 of 5). File Description and Calculation Specifications for Maintenance Program

OOOOOOOOOOO

OOOOOOOOOO0O

Chapter 8. Using WORKSTN Files

181

WORKSTN File Examples

I A A A . TRPUPINE. V' TP UV JEPIPIPS UMV BEPIPIPE, DO SRS
R R R R R L R R L R R R
Cx SUBROUTINE - INQSUB *
Cx* PURPOSE - DISPLAY CUSTOMER MASTER RECORD *

C**

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComment s++++++*

C INQSUB BEGSR

C MOVE '1° *INO4

C CSTKEY CHAINCSTMST 52

C *IN52 IFEQ '0"

C EXFMTCSTINQ

C EXCPTRLS

C END

C ENDSR
C**
C+ SUBROUTINE - SETMOD x
Cx PURPOSE - SET MAINTENANCE MODE %

C**

C SETMOD BEGSR

C *INO5 IFEQ '1'

C MOVE 'ADD 'MODE
C MOVE MODE MODE1
C ELSE

c *INO6 IFEQ '1'

C MOVE 'UPDATE 'MODE
C MOVE MODE MODE1
C ELSE

C *INO7 IFEQ '1'

C MOVE 'DELETE 'MODE
C MOVE MODE MODE1
c ELSE

Figure 86 (Part 4 of 5). File Description and Calculation Specifications for Maintenance Program

182 RPG/400 User's Guide

*

WORKSTN File Examples

I . B T S, A BRI U ¢ JEPRPE IR A

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComment s++++++*

Cx*

OOOOOOOO0O

0CSTMST E

«INOS IFEQ '1'

MOVE 'DISPLAY 'MODE
MOVE MODE MODE1
ELSE

END

END

END

END

ENDSR

RLS

Figure 86 (Part 5 of 5). File Description and Calculation Specifications for Maintenance Program

This program maintains a customer master file for additions, changes, and
deletions. The program can also be used for inquiry.

The program first sets the default (display) mode of processing and displays the
customer maintenance prompt screen. The workstation user can press F3, which
turns on indicator 03, to request end of job. Otherwise, to work with customer infor-
mation, the user enters a customer number and presses Enter. The user can
change the mode of processing by pressing F5 (ADD), F6 (UPDATE), F7 (DELETE), or
F8 (DISPLAY).

To add a new record to the file, the program uses the customer number as the
search argument to chain to the master file. If the record does not exist in the file,
the program displays the CSTBLD screen to allow the user to enter a new customer
record. If the record is already in the file, an error message is displayed. The user
can press F12, which sets on indicator 12, to cancel the add operation and release
the record. Otherwise, to proceed with the add operation, the user enters informa-
tion for the new customer record in the input fields and writes the new record to the
master file.

To update, delete, or display an existing record, the program uses the customer
number as the search argument to chain to the master file. If a record for that
customer exists in the file, the program displays the customer file inquiry screen
CSTINQ. If the record is not in the file, an error message is displayed. If the mode
of processing is display or delete, the input fields are protected from modification.
Otherwise, to proceed with the customer record, the user can enter new information
in the customer record input fields. The user can press F12, which sets on indi-
cator 12, to cancel the update or delete operation, and release the record. Display
mode automatically releases the record when Enter is pressed.

Chapter 8. Using WORKSTN Files 183

WORKSTN File Examples

In the following screen, the workstation user responds to the prompt by entering
customer number 00001 to display the customer record.

DISPLAY MODE
10:09:01 CUSTOMER FILE MAINTENANCE 01/25/94

00001 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 87 (Part 1 of 2). Display Mode Screens for Maintenance Program

Because the customer record for customer number 00001 exists in the
Master File, the data is displayed as follows:

DISPLAY MODE
10:09:11 CUSTOMER FILE MAINTENANCE 01/25/94

Customer: 00001

SMITH, JOE

SUITE 20000

QUEEN STREET
PORTLAND

OR 99999

F12 Cancel DISPLAY

Figure 87 (Part 2 of 2). Display Mode Screens for Maintenance Program

184 RPG/400 User's Guide

The workstation user responds to the add prompt by entering a new customer

number as shown in the following screen.

WORKSTN File Examples

ADD MODE

10:09:20 CUSTOMER FILE MAINTENANCE
00009 <--Enter Customer Nu

F3 End Job F5 Add F6 Update F7

01/25/94

mber

Delete F8 Display

Figure 88 (Part 1 of 2). Add Mode Screens for Maintenance Program

In the screen below, a new customer is added to the Customer Master File.

ADD MODE
10:09:36

Customer:

Name
Address
Address

City

State

F12 Cancel Addition

CUSTOMER FILE MAINTENANCE
00009

LANE, ROBERT
Bellavista

17 Donleavy

Ontario

CA Zip 15679

01/25/94

Figure 88 (Part 2 of 2). Add Mode Screens for Maintenance Program

Chapter 8. Using WORKSTN Files

185

WORKSTN File Examples

The workstation user responds to the update prompt by entering a customer
number as shown in the following screen.

UPDATE ~ MODE
10:10:43 CUSTOMER FILE MAINTENANCE 01/25/94

00006 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 89. Update Mode Screen for Maintenance Program

The workstation user responds to the delete prompt by entering a new customer
number in the following screen.

DELETE ~ MODE
10:10:52 CUSTOMER FILE MAINTENANCE 01/25/94

00009 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 90. Delete Mode Screen for Maintenance Program

186 RPG/400 User's Guide

Sample Program 4-WORKSTN Subfile Processing
The following figures illustrate a WORKSTN file:

WORKSTN File Examples

Table 8. List of Figures for WORKSTN Subfile Processing

Figure

Contents

Figure 91 below and
Figure 92 on page 188

DDS for master file and display device file

Figure 93 on page 191

File description and calculation specifications

Figure 94 on page 194

Prompt screen

Figure 95 on page 195

Display screen

.01 Lohel0 2 LohllL 3 Ll 4
Acceenons. T.Name++++++,Len++TDpB. ..
Ax CUSTOMER MASTER FILE -- CUSMSTP
A R CUSREC

A CUST 5

A NAME 20

A ADDR 20

A CITY 20

A STATE 2

A ZIP 5 0

A SRHCOD 3

A CUSTYP 1

A ARBAL 10 2

R I TR

(R Y

...Functions+++++++t+tttttttttttx

TEXT (' CUSTOMER
TEXT (' CUSTOMER
TEXT (' CUSTOMER
TEXT (' CUSTOMER
TEXT (' CUSTOMER
TEXT (' CUSTOMER
TEXT (' CUSTOMER
TEXT (' CUSTOMER
TEXT('ACCOUNTS

NUMBER')

NAME')

ADDRESS ')

CITY')

STATE')

ZIP CODE')

NAME SEARCH CODE')
TYPE')

RECEIVABLE BALANCE')

A**

Ax FILE NAME : CUSZIPL

*

A* DESCRIPTION: LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMSTP) *
Ax BY CUSTOMER ZIP CODE (ZIP) *
Ak kkrhkhkhhhhhhhhhhhhrhrhrhrhrhhkhhhhhhhhhhrhrhrhrhrhrhrhkhkhhrhrhrkrk
Acceenooae. T.Name++++++RLen++TDpB...... Functions++++++++++++++++++++%
A R CUSREC PFILE(CUSMSTP)

A ZIP R

A NAME R

A ARBAL R

A K ZIP

Figure 91. DDS for WORKSTN Subfile-Processing Program Master File

The DDS for the database file used by this program describe one record format:
CUSREC. The logical file CUSZIPL keyed by zip code is based on the physical file
CUSMSTP, as indicated by the PFILE keyword. The record format created by the

logical file will include only those fields specified in the logical file DDS. All other

fields will be excluded.

Note: Normally, the field attributes, such as number of decimal positions and data

type, are defined in a field-reference file rather than in the DDS for the record

format. The attributes are shown on the DDS so you can see what the field attri-

butes are.

Chapter 8. Using WORKSTN Files

187

WORKSTN File Examples

2 R S DS SR DY S D SR SR < I S
A**
A+ FILE NAME : CUSSRC *
A+ DESCRIPTION: DISPLAY CUSTOMER MASTER BY ZIP CODE *
A**
AAN01N02N03T.Name++++++RLen++TDpBL1'nPosFunctions= LI I e e e e
REF (CUSMSTP)

CHGINPDFT(CS)

PRINT (QSYSPRT)

INDARA

CA03(03 'END OF JOB')

R HEAD
OVERLAY
2 ATIME
DSPATR(HI)
2 28'CUSTOMER FILE SEARCH'
DSPATR(HI RI)
2 70DATE
EDTCDE(Y)
DSPATR(HI)
R FOOT1
23 6'ENTER - Continue'
DSPATR(HI)
23 29'F3 - End Job'
DSPATR(HI)
R FOOT2
23 6'ENTER - Continue'
DSPATR(HI)
23 29'F3 - End Job'
DSPATR(HI)
23 47'F4 - RESTART ZIP CODE'
DSPATR(HI)

Figure 92 (Part 1 of 2). DDS for WORKSTN Subfile-Processing Program Display Device File

> > > > >>>>>>>>> > >

188 RPG/400 User's Guide

WORKSTN File Examples

L R A . TR R S - DT A ¢ R S A
AANOINO2NO3T.Name++++++RLen++TDpBLinPosFunctions+++++++++t+tttttttttx
R PROMPT
OVERLAY
4 4'Enter Zip Code'
DSPATR(HI)
ZIP R Y I 4 19DSPATR(CS)
CHECK(RZ)
61 ERRMSG('ZIP CODE NOT FOUND' +
61)
R SUBFILE SFL
NAME R 9 4
ARBAL R 27EDTCDE (J)
R SUBCTL SFLCTL(SUBFILE)
55 SFLCLR
N55 SFLDSPCTL
N55 SFLDSP
SFLSIZ(13)
SFLPAG(13)
ROLLUP(95 'ROLL UP')
OVERLAY
CA04(04 'RESTART ZIP CDE')
4 4'Zip Code'
14DSPATR(HI)
7 4'Customer Name'
DSPATR(HI UL)
27'A/R Balance'
DSPATR(HI UL)

Figure 92 (Part 2 of 2). DDS for WORKSTN Subfile-Processing Program Display Device File

[(=]

ZIP R 0

=3

> > > >>>>>>>> >
~N

The DDS for the CUSSRC display device file contains six record formats: HEAD,
FOOT1, FOOT2, PROMPT, SUBFILE, and SUBCTL.

The PROMPT record format requests the user to enter a zip code. If the zip code is
not found in the file, an error message is displayed. The user can press F3, which
sets on indicator 03, to end the program.

The SUBFILE record format must be defined immediately preceding the subfile-
control record format SUBCTL. The subfile record format, which is defined with the
keyword SFL, describes each field in the record, and specifies the location where
the first record is to appear on the display (here, on line 9).

The subfile-control record format contains the following unique keywords:

e SFLCTL identifies this format as the control record format and names the associ-
ated subfile record format.

» SFLCLR describes when the subfile is to be cleared of existing records (when
indicator 55 is on). This keyword is needed for additional displays.

e SFLDSPCTL indicates when to display the subfile-control record format (when
indicator 55 is off).

Chapter 8. Using WORKSTN Files 189

WORKSTN File Examples

e SFLDSP indicates when to display the subfile (when indicator 55 is off).

e SFLSIZ specifies the total size of the subfile. In this example, the subfile size is
13 records that are displayed on lines 9 through 21.

e SFLPAG defines the number of records on a page. In this example, the page
size is the same as the subfile size.

e ROLLUP indicates that indicator 95 is set on in the program when the roll up
function is used.

The OVERLAY keyword defines this subfile-control record format as an overlay
format. This record format can be written without the OS/400 system erasing the
screen first. F4 is valid for repeating the search with the same zip code. (This use
of F4 allows a form of roll down.)

190 RPG/400 User's Guide

WORKSTN File Examples

S R N S SRR S SR T - SR AN c SR Y T
F**
F* PROGRAM 1ID - CUSTSFL *
F* PROGRAM NAME - CUSTOMER MASTER SEARCH *

Fx THIS PROGRAM DISPLAYS THE CUSTOMER MASTER FILE BY ZIP CODE *

F**

FFilenameIPEAF....R1enLK1AIOvKTocEDevice+...... KExit++Entry+A....Ul.*
FCUSZIPL IF E K DISK

FCUSSRC CF E WORKSTN

F RECNUMKSFILE SUBFILE

L R T T | T T B U ¢ REPRP DR A

CL0N01N02N03Factor1+++OpcdeFactor2+++Resu1tLenDHH1LoEqumments++++++*
C CSTKEY KLIST

C KFLD ZIP

(R T T T T T R R R T T T T T R R T e P T R R T R T
C* MAINLINE *
Chxkhdhkrhhhrhhhrhhhhhhhhrhhhrhhhhrhhhrhhhrrhhhhrrhhhrrhhrrhhhrrhhhxrhhx*
C WRITEFOOT1

C WRITEHEAD

C EXFMTPROMPT

C*

C *INO3 DOWEQ'@'

C CSTKEY SETLLCUSREC 20

C *IN20 IFEQ *ZERO

C MOVE '1' *IN61

C ELSE

C EXSR SFLPRC

C END

C *INO3 IFEQ 'O’

C *INO4 IFEQ '0"

C *IN61 IFEQ 'O’

C WRITEFOOT1

C WRITEHEAD

C END

Figure 93 (Part 1 of 3). File Description Specification and Calculation Specification for WORKSTN Subfile Proc-

essing Program

Chapter 8. Using WORKSTN Files

191

WORKSTN File Examples

N R O . BN PR SV U S U ¢ JEPSPPE PR SR
CL0N01N02N03Factor1+++OpcdeFactor2+++Resu1tLenDHH1LoEqumments++++++*
C EXFMTPROMPT

C END

C END

C END

C*

C SETON LR
Crrdkrhhkhhrhhhkhhrhhrhhhhrhhrkhhrhrhhrhhhhhrhrhhrhhhkhhrhrhhrhhrhhrhrhhxk
C* SUBROUTINE - SFLPRC *
C* PURPOSE - PROCESS SUBFILE AND DISPLAY *

C**

C SFLPRC BEGSR

c NXTPAG TAG

C EXSR SFLCLR
C EXSR SFLFIL
C SAMPAG TAG

c WRITEFO0T2
C WRITEHEAD

C EXFMTSUBCTL
C *IN95 IFEQ '1'

C *IN71 IFEQ 'O

C GOTO NXTPAG
c ELSE

C GOTO SAMPAG
C END

C END

C ENDSR

Figure 93 (Part 2 of 3). File Description Specification and Calculation Specification for WORKSTN Subfile Proc-
essing Program

192 RPG/400 User's Guide

WORKSTN File Examples

R R A . R | T B, AP ¢ NEPRP DR AR
C**
C* SUBROUTINE - SFLFIL *
C* PURPOSE - FILL SUBFILE *
C**
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
c SFLFIL BEGSR

C *IN21 DOWEQ'0*

C ZIP READECUSREC 71

C *IN71 IFEQ '1'

C MOVE '1° *IN21

C ELSE

C ADD 1 RECNUM

C WRITESUBFILE 21

C END

C END

C ENDSR
C**
C+ SUBROUTINE - SFLCLR x
C+ PURPOSE - CLEAR SUBFILE RECORDS %

C**

C SFLCLR BEGSR

C MOVE '1' *IN55

c WRITESUBCTL

C MOVE '0' *IN55

C MOVE '0' *IN21

C Z-ADD*ZERO RECNUM 50
C ENDSR

Figure 93 (Part 3 of 3). File Description Specification and Calculation Specification for WORKSTN Subfile Proc-

essing Program

The file description specifications identify the disk file to be searched and the
display device file to be used (CUSSRC). The continuation line for the WORKSTN file
identifies the record format (SUBFILE) that is to be used as a subfile. The relative-
record-number field (RECNUM) specified in positions 47 through 52 of the continuation
line controls which record within the subfile is being accessed.

The program displays the PROMPT record format and waits for the workstation user's
response. F3 sets on indicator 03, which controls the end of the program. The zip
code (ZIP) is used to position the CUSZIPL file by the SETLL operation. Notice that
the record format name CUSREC is used in the SETLL operation instead of the file
name CUSZIPL. If no record is found, an error message is displayed.

The SFLPRC subroutine handles the processing for the subfile: clearing, filling, and
displaying. The subfile is prepared for additional requests in subroutine SFLCLR. If
indicator 55 is on, no action occurs on the display, but the main storage area for
the subfile records is cleared. The SFLFIL routine fills the subfile with records. A
record is read from the CUSZIPL file. If the zip code is the same, the record count

Chapter 8. Using WORKSTN Files 193

WORKSTN File Examples

194

(RECNUM) is incremented and the record is written to the subfile. This subroutine is
repeated until either the subfile is full (indicator 21 on the WRITE operation) or end of
file occurs on the CUSZIPL file (indicator 71 on the READE operation). When the
subfile is full or end of file occurs, the subfile is written to the display by the EXFMT
operation by the subfile-control record control format. The user reviews the display
and decides whether:

To end the program by pressing F3.

To restart the zip code by pressing F4. The PROMPT record format is not dis-
played, and the subfile is displayed starting over with the same zip code.

To fill another page by pressing ROLL UP. If end of file has occurred on the
CUSZIPL file, the current page is redisplayed; otherwise, the subfile is cleared
and the next page is displayed.

To continue with another zip code by pressing ENTER. The PROMPT record format
is displayed. The user can enter a zip code or end the program.

In the screen below, the user enters a zip code in response to the prompt.

10:11:08 CUSTOMER FILE SEARCH 01/25/94

Enter Zip Code 72901

ENTER - Continue F3 - End Job

Figure 94. Prompt Screen for WORKSTN Subfile-Processing Program

RPG/400 User's Guide

WORKSTN File Examples

The subfile is written to the screen as shown:

10:11:23 CUSTOMER FILE SEARCH 01/25/94
Zip Code 72901
Customer Name A/R Balance
BRADFIELD 11,111,111.00
LEUNG 22,222,222.00
ALLEN 33,333,333.00
BELL 44,444,444 .00
KETCHUM 55,555,555.00
FRASER 66,666,666.00
GOODING 77,777,777.00
LANE 88,888,888.00
MARSHALL 11,111,111.00
ROBERTS 11,111,222.00
EWING 33,333,333.00
LOGAN 44,444,444 .00
KENT 55,555,555.00
ENTER - Continue F3 - End Job F4 - RESTART ZIP CODE

Figure 95. Display Screen for WORKSTN Subfile-Processing Program

Chapter 8. Using WORKSTN Files 195

WORKSTN File Examples

Sample Program 5—-Inquiry by Zip Code and Search on Name

The following figures illustrate a simple inquiry program using the WORKSTN file:

Table 9. List of Figures for WORKSTN Inquiry Program

Figure Contents
Figure 96 below and DDS for master file and display device file
Figure 97 on page 197
Figure 98 on page 200 File description and calculation specifications
Figure 99 on page 204 Prompt screen
Figure 100 on page 205 Information screen
Figure 101 on page 205 Detailed information screen
LN . O ANIS U SIS Y SR U, SEPUE. DU BRI P A
Ao..oooal.. T.Name++++++RLen++TDpB...... Functions++++++++++++++++++++%
A+ CUSTOMER MASTER FILE -- CUSMSTP
A R CUSREC
A CUST 5 TEXT('CUSTOMER NUMBER')
A NAME 20 TEXT('CUSTOMER NAME')
A ADDR 20 TEXT('CUSTOMER ADDRESS')
A CITY 20 TEXT('CUSTOMER CITY')
A STATE 2 TEXT('CUSTOMER STATE')
A ZIP 5 0 TEXT('CUSTOMER ZIP CODE')
A SRHCOD 3 TEXT('CUSTOMER NAME SEARCH CODE')
A CUSTYP 1 TEXT('CUSTOMER TYPE')
A ARBAL 10 2 TEXT('ACCOUNTS RECEIVABLE BALANCE')
A**
A= FILE NAME : MLGMSTL1 *
A* DESCRIPTION: LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMSTP) *
Ax BY ZIP CODE (ZIP) AND NAME (NAME) *
A**
Ao.oooo.l.. T.Name++++++,Len++TDpB...... Functions++++++++++++t+++++++x
A R CUSREC PFILE(CUSMSTP)
A K ZIP
A K NAME

Figure 96. DDS for Inquiry by Zip Code Master File

The DDS for the database file used in this program defines one record format
named CUSREC, and identifies the ZIP and NAME fields as the key fields.

196 RPG/400 User's Guide

WORKSTN File Examples

*,, 1 ..+ 2 Lo 3 LLklL b Lo+l 0B Ll kLl B L Hll T LR
A**
A« FILE NAME : MLG265D *
A+ DESCRIPTION: DISPLAY CUSTOMER MASTER BY ZIP CODE & NAME *
A**
AAN01N02N03T.Name++++++RLen++TDpBL1'nPosFunctions= t+++++++++ e x
DSPSIZ(24 80 *DS3)

REF (CUSMSTP)

CHGINPDFT(CS)

PRINT (QSYSPRT)

INDARA

CA03(03 'END OF JOB')

R HEAD
OVERLAY
2 ATIME
DSPATR (HI)
2 29'Customer Master Inquiry'’
DSPATR(HI UL)
2 70DATE
EDTCDE(Y)
DSPATR(HI)
R FOOT1
23 6'ENTER - Continue'
DSPATR (HI)
23 29'F3 - End Job'
DSPATR(HI)
R FOOT2
23 6'ENTER - Continue'
DSPATR(HI)
23 29'F3 - End Job'
DSPATR(HI)
23 47'F4 - Restart Zip Code'
DSPATR(HI)
R PROMPT
OVERLAY
4 4'Enter Zip Code'
DSPATR (HI)
ZIPCD R Y I 4 19REFFLD(ZIP CUSMSTP)
CHECK(RZ) DSPATR(CS)
5 7'Search Name'
DSPATR (HI)
SRCNAM R I 5 19REFFLD(NAME CUSMSTP)
DSPATR(CS)

Figure 97 (Part 1 of 3). DDS for Inquiry by Zip Code Display Device File

> > > > >>> > >

Chapter 8. Using WORKSTN Files 197

WORKSTN File Examples

Lo T T | T T B R c B Y A

R SUBFILE
CHANGE (99 'FIELD CHANGED')
SFL

8DSPATR(CS)
VALUES(' " 'X'")

17

SEL 1 B

O

ZIP R
CUST R 30
NAME R 0 43
R SUBCTL SFLCTL(SUBFILE)
SFLSIZ(0013)
SFLPAG(0013)
55 SFLCLR
N55 SFLDSPCTL
N55 SFLDSP
ROLLUP(95 'ROLL UP')
OVERLAY
CAO4(04 'RESTART ZIP CDE')
4'Zip Code'
17REFFLD(ZIP CUSMSTP)
DSPATR(HI)
4'Search Name'
17REFFLD (NAME CUSMSTP)
DSPATR(HI)
6'Select'
DSPATR(HI)
8 6" "X" Zip Code Number
Customer Name '
DSPATR(HI)
DSPATR(UL)

Figure 97 (Part 2 of 3). DDS for Inquiry by Zip Code Display Device File

o o
O O o

=

ZIPCD R 0

i~

(3]

SRCNAM R 0

(3]

> > > >>>>>>>>>>>>>> > >
~

198 RPG/400 User's Guide

*,.01 .. +o0002 ...
AANOINO2NO3T.Name++++++RLen++TDpBLinPoSFUnctions++++++++++ttttttttttx

CUST

NAME

ADDR

CITY

ZIP

ARBA

> > > > > > > > >

Figure 97 (Part 3 of 3). DDS for Inquiry by Zip Code Display Device File

R CUSDSP

STATE

L

The DDS for the CUSSRC display device file contains seven record formats: HEAD,

3t

5A 0

20A

o

20A 0

20A 0

2A 0

55 00

10Y 20

4 ..

A o

o 0

10
10
12
12
14
14
14
14
16
16

oo 5L

OVERLAY

WORKSTN File Examples

R TR A

CA04(04 'RESTART ZIP CDE')

25'Customer'
35DSPATR(HI)
25"'Name'

35DSPATR(HI)
25'Address'
35DSPATR(HI)
25'City'

35DSPATR(HI)
25'State’

35DSPATR(HI)
41'Zip Code’
50DSPATR(HI)

25'A/R Balance'

42DSPATR(HI)
EDTCDE(J)

FOOT1, FOOT2, PROMPT, SUBFILE, SUBCTL, and CUSDSP.

The PROMPT record format requests the user to enter a zip code and search name.

If no entry is made, the display starts at the beginning of the file. The user can

press F3, which sets on indicator 03, to end the program.

The SUBFILE record format must be defined immediately preceding the subfile-

control record format SUBCTL. The subfile-record format defined with the keyword

SFL, describes each field in the record, and specifies the location where the first

record is to appear on the display (here, on line 9).

The subfile-control record format SUBCTL contains the following unique keywords:

SFLCTL identifies this format as the control record format and names the associ-
ated subfile record format.

SFLCLR describes when the subfile is to be cleared of existing records (when

indicator 55 is on). This keyword is needed for additional displays.

SFLDSPCTL indicates when to display the subfile-control record format (when
indicator 55 is off).

SFLDSP indicates when to display the subfile (when indicator 55 is off).

SFLSIZ specifies the total size of the subfile. In this example, the subfile size is
15 records that are displayed on lines 9 through 23.

SFLPAG defines the number of records on a page. In this example, the page

size is the same as the subfile size.

ROLLUP indicates that indicator 95 is set on in the program when the roll up

function is used.

Chapter 8. Using WORKSTN Files

199

WORKSTN File Examples

The OVERLAY keyword defines this subfile-control record format as an overlay
format. This record format can be written without the OS/400 system erasing the
screen first. F3 is valid for repeating the search with the same zip code. (This use
of F3 allows a form of roll down.)

The CUSDSP record format displays information for the selected customers.

NP NP SO S D SN SN ST SRR SR DUV : BEPE SO AR
F**
F+ PROGRAM ID - MLG265 *
Fx PROGRAM NAME - MAILING LIST SEARC BY ZIP CODE/NAME *
F**
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FMLGMSTL1IF E K DISK

FMLG265D CF E WORKSTN

F RECNUMKSFILE SUBFILE

CLONOINOZNO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++x
C CSTKEY KLIST

KFLD ZIPCD

KFLD SRCNAM
ZIPKEY KLIST

KFLD ZIP

KFLD NAME

C**

Cx MAINLINE %
C**
C WRITEFOOT1
WRITEHEAD
EXFMTPROMPT
*INO3 DOWEQ' 0"
CSTKEY SETLLCUSREC
EXSR SFLPRC
EXSR SFLCHG
«INO3 IFEQ '0"
*INO4 ANDEQ'0"
WRITEFOOT1
WRITEHEAD
EXFMTPROMPT
END
END

OOOOOOO

OOOOOOOOOOOOOOO

o

SETON LR

Figure 98 (Part 1 of 4). File Description Specification and Calculation Specification for Inquiry by Zip Code and
Search on Name Program

200 RPG/400 User's Guide

WORKSTN File Examples

I A A A . TRPUPINE. V' TP UV JEPIPIPS UMV BEPIPIPE, DO SRS
R R R R R L R R L R R R
Cx SUBROUTINE - SFLPRC *
Cx PURPOSE - PROCESS SUBFILE AND DISPLAY *

C**

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
c SFLPRC BEGSR
NXTPAG TAG

EXSR SFLCLR

EXSR SFLFIL
SAMPAG TAG

WRITEF00T2

WRITEHEAD

EXFMTSUBCTL
*IN95 IFEQ '1'
*IN71 IFEQ '0'

GOTO NXTPAG

ELSE

GOTO SAMPAG

END

END

ENDSR

Figure 98 (Part 2 of 4). File Description Specification and Calculation Specification for Inquiry by Zip Code and
Search on Name Program

OOOOOOOOOOOOOOO

(]

Chapter 8. Using WORKSTN Files

201

WORKSTN File Examples

I A A A . TRPUPINE. V' TP UV JEPIPIPS UMV BEPIPIPE, DO SRS
R R R R R L R R L R R R
Cx SUBROUTINE - SFLFIL *
Cx* PURPOSE - FILL SUBFILE *

C**

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComment s++++++*
C SFLFIL BEGSR

C *IN21 DOWEQ'0*

C READ CUSREC 71

C *IN71 IFEQ '1'

C MOVE '1° *IN21

C ELSE

C ADD 1 RECNUM

C MOVE *BLANK SEL

C WRITESUBFILE 21

C END

C END

C ENDSR
C**
C+ SUBROUTINE - SFLCLR x
C+ PURPOSE - CLEAR SUBFILE RECORDS %
C**
C SFLCLR BEGSR

C MOVE '1° *IN55

C WRITESUBCTL

C MOVE '0' *IN55

C MOVE '0" *IN21

C Z-ADD*ZERO RECNUM 50

C ENDSR

Figure 98 (Part 3 of 4). File Description Specification and Calculation Specification for Inquiry by Zip Code and
Search on Name Program

202 RPG/400 User's Guide

*

WORKSTN File Examples

I . B T S, A BRI U ¢ JEPRPE IR A

C**

Cx*
Cx*

SUBROUTINE - SFLCHG *

- CUSTOMER RECORD SELECTED *

C**

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

C

OOOOOOO

SFLCHG BEGSR

READCSUBFILE 98

*IN98 IFEQ 'O
ZIPKEY CHAINCUSREC 71

EXFMTCUSDSP
END
ENDSR

Figure 98 (Part 4 of 4). File Description Specification and Calculation Specification for Inquiry by Zip Code and
Search on Name Program

The file description specifications identify the disk file to be searched and the
display device file to be used (MLG265D). The continuation line for the WORKSTN file
identifies the record format (SUBFILE) to be used as a subfile. The relative-record-
number field (RECNUM) specified in positions 47 through 52 of the continuation line
controls, which record within the subfile is being accessed.

The program displays the PROMPT record format and waits for the workstation user's
response. F3 sets on indicator 03, which controls the end of the program. The zip
code (ZIP) and name (NAME) are used as the key to position the MLGMSTL1 file by
the SETLL operation. Notice that the record format name CUSREC is used in the
SETLL operation instead of the file name MLGMSTLL.

The SFLPRC subroutine handles the processing for the subfile: clearing, filling, and
displaying. The subfile is prepared for additional requests in subroutine SFLCLR. If
indicator 55 is on, no action occurs on the display, but the main storage area for
the subfile records is cleared. The SFLFIL routine fills the subfile with records. A
record is read from the MLGMSTL1 file, the record count (RECNUM) is incremented, and
the record is written to the subfile. This subroutine is repeated until either the
subfile is full (indicator 21 on the WRITE operation) or end of file occurs on the
MLGMSTL1 file (indicator 71 on the READ operation). When the subfile is full or end of
file occurs, the subfile is written to the display by the EXFMT operation by the subfile-
control record control format. The user reviews the display and decides:

e To end the program by pressing F3.

e To restart the subfile by pressing F4. The PROMPT record format is not dis-
played, and the subfile is displayed starting over with the same zip code.

e To fill another page by pressing the ROLL UP keys. If end of file has occurred
on the MLGMST1 file, the current page is displayed again; otherwise, the subfile is
cleared, and the next page is displayed.

* To display customer detail by entering X, and pressing ENTER. The user can
then return to the PROMPT screen by pressing ENTER, display the subfile again by
pressing F4, or end the program by pressing F3.

Chapter 8. Using WORKSTN Files 203

WORKSTN File Examples

In the following screen, the user responds to the initial prompt by entering a zip
code and name.

11:07:56 Customer Master Inquiry 01/25/94

Enter Zip Code 26903
Search Name CUMMINGS

ENTER - Continue F3 - End Job

Figure 99. Prompt Screen for Zip Code Search

204 RPG/400 User's Guide

WORKSTN File Examples

The user requests more information by entering X in the following screen.

11:09:20 Customer Master Inquiry
Zip Code 26903
Search Name CUMMINGS
Select
X" Zip Code Number Customer Name
26903 00011 CUMMINGS
26903 00012 DONLEAVY
26903 00013 DREYFUS
26903 00014 FREDERICKS
26903 00015 RYERSON
X 26903 00016 SANDFORD
26903 00017 STEVENS
26903 00018 TALLBOY
26903 00019 TORRENCE
26903 00020 WALTERS
27810 00021 GRAY
27810 00022 GRAYSON
27810 00023 HALIBURTON
ENTER - Continue F3 - End Job

F4 - Restart Zip Code

01/25/94

Figure 100. Information Display for Zip Code Search

In the following screen, the user selects the appropriate function key to continue or

end the inquiry.

11:09:20

ENTER - Continue

Customer Master Inquiry

Customer 00016

Name SANDFORD

Address 40 YONGE EAST

City HAMILTON

State WA Zip Code 26903
A/R Balance 100.00

F3 - End Job

F4 - Restart Zip Code

01/25/94

Figure 101. Detailed Information Display for Zip Code Search

Chapter 8. Using WORKSTN Files 205

WORKSTN File Examples

Sample Program 6—Program-Described WORKSTN File with a FORMAT
Name on Output Specifications
The following figures illustrate the use of a WORKSTN within FORMAT name on output

specifications.
Table 10. List of Figures for FORMAT Name on Output Specifications
Figure Contents
Figure 102 below DDS for display device file
Figure 103 on page 207 File description, input, calculation and output specifica-
tions
LN . O ANES U SIS T S . SEPU O RN P AR
A**
A= FILE NAME : CUSINQ *
A+ DESCRIPTION: DISPLAY FILE FOR FORMAT NAME ON OUTPUT *
A**
Ao..ooo.l.. T.Name++++++RLen++TDpB...... Functions++++++++++++t+++++++x
A R ITMPMT
A TEXT('INVENTORY INQUIRY PROMPT')
A CFO1(15 "END OF PROGRAM')
A 1 2'Inventory Inquiry Prompt'
A 2 2'Enter Item Number'
A RECID 1 I 2 23DFT('A') DSPATR(ND PR)
A ITEM 5 I 225
A 99 ERRMSG('Item Not Found' 99)
A R ITMDTL TEXT('INVENTORY DETAIL')
A OVERLAY
A 5 2'Item No.'
A 5 14'Description’
A 5 41'Price’
A 5 53'Sold'
A 5 62'0n hand'
A ITEM 5 7 2
A DESCRP 20 7 14
A PRICE 8 7 41
A PENDNG 5 7 53
A ONHAND 5 7 62

Figure 102. DDS for Program-Described WORKSTN File within FORMAT Name on Qutput Specifications

The data description specifications for the display device file CUSINQ describe how
the data sent from the RPG/400 program is displayed on the screen.

206 RPG/400 User's Guide

WORKSTN File Examples

LI RS A BT EPUE. JY JEPE DU TR SN (S UMY SRS
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FCUSINQ CP F 50 WORKSTN KPASS *NOIND

FINVMSTL IF E K DISK

LI RS A R EPUPE. DO S DU, TP PR « JEPIPPE JUPR A
2ol [T= 111 R I 4 I PP *
ICUSINQ NS 03 2 CA

Ext-field+...ccoiveineia... Field+LIM1..PIMnZr...*
I 1 1 *IN15

I 2 2 RECID

I 3 7 ITEM

LI RS A ST EPNE. DUV SR DU TP SO JPPIE UMY SRS
CL0N01N02N03Factor1+++OpcdeFactor2+++Resu1tLenDHH1LoEqumments++++++*
C *INO3 IFEQ '1'

C ITEM CHAININVDTL 99

C END

C *IN15 IFEQ '1'

C MOVE '1' *INLR

C RETRN

C END

Figure 103 (Part 1 of 2). File Description, Input, Calculation, and Output Specifications for Program-Described
WORKSTN File within FORMAT Name on Output Specifications

I I R T T A SR SR SR SN | RPIE P AR L
OName++++DFBASHSaNOINOZNO3EXCNAM. « v vt v vttt ettt eeennnnneeeeeennnnnns *
OCUSINQ D 1P

0 OR 03

0 OR 99

Ovevennnnnnnnnnns NOINO2NO3Field+YBEnd+PConstant/editword+++++++++, . *
0 K6 'ITMPMT'

0 *IN99 1

0 D 03N99

0 K6 'ITMDTL'

0 ITEM 5

0 DESCRP 25

0 PRICE 33

0 PENDNG 38

0 ONHAND 43

Figure 103 (Part 2 of 2). File Description, Input, Calculation, and Output Specifications for Program-Described
WORKSTN File within FORMAT Name on Output Specifications

On the output specifications, because the format name ITMPMT is conditioned by 1P,

it is written to the file before any input operations take place. This format is also
written to the file when indicator 03 or indicator 99 is on. If indicator 99 is on, the

Chapter 8. Using WORKSTN Files 207

WORKSTN File Examples

error message that is defined in DDS is displayed. To pass indicator 99 on output,
define the field *IN99 in the output record. The format ITMDTL is written to the file
when indicator 03 is on and indicator 99 is not on. The end positions for the fields
must be the same as the end positions defined on the DDS listing.

Sample Program 7—-Variable Start Line
The following figures shows the program examples for a variable start line

Table 11. List of Figures for Variable Start Line

Figure Contents

Figure 104 below DDS for display device file

Figure 105 on page 209 File description, extension, and calculation specifica-
tions

Lo R T T | T T TP R c B SR A

A**

A« FILE NAME : INQUIRY *
A« DESCRIPTION: DISPLAY FILE FOR VARIABLE START LINE *
A**
AAN01N02N03T.Name++++++RLen++TDpBL1'nPosFunctions= t+++++++++ e x
A PRINT

A R PROMPT SLNO (*VAR)

A MONTH 9A 0 6 15DSPATR(HI)

A DAY 2 0 6 26DSPATR(HI)

A YR 2 0 6 30DSPATR(HI)

A 6 45TIME DSPATR(HI)

Figure 104. DDS for Variable Start Line

208 RPG/400 User's Guide

WORKSTN File Examples

S R N S SRR S SR T - SR AN c SR Y T
F**
F* PROGRAM 1ID - VARLINE *
F* PROGRAM NAME - VARIABLE START LINE DISPLAY *
F**
FFilenameIPEAF....R1enLK1AIOvKlIocEDevice+...... KExit++Entry+A....Ul.*
FINQUIRY CF E WORKSTN

F KSLN SLNFLD

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++x
E TABM 1 12 2 0 TABD 9 TABLE OF MONTHS
CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*

C MOVE UDAY DAY

C MOVE UYEAR YR

C UMONTH LOKUPTABM TABD 66
C *IN66 IFEQ '1'

C MOVE TABD MONTH
C END

C Z-ADD6 SLNFLD 20
Cx*

C EXFMTPROMPT

C=*

C MOVE '1' *INLR
*%

01JANUARY

02FEBRUARY

03MARCH

04APRIL

O5MAY

06JUNE

07JULY

08AUGUST

09SEPTEMBER

100CTOBER

11INOVEMBER

12DECEMBER

Figure 105. File Description, Extension, and Calculation Specifications for Variable Start Line

A start-line number (SLN) field determines the line number where a record format is

written to a display file.

SLN can be specified for both program-described and

externally described files. To use a variable start line for a display file record
format, specify the SLN option on the file continuation specifications. The DDS for
the file must specify SLNO(*VAR) for one or more record formats. Only these record

formats are affected by the value of the SLN field.

On output operations to the file, the value of the SLN field determines the line
number where record formats are actually written. If the SLN field has a value of 1

Chapter 8. Using WORKSTN Files

209

WORKSTN File Examples

through 24, 1 is subtracted from the value, and the result is added to the line
numbers specified in the DDS. The resulting values are used as the actual line
numbers for writing the fields and constants specified in the DDS. However, the
start line for the record format is the value of the SLN field. This means that the
record format written occupies all the lines between the start of the format and the
highest actual line number written to the display. If the SLN field has a value of 0, a
format appears on the display as if an SLN field value of 1 were specified. If the
value of the SLN field is negative or greater than 24, an RPG/400 1299 error
message is issued. For more information, see the Data Management Guide and
the DDS Reference.

In this example, the EXFMT operation uses a start-line number field (SLNFLD) with a
value of 6. This causes the record format to be displayed starting at line 06, the
output fields are written to line 11:

(6(SLNFLD) - 1 + 6(DDS start-line number)).

Figure 106 shows a display format specified with a variable start line.

JANUARY 25 94 14:28:10

Figure 106. Prompt Screen for Variable Start Line

210 RPG/400 User's Guide

WORKSTN File Examples

Sample Program 8—Read Operation with Time-Out
The following figures illustrate the program examples for READ operation with

time-out.

Table 12. List of Figures for READ Operation with Time-Out

Figure

Contents

Figure 107 below

DDS for display device file

Figure 109 on page 212 File description, input, and calculation specifications

I R A T B

N T L R . Y A

A**

Ax FILE NAME : HOTELDSP

*

Ax DESCRIPTION: DISPLAY FILE FOR TIME OUT EXAMPLE *
A**
AANOINO2ZNO3T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++%
A INVITE

A R REQUEST

A OVERLAY

A ROOM 5A I 10 46DSPATR(HI)

A 10 26'Enter Room Number:'

A DSPATR(HI)

Figure 107. DDS Read Operation with Time-Out

Enter Room Number: 10025

Figure 108. Sample Screen for Time-out

Chapter 8. Using WORKSTN Files

211

WORKSTN File Examples

Figure 109 shows an example of file description, input, and calculation specifica-
tions for READ operation with time-out.

S R . TRV VAR S . SR DR P O A
F**
F+ PROGRAM ID - TIMEOUT *
Fx PROGRAM NAME - TIME OUT ON READ *
F**
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.*
FHOTELDSPCF E WORKSTN

F KNUM 1

F KINFDS FEEDBK
IDsname....NODsExt-filet+............. Ocerlent. .o eeiiiiiinnnnnennn. *
IFEEDBK DS

Ext-field+............ PFromTo++DField+......cvvvv.... *
I *STATUS STATUS

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

C WRITEREQUEST

C READ HOTELDSP 9950

C EXSR ERRCHK

C MOVE '1' *INLR
Chkkkkkkkkdddddddodod ok ko k ok kk kKRR IIIII IR AR IR IR IR R AR AR ARk k&
C* SUBROUTINE - ERRCHK *
C* PURPOSE - CHECK STATUS FOR MAX WAIT *

C**

C ERRCHK BEGSR

C STATUS IFEQ 1331

C MOVE 'SIGNOFF' CMD 7
C Z-ADD7 LEN 155
C CALL 'QCMDEXC'

C PARM CMD

C PARM LEN

C END

C ENDSR

Figure 109. File Description, Input, and Calculation Specifications for Read Operation with Time-Out

212 RPG/400 User's Guide

WORKSTN File Examples

This program causes the work station to be signed off, when no workstation activity
has occurred during a specified length of time.

In the DDS for the display file HOTELDSP, the keyword INVITE is specified for all
formats. You specify a length of time to wait with the WAITRCD parameter on
the CRTDSPF (or CHGDSPF) command to create (or change) this file.

In the file specifications, the file HOTELDSP is specified as a WORKSTN file with the
option NUM. RPG treats the file as a multiple-device file.

In the input specifications, the *STATUS subfield of the file information data
structure is named STATUS.

The WRITE operation puts format REQUEST on the work station and, because of
the keyword INVITE, makes the work station an invited device.

The READ-by-file-name operation to the file HOTELDSP waits for the length of
time specified on the WAITRCD parameter for a response from the invited
device.

If no response comes in time, error indicator 99 is set on and the program con-
tinues with the next operation.

The next operation performs the ERRCHK subroutine. This subroutine checks the
STATUS subfield of the file information data structure. Status code 1331 indi-
cates the READ operation timed out, and the ERRCHK subroutine signs the work
station off. Other status codes produce other results.

Note: This example is not a complete program.

Chapter 8. Using WORKSTN Files 213

WORKSTN File Examples

214 RPG/400 User's Guide

Format of Fields in Files

Chapter 9. Data Field Formats and Data Structures

This chapter describes how the RPG/400 program works with data that is stored in
fields in data files. Within these files, the fields can be grouped together into data
structures.

Format of Fields in Files

The input and output fields of an RPG/400 program can be in character, zoned-
decimal, packed-decimal, or binary format. A leading or trailing sign can be speci-
fied with zoned-decimal format only. All numeric input fields (unless they are in a
data structure) are converted by the compiler to packed-decimal format for internal
processing. The program runs in the same way whether numeric data is in packed-
decimal format, zoned-decimal format, or binary format. However, the system proc-
esses arithmetic calculations more efficiently if the data is in packed-decimal
format. Subfields within a data structure are always carried in the format specified
by the subfield specification.

Packed-Decimal Format

Packed-decimal format means that each byte of storage (except for the low-order
byte) can contain two decimal numbers. Each byte (except the low-order byte) is
divided into two 4-bit digit portions. The low-order byte contains one digit in the
leftmost portion and the sign (+ or -) in the rightmost portion. The standard signs
are used: hexadecimal F for positive numbers and hexadecimal D for negative
numbers. The packed-decimal format looks like this:

\
Digit I Digit Digit I Sign
\ \

Byte

The sign portion of the low-order byte indicates whether the numeric value repres-
ented in the digit portions is positive or negative. Figure 110 on page 219 shows
what the decimal number 8191 looks like in packed-decimal format.

For a program-described file, you specify packed-decimal input, output, and array
or table fields with the following entries:

Packed-decimal input field: Specify P in position 43 of the input specifications.

Packed-decimal output field: Specify P in position 44 of the output specifications.
This position must be blank if editing is specified.

Packed-decimal array or table field: Specify P in position 43 or position 55 of the
extension specifications. Arrays and tables loaded at compile time cannot be in
packed-decimal format.

For an externally described file, the data format is specified in position 35 of the
data description specifications.

© Copyright IBM Corp. 1994 215

Format of Fields in Files

Use the following formula to find the length in digits of a packed-decimal field:

Number of digits = 2n - 1,
...where n = number of packed input record positions used.

This formula gives you the maximum number of bytes you can represent in packed-
decimal format; the upper limit is 30.

Packed fields can be up to 16 bytes long. The chart in Table 13 shows the packed
equivalents for zoned-decimal fields up to 16 digits long:

Table 13. Packed Equivalents for Zoned-
Decimal Fields up to 16 Digits Long
Zoned-Decimal Number of Bytes
Length in Digits Used in Packed-
Decimal Field

1 1

3 2

5 3

29 15

30 16

For example, an input field read in packed-decimal format has a length of five posi-
tions (as specified on the input or data description specifications). The number of
digits in this field equals 2(5) — 1 or 9. Therefore, when the field is used in the
calculation specifications, the result field must be nine positions long.

When a packed-decimal field in one program is converted to a zoned-decimal field
in another program, the zoned-decimal field always contains an odd number of
bytes. If a field is in packed-decimal format in one program and then is unpacked
in another program, the field length can increase by 1. If a field is packed and then
unpacked in the same program, the field length does not change. This must be
considered when fields are packed for storage on an intermediate device and then
used by another program.

Zoned-Decimal Format

216

Zoned-decimal format means that each byte of storage can contain one digit or one
character. Any character or numeric field can be read in zoned-decimal format. In
the zoned-decimal format, each byte of storage is divided into two portions: a 4-bit

zone portion and a 4-bit digit portion.

RPG/400 User's Guide

Binary Format

The zoned-decimal format looks like this:

0 — 7 (— 7 (—7 (—7) —]

Format of Fields in Files

Zone
|

Digit

Zone

Digit

{

Zone

Digit

Zone

Digit

N

Zone
|

Byte

'

1101 = Minus sign (hex D)
1111 = Plus sign (hex F)

The zone portion of the low-order byte indicates the sign (+ or -) of the decimal
number. The standard signs are used: hexadecimal F for positive numbers and
hexadecimal D for negative numbers. In zoned-decimal format, each digit in a
decimal number includes a zone portion; however, only the low-order zone portion
serves as the sign. Figure 110 on page 219 shows what the number 8191 looks
like in zoned-decimal format.

You must also consider the change in field length when coding the end position in
positions 40 through 43 of the output specifications. To find the length of the field
after it has been packed, use the following formula:

n
Field length = — + 1

2

...where n = number of digits in the zoned decimal field.

(Any remainder from the division is ignored.)

For a program-described file, zoned-decimal format is specified by a blank in posi-
tion 43 of the input specifications, in position 44 of the output specifications, or in
position 43 or 55 of the extension specifications. For an externally described file,
the data format is specified in position 35 of the data description specifications.

RPG/400 internally converts zoned decimal data into character data. During this
conversion, errors from decimal data are automatically corrected. Decimal data
errors can only be detected for fields defined in packed decimal format.

Binary format means that the sign (+ or -) is in the leftmost bit of the field and the
integer value is in the remaining bits of the field. Positive humbers have a zero in
the sign bit; negative numbers have a one in the sign bit and are in twos comple-
ment form. In binary format, each field must be either 2 or 4 bytes long.

Program-Described File

Every input field read in binary format is assigned a field length (number of digits)
by the compiler. A length of 4 is assigned to a 2-byte binary field; a length of 9 is
assigned to a 4-byte binary field. Because of these length restrictions, the highest
decimal value that can be assigned to a 2-byte binary field is 9999 and the highest
decimal value that can be assigned to a 4-byte binary field is 999 999 999.

217

Chapter 9. Data Field Formats and Data Structures

Format of Fields in Files

218

For program-described files, specify binary input, binary output, and binary array or
table fields with the following entries:

e Binary input field: Specify B in position 43 of the input specifications.

e Binary output field: Specify B in position 44 of the output specifications. This
position must be blank if editing is specified.

The length of a field to be written in binary format cannot exceed nine digits. If
the length of the field is from one to four digits, the compiler assumes a binary
field length of 2 bytes. If the length of the field is from five to nine digits, the
compiler assumes a binary field length of 4 bytes.

Because 2-byte input field in binary format is converted by the compiler to a
four-digit decimal field, the input value may be too large. If it is, the leftmost
digit of the number is dropped. For example, an input field has a binary value
of hex 7000. The compiler converts this to 28 672 in decimal. The 2 is
dropped and the result is 8672.

» Binary array or table field: Specify B in position 43 and/or position 55 of the
extension specifications. Arrays and tables loaded at compile time cannot be in
binary format.

Externally Described File

For an externally described file, the data format is specified in position 35 of the
data description specifications. The number of digits in the field is exactly the same
as the length in the DDS description. For example, if you define a binary field in
your DDS specification as having 7 digits and 0 decimal positions, the RPG/400
compiler handles the data like this:

1. The field is defined as a 4-byte binary field in the input specification
2. A Packed(7,0) field is generated for the field in the RPG/400 program.

If you want to retain the complete binary field information, redefine the field as a
binary subfield in a data structure.

Figure 110 on page 219 shows what the decimal number 8191 looks like in
various formats.

RPG/400 User's Guide

Format of Fields in Files

Packed Decimal Format;

Positive Sign
0 8 1 9 1 *
I I I
0000 1000|0001 1001|0001 1111
| | |

-}——— 3 bytes —————

Zoned Decimal Format; *

Zone Zone Zone Zone Positive Sign
B B NSRBI O

1111:0000 1111:1000 1111:0001 1111:1001 1111:0001

e 5 bytes —

Binary Format: 2

Positvesign | | [[[[[| | | [[[|

4096 +2048+1024+ 512+ 256+128+ 64+ 32 +16 + 8 +4 +2 4 &1 9

* e e e e
o o o0 1 : 1 1 1 1|1 1 1 1 : 11 1 1

e 2 bytes _—

Figure 110. Binary, Packed, and Zoned-Decimal Representation of the Number 8191

1 1f 8191 is read into storage as a zoned-decimal field, it occupies 4 bytes. If it is
converted to packed-decimal format, it occupies 3 bytes. When it is converted back
to zoned-decimal format, it occupies 5 bytes.

2 To obtain the numeric value of a positive binary number add the values of the bits
that are on (1), do not include the sign bit. To obtain the numeric value of a nega-
tive binary number, add the values of the bits that are off (0) plus one (the sign bit
is not included).

Signs
The RPG/400 program ensures that a consistent plus or minus sign is present for
all numeric fields. The standard signs for all packed and zoned numeric fields are
hexadecimal F for plus and hexadecimal D for minus.

219

Chapter 9. Data Field Formats and Data Structures

Data Structures

External Formats

When a sign is written out for numeric fields, the sign (+ or -) is included in the
units position of the data field unless editing has been done. See the RPG/400
Reference.

You can specify an alternative sign format for zoned-decimal format. In the alterna-
tive sign format, the numeric field is immediately preceded or followed by a + or -
sign. A plus sign is a hexadecimal 4E, and a minus sign is a hexadecimal 60.

For program-described files, specify preceding (L entry) or following (R entry) plus
or minus signs in the following positions:

Input field: Position 43 of the input specifications

Output field: Position 44 of the output specifications

Array or table field: Position 43 and/or position 55 of the extension specifi-
cations.

When an alternative sign format is specified, the field length must include an addi-
tional position for the sign. For example, if a field is 5 digits long and the alterna-
tive sign format is specified, a field length of 6 positions must be specified.

Internal Format

All numeric fields, except subfields of a data structure, are stored in packed-decimal
format for internal processing. In packed-decimal format, the sign is stored in the
last 4 bits of the rightmost byte of the field. See Figure 110 on page 219.

Data Structures

The RPG/400 program allows you to define an area in storage and the layout of the
fields, called subfields, within the area. This area in storage is called a data struc-
ture. You can use a data structure to:

» Define the same internal area multiple times using different data formats

e Operate on a field and change its contents

» Divide a field into subfields without using the MOVE or MOVEL operation codes
» Define a data structure and its subfields in the same way a record is defined
» Define multiple occurrences of a set of data

e Group non-contiguous data into contiguous internal storage locations.

In addition, there are three special data structures, each with a specific purpose:

¢ A data area data structure (identified by a U in position 18 of the data structure
statement)

¢ A file information data structure (referred to by the keyword INFDS on a file
description specifications continuation line)

e A program-status data structure (identified by an S in position 18 of the data
structure statement).

Data structures can be program-described or externally described.

220 RPG/400 User's Guide

Data Structures

A program-described data structure is identified by a blank in position 17 of the
data structure statement. The subfield specifications for a program-described data
structure must immediately follow the data structure statement.

An externally described data structure, identified by an E in position 17 of the data
structure statement, has subfield descriptions contained in an externally described
file with one record format. At compile time, the RPG/400 program uses the
external name to locate and extract the external description of the data structure
subfields. An external subfield name can be renamed in the program, and addi-
tional subfields can be added to an externally described data structure in the
program.

For examples of data structures, see “Data Structure Examples” on page 226.

Format of Data Structure Subfields in Storage

Subfields in a data structure are stored in the format specified in position 43 of the

data structure subfield specifications. The possible entries for a program-described
data structure are:

Entry Explanation

Blank Subfield is in zoned-decimal format or is character data, depending
on the entry in position 52 of the subfield specifications.

P Subfield is in packed-decimal format.

B Subfield is in binary format.

Because the subfields of a data structure are maintained in the format specified,
the compiler generates the necessary conversions to process the required function.
These conversions can occur at the following times:

e When a record is being read
e At detail or total calculation time
e At detail or total output time.

The rules for determining the length of a subfield in packed-decimal format, zoned-
decimal format, and binary format are the same as those for determining the length
of a field in packed-decimal format, zoned-decimal format, and binary format. (See
“Packed-Decimal Format” on page 215, “Zoned-Decimal Format” on page 216, and
“Binary Format” on page 217.)

Data Structure Statement Specifications

Data structure statements are defined on the input specifications and must follow all

input specifications for records. The specifications for data structure statements
are:

Table 14 (Page 1 of 2). Specifications For Data Structure Statements

Position Entry
6 I
7-12 Name of the data structure being defined. This entry is optional for a

program-described data structure, and is required for an externally
described data structure, a file information data structure (INFDS),
and a data area data structure.

Chapter 9. Data Field Formats and Data Structures 221

Data Structures

222

Table 14 (Page 2 of 2). Specifications For Data Structure Statements

Position Entry
13-16 Blank
17 Blank: Program-described data structure.

E: Externally described data structure. The data structure subfield
definitions are retrieved from an externally described record format.

18 Blank: Other than a program status, data area or initialized data
structure.

I: Globally initialized data structure.
S: Program-status data structure.
U: Data area data structure.
19-20 DS
21-30 Blank: The data structure is program described.

Entry: This is the name of the file whose first record format contains
the field descriptions used as the subfield descriptions for this data

structure.
31-43 Blank
44-47 Blank: A single occurrence data structure.

nnnn: A number (right-adjusted) indicating the number of occur-
rences of the data structure.

Note: This entry must be blank for a data area data structure, a file
information data structure, and a program-status data structure.

48-51 Length of data structure (optional). This entry must be right-
adjusted.
52-74 Blank

Rules for Specifying Data Structure Statements
Remember the following when you specify data structure statements:

RPG/400 User's Guide

The data structure name must be a symbolic name with a maximum of six
characters. The name can appear on only one data structure specification,
cannot be a lookahead field, and can be specified anywhere a character field is
allowed.

All entries for one data structure and its subfields must appear together; they
cannot be mixed with entries for other data structures.

The data structure length is determined by the first specification in the program
that defines a length in one of the preceding ways. Subsequent conflicting
lengths are incorrect. The length of a data structure is one of the following:

— The length specified in the input-field specifications if the data structure
name is an input field

— The length specified in positions 48 through 51 of the data structure state-
ment

— The highest To position of a subfield within a data structure if the data
structure name is not an input field.

A compile-time or prerun-time array cannot be used in a data area data struc-
ture or in a multiple-occurrence data structure.

Special Data Structures

e Data structures are character data and can be from 1 to 9999 characters in
length.

e A data structure and a subfield of a data structure cannot have the same name.

Multiple Occurrence Data Structure

A multiple-occurrence data structure is a data structure whose definition is repeated
in a program to form a series of data structures with identical formats. You specify
the number of occurrences of a data structure in positions 44 through 47 of the
data structure statement. When positions 44 through 47 do not contain an entry,
the data structure is not a multiple-occurrence data structure. All occurrences of a
data structure have the same attributes and can be referred to individually. The
OCUR operation code, which can only be used with a multiple-occurrence data struc-
ture, allows you to specify which occurrence of a data structure is used for subse-
guent operations within the program.

Note: Multiple occurrences are not allowed for a data area, file information, or
program-status data structure.

For examples on multiple-occurrence data structures, see “Data Structure
Examples” on page 226.

Special Data Structures
Special data structures include:

e Data area data structures
¢ File information data structures (INFDS)
e Program-status data structures.

Data Area Data Structure

A data area data structure, identified by a U in position 18 of the data structure
statement, indicates to the RPG/400 program that it should read in and lock the
data area of the same name at program initialization and should write out and
unlock the same data area at the end of the program. Data area data structures,
as in all other data structures, have the type character. A data area read into a
data area data structure must also be character. The data area and data area data
structure must have the same name unless you rename the data area within the
RPG/400 program by using the *NAMVAR DEFN statement.

You can specify the data area operations (IN, OUT, and UNLCK) and have the type
for a data area that is implicitly read in and written out. Before you use a data area
data structure with these operations, you must specify that data area in the result
field of the *NAMVAR DEFN statement.

A data area data structure cannot be specified in the result field of a PARM opera-
tion.

If you specify blanks for the data area data structure (positions 7 through 12 of the
input specifications line that contains a U in position 18), the RPG/400 program
uses a local data area. To provide a name for a local data area, use the *NAMVAR
DEFN operation, with xLDA in factor 2 and the name in the result field.

Chapter 9. Data Field Formats and Data Structures 223

Data Structure Subfield Specifications

File Information

For general information on data areas, see Chapter 11, “Communicating with
Objects in the System.”

Data Structure

You can specify a file information data structure (defined by the keyword INFDS on
a file description specifications continuation line) for each file in the program. This
provides you with status information on the file exception/error that occurred. The
file information data structure name must be unique for each file. A file information
data structure contains predefined subfields that provide information on the file
exception/error that occurred. For a discussion of file information data structures
and their subfields, see “Exception/Error Handling” on page 70.

Define and name a file information data structure on a file description specifications
continuation line with the following entries:

Table 15. Entries to Define and Name a File Information Data Structure

Position Entry

6 F

7-52 Blank (if the information is specified on a separate continuation line)

53 K (indicates a continuation line)

54-59 INFDS (identifies this data structure as the file information data struc-
ture)

60-65 Name of the file information data structure.

Program-Status Data Structure

A program-status data structure, identified by an S in position 18 of the data struc-
ture statement, provides program exception/error information to the program. For a
discussion of program-status data structures and their predefined subfields, see
“Exception/Error Handling” on page 70.

Data Structure-Subfield Specifications

The subfields of a program-described data structure must immediately follow the
data structure specification statement to which they apply. The subfields of an
externally described data structure are described externally to the RPG/400
program. The subfield specifications are brought into the RPG/400 program at
compilation. The subfields of an externally described data structure can be
renamed or additional subfield specifications can appear following the data struc-
ture statement. All renamed and initialized external subfields must precede any
additional subfield specifications. To add subfields to an externally described data
structure, follow the same rules as for subfields for a program-described data struc-
ture. The internally described subfields are added to the retrieved descriptions.

The specifications for subfields are as follows:

Table 16 (Page 1 of 2). Specifications for Subfields

Position Entry
6 I
7 Blank

224 RPG/400 User's Guide

Data Structure Subfield Specifications

Table 16 (Page 2 of 2). Specifications for Subfields

Position Entry

8 I: Indicates an initialized subfield. (Specify the initialization value in
positions 21-42 or leave blank for default initialization value.)

9-20 Blank

21-42 positions 21-26: Named constant initialization value if position 8 con-
tains an I. Leave any remaining positions blank.
or
positions 21-42: Literal initialization value if position 8 contains an I.
or
positions 21-42: Blank for default initialization value if position 8 con-
tains an I.
or
positions 21-30: External name to rename a subfield in an externally
described data structure. (Specify the name to be used in the
program in positions 53 through 58.) Leave any remaining positions
blank.

43 P: Indicates that the subfield is in packed-decimal format.
B: Indicates that the subfield is in binary format.
Blank: Indicates that the subfield is in zoned-decimal format, or is
character data.

44-47 1- to 4-digit numbers: Positions 44 through 47 contain the beginning

48-51 position, and positions 48 through 51 contain the end position of the
subfield. These entries must be right-adjusted; leading zeros can be
omitted.
or
Keywords: For a program-status data structure or a file information
data structure (INFDS), place a special keyword (left-adjusted) in this
position. A keyword can start at position 44 and extend through to
position 51. See “Exception/Error Handling” on page 70 for the
keywords and their descriptions.

52 0-9: Indicates the number of decimal positions in a numeric field or
an array.
Blank: Indicates a character field.
Note: This position must contain an entry for a numeric subfield.
However, an entry is not required for an array. If an entry is made
for an array, the entry must be the same as that specified in the
extension specifications.

53-58 The subfield name.
Note: If an array is specified as a subfield name, the length indi-
cated in positions 44 through 51 must equal the entire amount of
storage required to store the array (for example, 10 binary half-word
elements require 20 bytes of storage).

59-74 Blank

Chapter 9. Data Field Formats and Data Structures 225

Data Structure Examples

Rules for Subfield Specifications
Remember the following when you specify subfield specifications:

If the length (positions 44 through 51) or decimal positions (position 52) for the
subfield differ from prior definitions in the program, the first definition is used
and subsequent conflicting definitions are incorrect.

If the To position (48 through 51) specified for a subfield is larger than the
defined length of an input field of the same name or the defined length of the
data structure, the subfield specification is incorrect.

To redefine subfields, specify the same or part of the same From and To posi-
tions (44 through 51) for another subfield in the same data structure.

To define a single position subfield, enter the same number in both positions 44
through 47 and positions 48 through 51.

Overlapping subfields cannot be used in the same calculation specification.

If an array or array element with a variable index is specified in the calculation
specifications in factor 1, factor 2, or the result field, the entire array is used to
determine whether overlap exists.

Before packed, zoned, or binary numeric subfields are used in arithmetic or
editing operations, you must ensure that they are initialized with numeric data.

An input field name cannot:

— Appear as both a subfield name and a data structure name
— Appear more than once as a subfield name.

The following calculation operations are checked for overlapping subfields:

— Factor 1 and the result field, and factor 2 and the result field of the ADD,
SUB, MULT, DIV, Z-ADD, and Z-SUB operations. Factor 1 and factor 2 of the
preceding operations may overlap.

— Factor 2 and the result field of a MOVE, MOVEL, or MOVEA operation are
checked for overlap.

— Factor 2 and the result field and factor 1 and the result field of a PARM oper-
ation are checked for overlap.

Data Structure Examples

Figure 111 on page 227 through Figure 116 on page 236 show some typical uses
for data structures.

226

RPG/400 User's Guide

Data Structure Examples

I I R T T Ay S AU, TR AP ¢ SR P AR
IFi1enameSgNOR1POoSINCCPOSZNCCPOS3NC . v v v i et iiie e iieeeeenneennans *
IFILEIN NS 01 1CA 2CB

Lttt i i it iieeeeeeaaaannnn PFromTo++DField+LIM1FrP1MnZr...*
I 3 18 PARTNO

I 19 29 NAME

I 30 40 PATNO

I 41 61 DR
IDsname....NODsExt-filet+............. Ocerlent. .o eeiiiiiinnnnnennn. *
IPARTNO DS

Ext-field+............ PFromTo++DField+......covuv.... *
I 1 4 MFG

I 5 10 DRUG

I 11 13 STRNTH

I 14 160COUNT

I*

Figure 111. Using a Data Structure to Define Subfields within a Field

The data structure subfields can be referred to by the PARTNO name or by the sub-
fields MFG, DRUG, STRNTH, or COUNT.

I R A . TP ' SN SN JEPUPIPE APV ¢ BRI ORI AR
IFiTenameSgNORiPoSINCCPOSZNCCPOS3NCC. v vt viiie it iiiieeiennnnnnnns *
ITRANSACTNS 01 1 C1 2 C2

Lttt it iitneeeeeeeeannnnnnns PFromTo++DField+LIM1FrPIMnZr...*
I 3 10 PARTNO

I 11 160QTY

I 17 20 TYPE

I 21 21 CODE

I 22 25 LOCATN
IDsname....NODsExt-file+t+......ccvvnn. Ocerlent. .o e i iiinnnennnn *
IPRTKEY DS

Ext-field+............ PFromTo++DField+.......ccov.... *
I 1 4 LOCATN

I 5 12 PARTNO

I 13 16 TYPE

I*

Figure 112. Using a Data Structure to Group Fields

When you use a data structure to group fields, fields from non-adjacent locations
on the input record can be made to occupy adjacent internal locations. The area
can then be referred to by the data structure name or individual subfield name.

Chapter 9. Data Field Formats and Data Structures 227

Data Structure Examples

I*

I* A multiple-occurrence data structure is used to accumulate a

[+ series of totals for specific codes, and the totals of each of
I* the occurrences of the data structure are written.

I[* The program-described data structure, TOTDS, has 99 occurrences
I* (positions 46 and 47). The length of the data structure can be
I specified in positions 48 through 51.

I*

IDsname....NODsExt-file++............. Occrlent. . .iieiieieniennnnnnns *
ITOTDS DS 99

Ext-field+............ PFromTo++DField+............... *
I 1 50TOTCNT

I 6 120T0T1

I 13 202T0T2

I*

Figure 113 (Part 1 of 4). Using a Multiple Occurrence Data Structure to Accumulate Totals—Example 1

*,. 1 ..+ 2 L0 3 Lo haa 4 Lo Ll S Ll Ll B Lautlll T LR
Cx*

Cx A numeric code field, CODE, contains a value of 01 though 99.
C+ This value is different each time the OCUR operation is processed.
Cx When the OCUR operation is processed, the CODE field is used to
C+ set the current occurrence of TOTDS. If the OCUR operation is
C* successful, the program branches to the ADDRTN subroutine where
C+ a record count is made and input values are added to the data
C* structure subfields. If the CODE field contains a value other
Cx than 01 through 99, indicator 25 is set on and the program

Cx branches to BADCOD.

C*

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*
C CODE OCUR TOTDS 25

C 25 GOTO BADCOD

C EXSR ADDRTN

C " Calculations
c n

C BADCOD TAG

C n

C " Calculations
C

Figure 113 (Part 2 of 4). Using a Multiple Occurrence Data Structure to Accumulate Totals—Example 1

228 RPG/400 User's Guide

Cx

Cx*
Cx*
Cx*
Cx*
C*
Cx*
C*
Cx*
Cx*
Cx*
Cx*
C*
Cx*
Cx*
C*
Cx*
C*
Cx*
C*
C*

Data Structure Examples

When the totals for the specific codes in the multiple-occurrence
data structure are to be written out, exception output is used.
The EXCPT PRTHDG operation causes all exception lines in the
output specifications with the name PRTHDG to be written. The
do group initially sets field X to 1. The value in X sets the
current occurrence of TOTDS. The Z-ADD operation adds TOTCNT to
a field of zeros and places the sum in the result field TOTCNT.
If TOTCNT contains a plus value, indicator 27 is set on.

The EXCPT PRTDS operation causes the current occurrence of the
data structure to be written. If overflow occurs while the
current occurrence of the data structure is being written, the
OF indicator is set on, a page skip occurs, and all exception
lines in the output specifications with the name PRTHDG are
written. The SETOF operation sets off the OF indicator.

The Do group continues processing until field X is greater than
99, the maximum number of occurrences for the multiple-occurrence
data structure. When X is greater then 99, control passes to the
next statement following the END statement.

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

Cx*

OOOOOOOOOOOO

EXCPTPRTHDG
DO 99 X 30
X OCUR TOTDS
Z-ADDTOTCNT TOTCNT 27
27 EXCPTPRTDS
OF EXCPTPRTHDG
OF SETOF OF
END

Calculations

Figure 113 (Part 3 of 4). Using a Multiple Occurrence Data Structure to Accumulate Totals—Example 1

Chapter 9. Data Field Formats and Data Structures

229

Data Structure Examples

C=*

Cx The ADDRTN subroutine updates the current occurrence of the

C*x multiple-occurrence data structure subfields.

Cx*

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
C ADDRTN BEGSR

C ADD 1 TOTCNT

C ADD FLD1 TOT1

C ADD FLD2 TOT2

Cx*

LS R A, . R R | . TIPS APV ¢ R S *
OName++++DFBASbSaNOINOZNO3EXCNAM. ¢ oot vt tenteeenreosesnosesonsononss *
OPRINT E 206 PRTHDG

Oveveinnnninnnnn. NOINO2NO3Field+YBEnd+PConstant/editword+++++++++, . . *
0 n

0 " Entries for Report Title

0 n

0 n

0 E 2 PRTHDG

0 n

0 " Entries for Report Column Headings

0 n

0 n

0 E PRTDS

0 X 10

0 TOTCNTZ 20

0 TOT1 J 35

0 TOT2 J 50

(0E3

Figure 113 (Part 4 of 4). Using a Multiple Occurrence Data Structure to Accumulate Totals—Example 1

230 RPG/400 User's Guide

Data Structure Examples

In the following example, a multiple-occurrence data structure, TOTDS, is again used
to accumulate a series of totals for specific codes and the totals of each of the
occurrences of the data structure are written. There are 70 codes.

I R AN A R E I SR O TP U - SR P AR
E*

Ex A compile-time array, ARC, is specified in the extension

Ex specifications. It has 70 entries. There are 10 entries in

Ex each record, and each array element is 6 positions long. The

Ex relative location of the alphanumeric code in the array (for

Ex example the 37th entry) sets the current occurrence of the data
Ex structure.

E*
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments++++++++%
E ARC 10 70 6 ARRAY OF CODES

Figure 114 (Part 1 of 3). Using a Multiple Occurrence Data Structure to Accumulate Totals—Example 2

Chapter 9. Data Field Formats and Data Structures 231

Data Structure Examples

C*

C+ The Z-ADD operation sets field X to one. The LOKUP operation

Cx starts at the first element of ARC and searches until it finds

Cx the first element equal to the code in ACODE. The ACODE field

Cx is a character field of 6 characters. The index value, X, is

Cx set to the position number of the element located. If the LOKUP
Cx does not find an element equal to ACODE, indicator 20 is not set
Cx on and the GOTO operation conditioned by N20 branches to the

C+» BADCOD TAG. If LOKUP does find an element equal to ACODE, the

C+ OCUR operation uses the value in X to set the current occurrence
Cx of TOTDS and the program branches to the ADDRTN subroutine, where
C* a record count is made and input values are added to the data

Cx structure subfields. The ADDRTN subroutine is not shown. If the
Cx occurrence is outside the valid range for the data structure,

Cx indicator 26 is set on, and the program branches to the ENDPRT TAG.
C*
CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++*

C Z-ADD1 X 30

C ACODE LOKUPARC, X 20

C N2o GOTO BADCOD

C X OCUR TOTDS 26

C 26 GOTO ENDPRT

C EXSR ADDRTN

c n

C " Calculations
C BADCOD TAG

C n

c n

C ENDPRT TAG

C " Calculations
c n

Figure 114 (Part 2 of 3). Using a Multiple Occurrence Data Structure to Accumulate Totals—Example 2

232 RPG/400 User's Guide

0%

Data Structure Examples

O*x The calculations to print the data structure are not shown.

O* Only part of the output specifications is shown. The PRTDS

0* statement uses the value of field X, which contains the current
0* occurrence of the data structure, as an index to print the

O0* corresponding alphanumeric code.

(0E3

OName++++DFBASHSaNOINOZNO3EXCNAM. « vt v e vttt ettt eeeennnneeeeeennnnnns *
0 E PRTDS

Oveveiiiiiiennnn. NOINO2NO3Field+YBEnd+PConstant/editword+++++++++, . *
0 ARC,X 10

0 TOTCNTZ 20

0 TOTL J 35

0 T0T2 J 50

Figure 114 (Part 3 of 3). Using a Multiple Occurrence Data Structure to Accumulate Totals—Example 2

Chapter 9. Data Field Formats and Data Structures 233

Data Structure Examples

Both programs (1 and 2) shown in Figure 115 below use data area data structures
(defined by the U in position 18 of the input specifications). Program 1 uses the
subfields of the data structure to accumulate a series of totals. Program 2 then
uses the totals in the subfields to do calculations.

N A A UG RS SPIPR/ SEPA A - JRTPIPE DUPI - SRS R A
I* PROGRAM 1

I*

IDsname....NODsExt-filet+............. Occrlent. .o iiiiiinnnnnnnnn. *
ITOTALS uDs

Ext-field+............ PFromTo++DField+.......covv.t.. *
I 1 82TOTAMT

I 9 182TOTGRS

I 19 282TOTNET

I*

L R R . | S S s NPT R (TP Y A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*
C n

C " Calculations

C n

C ADD AMOUNT TOTAMT

C ADD GROSS TOTGRS

C ADD NET TOTNET

C*

Figure 115 (Part 1 of 2). Data Area Data Structures

234 RPG/400 User's Guide

Data Structure Examples

L R A A I T S A T T TP A AR
I* PROGRAM 2

I*

IDsname....NODSExt-filet+............. Ocecrlent. .o iiiiiiiiiinnnnn. *
ITOTALS UDS

Ext-field+............ PFromTo++DField+......coouv.... *
I 1 82TOTAMT

I 9 182TOTGRS

I 19 282TOTNET

I*

*,0.01 o002 Lokl 3 ikl Lol Lo Hlll B LaaHll T L
CL0N01N02N03Factor1+++OpcdeFactor2+++Resu1tLenDHH1LoEqumments++++++*
C

C " Calculations

C n

C AMOUNT2 COMP TOTAMT 9191

C GROSS2 COMP TOTGRS 9292

C NET2 COMP TOTNET 9393

c n

C n

Cx*

Figure 115 (Part 2 of 2). Data Area Data Structures

Chapter 9. Data Field Formats and Data Structures 235

Data Structure Examples

*,,0 1 ...+ 2 B R U SR S TR U S U AR
IDsname....NODsExt-filet+............. Ocerlent. . ceeiiiiinnnnnnennn. *
IDSONE E DSEXTREC

Ext-field+......cov... PFromTo++DField+......ccvvv.... *
I CHARACTER CHAR

I 1 16 CHZON

*,. 1 + 2 B R T SN AR - TP AP ¢ SR AU S
Aceevnnn... T.Name++++++RLen++TDpB...... Functions++++++++++++t++++++++%
A R RECORD TEXT (' EXTERNALLY DESCRIBED RECORD')
A CHARACTER 10

A ZONED 6S 2

A PACKED 4P 0

A BINARY 4B 0

A*

Figure 116. Renaming Subfields in an Externally Described Data Structure

On the data structure statement shown in Figure 116, positions 7 through 12
contain the name of the data structure being defined (DSONE), position 17 contains
an E to denote externally described, and positions 19 and 20 contain DS to denote
data structure. Positions 21 through 30 contain the name of the file (EXTREC) whose
first record format contains the field descriptions used as the subfield descriptions
for this data structure (RECORD).

On the first data description specification, position 17 contains an R to denote
record format and positions 19 through 28 contain the name of the record format
(RECORD). On subsequent data description specifications, positions 19 through 28
contain the names of the fields (CHARACTER, ZONED, PACKED, and BINARY).

Fields in a data structure can also be redefined for program use. Fields CHARACTER
and ZONED are also described as one field (CHZON) in the input specifications.

In the RPG/400 program, a field name can contain no more than 6 characters.
Therefore, the field name CHARACTER is renamed CHAR in the input specifications.
The data structure then uses CHAR as the subfield name.

236 RPG/400 User's Guide

Named Constants

Chapter 10. Named Constants, Initialization, and SAA Data

Types

This chapter describes how you can use named constants and SAA data types in
your RPG/400 program. The chapter also addresses initialization of an RPG/400
program.

Named Constants

You can give a hame to a constant. This name represents a specific value which
cannot be changed when the program is running.

Rules for Named Constants

© Copyright IBM Corp. 1994

¢ Named constants can be specified in Factor 1 and Factor 2 in the calculation

specifications and in the Field Name, Constant, or Edit Word fields in the output
specifications. They can also be used as array indexes and as the format
name in a WORKSTN output specification or as initialization values in an input
specification.

The named constant has no inherent type. That is, no precision is implied by
the definition. Actual precision is defined by the context that is specified.

The named constant can be defined anywhere in the input specifications.

Character named constants must begin and end with a single quotation mark
().

If an alphanumeric constant, transparent or hexadecimal literal is specified,
then it can be continued to the constant field of the next line by coding a
hyphen (-) at the end of the constant instead of an apostrophe. If a numeric
constant is specified, then it can be continued to the constant field of the next
line by coding a hyphen (-) at the end of the constant immediately following the
last digit.

— The hyphen can be specified in any position on the field.

— The hyphen works the same way as the minus sign when continuing com-
mands in CL programs. Any blanks in the next input record that follow the
leading apostrophe, and precede the first non-blank character, are included
in the named constant.

— Hyphens are permitted in the first position of a named constant literal to
allow double-byte data to be moved. See “Moving Bracketed Double-byte
Data and Deleting Control Characters (SUBR40R3)” on page 263 for more
information on moving double-byte data.

— For hexadecimal constants, the number of hexadecimal digits in a continua-
tion line does not have to be even. However, the total number of
hexadecimal digits in the entire constant must be even. (Hexadecimal
literals must begin with an uppercase X, followed by a single quotation
mark (X'). Hexadecimal literals, like character constants, end with a single
guotation mark (').)

— The next input specification must contain an entry in the constant entry
alone (apart from an | in position 6). If an alphanumeric, transparent literal

237

Named Constants

constant, or hexadecimal literal is continued, the first character of each con-
tinuation (position 21) must contain an apostrophe.

— The constant can be continued as many times as desired so long as the
total length of the constant does not exceed 256 single-byte characters. A
numeric constant cannot be longer than 30 digits, with a maximum of nine
positions to the right of the decimal point. A hexadecimal literal cannot be
longer than 512 hexadecimal digits representing 256 bytes and must
contain an even number of digits.

— The named constant represents the constant that is the concatenation of all
constants on the main named constant specification and continuation lines.

LN T SO SO I ST DU AL TUPINE. PPN - DU AP AR
I*

[The following is an example of a character named constant:

I*

I..............Namedconstant+++++++++C.........Fldnme.............

I*

I "ABCDEFG' C CHAR

I*

LI IR AN TSTRTPC DUV, PUPPP | SUPUPATE U . JUPIPIPS, UPUPUPY ¢ DUDUPIDE RPN AP
I*

I* The following is an example of a continued transparent

I constant. The Shift Out (SO) and Shift In (SI) characters

I+ are represented by o and 1.

I+

I..............Namedconstant+++++++++C.........Fldnme.............

I*

I 'oK1K2K31 - C TRANS
I 'oK4K5i'
I*

Figure 117 (Part 1 of 3). The Use of Named Constants

238 RPG/400 User's Guide

I The following is an example of a continued character named

I+ constant. The blank immediately preceding the hyphen in each
I* 1line, and the 3 blanks on the last 1line of the constant

I will be included in the constant. The value of the constant

I* LONGNC will be the string:
I THIS IS A LONG CONSTANT THAT HAS THREE BLANKS HERE

Namedconstant+++++++++C......... Fldnme...........

I*

I '"THIS IS A LONG - C LONGNC

I 'CONSTANT THAT -

I '"HAS THREE BLANKS-

I ' HERE'

I*

L [S S PTPTPITG DIV DRI SUPIE NP DU RN DUPRPIE Y A
I*

I* The following is an example of a continued numeric
I constant.

I*

Namedconstant+++++++++C......... Fldnme...........
I*

I 123456- C CHAR

I 789

I*

Figure 117 (Part 2 of 3). The Use of Named Constants

Chapter 10. Named Constants, Initialization, and SAA Data Types

Named Constants

239

Initialization

I IR A AR TTITS. PUPINE. VA’ SUPOUIPE UV . IUPIPIPE UMV DUPIPIPE, DUPRPY A
I*

I The following is an example of a hexadecimal Titeral.

I*

I....cvvee.....Namedconstant+++++++++C.........Fldnme.............

I*

I X'C1F2C3' C HEX1

I*

LN T SO SR I ST DU UL DUPRME. SPUPN - DU R AR
I*

I+ The following is an example of a continued hexadecimal

I 1literal.

I*

I..............Namedconstant+++++++++C.........Fldnme.............

I*

I X'cl- C HEX2
I 'c2c3'
I*

Figure 117 (Part 3 of 3). The Use of Named Constants

Initialization

The initialization support provided by the RPG/400 compiler consists of three parts:
the initialization subroutine, the CLEAR and RESET operation codes, and data struc-
ture initialization.

Initialization Subroutine (*INZSR)

The initialization subroutine allows you to process calculation specifications before
1P output. It is declared like any other subroutine, but with the special name *INZSR
in factor 1. This subroutine will be automatically invoked at the end of the initializa-
tion step in the RPG/400 program before 1P output. You can enter any calculations
that you want in this subroutine, and it can also be called explicitly by using an EXSR
or CASxx operation code.

CLEAR and RESET Operation Codes

The CLEAR operation code sets a variable or all variables in a structure to blank,
zero or '0' depending on the type (character, numeric or indicator). If you specify a
structure (record format, data structure or array) all fields in that structure are
cleared in the order which they are declared.

The RESET operation code sets a variable or all variables in a structure to their initial
value. The initial value for a variable is the value it had at the end of the initializa-
tion step in the RPG/400 cycle, after the initialization subroutine has been invoked.
You can use data structure initialization to assign initial values to subfields, and
then change the values during the running of the program, and use the RESET oper-
ation code to set the field values back to their initial values. Because the initial
value is the value the variable had after the initialization subroutine is executed, you

240 RPG/400 User's Guide

can use the initialization subroutine to assign initial values to a variable and then
later use RESET to set the variable back to this initial value. This applies only to the
initialization subroutine when it is run automatically as a part of the initialization
step.

For more information on the initialization subroutine and the CLEAR and RESET opera-
tion codes see the RPG/400 Reference.

Data Structure Initialization
Data structure initialization allows you to initialize data structures and subfields
either to blank, zero or a specific value.

By default, a data structure is considered to be a character field, and unless speci-
fied, it is initialized to blanks. However, if numeric subfields are not initialized with
numeric data before they are used in arithmetic or editing operations, decimal data
errors result. Data structure initialization provides a means by which data structure
subfields can be initialized at compile-time, at the beginning of the *INIT step,
before any other program initialization is performed.

Data structures can be initialized both globally and on a subfield basis.

A globally initialized data structure, identified by an I in column 18 of the data
structure specification, is initialized with all characters set to blanks and all
numerics set to zeros. Because each subfield is initialized in the order that it
appears, you must ensure that overlapping fields are declared in such an order that
they are initialized correctly.

A data structure initialized on a subfield basis is identified by an I in column 8 and
an initialization value for the subfield in columns 21-42 of the data structure subfield
specification. If columns 21-42 contain blanks, the subfield will be initialized to
blanks or zeros, depending on whether the subfield is character or numeric. You
can specify either a literal value or a named constant name as the initialization
value in a format similar to named constants. If columns 21-42 contain a named
constant or a literal, the subfield will be initialized to the initialization value specified.

A data structure can be globally initialized, and subfields individually initialized
within the structure, by specifying an I in column 18 of the data structure specifica-
tion and an I in column 8 of each data structure subfield specification. The sub-
fields are initialized in the same order as they are declared in the data structure.

Special Considerations for Initializing Data Structures
You initialize a multiple-occurrence data structure by subfield value, or if you
globally initialize the structure, occurrences of the structure are initialized to the
same value.

The following rules apply to initializing arrays:

 If an initialization value for a run-time array is specified, each array element is
initialized with the same value. To specify different values for each array
element, you must use a compile-time or prerun-time array.

e Since compile and prerun-time arrays are initialized by definition, they cannot
be initialized using subfield initialization support. When a compile-time or
prerun-time array appears as part of a globally initialized data structure, it is not

Chapter 10. Named Constants, Initialization, and SAA Data Types 241

Initialization

included as part of the global initialization. Compile-time arrays are initialized in
the same order that their data is declared after the program and prerun-time
arrays in the order which the array input data files are declared.

If a subfield initialization overlaps a compile-time or prerun-time array, initializa-
tion of the array is done last, regardless of the order of the definitions.

If a subfield and a run-time array definition overlap in a data structure, they will
be initialized in the order which they are defined.

The following rules apply to initializing special data structures:

e Data area data structures, by definition, are initialized by being read in at

program initialization time, so initialization support is not required for these data
structures.

Other data structures, such as the local data area and the PIP data area, can
be initialized.

Because most of the fields in file information data structures and program-
status data structures are initialized by the compiler at initialization time, initial-
ization is not supported for these structures.

Rules for Initializing Subfields
The following rules apply to initializing subfields:

242

An initialization value must match the subfield's type, and may not exceed the
length or number of decimal positions.

To continue a literal over more than one line, the initialization value indicator (I
in column 8) is specified only on the first line of the literal. All other rules for
line continuation follow the conventions used for continuing named constants.
See “Named Constants” on page 237.

A named constant used as an initialization value can be declared either before
or after the subfield where it is used. The named constant must be left-justified
in columns 21-26 of the subfield specification.

For externally described data structures:

— An initialization value for a subfield may only be specified once. If more
than one initialization value is found, the first value specified is used. All
other specifications are ignored and error messages issued.

— If the initialization specification for a renamed subfield directly follows the
rename specification, the subfield name does not need to be specified on
the initialization specification.

— If a subfield is to be both renamed and initialized, you must rename the
subfield before initializing it. If the initialization specification precedes the
rename specification, the compiler considers the field as undefined and an
error results.

For program described subfields, if more than one initialization specification
appears for a subfield, the specifications are treated as duplicate definitions of

the field.

Note: Since compile-time initialization is part of the initialization step of the
program, if the program ends with LR off, the subfields will not be automatically
initialized during the next call to the program. The program must first be deacti-
vated using the FREE operation.

RPG/400 User's Guide

Initialization and the Program Cycle

Figure 118 shows the order of initialization in an RPG/400 program. The initial
value for a field is whatever value the field has at the point after the *INZSR is run.

Figure 118. Order of Initialization in an RPG/400 Program.

Initialization Examples

Global Data Structure
Initialization

!

Subfield Value
Initialization

!

Compile-time Array
Initialization

!

Prerun-time Array
Initialization

!

run *INZSR

!

current value of
field at this point
is initial value

Initialization Examples

Figure 119 on page 244 through Figure 123 on page 247 show some typical
initializations of data structures.

Chapter 10. Named Constants, Initialization, and SAA Data Types 243

Initialization Examples

I*

I* The I in column 18 globally initializes the data structure.
I* Numeric subfields are initialized to 0. Character subfields
I are initialized to blanks.

I*

IDsname....NODSExt-filet+............. Ocecrlent. .o iiiiiiiiinnnnnn.
IDS1 IDS

R Init-valuet+++++++++++PFromTo++DField+...............
I 1 52DS1S1

I 6 10 DS1S2

I 11 15 DS1S3

I 12 162DS1S4

I*

Figure 119. Globally Initialized Data Structure

I In the following example, global data structure initialization
Ix 1is specified for DS1, so the field AMOUNT will be initialized

I* to zero. AMNTCH has been initialized to 'l' using subfield

I* value initialization, but because AMOUNT is declared later

I* 1in the data structure and overlays AMNTCH, both fields will

I contain zero. If you wanted AMNTCH to be initialized to '1',

I place it after AMOUNT in the data structure.

II 1 1 6 AMNTCH
I 1 60AMOUNT
I*

Figure 120. Initializing Data Structures to 0 or 1

244 RPG/400 User's Guide

Initialization Examples

I* The data structure below is initialized by subfield. Each

I* subfield is initialized only if an I is specified in column 8 of

I[* the subfield specification. Notice that the subfield DS2S2 will

I* not be explicitly initialized to a value. The subfield DS2S54 is

I* initialized to a long literal value continued over several

I* 1lines. Subfields DS2S5 and DS2S6 are initialized to named constant
I*x character and numeric fields respectively. Subfield DS2S7 is

[initialized to a transparent literal value.

I*

Ext-field+............ PFromTo++DField+.....ccvv.... *
I -1234567890.234- C NUM2

I 56

I 'CHAR-CONST' C ALPH1

I*

IDsname....NODSExt-filet+............. Occrlent. .o eiiiiiiinnnnennn. *
IDS2 DS

R Init-Valuet++++++++++++PFromTo++DField+............... *
I1I 123 1 30DS2S1

I 4 5 DS2S2

I1I '5CHAR' 6 10 DS2S3

I1I '"THIS IS A LONG INIT- 11 70 DS2S4

I '"VALUE CONTINUED-

I '"OVER 3 LINES'

I1I ALPH1 71 80 DS2S5

I1I NUM2 81 915DS2S6

I1I 'oAABBCCDDEE1 - 92 118 DS2S7

I 'oFFGGHHi '

I*

Figure 121. Data Structure Initialized by Subfield

Chapter 10. Named Constants, Initialization, and SAA Data Types 245

Initialization Examples

I+ The data structure DS3 is a globally initialized externally

[+ described data structure. Notice that subfield initialization

[+ values have been specified for the subfields shown. The subfields
I* not shown, DS3S2 and DS3S5, are not initialized to specific values
I* but will be initialized to blanks or 0. LONGEXTNM is renamed

I+ to DS3S6 using a rename specification and then initialized to the
I* named constant value NUMI.

I*

Ext-field+............ PFromTo++DField+......covuv.... *
I 123 C NUM1

I 'CHAR-CONST' C ALPH1

I*

IDsname....NODSE