
Evaluating Pair Programming 

with Respect to

System Complexity and 

Programmer Expertise

E. Arisholm et al. 2007

Ivan Ítalo Ituassú

Department of Computer Science - Federal University of Minas Gerais (UFMG)

Software Quality and Measurement - 2015



Overview

 Authors:

Erik Arisholm, Hans Gallis, Tore Dyba and Dag I.K. Sjøberg

 Objective:

Perform an Empirical experiment on Pair Programming to

evaluate hypotheses about the benefits of it 



Agenda

 Introduction/Motivation

Concepts

Empirical Study

 Threats to Validity

Analysis

Conclusion



Introduction

 Pair Programming (PP) is not new,
but focus only came due to
Extreme Programming.

 PP is expected to increase software
quality without impacting time to
deliver.

 Some PP studies concluded that
correctness increased and time
duration decreased (Time to
Market). However, one experiment
didn’t show any positive effects of
PP.



Motivation

The problems: 

 Most of the existing studies can’t be compared directly;

 They haven’t accounted for the moderating effect of the 

complexity of the programming tasks;

 System complexity and programmer expertise would have a 

significant impact on when and how PP is beneficial 

compared with individual programming.



Motivation

Thus, the paper’s Quasi-Experiment:

 What is the effect regarding duration, effort, and correctness

of pair programming for various levels of system complexity

and programmer expertise when performing change tasks?



Concepts

 Pair Programming

Two programmers work on the same task using one computer and keyboard. 

Two distinct roles: 

1) a driver, who types at the keyboard and focuses on the details of the 

coding

2) a navigator, who actively observes the work of the driver, looking for 

tactical and strategic defects, thinking of alternatives, writing down 

“things-to-do,” and looking up references. 

In addition to coding, PP also involves other phases of the software 

development process, such as design and testing.



Concepts

 Quasi-Experiment

Aims to determine whether a program or intervention has the intended 

effect on a study’s participants. 

May best be defined as lacking key components of a true experiment. 

While a true experiment includes (1) pre-post test design, (2) 

a treatment group and a control group, and (3) random assignment of 
study participants, quasi-experimental studies lack one or more of 

these design elements.



Design of the Experiment



Conceptual Model and Hypotheses

 Fig. 1. Conceptual research model of the hypothesized effects of pair 
programming.



Conceptual Model and Hypotheses

PP

H01, H04, H07

SC

H02, H05, H08 

PE

H03, H06, H09



Design of the Experiment

 A two-phase experiment with a total sample of 295 Java 
consultants (98 pairs and 99 individuals) from 29 consultancy 
companies.

 The first phase of the experiment was conducted on individual 
developers in 2001. 

 the second phase was conducted on developer pairs in the second 
half of 2004 and the first half of 2005. 

 First, all subjects performed a pretest task, the results of which were 
used to adjust for skill differences between these two groups. 
Subsequently, the subjects performed change tasks on two 
alternative Java systems based on a centralized or delegated 
control style, respectively.



Dependent Variables

 Duration: elapsed time taken to perform a set of change 

tasks, considering only duration for subjects whose work was 

correct.

 Effort: total number of programmer hours taken to develop a 

correct program. Thus, effort equals duration for the 

individuals and twice the duration for the pair programmers. 

 Correctness: whether or not the final, maintained program, 

possessed the required functionality.



Population and Sampling Procedure

 A power analysis was performed to calculate sample size (N).

 The target population of the experiment was professional Java 

consultants. (99 individuals and 98 pairs).

 A project manager in each company selected the subjects from 

the company’s pool of consultants and rated them according to 

their Java programming experience.

 The pairs were formed based on the individuals’ programmer 

category and their PP experience. Only 10 subjects claimed to 

have PP experience, which constituted five of the 98 pairs.



Population and Sampling Procedure

 The pairs were constituted from 

two programmers within the 

same company.

 In the second phase of the 

experiment (2004/2005), it was 

difficult to recruit junior 

developers, probably because 

the companies employed few 

new graduates after the 

decline in the IT market in 

2001/2002.



Tasks

 The experiment included the programming of six change tasks: a 

training task, a pretest task (t1), and four (incremental) main 

experimental tasks (t2, t3, t4, and t5).

 Individual Training Task: All the subjects were asked to change a 
small program so that it could read numbers from the keyboard and 

print them out in reverse order.

 Individual Pretest Task (Task 1: ATM): The change consisted of 
adding transaction log functionality and printing an account 

statement for a bank teller machine and was not related to the 
main experiment tasks.



Tasks

 Main Experiment Tasks (Tasks 2-5: Coffee Machine): 

Based on two Java systems: centralized and delegated control.

Centralized: a few large ”control classes” coordinate a set of simple classes. 

Delegated: responsibilities are distributed among a number of classes.

The tasks consisted of four incremental changes to the coffee machine:

 t2. Implement a coin return button.

 t3. Introduce bouillon as a new drink choice.

 t4. Check whether all ingredients are available for the selected drink.

 t5. Make one’s own drink by selecting from the available ingredients.



Tasks

 Special Last Task (the Time Sink Task): 

The final change task in an experiment 

needs special attention as a result of 

potential “ceiling effects.”

Not included in the analysis!

The presence of the last task helped to 

put time pressure on the subjects during 

the experiment. 



Design of the Experiment

Fig. 2. 

Experimental 

design.



Execution



Execution

 The experiment was conducted incrementally in 27 separate 

sessions on separate days (for the 29 companies). 

 The experiment was conducted in the subjects’ own offices, where 

each developer would normally work, or in offices at Simula
Research Laboratory.

 Work at Simula was similar to working at a client’s site. The subjects 

had access to the Internet, printers, libraries, coffee, and so on, as in 

any other project they might be working on. 

 Each subject also used a Java development tool of their own 
choice, e.g., JBuilder, Eclipse, IntelliJ, NetBeans, or Emacs and 

Javac.



Execution

 The authors wanted the subjects to perform the tasks with 
satisfactory quality in as short a time as possible because most 
software engineering jobs impose relatively severe time constraints 
on the tasks to be performed.

1) Instead of offering an hourly rate, they offered a ”fixed” honorarium 
based on an estimate that the work would take 5 hours to 
complete.

2) They introduced a special last, time-sink task.

3) The subjects were allowed to leave when they finished. Those who 
did not finish had to leave after 8 hours.



Execution

 To perform the correctness analysis, one consultant first developed 

a tool that automatically unpacked and built the source code 

corresponding to each task solution. Each one was tested using an 

automated test script.

 To perform the final grading of the task solutions, a grading tool was 

developed that enabled the consultants to view the source code, 

the difference in source code, the expected and actual test case 

output, and the difference between the two.

 One consultant was responsible for phase 1, the other for phase 2, 

but, essentially, the correctness scores of both phases were based 
on a consensus between the two consultants.



Results



Results



Results



Results



Results



Results



Threats to Validity

 Trade-off

1) To ensure realism (reduce 

threats to external validity);

2) To ensure control (to reduce 

threats to internal validity);



Threats to Validity

Internal

 The main threat to internal validity in this experiment was the lack of 

random assignment to the two treatment groups: individual 
programming and pair programming.

 Another related issue is that, for the analyses of duration and effort, 

they removed subjects with incorrect solutions, thereby introducing 

a potential bias, particularly since they removed a larger proportion 

of individuals than pairs.



Threats to Validity

Construct Validity: whether the sampling particulars of a study can 

be defended as measures of general constructs.

 Future experiments should consider using heterogeneous pairs and 

programmers that have already reached their maximum level of

combined efficiency.

 the reliability of the categorization is questionable;

 correctness can be measured in many ways, It is possible that the 

results would have been different had we used more fine-grained
measures of correctness



Threats to Validity

External

 The scope of this study is limited to situations in which the developers 

have no prior knowledge of the system to be changed.

 It is possible that the results do not apply to situations in which the 

developers are also the original designers.

 A related issue is whether the short-term effects observed in this 

experiment are representative of long-term development, in 
particular, due to pair jelling.



Analysis and Discussion

 “Anecdotal and empirical evidence reported in the literature 

suggest several organizational and personal benefits of PP
over individual programming, such as reduced time to 

market, reduced development costs, improved quality of the 

software, reduced costs of training new personnel, and 

enhanced trust, motivation, 

information and knowledge 

transfer among developers”.



Analysis - Duration

 In previous experiments, the differences in the time taken varied from 

no difference, an insignificant 29% decrease, a 42.5% decrease, a 

46.6% decrease, and a 52% decrease in favor of PP.

 This paper suggest an overall insignificant decrease in duration of 8%.

 When considering the moderating effects of system complexity: 

sig. 20% decrease for the CC design and insig. 6% increase for the DC 

design.

 When also accounting for different levels of programmer expertise: 
39% decrease (intermediates on the CC design) to a slight increase 

of 8% (for seniors on the DC design).



Analysis - Effort

 In this context, effort is simply the same as the duration for the 

individuals and the duration multiplied by two for the pairs.

 The results in this paper suggest an overall significant 84% increase
in effort. 

 When considering the moderating effects of both system 

complexity and programmer expertise, the difference in effort 

ranged from an insignificant 22% increase (for intermediates on the 

CC design) to a significant 115% increase (for seniors on the DC 

design), both in favor of individual programming.



Analysis - Correctness

 In previous studies, the results vary from apparently no increase in 

correctness when using PP, a significant 15% increase in correctness, 

an insignificant 29% increase, and a significant 33% increase.

 This paper suggest an overall 7% insignificant increase in 

correctness (72% and 76% correct solutions for individuals and pairs). 

 When considering the moderating effects of system complexity and 

expertise, our results suggest a significant, overall 48% increase in 

correctness for the DC design, but this effect was mostly due to the 

observations for junior pair programmers, who had a 149% increase 
in correctness for the DC design.



Analysis – Different Results

 There are several differences between the studies that complicate 

the above attempt to directly compare the results.

 only considered time/effort data for subjects with correct programs;

 pair jelling;

 the previous experiments all considered initial development tasks, 

whereas this considered maintenance tasks on systems of which the 

programmers had no prior knowledge;

 The difference in the subjects’ ability, education, experience, 
training, etc., in general, and in PP in particular, may be a major 

cause of the different results;



Conclusion

 The existing body of empirical evidence indicates that PP affects 

duration, effort, and correctness, and we are reasonably sure that 

these effects are not simply due to chance.

 The existing results constitute necessary and useful steps toward 
being able to predict when PP might be beneficial.

 However, we are still far from being able to explain why we observe 

the given effects.

 Results from social psychology also suggest that, when, including 

more complex and involving tasks, social laboring is possible.



Paper Review

 The paper describes very well its experiment’s steps and phases;

 The authors didn’t ignore the experiment’s deficiencies, explaining

throughly the study’s limitations;

 Correlation with other studies is very well explored;

 From a statistical view, design, methodologies and execution are 

solid;

 First phase was in 2001, but second phase 3-4 years later...

 Many results would be better explained through charts instead of

tables;



Thank you

for your attention!

Questions?

Impressions?


