
Aquila: An Open-Source GPU-Accelerated Toolkit for Cognitive
and Neuro-Robotics Research

Martin Peniak, Anthony Morse, Christopher Larcombe, Salomon Ramirez-Contla and Angelo Cangelosi

Abstract—This paper presents a novel open-source software
application, Aquila, developed as a part of the ITALK and
RobotDoC projects. The software provides many different
tools and biologically-inspired models, useful for cognitive and
developmental robotics research. Aquila addresses the need for
high-performance robot control by adopting the latest parallel
processing paradigm, based on the NVidia CUDA technology.
The software philosophy, implementation, functionalities and
performance are described together with three practical exam-
ples of selected modules.

I. INTRODUCTION

RECENT approaches that attempt to understand the
nature of cognition have shifted their focus from em-

phasising formal operations on abstracts symbols to a rather
different approach where cognition is seen as an embodied
or situated activity and therefore largely determined by
the physical form of an embodied system [1][2]. Artificial
intelligence, developmental psychology, neuroscience, and
dynamical systems theory have directly inspired a completely
novel approach called developmental robotics, which is a
highly interdisciplinary subfield of robotics also known as
epigenetic or epigenetic robotics [3][4].

Artificial cognitive systems based on the developmental
robotics approach need to undergo an autonomous and
gradual mental development from ”infancy” to ”adulthood”.
Interaction with their environments in an autonomous manner
with little or no human intervention is necessary where no
tasks or goals are pre-defined. This aids the process of
achieving a good level of environmental openness where
an artificial cognitive system is able to cope with different
and previously unexpected environments. Another important
aspect of the systems based on developmental robotics is that
they are able to learn from their previous experience and
use it to assist the acquisition of new skills. Developmental
robotics attempts to understand how the control system’s
organisation of a single robot develops through various
experiences over time.

Embodiment plays a significant part for achieving the goal
to develop autonomous artificial embodied agents capable

Martin Peniak, Anthony Morse, Christopher Larcombe, Salomon
Ramirez-Contla and Angelo Cangelosi are with the Centre for Robotics
and Neural System of the University of Plymouth, Drake Circus, Plymouth,
PL4 8AA, UK (Tel.: +44-1752-586217; fax: +44-1752-586300; (email:
{martin.peniak, anthony.morse, christopher.larcombe, salomon.ramirez-
contla, a.cangelosi}@plymouth.ac.uk).

The authors would like to thank Mirokhin Ivan, a Russian software
developer who dedicate his spare time to improve multiplatform portability
of Aquila.

This work was supported by the EU Integrating Project - ITALK (214886)
within the FP7 ICT programme - Cognitive Systems and Robotics.

of acquiring complex behavioural, cognitive and linguistic
skills through individual and social learning. For example,
it has been demonstrated that research in action and lan-
guage learning in natural and artificial cognitive systems
can directly benefit from this approach, inspired by the
developmental models and phenomena studied in children,
allowing re-enactment of gradual process that have the poten-
tial to bootstrap various cognitive capabilities and integrate
them into a unified interactive cognitive system [4][5]. The
main theoretical hypothesis is based on the assumption that
the parallel development of action, conceptualisation and
social interactions permits the bootstrapping of language
capabilities, which leads to the enhancement of cognitive
development [6].

The developmental robotics approach to action and lan-
guage learning is consistent with recent brain-inspired ap-
proaches to mental development since computational neu-
roscience considers the neural development constrains on
embodiment, as well as on cognition [7][8][9]. It is not
surprising that an overwhelming number of studies from
various fields suggest that actions and language are closely
integrated together. This highlights the importance of em-
bodiment as well as supports the hypothesis of usage based
language as opposed to classical explanations of language
development that assumes an extensive language-specific
cognitive hardwiring.

The modelling of the integration of various cognitive
skills and modalities requires complex and computationally
intensive algorithms running in parallel while controlling
high-performance systems. The processing requirements are
increasing with every added feature and it is not uncom-
mon that at the end of the software development stage a
particular system is unable to cope with fast-response robot-
control tasks. This is very likely when a system requires
applying filters to millions of pixels from a robot’s cameras,
running large-size neural networks with millions of synaptic
connections and using multiple self-organising maps while
controlling the robot in the real-time.

Around the year 2003, to overcome the energy consump-
tion and heat-dissipation problems of standard PC processors,
manufacturers started to produce computers with multiple
cores. This had a strong impact on the software developer
community [10]. In the meanwhile, manufacturers have been
looking into new technologies that would increase the num-
ber of transistors per wafer. However, reducing these dimen-
sions comes at a price since the current leakage becomes a
problem.

Since 2003, the production of semiconductors has been



divided into multicore and manycore design trajectories [11].
Manycore design aims to increase the processing power by
increasing the number of cores in a processor. This number
was doubling with each semiconductor process generation
starting with dual-core chips and reaching hyper-threaded
hexa-core systems. A manycore system is fundamentally
different with regards to its design philosophy. While CPUs
(Computer Processing Units) are optimised for the processing
of sequential code and feature sophisticated control logic and
large cache memories, the GPU (Graphic Processing Units)
design philosophy emerged from the fast growing video
industry where massive numbers of floating point operations
are required to render every single frame. As a result, a
GPU chip has most of its area dedicated to processing of
the floating point operations and features only tiny cache
memories.

In 2006, NVidia released GeForce 8800 GPU, which
was capable of mapping separate programmable graphics
processes to an array of GPUs, which paved the way to
first general purpose computing using parallel GPU pro-
cessors. GPGPU was an intermediate step where graphics
card programmers had to use the OpenGL or DirectX API
to implement their programs. Using the GPGPU technique
many different applications have achieved dramatic speed
improvements. For example, Kruger and Westermann devel-
oped a framework for solving linear algebra [12], Harris and
colleagues designed a cloud dynamics simulation based on
partial differential equations [13], Rodrigues and colleagues
implemented molecular dynamics simulation [14] and Ny-
land and colleagues N-body simulation [15].

More recent GPU developments, based on the NVidia
Tesla GPU architecture, provide clusters of GPUs used as
individual programmable processors and allow more efficient
parallel processing tools. The CUDA (Compute Unified
Device Architecture) programming tool has been designed on
purpose to support mutual CPU/GPU application execution.

Parallel computing using CUDA and GPU cards is being
increasingly taken up by industry and academies. Many
commercial and research applications have migrated from
using solely standard CPU processors to a collaborative
CPU/GPU use where each architecture does what is best at.
In general, most of these applications can achieve tremendous
speed-ups in performance, which is anything between 1.3x to
2,600x [16]. Since quantum computing is still in its infancy
and CPUs are approaching the processing limits constrained
by the physical laws, it seems that parallel computing using
GPU devices is the next paradigm that is yet to become fully
recognised and widely used.

CUDA has been employed in a wide variety of applica-
tions, however, only a handful of these have any relevance
for the cognitive and neuro-robotics domains. Only few
studies have to date applied CUDA to neural networks and
visual processing (e.g. [17][18]), as this field requires further
investigation in applying the CUDA technology to neural
computation and robotics research.

This paper presents a novel software tool, named Aquila,

suitable for GPU-based cognitive and neuro-robotics appli-
cations and that makes use of the latest parallel processing
paradigm based on the CUDA technology. This software
has been developed as a part of the ITALK and RobotDoC
projects as well as the open-source project on the iCub
humanoid robot1. In the next sections we first provide an
overview of Aquila’s philosophy, its software implementation
and its functionalities and performance. We then discuss
three different examples on the use of Aquila for various
cognitive robotics studies.

II. OVERVIEW

Aquila is an open-source project that was inspired by the
recent advancements in supercomputing making use of GPU
enabled devices for humanoid robotics research with the
iCub robot platform. The development of Aquila was driven
by the increasing need for an open-source high-performance
modular software that would provide not only a convenient
interaction with the iCub humanoid robot and its simulator
(see section II-A) but also for the design of multiple tools
and bio-inspired models (see section II-B) that are useful for
cognitive robotics research.

The source code that implements functions running on
CPUs is mostly written in C++ programming language.
Parallel functions running on GPU cards are written in
CUDA-C, which is an extension to C programming language
providing access to the virtual instruction set and memory
in CUDA-capable GPU cards. Aquila is based on freely
available multi-platform libraries and currently compiles on
Linux and Mac OS X operating systems. The graphical user
interface (GUI) is clearly structured and divided into several
modules that can be easily changed using tabs at the top of
the application (see Figure 1). Fast and efficient interaction
with the iCub is facilitated through the integration of many
useful modules in a simple and intuitive GUI based on Qt
libraries. The communication with the iCub humanoid robot
or its simulator is provided by the YARP protocol [19][20].
Image processing is implemented through OpenCV libraries2

as well as native functions. The subsequent rendering to the
GUI is realised through the native use of OpenGL where
the incoming images are mapped into textures and sent to
Qt’s QGLWidget. 2D and 3D visualisations are based on
QwtPlot and QwtPlot3D libraries respectively3. Some of the
modules use speech recognition, which is provided by the
Julius engine.

A. The iCub Humanoid Robot and Simulator

The iCub is a small humanoid robot that is approximately
105cm high, weights around 20.3kg and its design was
inspired by the embodied cognition hypothesis. This unique
robotic platform with 53 degrees of freedom (12 for the
legs, 3 for the torso, 32 for the arms and six for the head)
was designed by the RobotCub Consortium [21], which

1www.italkproject.org, www.robotdoc.org, www.icub.org
2www.opencv.willowgarage.com - OpenCV supports CUDA architecture
3www.qwt.sourceforge.net, www.qwtplot3d.sourceforge.net



involves several European universities. iCub is now widely
used by other cognitive robotics projects such ITALK and
RobotDoc. The iCub project strictly follows the open-source
philosophy, and therefore its hardware design, software as
well as documentation are released under general public
license (GPL).

Tikhanoff et al. have developed an open-source simulated
model of the iCub platform [22]. This simulator has been
widely adopted as a functional tool within the developmental
robotics community4, as it allows researchers to develop,
test and evaluate their models and theories without requiring
access to a physical robot.

B. Modules

Aquila currently provides a number of functional modules
for robotics research most of which support CPU and GPU
execution. Below is a brief description of each module and its
functionalities. For a more detailed information about their
implementation and use see Aquila manual (section V).

Fig. 1. Top part of the image shows multiple tabs that are used for switching
between different modules. All the other controls that are below the tabs are
part of the Terminal module, which is the initial default module. The top
part of the image shows system information, initialised zero-force control
and face expressions interfaces. The bottom part provides information about
iCub’s joint control modes that are currently used

Terminal - provides relevant information about the external
systems that Aquila interacts with, displays status messages
about the presence of GPU devices, Julius speech recognition
system5, YARP server, the iCub robot and its simulator. Ter-
minal provides way to set face expressions of the iCub either
by using low or hi-level module and regardless whether a user
is connected to the real robot or the simulator. This module
integrates with the force control system developed by Italian
Institute of Technology [23] and is able to start/stop force
control mode on iCub as well as change several parameters
such as joints stiffness, damping and offsets. In addition,
Terminal displays colour visualisation of the iCub’s joint
control modes (e.g. position, velocity, impedance), provides

4For example in the following projects: RobotCub, ITALK, Poeticon,
Chris, RobotDoc, Roboskin, Amarsi, IM-CLeVeR, emorph, ROSSI

5www.julius.sourceforge.jp

different options such as lunching external applications or
modifying Aquila’s global settings.

Sequence Recorder - provides a simple and convenient
way of recording, saving and replaying motor sequences.
This module uses the Zero Force Control interface to enable
running iCub robot in a compliant mode while recording
sequences.

ESN Kinematics - implements echo state networks.
Modi Experiment - runs attention system, speech module

and provides a simple way to demonstrate the modi experi-
ment (see section III-B).

U-Shaped Curves in Development - runs and visualises
multiple self-organising maps that are connected by Hebbian
weights. This biologically inspired model provides one ex-
planation of why children are better at recognising phonemes
when they are 8 months old. Their performance gets worse
before it improves again later [24].

Multiple Timescales Recurrent Neural Network - trains
complex continuous multiple time recurrent neural networks
(MTRNN) using the backpropagation through time algo-
rithm. The module executes neural network control systems
on the iCub robot or the simulator as well as visualises many
parameters (see section III-A).

Self-Organising Maps - trains, saves, loads and visualises
self-organising maps, which are very useful and powerful
computational tools capable of preserving the topological
relations in multi-dimensional data.

Abstraction-Reaction Accumulator - explores a novel ap-
proach to synthesising complex adaptive behaviour and non-
task-specific control systems.

Vision - renders video streams from the iCub robot, its
simulator as well as cameras connected to a host machine.
It allows users to take screenshots, record individual frames
and videos, maximise and minimise individual viewports and
apply various image processing filters.

Simulator - provides various interfaces for the iCub sim-
ulator such as video projection from remote and local video
files, cameras connected to a host machine or from a YARP
port. The module also implements an object management
system, which allows users to create and delete various
objects (e.g. box, cylinder, sphere, 3D model), modify their
properties. save objects into XML files and load them back
to the simulator.

CUDA - displays relevant information about CUDA de-
vices found on the system during Aquila initialisation. This
information can be very useful in aiding the process of setting
GPU execution parameters (e.g. number of threads) that have
dramatic influence on the performance.

C. Performance Benchmarking

A performance benchmarking study was carried out in
order to demonstrate the potential of using GPU devices
for iCub research. It is important to note that these are
only preliminary comparisons of unoptimised GPU and CPU
code. The performance can be further increased for both
architectures, however, the present demonstration of the
GPU-CPU differences in performance is to give a general



indication of the extent to which GPUs outperforms CPUs
when code is not extensively optimised.

The test was based on simulation of the multiple
timescales recurrent neural network (MTRNN) system
benchmark using the backpropagation through time (BPTT)
algorithm (Table I), on single forward pass through the
network (Table II) as well as for self-organising maps (SOM)
training (Table III).

These tests were performed on MTRNN and SOM mod-
ules using different parameters to show how both architec-
tures scale when the amount of processing increases.

Fig. 2. system setup used for benchmarking consisting of 8 x 2.67GHz
hyperthreaded processors, 16GB RAM, 1 x GeForce GTX470 and 3 x Tesla
c1060 GPU cards

number of neurons CPU GPU speedup
336 11.14min 0.90min 12.31x
1104 171.41min 3.83min 44.64x

TABLE I
MTRNN BACKPROPAGATION THROUGH-TIME TIMES

number of neurons CPU GPU speedup
336 30ms 0.4ms 75x
1104 370ms 1ms 370x
4176 5022ms 5ms 1004x

TABLE II
MTRNN FORWARD PASS TIMES

number of neurons CPU GPU speedup
64 0.22sec 0.20sec 1.14x
256 1.75sec 0.45sec 3.88x
1024 14.2sec 1.15sec 12.36x
4096 126.17sec 3.20sec 39.37x

TABLE III
SOM TRAINING TIMES

The benchmarking results of unoptimised code show that
achieved speedups vary from 1.14x to 1004x. It is clear that
the performance of GPU devices stands out soon after a large
amount of data needs to be processed. A good example of
such scaling can be seen in the MTRNN forward pass times
that vary from 75x to 1004x speedups.

III. ROBOTICS EXPERIMENTS

This section provides brief descriptions of selected mod-
ules, their underlying systems as well as some preliminary
results of robotics experiments. Detailed descriptions of these
experiments is beyond the focus of this paper. However, the
full details can be found in the referenced papers.

A. Multiple Timescales Recurrent Neural Network

Humans are able to acquire many skilled behaviours dur-
ing their life-times. Learning complex behaviours is achieved
through a constant repetition of the same movements over
and over while certain components are segmented into
reusable elements known as motor primitives. These motor
primitives are then flexibly reused and dynamically integrated
into novel sequences of actions.

For example, the action of lifting an object can be broken
down into a combination of multiple motor primitives. Some
motor primitives would be responsible for reaching the
object, some for grasping it and some for lifting it. These
primitives are represented in a general manner and should
therefore be applicable to objects with different properties.
This capacity is known as generalisation, which also refers
to the ability to acquire motor tasks by different ways.
In addition, one might want to reach for the object and
throw it away instead of lifting it up. Therefore, these motor
primitives need to be flexible in terms of their order within
a particular action sequence. The amount of combinations of
motor primitives grows exponentially with their number and
the ability to exploit this repertoire of possible combinations
of multiple motor primitives is known as compositionality.

The hierarchically organised human motor control system
is known to have the motor primitives implemented as low
as at the spinal cord level whereas high-level planning and
execution of motor actions takes place in the primary motor
cortex (area M1). The human brain implements this hierarchy
by exploitation of muscle synergies and parallel controllers.
These have various degrees of complexity and sophistication
that are able to address both the global aspects of the motor
tasks as well as fine-tune control necessary for the tool use
[25].

Models such as MOSAIC [26] or mixture of multiple
recurrent neural network systems [27] have implemented
functional hierarchies via explicit hierarchical structures.
The motor primitives are represented through local low-
level modules, whereas the higher-level modules allow the
recombinination of these primitives using extra mechanisms
such as gate selection systems. These systems, based on
predefined hierarchical structures, are appealing because of
their potential benefits. For example, the learning of one
module does not interfere with the learning of other modules



and it would also seem that by adding extra low-level
modules the number of acquirable motor primitives would
increase as well. However, it has been demonstrated that the
similarities between various sensorimotor sequences result in
competition between the modules that represent them. This
leads to a conflict between generalisation and segmentation,
since generalisation requires the representation of motor
primitives through many similar patterns present in the same
module whereas different primitives need to be represented
in different modules to achieve a good segmentation of sen-
sorimotor patterns. Because of the conflict that arises when
there is overlap between different sensorimotor sequences, it
is not possible to increase the number of motor primitives by
simply adding extra low-level modules [28]. The learning of
motor primitives (low-level modules) and sequences of these
primitives (hi-level modules) need to be explicitly separated
through subgoals [29][27].

Yamashita’s multiple timescales recurrent neural net-
work model [30] attempts to overcome the generalisation-
segmentation problem through the realisation of functional
hierarchy that is neither based on the separate modules nor
on structural hierarchy, but rather on multiple timescales of
neural activities that seem to be responsible for the process of
motor skills acquisition and adaptation as well as perceptual
auditory differences between formant transition and syllable
level (e.g. [31][32][33]).

Aquila implements the MTRNN model together with the
backpropagation through time (BPTT) algorithm for both
CPU and GPU architectures. As it is demonstrated in section
II-C, GPU significantly improves the speed of the MTRNN
activation as well as of the training algorithm.

Multiple timescales recurrent neural network model can
be seen as an extension the continuous time recurrent neural
network (CTRNN), which was successfully used for produc-
ing sensorimotor sequences [34][35][36]. The MTRNN used
in the preliminary experiments [37] consists of input-output
neurons and context neurons that have different decay rates.
The input-ouput neurons receive sensory inputs from a self-
organising map that transform multidimensional vectors from
the iCub robot into topological maps that directly set neural
activations on this layer. Context neurons are divided into
two categories (fast and slow neurons) where each category
represents different timescales characterised by decay rate
of neurons. In this study the MTRNN was fully connected
except for no presence of direct connection between input-
output neurons and ’slow’ neurons.

In the initial preliminary study the MTRNN system was
required to learn 8 different sequences of actions (slide left
and right, lift up, left and right, swing, push and pull). At
the end of the training, the learned neural network was tested
on the iCub in the same setup as during the tutoring part.
The MTRNN system was found to be able to replicate all
the eight sequences while successfully manipulating with the
object.

Fig. 3. tutoring the iCub robot while recording the sensorimotor sequences
using the Sequence Recorder module of Aqula

B. ‘Modi’ Experiment

Our perception of continuous contact with a rich visual
world laid out in front of us is somewhat misleading. In
fact our actual sensory input is highly impoverished. Visual
acuity for example is focused on an area the size of a thumb
nail at arms length. Sensorimotor theories suggest that this
rich perception is constructed from knowledge of the sensory
consequences of performing various actions, thus you can
perceive a chair in the periphery of your vision because you
can predict that if you look over there you will see the chair.
Similarly identifying objects is not so much about processing
static images, but rather comes from identifying a profile
of manipulations and their consequences in the dynamics of
interaction. Such embodiment centric accounts of perception
are supported by a large number of psychology experiments
exposing various bodily biases in categorisation.

Using developmental robotics experiment it is possible
to model these experiments both to develop the perceptual
skills of the iCub robot, and to further understand our
own categorisation abilities and our own bodily biases in
perception [38][39].

In a series of experiments conducted by Linda Smith and
Larissa Samuelson [40] children between 18 and 24 months
of age are repeatedly shown two different objects in turn, one
consistently presented on the left, and the other consistently
presented on the right. After several presentations of the
objects, the childs attention is drawn to one side or the other
and the linguistic label ’modi’ is presented in the absence of
either object. Finally the children are presented with both
objects in a new location and asked to find the ’modi’.
Not surprisingly 71% of the children select the spatially
correlated object.

In a follow up experiment following the same basic
procedure one group of children is presented with only a
single object which is labeled while in sight, the other group
are repeatedly presented with a consistent spatial relationship
until finally an object is labeled while in sight but in the
wrong spatial location. In the control group 80% correctly
pick the labeled object while in the spatial competition group
the majority of 60% select the spatially linked object rather



than the object that was actually labeled.
In both experiments changes in posture from sitting to

standing eradicate the effect, while other visual or auditory
distracters do not. This is strong evidence challenging the
hypothesis that names are associated to the thing being
attended at the time they are heard.

Our model consists of a number of self-organising maps
capturing variations in visual, auditory, and body posture in-
put. These maps are then linked together via the body posture
map (acting as a hub) in real time based on the experiences
of the robot. With the addition of motion detection in the
periphery of the robots vision, causing the robot to look
at moving objects or changes in the scene, we are able to
replicate the psychology experiments using the robot.

The ’modi’ module in Aquila gives access to the programs
used to replicate these psychology experiments with the
iCub robot and provides algorithms for motion detection, eye
saccades and object tracking. Speech recognition is provided
as is a key-press terminal connection should you wish to use
your own speech recognisers. The specific experiment can
be performed by following the 6 steps outlined below but
the resulting behaviour is not limited to this sequence alone.

1) Object A is presented to the right
2) Object B is presented to the left
3) Steps 1 and 2 are repeated
4) The robots attention is drawn to the right with no

objects present and the word MODI is spoken
5) Steps 1 and 2 are repeated again
6) Both objects are placed in a new location and the robot

is asked where is the modi

Fig. 4. The general architecture of the model. SOMs are used to map
the color space, the body posture, and the word space. These maps are then
linked using Hebbian learning with the body posture map acting as a central
hub. The model can easily be extended to include other features such as
visual and touch information in additional SOMs

C. Abstraction-Reaction Accumulator

The Abstraction-Reaction Accumulator (ARA) is an ex-
perimental adaptive control system, inspired by early cyber-
netic work [41]. The model explores a novel approach to syn-
thesising complex adaptive behaviour and non-task-specific
control systems. The system is structured such that a growing

repertoire of adaptive behaviours is observed to emerge when
coupled to an appropriate environment. Through a gradual
process of cumulative learning, behavioural reactions are
associated with perceptual abstractions. The current Aquila
implementation is specific to the embodiment of the iCub
humanoid robot: abstractions are defined as low-dimensional
states dependent on high-dimensional sensory data obtained
from the physical or simulated iCub, such as joint encoder
values or eye camera images; reactions are defined as states
in the iCub robot that determine or describe observable be-
haviours, such as postures, joint velocities or joint positions.
A shared vision module is used to obtain the raw camera
images, while another shared module (iCubControl) is used
to obtain proprioceptive joint-position data, and to move
individual joints on the iCub robot.

Intermittent feedback from the environment, provided
through the Aquila GUI, modulates the parameters in the
system such that certain reactions (components of overt
behaviour) are more likely to occur in the presence of
certain abstractions (sensory states). This feedback simulates
perturbation to essential variables, which quantify the ap-
propriateness of the state of specific groups of joints on
the robot, referred to as synergies. Each multidimensional
synergy has its own essential variable, and can take one
of several different states at any one time. The number of
syneriges and a mapping between each joint and synergy
is also specified by the user in the GUI. Any joint on the
robot can be mapped and controlled by the ARA. When a
perturbation to an essential variable occurs, a parameter (di-
mension of variation) corresponding to the present reaction
and present state of abstraction will be modulated, such that
future disturbance to that essential variable is minimised. For
example, in a particular sensorimotor state, where a red ball
is held above the ‘closed’ right hand of the robot, a tutor may
perturb an essential variable corresponding to the synergy
‘right hand’ (a set of joints), positively or negatively, causing
the stability of a relevant set of parameters in the system to
change. As a result, the state ‘closed’ of the synergy ‘right
hand’ will be more or less likely to be observed in future,
depending on the polarity of the perturbation, if and when
the sensory situation recurs.

The ARA module provides many configuration settings
(see Figure 5) as well as visualisations of the continuously
changing variables, allowing users to observe the state of the
system in real-time (see Figure 6).

IV. CONCLUSION AND FUTURE WORK

We have briefly mentioned the motivation for the de-
velopment of Aquila, described its modules and showed
few example applications of their practical use. The work
described here has the potential of being used not only
for the ongoing research projects on the iCub robot, but
in general as a general, open-source tool for cognitive and
neuro-robotics, and embodied neural computation research in
general. The availability of various modules implementing
tools for neural network simulations (e.g. Kohonen maps,
Hebbian learning, feedforward ad recurrent neural networks,



Fig. 5. settings that determine the behaviour of coupled sub-systems

Fig. 6. real-time visualisation of the system state

MTRNNs), and the availability of linking of these software
tools with the iCub simulator can also allow researchers with
no direct access to the iCub physical robot platform to design
novel experiments on neural and cognitive modelling using
embodied sensorimotor agents.

Despite the various modules and features already present,
Aquila is still in early development stages. The reusability of
components allows for rapid development of new modules.
However a lot of work still needs to be done with regards to
programming of individual classes that need improvements
and more testing. Many new features will be made available
as we proceed with our research and optimisation of the
existing systems, which will improve the stability of the
application.

Current work focuses on porting Aquila to Windows, fix-
ing known bugs, improving interface, extending the MTRNN
module with vision and language systems to allow exper-
iments of action and language acquisition. New module,
available in the next version, will facilitate investigation of
spatial representation with the focus on peripersonal space.

V. SOFTWARE REPOSITORY AND USER MANUAL

Aquila can be downloaded directly from SourceForge or
iTalk Project software repositories. The project page is on
SourceForge (http://sourceforge.net/projects/aquila/ ) where
new developers can joint our team.

The user manual that provides detailed module descrip-
tions and installation instructions is available from this link:
http://dl.dropbox.com/u/81820/Software/Aquila/Aquila.pdf

REFERENCES

[1] A. Clark and D. Chalmers, “The extended mind,”
Analysis, vol. 58, no. 1, pp. 7–19, 1998.

[2] V. Gallese and G. Lakoff, “The brain’s concepts: The
role of the sensory-motor system in reason and lan-
guage,” Cognitive Neuropsychology, vol. 22, pp. 455–
479, 2005.

[3] M. Asada, K. F. MacDorman, H. Ishiguro, and Y. Ku-
niyoshi, “Cognitive developmental robotics as a new
paradigm for the design of humanoid robots,” Robotics
and Autonomous Systems, vol. 37, pp. 185–193, 2001.

[4] M. Lungarela, G. Metta, R. Pfeifer, and G. Sandini,
“Developmental robotics: A survey,” Connection Sci-
ence, vol. 15, no. 4, pp. 151–190, 2003.

[5] A. Cangelosi and T. Riga, “An embodied model for
sensorimotor grounding and grounding transfer. ex-
periments with epigenetic robots,” Cognitive Science,
vol. 4, pp. 637–689, 2006.

[6] A. Cangelosi, G. Metta, G. Sagerer, S. Nolfi, C. Ne-
haniv, K. Fischer, J. Tani, T. Belpaeme, G. Sandini,
L. Fadiga, B. Wrede, K. Rohlfing, E. Tuci, K. Daut-
enhahn, J. Saunders, and A. Zeschel, “Integration of
action and language knowledge: A roadmap for devel-
opmental robotics,” IEEE Transactions on Autonomous
Mental Development, in press.

[7] J. Weng, “On developmental mental architectures,”
Neurocomputing, vol. 70, no. 13-15, pp. 2303–2323,
2007.

[8] D. Mareschal, M. Johnson, S. Sirios, M. Spratling,
M. S. C. Thomas, and G. Westermann, Neuroconstruc-
tivism Volume 1: How the brain constructs cognition.
Oxford University Press, 2007.

[9] G. Westermann, S. Sirois, T. R. Shultz, and
D. Mareschal, “Modeling developmental cognitive neu-
roscience,” Trends in Cognitive Sciences, vol. 10, no. 5,
pp. 227–233, 2006.

[10] H. Sutter and J. Larus, “Software and th concurrency
revolution,” ACM Queue, vol. 3, no. 7, pp. 54–62, 2005.

[11] W. W. Hwu, K. Keutzer, and T. Mattson, “The concur-
rency challenge,” IEEE Design and Test of Computers,
pp. 312–320, 2008.

[12] J. Kruger and . R. Westermann, “Linear algebra opera-
tors for gpu implementation of numerical algorithms,”
ACM Transactions on Graphics, vol. 22, no. 3, pp. 908–
916, 2003.

[13] M. J. Harris, W. V. Baxter, T. Scheuermann, and
A. Lastra, “Simulation of cloud dynamics on graph-



ics hardware,” in ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, 2003.

[14] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schul-
ten, and W. M. W. Hwu, “Gpu acceleration of cutoff
pair potentials for molecular modeling applications,” in
Conference on Computing Frontiers, 2008.

[15] L. Nyland, M. Harris, and J. Prins, GPU Gems 3.
Addison Wesley, 2007, ch. Fast N-Body simulation with
CUDA, pp. 677–795.

[16] NVidia, “Cuda community showcase,”
December 2010. [Online]. Available:
www.nvidia.com/object/cuda apps flash new.html

[17] H. Jang, A. Park, and K. Jung, “Neural network im-
plementation using cuda and openmp,” in 2008 Digital
Image Computing: Techniques and Applications, 2008.

[18] S. Oh and K. Jung, “View-point insensitive human
pose recognition using neural network and cuda,” World
Academy of Science, Engineering and Technology,
vol. 60, 2009.

[19] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-
lived robot genes,” Robotics and Autonomous Systems,
vol. 56, no. 1, pp. 29–45, 2008.

[20] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet
another robot platform,” International Journal on Ad-
vanced Robotics Systems, vol. 3, no. 1, pp. 43–48, 2006.

[21] G. Metta, D. Vernon, L. Natale, F. Nori, and G. San-
dini, “The icub humanoid robot: an open platform for
research in embodied cognition,” in IEEE Workshop on
Performance Metrics for Intelligent Systems, 2008.

[22] V. Tikhanoff, P. Fitzpatrick, F. Nori, L. Natale,
G. Metta, and A. Cangelosi, “The icub humanoid robot
simulator,” in International Conference on Intel ligent
RObots and Systems IROS, Nice, France, 2008.

[23] M. Fumagalli, M. Randazzo, F. Nori, L. Natale,
G. Metta, and G. Sandini, “Exploiting proximal f/t mea-
surements for the icub active compliance,” in EEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, 2010, pp. 1870–1876.

[24] A. F. Morse, T. Belpaeme, A. Cangeloci, and C. Am-
patzisFloccia, “Modelling u shaped performance curves
in ongoing development,” submitted to the Cognitive
Science Conference 2011.

[25] G. Rizzolatti and G. Luppino, “The cortical motor
system,” Neuron, vol. 31, pp. 889–901, 2001.

[26] D. M. Wolpert and M. Kawato, “Multiple paired for-
ward and inverse models for motor control,” Neural
Networks, pp. 1317–1329, 1998.

[27] J. Tani and S. Nolfi, “Learning to perceive the world
as articulated: an approach for hierarchical learning in
sensory–motor systems,” Neural Networks, pp. 1131–
1141, 1999.

[28] J. Tani, R. Nishimoto, J. Namikawa, and M. Ito, “Code-
velopmental learning between human and humanoid
robot using a dynamic neural-network model,” IEEE
Transactions on Systems, Man, and Cybernetics - Part
B, vol. 38, pp. 43–59, 2008.

[29] J. Tani, R. Nishimoto, and R. Paine, “Achieving “or-
ganic compositionality” through self-organization: re-
views on brain-inspired robotics experiments,” Neural
Networks, vol. 21, pp. 584–603, 2008.

[30] Y. Yamashita and J. Tani, “Emergence of functional
hierarchy in a multiple timescale neural network model:
a humanoid robot experiment,” PLoS Computational
Biology, vol. 4, no. 11, 2008.

[31] R. Huys, A. Daffertshofer, and P. J. Beek, “Multiple
time scales and multiform dynamics in learning to
juggle,” Motor Control, vol. 8, pp. 188–212, 2004.

[32] F. Varela, J. P. Lachaux, E. Rodriguez, and J. Mar-
tinerie, “The brainweb: phase synchronization and
large-scale integration,” Nature Reviews Neuroscience,
vol. 2, pp. 229–239, 2001.

[33] D. Poeppel, W. J. Idsardi, and V. van Wassenhove,
“Speech perception at the interface of neurobiology and
linguistics,” Philosophical Transactions of the Royal
Society B: Biological Sciences, vol. 368, pp. 1071–
1086, 2008.

[34] Y. Doya and S. Yoshizawa, “Adaptive neural oscilla-
tor using continuous-time back-propagation learning,”
Neural Networks, vol. 2, pp. 375–386, 1989.

[35] R. Nishimoto, J. Namikawa, and J. Tani, “Learning
multiple goal-directed actions through self-organization
of a dynamic neural network model: A humanoid robot
experiment,” Adaptive Behavior, vol. 16, no. 2-3, pp.
166–181, 2008.

[36] E. Tuci, “An investigation of the evolutionary origin of
reciprocal communication using simulated autonomous
agents,” Biological Cybernetics, vol. 3, pp. 183–199,
2009.

[37] M. Peniak, D.Marocco, J. Tani, Y. Yamashita, K. Fisher,
and A. Cangelosi, “Multiple time scales recurrent neural
network for complex action acquisition,” submitted to
ICDL2011.

[38] A. F. Morse, T. Belpaeme, A. Cangelosi, and L. B.
Smith, “Thinking with your body: Modelling spatial
biases in categorization using a real humanoid robot.” in
Proceedings of the Cognitive Science Conference 2010,
2010.

[39] A. F. Morse, J. DeGreeff, T. Belpeame, and A. Can-
gelosi, “Epigenetic robotics architecture (era),” . IEEE
Transactions on Autonomous Mental Development,
vol. 2, no. 4, pp. 325–339, 2010.

[40] L. B. Smith and L. Samuelson, Thinking Through
Space: Spatial Foundations of Language and Cognition.
Oxford, United Kingdom: Oxford University Press,
2010, ch. Objects in Space and Mind: From Reaching
to Words.

[41] W. R. Ashby, Design for a Brain. London: Chapman
Hall, 1952.


