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Abstract Temporoparietal hypometabolism on 18F-FDG

PET is one of the core biomarkers for the biomarker-based

diagnosis of Alzheimer’s disease. The traditional readout

of 18F-FDG PET for diagnostic reports is a subjective

visual rating. However, this is loaded with substantial inter-

rater variability. Standardization of readouts is a key factor

for the use of markers in the clinic. Automated tools have

been developed aimed at aiding diagnostic reporting and

making it more reliable. Some involve the statistical voxel-

by-voxel comparison of 18F-FDG uptake compared to a

normative dataset, which provides a statistical map of

difference of metabolism and requires expert judgement.

Others provide a summary metric of temporoparietal

hypometabolism, where a cutoff defines normality/abnor-

mality. Strengths, weaknesses, and cautionary warnings of

visual rating and both classes of tools are reviewed and

discussed.
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Introduction

The worldwide prevalence of Alzheimer’s disease (AD)

continues to grow. The Alzheimer’s Association estimates

that by 2030 almost 8 million people in the United States

aged 65 years and older will have this neurodegenerative

mental disease [1]. The challenge of distinguishing pre-

clinical AD from changes associated with normal aging has

led to several attempts at clinical classification [2]. It is

estimated that, once clinical symptoms are reported, phy-

sicians are able to diagnose the disease more than 90 % of

the time, on the basis of a detailed medical history, plus

mental status testing, physical and neurological examina-

tions, blood tests, and brain imaging. But neuropathologi-

cal studies in AD have demonstrated that cerebral

pathological changes commence decades before the onset

of clinical symptoms [3–6]. AD is associated with pro-

gressive accumulation of abnormal proteins [beta amyloid

(Ab) and hyperphosphorylated tau] in the brain, which

leads to progressive synaptic, neuronal and axonal damage

[7]. Therefore, a biomarker model paralleling the hypo-

thetical pathophysiological sequence of AD was recently

proposed (15). It includes: biomarkers of (i) brain Ab
amyloidosis, (ii) AD-related synaptic dysfunction and (iii)

AD-related neurodegeneration, respectively, (i) reduction

in cerebrospinal fluid (CSF) (Ab)42 and elevated CSF

tau, and increased amyloid tracer retention on positron

emission tomography (PET) imaging; (ii) decreased 18F-

fluorodeoxyglucose (FDG) uptake on PET with a tempo-

roparietal pattern of hypometabolism; (iii) medial temporal

lobe atrophy as assessed by structural magnetic resonance

imaging (MRI) [7]. New biomarker-based diagnostic cri-

teria have also been proposed to enhance the clinical

detection of AD even in its early prodromal stages [8, 9].

The importance of using biomarkers in diagnosis is that
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these biological tests may enable clinicians to detect the

underlying disease and to determine whether mild cogni-

tive impairment (MCI) symptoms are due to AD and may

therefore represent prodromal AD [8, 10, 11]. Such an

etiological classification is invaluable for clinical trials of

disease-modifying drugs currently being developed with a

view to preventing or slowing down the clinical manifes-

tation of AD.

There is a growing body of literature investigating the

use of these biomarkers alone, or in combination, to predict

conversion from MCI to dementia, and quantitative ana-

lytical techniques, currently under development [12], have

already achieved a considerable degree of standardization

[13].

Temporoparietal hypometabolism on 18F-FDG PET is

one of the core biomarkers of neurodegeneration for use in

the biomarker-based diagnosis of AD [14, 15]. As func-

tional alterations precede structural changes in AD [16],

functional imaging with 18F-FDG PET could play an

increasingly important role in providing pathophysiological

information on the distribution of neuronal death and

synapse dysfunction in vivo, which cannot yet be detected

by structural imaging [17]. It was recently shown, in

patients with pathologically verified disease that progres-

sive metabolic reductions occur years before clinical AD

symptoms [18], suggesting that PET could have enhanced

power in early AD diagnosis. Moreover, impaired cerebral

glucose metabolism in the left temporoparietal area of the

brain, measured with FDG PET, combined with visuo-

spatial functioning was found to predict, with 90 % accu-

racy, future deterioration in MCI patients followed up after

an average of 36.5 months [19]. In addition, 18F-FDG PET

has been shown to be one of the strongest individual

positive predictive biomarkers of short-term incident AD

dementia in MCI patients [20]. Finally, in a very recent

study evaluating the possibility of combining MRI, FDG

PET, and CSF data with routine clinical tests to signifi-

cantly increase the accuracy of predicting conversion from

MCI to AD status compared with clinical testing alone,

Shaffer et al. [21] demonstrated that while imaging, CSF

biomarkers significantly improved prediction of conversion

from MCI to AD compared with baseline clinical testing,

FDG PET appeared to add the greatest prognostic

information.

In recent years, PET has become more and more popular

because of its high resolution, sensitivity and accuracy [22,

23] and has become widely employed. Since FDG is a

labeled glucose analog, FDG PET can be used to measure

brain glucose uptake, which reflects cortical metabolism

and may be useful, for instance, in distinguishing fronto-

temporal dementia (FTD) with its anterior functional

defects from Alzheimer’s dementia with its temporoparie-

tal cortex defects [10, 24]. In a multicenter study which

examined FDG PET scans taken from 110 healthy elderly

individuals, 114 MCI, 199 AD, 98 FTD, and 27 patients

affected by Lewy body dementia (LBD), Mosconi et al.

[25] measured the power of FDG PET hypometabolism to

provide differential diagnoses and explored the relationship

of disease-specific hypometabolic patterns to MCI. These

authors found that disease-specific PET patterns correctly

classified 95 % of the AD, 92 % of the DLB and 94 % of

the FTD patients, versus 94 % of the normal subjects. An

AD PET pattern was observed in 79 % of the MCI patients

with deficits in multiple cognitive domains and in 31 % of

those with prominent memory deficits, while FDG PET

hypometabolic patterns in MCI patients with non-memory

deficits were found to be heterogeneous, ranging from

absent hypometabolism to hypometabolism patterns typical

of FTD and DLB. Moreover, using FDG PET to predict

which patients with MCI would convert to dementia at

18 months, Chételat et al. [26] found that converters had

lower FDG uptake in the right temporoparietal cortex.

Soon afterwards, Anchisi et al. [27] used FDG PET and

memory test scores to identify which members of a sample

of 67 amnestic MCI patients would convert to AD after

1 year, and found that clinical stability was associated with

a pattern of hypometabolism in the dorsolateral frontal

cortex and a score of 7 or higher on the California Verbal

Learning Test-Long Delay Free Recall, while conversion

was significantly associated with scores less than 7 on the

California Verbal Learning Test and with bilateral hypo-

metabolism in the inferior parietal, posterior cingulate, and

medial temporal cortex. Drzezga et al. [28] found that

11/13 MCI patients with baseline FDG PET suggestive of

AD converted to dementia by 16 months, as opposed to

only 1/17 with baseline FDG PET not suggestive of AD.

The remaining 16/17 FDG PET-negative patients were still

classified as MCI at the end of the study. Moreover, in a

very large meta-analysis of neural correlates of AD and

MCI, conducted on 40 studies involving 1,351 patients and

1,097 healthy control subjects reporting either atrophy or

decreases in glucose utilization and perfusion, Schroeter

et al. [29] reported that early AD functionally affected the

inferior parietal lobules and the precuneus. As regards

future conversion of MCI to AD, the authors found that

atrophy in the transentorhinal hippocampal area and

hypometabolism in the inferior parietal lobules were the

most reliable predictors of progression. Similar results

were reported in Herholz’s 2010 review [30], in which

substantial impairment of FDG uptake in the temporopa-

rietal association cortex emerged as a reliable predictor of

rapid progression to dementia in MCI patients, while

frontal and temporoparietal metabolic impairment was

closely related to disease progression in many longitudinal

studies. This role of FDG PET as a sensitive marker for

monitoring the progression of early AD was ultimately
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confirmed by the longitudinal study of brain metabolic

changes from amnestic MCI to AD conducted by Fouquet

et al. [31]. The authors of this study measured metabolic per

cent annual changes in MCI patients followed for 18 months

or until their conversion to AD and found that converters,

with respect to non-converters, typically showed a greater

metabolic decrease in ventral medial prefrontal areas;

therefore, metabolic changes in these cortical areas made it

possible to discriminate completely between the two groups.

In recent years, a number of imaging tools of varying

technological sophistication have been developed to rate

functional changes taking place in the brains of patients

with AD. These range from simple subjective visual rating

scales to sophisticated computerized algorithms. Efforts are

under way to make readouts standardized and as operator-

independent as possible [32].

Moreover, a set of automated tools for computer-assis-

ted diagnosis based on PET images has been validated and

has already achieved a considerable degree of standardi-

zation [13, 33, 34]. These tools can be categorized into two

classes: statistical maps and summary metrics of tempo-

roparietal hypometabolism [35]. The strengths and weak-

nesses both of visual rating and of these two classes of

tools should be carefully analyzed and cautionary warnings

noted. The aim of this paper is to review the principal

approaches to FDG PET reading, underlying their strengths

and limitations (summarized in Table 1).

Visual rating and ROI-based methods

Positron emission tomography has been used in the

investigation of functional brain metabolism for decades,

while the technique has been becoming increasingly

important for AD diagnosis and treatment since about 1990

[36, 37]. The impact of early PET studies was undoubted.

They showed, indisputably, that the earliest sites of func-

tional impairment in AD were in the temporal lobes [38].

Accordingly, this technique started to become a substantial

supporting element in the differential diagnosis of AD and

other dementia conditions [39]. However, in the visual

inspection of PET images (black and white or colored), the

lack of defined thresholds for distinguishing between nor-

mal and pathological brain metabolism conditions (Fig. 1a)

meant that judgments depended entirely on the rating

expertise of nuclear medicine physicians (Table 1). To

overcome this limitation, region of interest (ROI)-based

methods were developed, which involved the tracing of

ROIs on MRI images and the within-subject co-registration

of PET and MRI scans [40].

ROIs identified on PET scans can be used both to

visually inspect metabolism in specific regions (ROI-based

qualitative evaluation) and calculate the mean metabolism

within them, and to extract regional metabolic values from

ROIs identified ad hoc (ROI-based semiautomatic quanti-

tative method) (Fig. 1b) [41]. These ROI-based approaches

have high anatomical resolution and specificity. Indeed,

based on manual outlining of specific structures and areas

on each MRI scan slice, they combine the superior ana-

tomical resolution of MRI with the physiological infor-

mation provided by PET [42]. These methods have been

considered to be the gold standard for extracting data from

PET images for research purposes [43]. However, ROI-

based approaches are operator-dependent, given that each

region must be manually drawn by a trained expert with

specific neuro-anatomical knowledge; moreover, drawing

Table 1 Strengths and weaknesses of qualitative and quantitative tools for FDG PET reading

Strengths Weaknesses

Visual rating Traditional nuclear medicine procedure [37] Poor inter-rater reliability [41]

ROI-based

methods

High anatomical resolution and specificity [42] Operator-dependent and time-consuming [44]

Prior assumptions regarding ROIs needed [44]

Dependent on the accuracy of the normalization process [49]

Statistical

maps

Sensitive to mild metabolic changes [57] Dependent on the accuracy of the normalization process [49]

Provide objective evidence supplementing

subjective impression [24]

Validation needed for use in clinical practice [60]

Provide whole-brain assessment [44] Expert judgment, user training or a neuroanatomical atlas required [65]

Normative database not unanimously identified [66]

Summary

metrics

Neither expert judgment nor user training required

[57, 71, 72]

Informative only in the context of a dichotomous diagnostic question (e.g.,

Alzheimer’s/normal) [13]

Differential diagnostic information is not provided [70, 71]Eloquence [70]

False-negative risk (non-Alzheimer’s dementias) [73]

Uncertain diagnostic value around the cutoff [13]

No unanimously recognized normative database [67, 74]
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MRI ROIs demands considerable skill and expertise,

because tracer uptake might have been absent or decreased

in some brain regions, while defining ROIs based on PET

images according to the predefined gyral and sulcal land-

marks could be subject to bias and uncertainty [44].

Moreover, ROI analysis is limited by the need to make

prior assumptions regarding the regions of particular

interest to be considered and retained for further analyses

(see Table 1) [44]. As ROI-based methods are labor

intensive and time consuming, requiring manual regional

demarcation and segmentation of individual patient data, a

number of different computerized methods have been

developed to partially or fully automate the process.

Computerized adjustable brain atlases have been devel-

oped, into which individual PET images can be trans-

formed, partly automating the process of identifying ROIs

[45]. Later, Collins et al. [46] presented a fully automated

method for segmentation and identification of gross

(A) VISUAL RATING (B) ROI-BASED SEMI-
QUANTITATIVE 
ANALYSIS

(C) VOXEL-BASED ANALYSIS

(D) SUMMARY METRICS
1. PALZ 2. HCI 3. MetaROI

PALZ t-score = 
58,489.18
Abnormal

HCI score = 
3,068
Abnormal 

MetaROI 
age-corrected 
w- score = 
-4.11
Abnormal 

Fig. 1 The output shows the processing of an FDG PET scan of an

AD patient using visual rating and different automated tools. a PET

visual rating, relying solely on the nuclear medicine physician’s rating

expertise. The output shows a PET visual inspection of glucose

uptake metabolism: the white arrow denotes an area of mild-to-

moderate hypometabolism; b ROI-based semi-quantitative analysis:

this method can be used to investigate single-subject metabolism in a

priori defined ROIs and compare it to that of normal controls.

Computerized brain atlases have been developed for automating the

identification and segmentation of ROIs [45–48]. A priori left mesial

temporal ROI (in red) has been generated by the PickAtlas tool [48],

which is based on the Talairach Daemon database [76]. The ROI thus

generated has then been overlaid on the PET images of the AD patient

and of 148 normal elders [20] and glucose uptake metabolism in this

ROI has been computed. In this ROI, the AD patient’s metabolism is

2.74 z-scores lower than the mean for the normal group; c voxel-

based analysis: this voxel-by-voxel approach analyzes PET data

without requiring a prior hypothesis. In this figure, SPM analysis

shows, on the right, regions of significant decrease in glucose uptake

metabolism (yellow to red), overlaid on a standard brain atlas, and, on

the left, a patient’s ‘‘glass brain’’ image of hypometabolic regions in

neurological orientation (i.e., the patient’s right is on the reader’s

right-hand side) compared with a group of 21 scans of normal elders

[61]; d summary metrics are the voxel-by-voxel summary measures

of AD-related hypometabolism based on the comparison of individual

images with a dataset of normal scans in the specific brain regions

involved in AD. Their output is a single figure summarizing the

metabolism information of all the analyzed brain regions. A threshold

is given to dichotomize values into normal/abnormal. 1 PALZ score is

computed as a voxel-by-voxel sum of t-scores in a predefined AD-

pattern mask overlaid on an AD subject’s PET image (in red) [57].

The algorithm performs an age correction of the measured glucose

uptake, and then compares the corrected glucose uptake in each PET

image pixel with the predicted uptake based on a group of 110 scans

from normal elders [57]. The resulting deviations are expressed as t-

values. All abnormal t-values within the AD patient’s specific mask

are summed, resulting in an abnormal score, whose cutoff value is

between 11,089 [57] and 13,481 [20]; 2 HCI considers the whole

brain without having to specify a pre-defined region of interest [71].

The figure shows the HCI hypometabolic mask covering the AD

subject’s whole brain (in light orange). HCI provides a single

measurement of the extent to which the pattern and magnitude of

cerebral hypometabolism in an individual’s FDG PET image

corresponds to that of probable AD patients and it is thresholded at

the value of 1,055 [20]; 3 MetaROI is a global index computed as the

average of the mean glucose uptake metabolism counted in five pre-

defined ROIs (three of them, overlapping the AD patient’s PET

image, are depicted in red), developed on the basis of literature

findings about AD hypometabolism [72]. The output of MetaROI

reports abnormal age-corrected z-scores (w-scores) in voxels showing

significantly different glucose uptake between the AD patient and that

of normal controls, thresholded for abnormality at -2.60 [20] (Colour

figure online)
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neuroanatomical structures. More recently, a number of

studies have been proposed using a template-based or

model-based ROI method, which uses ROIs defined on a

template to which all subjects have been normalized or

which has been normalized to each individual subject [47,

48]. This template-based ROI method makes the process of

manually drawing subject-specific ROIs less time con-

suming and subjective, while retaining the possibility of

performing hypothesis-driven analyses for specific loca-

tions [44]. Because spatial normalization is a critical step

for these procedures, the output is conditioned by the

accuracy and precision of the normalization process [49].

Together with computerized brain atlases, structural prob-

abilistic brain atlases have been developed for spatial

transformation purposes. These have provided the frame-

work for new analytical methods that are capable of

combining anatomical information with the statistical

mapping of functional brain data [50], derived from large

populations, and of providing information on anatomical,

geometrical and functional aspects of the brain systems

under study [51]. These atlases have been implemented in

FDG PET studies, coupled with ROI-based methods [52,

53].

An issue that should be considered is the high cost of

performing MRI coupled with PET scans. To overcome

this problem, PET/MRI hybrid machines have recently

been developed, which allow the acquisition of both PET

and MRI scans in a single session, thereby minimizing

patient discomfort while maximizing the clinical informa-

tion and optimizing registration of both modalities [54].

Future clinical applications of hybrid PET/MRI machines

in neuroimaging should be carefully evaluated.

Statistical maps

To overcome the limitations of ROI-based methods, fully

automated, voxel-based analysis (VBA) techniques have

been developed. The voxel-by-voxel approach requires that

all images be spatially transformed to a template space.

This process, known as stereotaxic normalization, assumes

that each voxel corresponds to the same anatomical region

across subjects. Statistical analyses are therefore performed

for every voxel across all subjects (Table 1). Software tools

currently used with VBA techniques are statistical para-

metric mapping SPM (Wellcome Department of Neurol-

ogy, London, UK, based on Matlab package http://www.

mathworks.it/products/matlab/ [33]), and NEUROSTAT

(University of Michigan, Ann Arbor, MI, USA) [34], both

available freely (http://128.95.65.28/*Download/) and

through commercial vendors.

Voxel-based analysis with SPM (Fig. 1c), initially

developed for group statistical comparisons and only later

for single-case analyses, relies initially on a smoothing

procedure to reduce inter-subject variability of brain shape

and activity and then on a spatial normalization, which

consists of an anatomical reshaping of the subject’s brain

onto a standard brain atlas (or template) taking care to

maintain voxel activity throughout the spatial registration

process [55]. Statistical comparisons are performed on a

voxel-by-voxel basis, resulting in the creation of statistical

parametric maps of significant effects. Recently, Chen

et al., using SPM, introduced a method involving the use of

an empirically pre-drawn statistical ROI in assessing AD-

slowing treatment effects with improved statistical power,

defining ROIs from a set of voxels associated with twelve-

month declines in regional-to-whole brain cerebral meta-

bolic rate for glucose [56]. The technique is currently under

validation [56].

The other tool, called NEUROSTAT, initially developed

with a clear clinical intent and offering, since its first

release, the possibility of single-case analysis, includes a

three-dimensional stereotactic surface projection routine

(3D-SSP) that became a standard for PET image analysis in

aging and dementia [34]. In 3D-SSP, predefined surface

projections are established for brain surfaces. The maximal

gray matter activity, projected onto the surface, can be

subjected to further statistical analyses or interpreted

visually. The algorithm is based on an a priori knowledge

of the directions in the brain of major neuronal fiber bun-

dles along which brain shape is nonlinearly warped.

The strengths of statistical mapping techniques are well

known. VBA allows the detection of even slight changes in

the functional signal, and is less biased than qualitative

visual inspection of images [57]. Otte et al. [32], giving an

overview of brain imaging tools in neuroscience, pointed

out that the observer- and training (experience)-dependent

visual inspection, albeit remaining the first diagnostic step

for the physician, should be supplemented with an obser-

ver-independent SPM method or, at least, with an ROI-

based technique in cases of uncertainty. Furthermore, as

shown in a post-mortem confirmation study, visual inter-

pretation of statistical maps may be more reliable and

accurate in distinguishing different dementia conditions

than clinical methods alone or than traditional visual

inspection of images [24]. Moreover, this approach to PET

data analysis is more exploratory than the ROI approach

because it requires no prior hypothesis about the expected

location of the effect [44].

Some limitations should be considered when discussing

VBA techniques. First of all, leaving aside spatial nor-

malization, a critical step in these procedures too [31], even

though it has been demonstrated that automatic detection of

abnormal brain metabolism on individual PET studies can

be achieved by adapting the use of VBA to single-subject

statistical studies [58], the so-called single-case procedure
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(the comparison of single cases with a reference group) has

actually been used only for research purposes [59] and is

undergoing validation for use in clinical practice, for both

AD and MCI patients [60]. A partially unresolved issue for

single-case analyses is that of how to maintain sufficient

power to detect actual metabolic abnormalities in a PET

scan while at the same time controlling for false detection.

To overcome this problem, visual PET inspection, looking

for specific patterns of regional abnormalities rather than

for some scattered abnormal metabolic foci which, on

VBA, could be falsely interpreted as hypometabolic pat-

terns, is strongly recommended. A GridSPM service

(GridSPM), specifically designed to allow remote VBA of

PET brain images, has recently been developed to auto-

matically perform SPM single-case analysis in clinical

practice [61, 62]. GridSPM consists of a grid and an

optimized version of SPM, and was developed during the

Diagnostic Enhancement of Confidence by an International

Distributed Environment (DECIDE) project (www.eu-

decide.eu). The single-case procedure implemented in

GridSPM has been made available, by the DECIDE pro-

ject, to the global neuroscience and medical community,

thus allowing all medical experts throughout the world to

run single-case analyses and to visualize brain hypome-

tabolism on their patients’ PET scans, without needing any

other technical or software knowledge. GridSPM has been

evaluated for usability and for the quality of the tools by

two physicians and one physicist with SPM expertise and

has been validated by comparing the results of the original

SPM and of GridSPM on ten neurological patients. All

evaluators gave the maximum scores to GridSPM for ‘‘ease

of use’’ and quality of results; moreover, the results of the

statistical comparisons between original SPM and Grid-

SPM maps showed excellent agreement for all patients and

visual inspection of all SPM results confirmed this agree-

ment [63]. Della Rosa et al. [60] found that the single-case

procedure in GridSPM showed greater than 90 % speci-

ficity and sensitivity for detecting the typical hypometa-

bolic AD patterns. However, the validation of GridSPM is

still in progress. It is necessary to bear in mind that these

algorithms were specifically developed, at the outset, for

comparing the brain activation of two or more scan groups,

and therefore that tweaking them for single-case analysis in

a clinical rather than a research setting could be dangerous.

Second, VBA estimates the topographical departure of

metabolism from a dataset of normal scans on a voxel-by-

voxel basis [64]. The resulting maps provide detailed

anatomical localization of dysfunctional brain regions that,

however, require an expert interpretation or, at least,

comparison with a neuroanatomical atlas [65]. Moreover,

the use of VBA is limited by the lack of a substantial

number of control PET studies suitable for statistical

comparison with patients (i.e., control studies representing

several conditions of normality to be compared with the

patient on a single-subject basis) [61, 63]. This is probably

because of ethical issues related to risks linked to the PET

acquisition procedure (radiation exposure and catheteriza-

tion)—although acquisition of proper controls is actually

an ethical requirement for accurate scientific research and

diagnostic procedures—and to the costs of storing and

sharing a large set of in vivo neuroimaging studies [63].

Indeed, no reference standard dataset of normal FDG PET

images has, as yet, been created [66]. So far, studies using

single-case analysis include several normal control groups

[60] and their results are dependent on the accuracy and

precision of the normalization process, as well as on the

longitudinally confirmed controls [67]. Mosconi et al.

demonstrated that using a PET database of longitudinally

stable controls reduced the number of false negatives

without increasing the number of false positives in diag-

nosing MCI and AD [67]. The diagnostic sensitivity

achieved with this longitudinal database was 100 % for AD

and MCI, whereas using a standard database of normal

subjects not confirmed longitudinally sensitivity was 95

and 68 %, respectively for AD and MCI. This highlights

the critical importance of longitudinal follow-up of con-

trols to improve sensitivity for detection of MCI.

As a final cautionary warning, the objective VBA

techniques should be regarded purely as tools specifically

designed to improve detection capacity and thus to enable

the nuclear medicine physician to aid the referring physi-

cian in early diagnosis and subsequent treatment decisions

[59].

Summary metrics

In the last few years, several global indices of AD-related

hypometabolism, based on different image processing

procedures of varying degrees of complexity, robustness

and automation, have been developed and many scientific

articles have evaluated the improvement of diagnostic

accuracy obtained by adding fully automated tools to visual

interpretation of PET scans [68, 69]. In this review, we

focus on the so-called PALZ algorithm [57, 70], an AD-

related hypometabolic convergence index (HCI) [71] and a

meta-ROI average [72].

The PALZ score, originally developed by K. Herholz

et al. [57], combines the virtues of voxel-based parametric

mapping with diagnostic information on brain regions that

are typically affected in AD, and can be automatically

computed using the commercially available PMOD soft-

ware (PMOD technologies, www.pmod.com). Each FDG

PET image is compared to a fixed database of scans from

normal elderly subjects through a voxel-wise t test,

including age as a confounding variable, and the PALZ

284 Clin Transl Imaging (2013) 1:279–288
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score is computed as voxel-by-voxel sum of t-scores in a

predefined AD-pattern mask (Fig. 1d). PALZ has been

developed to distinguish AD from healthy elders, with a

threshold for abnormality set at 11,089 (a t-sum higher than

11,089 meaning abnormal metabolism on FDG PET). In its

validation study on 110 normal controls and 395 patients

with probable AD recruited in eight participating centers,

PALZ was shown to identify mild-to-moderate AD with

93 % sensitivity and specificity, and very mild AD with

84 % sensitivity and 93 % specificity [57]. Being accurate,

fully automatic and fast, as well as designed for single-

patient analysis, PALZ is a powerful tool that can aid FDG

PET-based AD diagnosis (an example of PALZ outcome is

shown in Fig. 1). However, PALZ score computation

requires the commercially available PMOD software, and

this may limit its widespread use in clinical practice.

The AD-related HCI was developed by Chen et al. [71].

It provides a single measurement of the extent to which the

pattern and magnitude of cerebral hypometabolism in an

individual’s FDG PET image corresponds to that in prob-

able AD patients, and it is generated using fully automated

voxel-based image analysis algorithms based on SPM

(http://www.fil.ion.ucl.ac.uk/spm/) (Fig. 1d). Each indi-

vidual PET scan is compared with the scans of healthy

subjects from a predefined normative database through a

voxel-wise t test, and the HCI is calculated as the inner

product of the resulting individual t-score map (converted

to a z-score map) and a predefined AD z-score map, first

converted into vectors. The performance of the HCI has

been assessed and validated in terms of (i) discrimination

between AD patients versus MCI patients who converted to

AD versus stable MCI patients versus normal controls, and

(ii) rates of progression from MCI to probable AD. It was

found to be potentially able to help in characterizing AD

and in predicting subsequent rates of clinical decline [71].

However, the HCI has heavy requirements: a specific

software (Matlab) package (http://www.mathworks.it/

products/matlab/) for its computation and a predefined

normative dataset; furthermore, age correction for HCI

final score is not yet fully implemented.

Meta-ROI volumes were created by W.J. Jagust and

S.M. Landau on the basis of a meta-analysis of studies

carrying out direct whole-brain comparisons of FDG PET

data and reporting z-scores or t-values in voxels showing

significantly different FDG uptake between patients (AD or

MCI) and controls: z-scores were mapped to the space of

the MNI template brain as intensity values; the resulting

images were smoothed, normalized to (0–1) intensity range

and binarized using a threshold of 0.5, resulting in five

binary masks in MNI space (left angular, right angular, left

inferior temporal, right inferior temporal, bilateral posterior

cingulate meta-ROIs). The global index (meta-ROI aver-

age) is computed on spatially and intensity-normalized

PET scans as an average of the mean counts in these meta-

ROI volumes [72] (Fig. 1d). Meta-ROI average perfor-

mance has been assessed in terms of sensitivity to detect

longitudinal change in both cognitive and functional

measurements within AD and MCI patients [72]. The

results provided strong evidence that lower baseline FDG

PET metabolism consistently predicted subsequent cogni-

tive decline, and that longitudinal FDG PET metabolism

change was associated with concurrent cognitive decline

[72] making meta-ROI a reliable tool that could exceed the

power of standard clinical outcome measures [72]. However,

meta-ROI requires Matlab and SPM software and a set of

publicly available pre-defined ROIs to run properly and, so

far, its processing procedure does not account for age.

The strengths of these summary metrics relate, first of

all, to the fact that, in general, they do not require expert

interpretation or time-consuming user training. For

instance, once FDG PET images have been imported into

PMOD, PALZ score computation is completely automated

and takes about 2 min per subject. HCI computation,

instead, is automatically performed by the HCI package,

after the normalization to the default PET template, and

takes about 5 min per subject. Meta-ROI computation is

the most time consuming (about 15 min per subject) and

the least automated procedure, because it requires the

application of different SPM subroutines.

Second, at the end of their computation, these indexes of

global hypometabolism provide a measure of the depth and

extent of metabolic abnormality in brain regions that are

typically affected in AD, representing the severity of

functional impairment significantly related to dementia

severity, and discriminating between normals and patients

with very high accuracy [13]. Moreover, for each of the

described summary metrics, thresholds are provided to

dichotomize values into normal/abnormal. The final results

of these metrics, condensing regionally spread abnormali-

ties on the PET images into a single figure, are, in effect,

like a laboratory value indicating the degree of metabolic

abnormality in brain regions that are relevant to AD. They

are highly eloquent [70], but are informative only in the

context of a dichotomous diagnostic question (e.g., Alz-

heimer’s versus normal condition). On the other hand,

summary metrics are scalar numbers whose value is pro-

portional to temporoparietal hypometabolism. Voxel-based

estimates of the departure from a dataset of normal scans

similar to those of voxel-based mapping tools are summed

over the volume of interest in the temporoparietal region.

However, summary metrics do not provide information

beyond the volume of interest [13]. As all these metrics

have been built to distinguish between normal and Alz-

heimer’s condition or to follow and to predict conversion

from the MCI state to full-blown AD dementia, they would

not, at the present state of the art, allow discrimination
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between different types of dementia, such as FTD, DLB or

vascular dementia, as all of these are associated with some

degree of metabolic impairment in the brain areas on which the

metrics are based [70, 71]. The risk of false negatives is present

and should be considered; a possible solution could be, for

instance, that of coupling summary metrics with multivariate

techniques, such as principal components analysis, which may

yield multi-dimensional discriminant functions [73].

Another problem with summary metrics is the uncer-

tainty of the diagnostic value around the provided cutoff as

each metric is highly dependent on the control group on

which it has been built [13]. As a result, normative data-

base variations could move thresholds up or down slightly;

furthermore, there are no unanimously recognized norma-

tive databases [67, 74]. The automation of summary met-

rics furnishes a binary answer in terms of normal/abnormal

condition, without considering the gray zone of values

around the cutoffs. For instance, the AD t-sum cutoff

ranges from 11,089 [57] to 13,481 [20] when using dif-

ferent reference control groups, thus generating subjects

whose hypometabolism could be considered, at the same

time, both normal and abnormal. Coupling visual inspec-

tion of maps by expert raters with fully automated sum-

mary metrics could help to reduce this problem.

There are many cautionary warnings to be considered

when using fully automated summary metrics: first, clini-

cians could be forced to follow the binary normal/abnormal

result provided by the tool, disregarding their traditional

visual experience. To overcome this danger, it is strongly

recommended always to visually inspect the hypometa-

bolic map supplied by summary metrics and to fragment

automatic processes into steps that can easily analyzed by

raters, as automatic segmentation can sometimes fail,

giving a false final answer [57].

Second, raters who fail to visually inspect hypometabolic

maps supplied by summary metrics or PET images, trusting

only the final normal/abnormal output, could be running a

very high risk of neglecting non-AD hypometabolic patterns

(see Table 1 for strengths and weaknesses of all the afore-

mentioned approaches to FDG PET reading) [75].

Third, but very important, none of the fully automated

metrics discussed in this review has been approved by

regulatory authorities for diagnostic purposes in clinical

settings. Indeed, in the case of commercially available tools

(like PALZ, for example), the manufacturer provides a

disclaimer which strongly recommends their use for sci-

entific and research purposes only (http://www.pmod.com/

technologies/pdf/brochures/palz.pdf), leaving the legal

responsibility for their use for diagnostic classification to

the operator. Therefore, these tools should be used only

with extreme caution in clinical settings, as generally, they

have been developed primarily as scientific rather than

clinical tools.

Conclusions

Temporoparietal hypometabolism on 18F-FDG PET is one

of the core biomarkers for the biomarker-based diagnosis

of AD; therefore, its translation into clinical practice is of

crucial interest for the purpose of improving early diag-

nosis and treatments. The present review shows that all the

automated tools developed to overcome limits of tradi-

tional visual rating of PET hypometabolism have the

potential to help detect AD, even though none of them have

yet been approved by regulatory bodies for diagnostic use

in clinical settings. As different tools have different tech-

nical requirements and levels of automation, the choice

among them should be driven by available resources.

Additional efforts are needed to clarify the ability of

computer-aided diagnostic reporting of FDG PET to

address particular scientific and clinical questions (e.g.,

differential diagnosis of dementia, predicting subsequent

decline over different time points, reducing the number of

patients needed for a clinical trial using clinical or bio-

marker endpoints). The incremental diagnostic value of

these tools over other imaging and biological markers (e.g.,

hippocampal atrophy on MRI, amyloid-b 1–42, total tau

and phosphorylated tau in the CSF or amyloid load) should

be carefully evaluated. Finally, crucial requirements such

as the proper software release, documentation and correc-

tion of software bugs, coherence of components and

modules, and a complete description of features, should

always be met by any automated tool being developed for

use in clinical or research settings.
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