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SUMMARY

This paper proposes an algorithm for boosting kernel dgesiimates. We show that boosting is
closely linked to a previously proposed method of bias rédn@nd indicate how it should enjoy
similar properties. Numerical examples and simulatioesuged to illustrate the findings, and we

also suggest further areas of research.
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1 INTRODUCTION

The subject of boosting has recently received a great deatteftion from statisticians; see,
for example, Friedman et al. (2000). First proposed by Schgh990) and subsequently de-
veloped by Freund (1995), Freund & Schapire (1996) and Sch&oSinger (1999), boosting
was investigated as a means of improving the performance'wéak learner’. In the context
of classification, the ‘learner’ was typically a decisiordralgorithm. It was weak in the sense
that, given sufficient data, it would be guaranteed to preduterror rate which was better than
random guessing. In its original setting of machine leagnboosting works by repeatedly using
a weak learner, such as a tree ‘stump’, to classify re-wejkliata iteratively. Givem obser-
vations, the first weighting distribution is uniform, i.e; (i) = 1/n,i = 1,...,n, whilst the
mth distribution {w,, (i) ,i = 1,...,n}, with m € {2,..., M}, is determined on the basis of
the classification ruleg,, 1 (z;) say, resulting from thém — 1)th call. The final sequence of
decision rulesy,, (z),m = 1,..., M, is condensed into a single prediction rule which should
have superior performance. The weighting distributionesigned to associate more importance
to misclassified data through a loss function. Consequexglthe number of iterations increases,
the ‘hard to classify’ observations receive an increasimgght. Moreover, in the case of two
classes, a simply majority vote criterion (Freund, 1995 hsas the sign ogﬁ\le Om (), IS
commonly used to combine the ‘weak’ outputs. Note that, at@nt, there is no consolidated
theory about a stopping rule, i.e. the valueMf. This does not seem a particularly serious draw-
back because boosting is often characterised by some atisrebetween the training and test
error of the classifiers derived from™_ §,,(z), M = 1,2,. ...

Instead of decision trees, Di Marzio & Taylor (2003) propasealgorithm in which a kernel
density classifier is boosted by suitably reweighting thea.d&imulations indicate that the error

rate from this classifier is often lower than the best obtamd@rom the standard, non-boosted,



kernel density classifier, and a theoretical explanatiogivien to show how boosting is able to
reduce the bias in this problem.

Rather than the traditional goal of boosting classifiersthis paper we consider the goal
of density estimation, and investigate how kernel densstynmeates can be boosted effectively.
In §2 we briefly review the standard results for fixed-bandwidthnkl density estimation. We
then propose an algorithm for boosting kernel density edes) and establish a link between
boosting and a previously proposed bias-reduction metAdatief simulation study illustrating
some of the results, as well as the limitations, is giveg@inand the paper concludes with a brief

discussion of some open questions.

2 BOOSTINGKERNEL DENSITY ESTIMATES

2-1 Standard theory

Throughout this paper we will suppose the data to be unteariaGiven a random sample

X1,..., X, from an unknown density, the kernel density estimator g¢f at the pointz € R is

n

fla;n) = n—lh > K (“’ _hX"> (211)

(Wand & Jones, 1995, Ch. 2), whekeis called the bandwidth or smoothing parameter and the
function K : R — R, called akth-order kernel, satisfies the following conditions K (z) dz =
1 and [ 27 K (z) dz # 0,00 only for j > k.

Suppose that the following standard assumptions hold (adehes, 1995, pp. 19-20):
(i) f”is continuous and monotone {r-oco, —L) U (L,00), L€ R; [ (f")? < o0;
@i) lim,_.h =0 and lim,_.,.nh = oo;

(i) K isbounded and{ (z) = K (—z).



Starting from the usual theory, we obtain the biagaéK ) h? /() /2+0 (h?) which is of order
O(h?) and var{f(z)} = R(K)f(x)/(nh) + o{(nh)~'} which is of orderO {(nh)~'}, where,
for a real valued functiort, R(t) = [ t(x)? dz and ux(t) = [ 2*t(z) dx. Hence the asymptotic

integrated mean squared error is AMISHE.)} = %4#2 (K)?R(f") + R(K) (nh)~".

2-2 Choice of boosting scheme

Evidently, designing a boosted kernel density estimatigordhm involves two main choices;
namely the weighting strategy, i.e. the way to ‘give impod& to poorly estimated data, and the
version of boosting. Other issues, which will affect thewecy, are the existence of a kernel
estimator and/or a bandwidth selector that are specifisail@ble for boosting.

Concerning the weighting strategy, because of its nonpetrionature, kernel density esti-
mation lends itself to several solutions. Two obvious ddt@re to adapt the bandwidths locally
or to adapt the mass of the kernels locally. These correspputhdersmoothing and increas-
ing the probability mass of kernels, respectively, for ppestimated data. In our experiments,
varying the mass of the kernel seems the most promisingisolutn this case, the traditional
kernel estimator, which gives all observations the samenuasresponds to the weak learner for

m=1.

2-3 The first boosting step\( = 2)

Fundamental to the boosting paradigm is the re-weightindatd based on a ‘goodness-of-fit’
measure or loss function. As originally conceived, this suea was derived from classifiers,
or their relative likelihood. In the case of density estiimat we can obtain such a measure by

comparingf(a:i) with the leave-one-out estimate (Silverman, 1986, p. 49),

) () = Ti — _
f <xl>—(n_1)h;f<< ; J>. (22)
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Our boosting algorithm then re-weights the data using albds ratio, i.elog {f(:zi)/f(") (mi)} :

The specific algorithm uses weighted kernel density esésgiven by
1 & . T — T
7 Z w(i) K - ,
=1

in which the weights are updated at each step, and the finaloigtthe product of all the density

estimates, normalised so that the integrand is unity; sgerhm 1 in§2-4 for a full description.

Considering the first boosting step; = 2, we now compute the weights used to obtain

fa(x). Since

AL n

FO () =

n—1 (f(mi)_%>

we then have

ol < 1w (8 1o filz) L1 KO oz (M1 ~ K(0)
2(1) 1()+1g<f1(¢)(xi)>_n+nhf1(ggi)+lg< n >_nhf1($i)’

sincelog((n — 1)/n) ~ —1/n, and sow,(i) is approximately proportional t@; (z;) . Hence,
for M = 2 we have the final estimate given bf(z) = cfi(z)f2(x), with ¢ a normalising
constant.

Note that this is very similar to the variable-kernel estionaf Jones et al. (1995)

Flo) =R x 3 Y5 ek (S57). 29
=1

whereﬁ is estimator (21) with the bandwidthb. Equation (23) is simply the product of an
initial estimate, and a re-weighted kernel estimate, withweights depending on the inverse of
the first estimate. This is of the same form as our boostedekelensity estimate fodl = 2.
The idea behind equation () is that the leading bias iﬁb (z) should cancel with the leading
bias in f(a:l-). In its simplest form,b = h. Some simulation results were given in Jones &

Signorini (1997) and a recent semiparametric modificaticthis method was proposed by Jones

et al. (1999).



Note also that theD(h*)-biased kernel regression estimator of Jones et al. (1996yan
alternative boosting interpretation as follows. Firstnsider that it has the same structure as
(2-3), being the product of an initial fit and a fit of the ratiosvee¢n the data and their smoothed
values given by the first estimate. Evidently, a logarithg@csion of this would constitute a typ-
ical ‘fitting of residuals’ method. In particular, it takelset form of a greedy forward stagewise
technique that spans an additive model over 2, or more génekd basis functions by minimis-
ing an L, loss. However, this latter procedure is exactly the definitf the boosting algorithm
for regression problems discussed by Friedman (2001) aiedirRan et al. (2000). Thus, the
bias reduction technique introduced by Jones et al. (1398psely linked to boosting, although

conceived from a very different perspective.

2-4  Further boosting steps

Although Jones et al. (1995) realised that their estimatoiccbe iterated, and sa > 2, they
doubted its efficacy. However, at least fdf = 2, our boosted kernel estimator should inherit
their bias-reduction properties.

Our pseudocode for boosting a kernel density estimate engivAlgorithm 1.

Algorithm 1
Step 1. Giver{x;,i =1,...,n}, initialise wy(i) =1/n, i=1,...,n.
Step 2. Selech.

Step 3. Form =1,..., M, obtain a weighted kernel estimate,
n

o) =3 250 ()

=1

and then update the weights according to

W1 (8) = W (6) + log < fn() ) .
;



Step 4. Provide as output
M ~
H fm(l'),
m=1

renormalised to integrate to unity.

2-5 Boosting justification for bias reduction in density estiioa

Suppose that we want to estimgtér) by a multiplicative estimate. We also suppose that we use
only ‘weak’ estimates which are such thiatdoes not tend to zero as — oc. For simplicity
we consider a ‘population’ version rather than a sampleimers which our weak learner, for

h > 0, is given by

o) = [ umt 1 (252 566)
wherew (y) is taken to be 1. Without essential loss of generality wetake our kernel function
K to be Gaussian. The first approximation in the Taylor sexiabd for » < 1 provided that
the derivatives off (x) are properly behaved, is thqﬁl)(az) = f(x) + h2f"(x)/2, and so we
observe the usual bias of ordéx(h?). Now letting ws (z) = f(l)(aj)_l the boosted estimator at

the second step is

foy(@) = /K(z) {F(@+ zh) + B2f"(x + 2h) /2 + O(W)Y ' f(a + zh) dz
P2 f(2) 4
S O(h).

This gives an overall estimator at the second step as

. R 2 ¢l T 2 ¢l T
o) < Fer@) = 1o (14 7555 o) (1- 5EE +oum)

= @)+ 0",

SO we can see a bias reduction.



3 NUMERICAL AND SIMULATION EXPERIMENTS

3-1 lterative re-weighting

Some insight into the way that the weights change can bermutddy examining one dataset
in some detail. We take 250 observations from a standard Blattistribution. The way that the
weights change is dependent on the smoothing parametdfigridshows the weights of the first
4 boosting steps fokh = 0.336, which is the optimal value for the usual kernel densityreate,
and h = 1.456, which was found to be the optimal value for these data for@&tbiog iterations
(M = 4). For the smaller values af boosting has a more drastic effect on the weights, and for
the largerh the variation in the weights is more smooth.

[Figure 1 about here]

The effect on the boosted density estimate is shown for th&tsein Fig. 2. It can be seen that,
as a consequence of the re-weighting of the data, boostig beeater effect for large smoothing
parameters. We also note that, if the smoothing parameateaectly chosen, then the boosted
kernel density estimates appear to have smaller integsjedred error than the usual kernel
estimate.

[Figure 2 about here]

3-2 The choice of smoothing parameter and the number of boosteus

In the original formulation of boosting, weak learners wased. For example, tree stumps are
used in the boosting of decision trees. To expect boostingpt® in a kernel density estimation
framework, we need to ‘weaken’ the learner.

If a flexible base learner is employed, we would expect smadiies of M/ to be optimal. An

illuminating description of this phenomenon is providedRiggeway (2000): on a dataset where



a ‘stump’ works reasonably well, a more complex tree withrfarminal nodes overfits from
M = 2. Here the decision boundary is efficiently estimated in thet fitep, and the other steps
can only overfit misclassified data without varying the eatigd boundary, thereby degrading the
general performance. In order to avoid this, a low-varidpase learner is suggested, so that, in
effect each stage makes a small, low variance step, seglietiipping away at the bias.
Obviously kernel density estimation is a flexible base legwhatever its formulation. Then,
in a first approximation we can adopt the criterion suggelsyedidgeway (2000) by significantly
oversmoothing, using a bandwidth somewhat larger thangtimal value as obtained from usual
methods. This suggestion seems to be supported by thesrekaln in Fig. 2 in which increasing

values ofh are needed when more boosting is performed.

3-3 Experiments with simulated data

[Figure 3 about here]
In this simple example we investigate how the choicé\bfaffects the optimal choice di, and
how the average integrated squared error changes withtines#oices. We use the average over
all simulations of the integrated squared error, MISE, agtarion. Fig. 3 shows MISH() for
various values of\/ and for symmetric, skewed, bimodal and thick-tailed disitions. We can
see that larger smoothing parameters are required foribhgdstbe beneficial; this corresponds
to the ‘weak learner’ concept in which boosting was origynalkoposed. In the symmetric case
of a Normal distribution improvement due to boosting is diisiing, with most of the benefit
being obtained at the second iteration. The optimal value is= 4 with corresponding optimal
smoothing parametes = 1.6. This represents a reduction in MISE to 43% of the optimaleal
with h = 0.52 for the usual estimator, witd/ = 1. In the skewed exampley?,, and the

thick-tailed distribution, boosting is only beneficial fone step,AM/ = 2, after which the MISE



starts to increase. In the bimodal example boosting is beakfor two steps,M = 3. That this
boosting algorithm is less effective for skewed and thiiket distributions is perhaps caused
by the increased presence of ‘isolated’ observations. ansgpregionsf (z;) ~ K (0)/(nh) and
the quantitylog {f(a:i)/f(i) (a:l-)} will be large. Unless the smoothing paramefeis increased,
the weights of such observations will lead to overestimafeﬁ(a:) in sparsely populated tails.
In this case, the approximation to the estimator of Jones$. €1L295), will be very poor since

K(0)/{nhf(z;)} will be close to unity.

4 DisCcUSSION

Although the connection to the variable-width multiplieat kernel estimator of Jones et al.
(1995) is evident, it in not completely clear how Algorithmwbrks for more than two steps.
Also, as for every boosting application, a regularisatiechhique should be matter of concern.
As seen, there are several parameters that could be oplinoisEbtain a convergent-like pattern
of MISE across the steps. A further methodological poinbigstablish if the use of boosting
weights {w; ,,, = 1,...,n,m = 1,..., M} could be incorporated into the calculation of the
bandwidth, so achieving a step-adaptive bandwidth.

The simple nature of our techniques allows straightforwextensions to the multidimen-
sional case. Indeed, because of its bias reduction charaetating Algorithm 1 with large
smoothing parameters could suggest a powerful new toolddressing curse of dimensionality

effects.
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Figure 1: Standard Normal sample. Weights for each observatotted for the first three itera-
tions for smoothing parameter (&)= 0.336 and (b)h = 1.456. Dot-dash line:M = 1; dotted

line: M = 2; dashed line:M = 3; continuous line:M = 4.
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(f - f ) plotted for the first three iterations for smoothing partenda) h = 0.336 and (b)
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