
Boosting Kernel Density Estimates: a Bias Reduction

Technique?

Marco Di Marzio

Dipartimento di Metodi Quantitativi e Teoria Economica,
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SUMMARY

This paper proposes an algorithm for boosting kernel density estimates. We show that boosting is

closely linked to a previously proposed method of bias reduction and indicate how it should enjoy

similar properties. Numerical examples and simulations are used to illustrate the findings, and we

also suggest further areas of research.
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1 INTRODUCTION

The subject of boosting has recently received a great deal ofattention from statisticians; see,

for example, Friedman et al. (2000). First proposed by Schapire (1990) and subsequently de-

veloped by Freund (1995), Freund & Schapire (1996) and Schapire & Singer (1999), boosting

was investigated as a means of improving the performance of a‘weak learner’. In the context

of classification, the ‘learner’ was typically a decision tree algorithm. It was weak in the sense

that, given sufficient data, it would be guaranteed to produce an error rate which was better than

random guessing. In its original setting of machine learning, boosting works by repeatedly using

a weak learner, such as a tree ‘stump’, to classify re-weighted data iteratively. Givenn obser-

vations, the first weighting distribution is uniform, i.e.w1 (i) = 1/n, i = 1, . . . , n , whilst the

m th distribution {wm (i) , i = 1, . . . , n}, with m ∈ {2, . . . ,M}, is determined on the basis of

the classification rule,δm−1(xi) say, resulting from the(m − 1) th call. The final sequence of

decision rules,δm (x) ,m = 1, . . . ,M , is condensed into a single prediction rule which should

have superior performance. The weighting distribution is designed to associate more importance

to misclassified data through a loss function. Consequently, as the number of iterations increases,

the ‘hard to classify’ observations receive an increasing weight. Moreover, in the case of two

classes, a simply majority vote criterion (Freund, 1995), such as the sign of
∑M

m=1 δm (x) , is

commonly used to combine the ‘weak’ outputs. Note that, at present, there is no consolidated

theory about a stopping rule, i.e. the value ofM . This does not seem a particularly serious draw-

back because boosting is often characterised by some correlation between the training and test

error of the classifiers derived from
∑M

m=1 δm(x),M = 1, 2, . . . .

Instead of decision trees, Di Marzio & Taylor (2003) proposean algorithm in which a kernel

density classifier is boosted by suitably reweighting the data. Simulations indicate that the error

rate from this classifier is often lower than the best obtainable from the standard, non-boosted,
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kernel density classifier, and a theoretical explanation isgiven to show how boosting is able to

reduce the bias in this problem.

Rather than the traditional goal of boosting classifiers, inthis paper we consider the goal

of density estimation, and investigate how kernel density estimates can be boosted effectively.

In §2 we briefly review the standard results for fixed-bandwidth kernel density estimation. We

then propose an algorithm for boosting kernel density estimates, and establish a link between

boosting and a previously proposed bias-reduction method.A brief simulation study illustrating

some of the results, as well as the limitations, is given in§3, and the paper concludes with a brief

discussion of some open questions.

2 BOOSTING KERNEL DENSITY ESTIMATES

2·1 Standard theory

Throughout this paper we will suppose the data to be univariate. Given a random sample

X1, . . . ,Xn from an unknown densityf , the kernel density estimator off at the pointx ∈ R is

f̂(x;h) =
1

nh

n∑

i=1

K

(
x − Xi

h

)
(2·1)

(Wand & Jones, 1995, Ch. 2), whereh is called the bandwidth or smoothing parameter and the

function K : R → R , called ak th-order kernel, satisfies the following conditions:
∫

K(x) dx =

1 and
∫

xjK(x) dx 6= 0,∞ only for j ≥ k .

Suppose that the following standard assumptions hold (Wand& Jones, 1995, pp. 19–20):

(i) f ′′ is continuous and monotone in(−∞,−L) ∪ (L,∞) , L ∈ R ;
∫

(f ′′)2 < ∞ ;

(ii) lim n→∞h = 0 and limn→∞nh = ∞ ;

(iii) K is bounded andK (x) = K (−x) .
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Starting from the usual theory, we obtain the bias asµ2 (K)h2f ′′(x)/2+o
(
h2
)

which is of order

O(h2) and var{f̂(x)} = R(K)f(x)/(nh) + o{(nh)−1} which is of orderO
{
(nh)−1

}
, where,

for a real valued functiont, R(t) =
∫

t(x)2 dx andµk(t) =
∫

xkt(x) dx . Hence the asymptotic

integrated mean squared error is AMISE{f̂(·)} = h4

4 µ2 (K)2 R (f ′′) + R (K) (nh)−1.

2·2 Choice of boosting scheme

Evidently, designing a boosted kernel density estimation algorithm involves two main choices;

namely the weighting strategy, i.e. the way to ‘give importance’ to poorly estimated data, and the

version of boosting. Other issues, which will affect the accuracy, are the existence of a kernel

estimator and/or a bandwidth selector that are specificallysuitable for boosting.

Concerning the weighting strategy, because of its nonparametric nature, kernel density esti-

mation lends itself to several solutions. Two obvious criteria are to adapt the bandwidths locally

or to adapt the mass of the kernels locally. These correspondto undersmoothing and increas-

ing the probability mass of kernels, respectively, for poorly estimated data. In our experiments,

varying the mass of the kernel seems the most promising solution. In this case, the traditional

kernel estimator, which gives all observations the same mass, corresponds to the weak learner for

m = 1.

2·3 The first boosting step (M = 2)

Fundamental to the boosting paradigm is the re-weighting ofdata based on a ‘goodness-of-fit’

measure or loss function. As originally conceived, this measure was derived from classifiers,

or their relative likelihood. In the case of density estimation, we can obtain such a measure by

comparingf̂(xi) with the leave-one-out estimate (Silverman, 1986, p. 49),

f̂ (i)(xi) =
1

(n − 1)h

∑

j 6=i

K

(
xi − xj

h

)
. (2·2)
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Our boosting algorithm then re-weights the data using a log-odds ratio, i.e.log
{

f̂(xi)/f̂
(i)(xi)

}
.

The specific algorithm uses weighted kernel density estimates given by

1

h

n∑

i=1

w(i)K

(
x − xj

h

)
,

in which the weights are updated at each step, and the final output is the product of all the density

estimates, normalised so that the integrand is unity; see Algorithm 1 in§2·4 for a full description.

Considering the first boosting step,m = 2, we now compute the weights used to obtain

f̂2(x) . Since

f̂ (i)(xi) =
n

n − 1

(
f̂(xi) −

K(0)

nh

)

we then have

w2(i) = w1(i) + log

(
f̂1(xi)

f̂
(i)
1 (xi)

)
≃

1

n
+

K(0)

nhf̂1(xi)
+ log

(
n − 1

n

)
≃

K(0)

nhf̂1(xi)
,

sincelog((n− 1)/n) ≃ −1/n , and sow2(i) is approximately proportional tôf1(xi)
−1 . Hence,

for M = 2 we have the final estimate given bŷf(x) = cf̂1(x)f̂2(x) , with c a normalising

constant.

Note that this is very similar to the variable-kernel estimator of Jones et al. (1995)

f̂ (x) = f̂b (x) ×
1

n

n∑

i=1

f̂−1
b (xi)

1

h
K

(
x − xi

h

)
, (2·3)

where f̂b is estimator (2·1) with the bandwidthb . Equation (2·3) is simply the product of an

initial estimate, and a re-weighted kernel estimate, with the weights depending on the inverse of

the first estimate. This is of the same form as our boosted kernel density estimate forM = 2.

The idea behind equation (2·3) is that the leading bias in̂fb (x) should cancel with the leading

bias in f̂(xi) . In its simplest form,b = h . Some simulation results were given in Jones &

Signorini (1997) and a recent semiparametric modification of this method was proposed by Jones

et al. (1999).
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Note also that theO(h4)-biased kernel regression estimator of Jones et al. (1995) enjoys an

alternative boosting interpretation as follows. First, consider that it has the same structure as

(2·3), being the product of an initial fit and a fit of the ratios between the data and their smoothed

values given by the first estimate. Evidently, a logarithmicversion of this would constitute a typ-

ical ‘fitting of residuals’ method. In particular, it takes the form of a greedy forward stagewise

technique that spans an additive model over 2, or more generally, M basis functions by minimis-

ing anL2 loss. However, this latter procedure is exactly the definition of the boosting algorithm

for regression problems discussed by Friedman (2001) and Friedman et al. (2000). Thus, the

bias reduction technique introduced by Jones et al. (1995) is closely linked to boosting, although

conceived from a very different perspective.

2·4 Further boosting steps

Although Jones et al. (1995) realised that their estimator could be iterated, and som > 2, they

doubted its efficacy. However, at least forM = 2, our boosted kernel estimator should inherit

their bias-reduction properties.

Our pseudocode for boosting a kernel density estimate is given in Algorithm 1.

Algorithm 1

Step 1. Given{xi, i = 1, . . . , n} , initialise w1(i) = 1/n, i = 1, . . . , n .

Step 2. Selecth .

Step 3. Form = 1, . . . ,M , obtain a weighted kernel estimate,

f̂m (x) =
n∑

i=1

wm (i)

h
K

(
x − xi

h

)
,

and then update the weights according to

wm+1(i) = wm(i) + log

(
f̂m(xi)

f̂
(i)
m (xi)

)
.
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Step 4. Provide as output
M∏

m=1

f̂m(x),

renormalised to integrate to unity.

2·5 Boosting justification for bias reduction in density estimation

Suppose that we want to estimatef(x) by a multiplicative estimate. We also suppose that we use

only ‘weak’ estimates which are such thath does not tend to zero asn → ∞ . For simplicity

we consider a ‘population’ version rather than a sample version in which our weak learner, for

h > 0, is given by

f̂(m)(x) =

∫
1

h
wm(y)K

(
x − y

h

)
f(y) dy,

wherew1(y) is taken to be 1. Without essential loss of generality we willtake our kernel function

K to be Gaussian. The first approximation in the Taylor series,valid for h < 1 provided that

the derivatives off(x) are properly behaved, is then̂f(1)(x) = f(x) + h2f ′′(x)/2, and so we

observe the usual bias of orderO(h2) . Now letting w2(x) = f̂(1)(x)−1 the boosted estimator at

the second step is

f̂(2)(x) =

∫
K(z)

{
f(x + zh) + h2f ′′(x + zh)/2 + O(h4)

}−1
f(x + zh) dz

= 1 −
h2f ′′(x)

2f(x)
+ O(h4).

This gives an overall estimator at the second step as

f̂(1)(x) × f̂(2)(x) = f(x)

(
1 +

h2f ′′(x)

2f(x)
+ O(h4)

)(
1 −

h2f ′′(x)

2f(x)
+ O(h4)

)

= f(x) + O(h4),

so we can see a bias reduction.
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3 NUMERICAL AND SIMULATION EXPERIMENTS

3·1 Iterative re-weighting

Some insight into the way that the weights change can be obtained by examining one dataset

in some detail. We take 250 observations from a standard Normal distribution. The way that the

weights change is dependent on the smoothing parameter, andFig. 1 shows the weights of the first

4 boosting steps forh = 0.336, which is the optimal value for the usual kernel density estimate,

and h = 1.456, which was found to be the optimal value for these data for 3 boosting iterations

(M = 4). For the smaller values ofh boosting has a more drastic effect on the weights, and for

the largerh the variation in the weights is more smooth.

[Figure 1 about here]

The effect on the boosted density estimate is shown for thesedata in Fig. 2. It can be seen that,

as a consequence of the re-weighting of the data, boosting has a greater effect for large smoothing

parameters. We also note that, if the smoothing parameters are correctly chosen, then the boosted

kernel density estimates appear to have smaller integratedsquared error than the usual kernel

estimate.

[Figure 2 about here]

3·2 The choice of smoothing parameter and the number of boostingsteps

In the original formulation of boosting, weak learners wereused. For example, tree stumps are

used in the boosting of decision trees. To expect boosting towork in a kernel density estimation

framework, we need to ‘weaken’ the learner.

If a flexible base learner is employed, we would expect smaller values ofM to be optimal. An

illuminating description of this phenomenon is provided byRidgeway (2000): on a dataset where
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a ‘stump’ works reasonably well, a more complex tree with four terminal nodes overfits from

M = 2. Here the decision boundary is efficiently estimated in the first step, and the other steps

can only overfit misclassified data without varying the estimated boundary, thereby degrading the

general performance. In order to avoid this, a low-variancebase learner is suggested, so that, in

effect each stage makes a small, low variance step, sequentially chipping away at the bias.

Obviously kernel density estimation is a flexible base learner, whatever its formulation. Then,

in a first approximation we can adopt the criterion suggestedby Ridgeway (2000) by significantly

oversmoothing, using a bandwidth somewhat larger than the optimal value as obtained from usual

methods. This suggestion seems to be supported by the results shown in Fig. 2 in which increasing

values ofh are needed when more boosting is performed.

3·3 Experiments with simulated data

[Figure 3 about here]

In this simple example we investigate how the choice ofM affects the optimal choice ofh , and

how the average integrated squared error changes with thesetwo choices. We use the average over

all simulations of the integrated squared error, MISE, as a criterion. Fig. 3 shows MISE(h) for

various values ofM and for symmetric, skewed, bimodal and thick-tailed distributions. We can

see that larger smoothing parameters are required for boosting to be beneficial; this corresponds

to the ‘weak learner’ concept in which boosting was originally proposed. In the symmetric case

of a Normal distribution improvement due to boosting is diminishing, with most of the benefit

being obtained at the second iteration. The optimal value isM = 4 with corresponding optimal

smoothing parameterh = 1.6. This represents a reduction in MISE to 43% of the optimal value

with h = 0.52 for the usual estimator, withM = 1. In the skewed example,χ2
10 , and the

thick-tailed distribution, boosting is only beneficial forone step,M = 2, after which the MISE
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starts to increase. In the bimodal example boosting is beneficial for two steps,M = 3. That this

boosting algorithm is less effective for skewed and thick-tailed distributions is perhaps caused

by the increased presence of ‘isolated’ observations. In sparse regionsf̂(xi) ≃ K(0)/(nh) and

the quantitylog
{

f̂(xi)/f̂
(i)(xi)

}
will be large. Unless the smoothing parameterh is increased,

the weights of such observations will lead to overestimatesof f̂(x) in sparsely populated tails.

In this case, the approximation to the estimator of Jones et al. (1995), will be very poor since

K(0)/{nhf̂ (xi)} will be close to unity.

4 DISCUSSION

Although the connection to the variable-width multiplicative kernel estimator of Jones et al.

(1995) is evident, it in not completely clear how Algorithm 1works for more than two steps.

Also, as for every boosting application, a regularisation technique should be matter of concern.

As seen, there are several parameters that could be optimised to obtain a convergent-like pattern

of MISE across the steps. A further methodological point is to establish if the use of boosting

weights{wi,m, i = 1, . . . , n,m = 1, . . . ,M} could be incorporated into the calculation of the

bandwidth, so achieving a step-adaptive bandwidth.

The simple nature of our techniques allows straightforwardextensions to the multidimen-

sional case. Indeed, because of its bias reduction character, iterating Algorithm 1 with large

smoothing parameters could suggest a powerful new tool for addressing curse of dimensionality

effects.
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1 Standard Normal sample. Weights for each observation plotted for the first three

iterations for smoothing parameter (a)h = 0.336 and (b)h = 1.456. Dot-dash

line: M = 1; dotted line:M = 2; dashed line:M = 3; continuous line:M = 4. 14

2 Standard normal sample. (a)-(b) Difference between true density and density

estimates (f − f̂ ) plotted for the first three iterations for smoothing parameter (a)

h = 0.336 and (b)h = 1.456. Dot-dash line:M = 1; dotted line: M = 2;

dashed line:M = 3; continuous line:M = 4. (c)-(d) Difference between true

density and density estimates plotted for the first three iterations for the optimal

smoothing parametersh = 0.336 (M = 1), h = 0.728 (M = 2), h = 1.120

(M = 3) andh = 1.456 (M = 4). (c) f − f̂ ; (d) (f − f̂)2 . . . . . . . . . . . 15

3 For 500 samples of sizen = 50 the average integrated squared error is shown as a

function of the smoothing parameterh for various values of the boosting iteration

M . The dashed line joins the points corresponding to the optimal smoothing

parameters for each boosting iteration. Underlying distributions: (a)N(0, 1) ; (b)

χ2
10 ; (c) equal mixture of normalsN(±2.5, 1) ; (d) t4 . . . . . . . . . . . . . . . 16
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Figure 1: Standard Normal sample. Weights for each observation plotted for the first three itera-

tions for smoothing parameter (a)h = 0.336 and (b)h = 1.456. Dot-dash line:M = 1; dotted

line: M = 2; dashed line:M = 3; continuous line:M = 4.
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Figure 2: Standard normal sample. (a)-(b) Difference between true density and density estimates

(f − f̂ ) plotted for the first three iterations for smoothing parameter (a) h = 0.336 and (b)

h = 1.456. Dot-dash line:M = 1; dotted line:M = 2; dashed line:M = 3; continuous line:

M = 4. (c)-(d) Difference between true density and density estimates plotted for the first three

iterations for the optimal smoothing parametersh = 0.336 (M = 1), h = 0.728 (M = 2),

h = 1.120 (M = 3) andh = 1.456 (M = 4). (c) f − f̂ ; (d) (f − f̂)2 .
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Figure 3: For 500 samples of sizen = 50 the average integrated squared error is shown as a func-

tion of the smoothing parameterh for various values of the boosting iterationM . The dashed

line joins the points corresponding to the optimal smoothing parameters for each boosting itera-

tion. Underlying distributions: (a)N(0, 1) ; (b) χ2
10 ; (c) equal mixture of normalsN(±2.5, 1) ;

(d) t4 .
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