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Abstract. In this paper, we present a novel indexing technique called Multi-
scale Similarity Indexing (MSI) to index image’s multi-features into a single 
one-dimensional structure. Both for text and visual feature spaces, the similarity 
between a point and a local partition’s center in individual space is used as the 
indexing key, where similarity values in different features are distinguished by 
different scale. Then a single indexing tree can be built on these keys. Based on 
the property that relevant images haves similar similarity values from the center 
of the same local partition in any feature space, certain number of irrelevant 
images can be fast pruned based on the triangle inequity on indexing keys. To 
remove the “dimensionality curse” existing in high dimensional structure, we 
propose a new technique called Local Bit Stream (LBS). LBS transforms 
image’s text and visual feature representations into simple, uniform and 
effective bit stream (BS) representations based on local partition’s center. Such 
BS representations are small in size and fast for comparison since only bit 
operation are involved. By comparing common bits existing in two BSs, most 
of irrelevant images can be immediately filtered. Our extensive experiment 
showed that single one-dimensional index on multi-features improves multi-
indices on multi-features greatly. Our LBS method outperforms sequential scan 
on high dimensional space by an order of magnitude. 

1   Introduction 

WWW provides a super big pool for interesting images. Recently, WWW image 
retrieval has been a very challenging research area. Such images are typically 
described by both high-level (text) and low-level (visual) features. To retrieve 
relevant images from large image database, two issues are essential: effectiveness and 
efficiency. However, most known research results [1] are on retrieval effectiveness. 
There is no clearly known research achievement on how to index this particular type 
of large image database described by multi-features for efficient retrieval, especially 
on indexing completely different representations: text and visual features. Current 
method is to build one structure for every single feature. Given an image query, it has 
to access all individual structures and integrate results from each index to get the final 
results. Furthermore, these known indexing structures suffer from “dimensionality 
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curse”. When the dimensionality of data space reaches 20 or greater, indexing 
techniques fail to outperform sequential scan [2] for nearest neighbor search.  

In this paper, we propose a new method called Multi-scale Similarity Indexing 
(MSI) that can index WWW images’ multi-features in a single structure. MSI exhibits 
a means of indexing different features in different representations in a single tree, 
such as image text and visual features, where text feature is in Weighted Lexical 
Chain model [3] or others, and visual feature is in standard high dimensional data 
space. MSI first partitions each feature space into clusters. Then the similarity of each 
image in each feature space to its corresponding cluster’s center is computed as the 
indexing key. By a simple mapping function, we can keep the keys for each cluster in 
different feature space distinct in different scale level. Thus a standard B+ tree can be 
easily built on these indexing keys.  

However, like other existing indexing technique, MSI also suffers from 
“dimensionality curse”. To release MSI from such curse, we propose a novel 
technique called Local Bit Stream (LBS). LBS exhibits a way to transform the high 
dimensional feature representation (big size) into a uniform, accurate and compact 
representation (small size). Given clusters in each feature space, LBS encodes each 
point in different feature space into a uniformly dimensional bit stream (BS). The BS 
of a point in a feature space is generated by comparing this point and its cluster’s 
center. Thus such transformation is localized at cluster level. The effectiveness of 
LBS depends on how to generate the BS for each feature point. Due to the completely 
different nature of text and visual features, both are encoded in different schemes. We 
present different encoding strategies for text and visual features. However, both 
encoding strategies can produce the same uniformly BS representations for text and 
visual feature points. BS is an approximate representation of original data. It’s 
compact, much smaller in size, and accurate for similarity measures. Furthermore, BS 
comparisons involve bit operations only. Thus it is much faster in terms of efficiency.  

We implement our indexing techniques on top of MYSQL server. An extensive 
performance study is conducted to evaluate our methods. Our results show that single 
indexing structure is supreme to multi-indexing structures, and LBS breaks the 
dimensionality curse by improving the response time faster than sequential scan and 
iDistance [4] by an order of magnitude without sacrificing the retrieval precision.  

The rest of paper is organized as follows. In section 2, we review some related 
works. In section 3, some preliminary work on image features and similarity measures 
are introduced. In section 4, we present the single one-dimensional indexing structure 
– MSI, and in section 5 we propose the LBS and its encoding schemes. An extensive 
performance study is presented in section 6. Finally, we conclude our paper in section 7. 

2   Related Work 

Our related works cover several research areas: WWW image retrieval, evidence 
integration, high dimensional indexing, and multi-feature query processing.  

Several WWW image retrieval systems have been proposed in literature. Existing 
known systems, such as AMORE [5], ImageRover [6], and WebSeek [7], allow the 
WWW image retrieval on combination of multi-features, like keywords, color, shape 
and texture. Recently, the high-level features of WWW images were explored by a 
Weight ChainNet model [3] since low level features cannot represent the high level 
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semantic meanings for WWW images. More recently, the textual and Hyperlink 
information are extracted from blocks of Web pages to improve the accuracy [24]. 
And relevance feedback techniques are also applied in WWW image retrieval [8, 25]. 
However, most of systems focus on retrieval accuracy only.  

To integrate multi-features together, most of systems used linear combination by 
assuming that text and visual features are linearly important. Recently, Dempster 
Shafer Theory, one technique to handle uncertainty, has been also employed on 
indexing of face retrieval on the web [9]. In this paper, we examine more techniques, 
including Certainty Factor and Compound probability. 

Recently, Nearest Neighbor (NN) search in high dimensional spaces has been a 
very active research topic. Several indexing structures [2, 4, 10, 11, 12, 13] have been 
proposed. However, all these techniques are for indexing an individual feature space 
purpose, and they all suffer from known “dimensionality curse”. Their performances 
degrade rapidly as dimensionality increases. As dimensionality reaches high (>20), 
they even fail to outperform sequential scan. Most existing systems build one index 
for every feature space. Given a query, each index has to be accessed. ImageRover [6] 
tried to combine multi-features by first performing dimensionality reduction on each 
feature then used existing indexing structure to index concatenated feature vector 
from every reduced feature space. Anne et al [14] applied non-linear neural network 
techniques with dimensionality reduction method, then used the similar way to index 
reduced multi-visual features by existing indexing structure. However, both have the 
following drawbacks. First the dimensionality curse still remains. Their techniques 
reduce the spaces into a level where the retrieval accuracy is reasonably affected. 
Image features spaces are typically in dimensionality of a range of tens to hundreds. 
For images with multi-features, it is usually not practical to reduce the total 
dimensionality of all reduced feature spaces to be less than 20 while remaining high 
retrieval accuracy. Second, there was no clear report on their indexing efficiency. Third, 
neural network is tedious and hard for training, especially for WWW image database 
with text features. In this paper, we aim to index multi text and visual features in a one-
dimensional single index and leave the dimensionality curse to the past. 

Another category of our related work is on processing multi-feature queries. Such 
problem appears obviously on multi-features images database. Given a query image, 
the typical steps are first to compute the similarity among the same feature space, then 
combine the score from all feature spaces, and finally rank them based on the final 
score. Some optimization job can be done to reduce the overall cost [15, 16]. We will 
not present multi-feature query processing problem in this paper, but on indexing issues. 

3   Preliminary 

In this section, we briefly present the features we used to describe the WWW images 
and respective similarity measures.  

3.1   WWW Image Features 

Without losing the generality, we use text feature and one visual feature as the 
descriptors of WWW images. 
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3.1.1   Text Feature 
Text descriptions of WWW image carry high-level semantic meanings. We choose a 
recently proposed representation model called Weighted ChainNet Model [3] as the 
text feature. Weighted ChainNet constructs a Lexical Chain (or sentence) network 
given the WWW image’s surrounding text in its embedded web page, by assigning 
different weight for different type of Lexical Chain (LC). And there are six types of 
lexical chains were introduced: Title Lexical Chain Alt Lexical Chain, Page Lexical 
Chain, Sentence Lexical Chain, Reconstructed Sentence Lexical Chain, and Caption 
Lexical Chain. The first three types are constructed by image’s title, image’s alternate 
text, and web page’s title respectively, and the last three are constructed by image 
caption. To simplify the problem and illustration, here we summarize the chain 
network into a single weighted lexical chain by summing all the weight in each type 
of lexical china for each word in the network. The following formula is used to 
compute the total weight for each word. 

∑
=

=
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i
weightweight WordWord  

Where i
weightWord is the weight of Word in type i lexical chain, and i ranges from 1 to 6. 

Thus all the weighted words form a single weighted lexical chain, which is used as 
our WWW image’s text feature. For simplicity, we denote image’s text feature as T. 

3.1.2   Visual Feature 
Wavelet transform is a useful tool in effectively generating compact representation 
that exploits the structure of visual features of images. By using wavelet sub band 
decomposition, and remain the most important sub bands (largest coefficients), we 
can get fixed size dimensional feature vectors independent of resolution and scaling. 
Wavelets produce the wavelet coefficients for an image as its description. And such 
coefficients construct a coarse overall approximation of image’s visual feature. This 
approximation captures image’s shape, texture and location information in a single 
signature. We use daubechies' wavelets [17] to generate WWW image’s visual 
features. In this paper, we truncate the 64 most dominating coefficients as our image’s 
visual feature. Thus our WWW image’s visual feature is in 64-dimensional feature 
vector. For simplicity, we denote image’s visual feature as V. 

3.2   Image Similarity Measurements 

For text feature, we employ the cosine formula as follows: 
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where iT  and jT is image i’s and image j’s text feature respectively. 

For visual feature, the similarity between two images is computed as follows based 
on Manhattan Distance:  
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where diV . and djV .  is the thd dimensional value for image i’s and image j’s visual 

feature respectively. D is the dimensionality of visual feature space. 
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4   Index Multi-scale Similarities  

4.1   Building Indexing Structure 

In this section, we present the one-dimensional single indexing technique for image’s 
multi-features, called Multi-scale Similarity Indexing (MSI). MSI is mainly inspired 
from the following observations. First, in the same cluster, relevant images have close 
similarities to the cluster’s center. And this property is hold for both text feature space 
and visual feature space. Second, based on the similarities to the cluster center, 
images can be ordered within that cluster. Third, similarities are one-dimensional 
values. If we can map each image into corresponding similarity value and each cluster 
in each feature space can be scaled into different interval, a single one-dimensional 
index like B+-tree can be easily built on these similarities. Thus in MSI, high 
dimensional features spaces are transformed into one-dimensional space. Certain 
amount of irrelevant images can be fast pruned based on these one-dimensional 
values’ comparisons. 

To build MSI, we need first to cluster each feature space into partitions and 
compute their centers. Let’s assume that there are m clusters in text feature space and 
n clusters in visual feature space. in text space, each cluster is assigned with a cluster 
ID from 1 to m, and similarly to visual feature space with cluster ID from 1 to n. 
Given an image with feature T and V, its indexing keys in different feature space are 
computed as follows: 
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where textkey and visualkey  are the indexing keys, i and j are cluster Ids for its T and 

V in text feature space and visual feature space, with cluster center T
iO  and V

jO  

respectively. T_SCALE and V_SCALE are two constant scales with large gap to 
distinguish text and visual spaces. C is a constant to stretch the similarities range so 
that features in different cluster have different range. Thus features in different 
clusters can be distinguished easily. For example, an image with feature T and V, T is 
in cluster i in text feature space, and V is in cluster j in visual feature space, then its 
two indexing keys will be transformed into the ranges [T_SCALE+i*C, 
T_SCALE+(i+1)*C] and [V_SCALE+j*C, V_SCALE+(j+1)*C] respectively. 

A single B+-tree can be used to index the similarity keys for fast retrieval. And an 
additional auxiliary array is used to store the clusters centers and their minimum and 
maximum radii/similarity values that define the cluster’s data space, where the 
minimum and maximum radii are used to facilitate searching. When there is only one 
feature, MSI is similar to iDistance[4], except the keys are computed based on the 
similarity, rather than distance values. 

4.2   Query Processing  

Given a query image Q to search for the K top relevant images (K nearest neighbors), 
the searching algorithm works as follows. For each feature space, the query is first 
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divided into two sub queries, TQ  and VQ respectively, where TQ and VQ are 

image’s text and visual features. Then nearest neighbor searching is performed to 

get TK  and VK  top ranked image Ids from text and visual feature space such that the 

intersection of both set of Ids has at least K Ids in common. Evidence combination 
methods are then applied to compute the final list of results. 

For each subquery, the searching starts with a query sphere by a relatively small 

radius R around TQ  and VQ respectively. To find the desired number of most 

relevant images, the searching radius cannot be predetermined. Hence an iterative 
method that examines the increasing larger query sphere in each iteration has to be 
used. Searching in MSI begins with scanning the auxiliary array to determine which 

cluster whose data space overlaps with the searching sphere of TQ  and VQ . This can 

be determined by the following triangle inequality property: 

RPQSimOQSim T
textT

T
text +−≤− )()(    or 

RPQSimOQSim V
visualV

V
visual +−≤− )()(  

where P is a feature point in either text or visual feature space. 

 

Fig. 1. Searching spaces for two queries 

Figure 1 shows the searching spaces for two queries 1Q  and 2Q corresponding to 

a cluster O which covers a space defined by its minimum and maximum radii. From 

the above triangle inequality property, for 1Q , cluster O can be directly pruned since 

the similarity between 1Q  and O is greater than cluster’s maximum radius/similarity 

plus query searching radius R. The same situation occurs when the similarity between 
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1Q  and O is less than the cluster’s minimum radius/similarity minus query searching 

radius R. And this pruning situation is common to both text and visual feature spaces. 
On the other hand, if both query sphere and cluster’s data space intersect, such as 

2Q ’s searching sphere in figure 1, range searching has to be performed in MSI. 

Given an image with TQ  and VQ intersect with cluster T
iO  and V

jO  in text and 

visual space respectively, their ranges searched in MSI are: 
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Note that query sphere R is an increasing parameter with number of iterations. 
Searching for both sub queries is concurrent. It stops when there are at least K 
common image Ids are discovered in two sets of results searched from two sub 
queries. Thus MSI can provide approximate K nearest neighbors quickly using one 
dimensional data comparisons.  

So far, we have built a single one-dimensional indexing for WWW image’s multi-
features. However, similarity-indexing key mapping function is lossy in nature. 
Searching the data whose similarities to cluster’s center are close to query point may 
introduce certain number of ‘false positives’. For instance, in figure 1, although 
certain amount of points that are out of searching range can be pruned immediately 
(white area), the candidates for data access still include a number of points far away 
from query (green area, named as ‘false positive’). It will be perfect if we can remain 
only the points inside of query searching sphere (pink area). In next section, we 
propose Local Digital Coding to effectively filter most of these ‘false positives’. 

4.3   Clustering Techniques 

As mentioned earlier, the first step for building MSI is to partition each feature space.  
For WWW image text feature, every image is in weighted lexical chain model. We 

observed that WWW images are usually categorized by different topics. Here we 
propose a method called Topic-driven Clustering, to partition the text space into 
clusters. 

Topic-driven Clustering Algorithm: 
1. select the top K hottest keywords, and each keyword is assigned as a center. 
2. assign images into these K clusters based on similarities to each center. 
3. reconstruct each cluster’s center by summarizing its images’ weighted lexical 

chains. 
4. reassign images into K clusters based on similarities to each new center. 
5. merge K clusters into a desirable number of clusters. 
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In this algorithm, images are initially clustered into K clusters based on the most 
frequent keywords appearing in the images (step 1 and 2). Obviously, not all of the 
images can be assigned into clusters since K keywords cannot cover all images. A 
reclustering process is performed. In step 2, we expand each cluster’s center to be a 
weighted lexical chain by summarizing all images’ lexical chains in the same way as 
summarizing the image’s representation from a lexical chain network. By doing so, 
the center of cluster can be properly adjusted and represent the cluster’s complete 
information. Then images are partitioned again corresponding to these new centers. 
Finally we merge closely related clusters into one, until we get a desirable number of 
cluster we want. After we apply Topic-driven clustering algorithm, the image’s text 
feature are clustered into partitions, each of which has a weighted lexical chain as the 
center. 

To partition the high dimensional data space, such as image’s visual feature, 
several clustering methods [18, 19, 20] have been proposed in literature. In this paper 
we use the elliptical K-means [21] method to detect the correlated clusters in the 
space. The main purpose of finding correlated cluster is to perform the dimensionality 
reduction on these clusters locally. Recently research [23] has shown that 
dimensionality reduction on local correlated/elliptical cluster achieved much better 
effectiveness compared to reduce the dimensionality on the whole dataset. This is 
because dimensionality reduction methods such as Principle Component Analysis 
(PCA) are effectively only when the data space is well correlated. Otherwise, the 
retrieval accuracy should be affected greatly. 

5   Local Bit Stream 

In this section, we introduce our new indexing technique applied in MSI to break the 
dimensionality curse by filtering the irrelevant images greatly.  

LBS is inspired by the following observations. First, digital bit (0 or 1) is the 
smallest data representation. If each dimension of feature space can be represented by 
digital bit, the memory space can be reduced dramatically. Second, bit operation is 
always fastest. However, in high dimensional space, the similarity computation on 
original data is very expensive.  

Realize that for WWW images, its text feature and visual feature are in different 
representation models. Here, we use weighted lexical chain to represent text feature 
and standard high dimensional point to represent visual feature. Both have the 
following main differences. First, text feature is discrete in nature since each 
dimension of lexical chain is a word basically, while visual feature is continuous 
value along each dimension. Second, the dimensionality of text feature is dynamic, 
while that of visual feature is fixed. Different images may have different number of 
words to describe its semantics. To generate the uniform bits representation (we name 
it as Bit Stream, or BS) for both features, different encoding scheme have to be used. 

Except the uniform BS representation, how to produce an effective BS for each 
image feature is a challenging task. Here we associate the generation of BS with the 
cluster center where an image belongs. That is, for an image’s feature, we first 
allocate its cluster, and then compare it with its cluster center to generate its BS. Thus 
we localize the BS generation at cluster level, rather than the whole database level. 
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Next, we present the two encoding algorithms for text and visual features to 
produce a D-bit long uniform BS representation, where D is the dimensionality of 
feature space. 

5.1   BS Generation for Text Feature 

In text feature space, due to its discrete nature, two preliminary steps are needed 
before we start encoding by using the property of ordered data. We first order every 
image’s lexical chain and the cluster center’s lexical chain based on alphabet order of 
the words. Second, every word in each image lexical chain is labeled with its position 
index in the center’s lexical chain. Since the center contains all the words appearing in 
all the images within the cluster, we use the center as the axis to generate the BS 
representation for images inside of cluster. 

The encoding algorithm for an image text feature T in a cluster TO  is shown 
below. 

Text Encoding: 
1. BS=0; 

2. range = TO .size()/D + 1; 
3. for every word in T 
4. pos = word.index / range 
5. BS | = 1 << pos; 
6. end for 

The BS is initialized to be 0. For an ordered center TO , we divide it into D 
intervals (line 2). For each word in a text feature T, since we know its corresponding 

index in TO , we first compute which interval it lies in (line 4), then update the bit 
value at that position counted from left to be 1 (line 5). For example, if T contains two 
words “ACM” and “Multimedia” and their respective position index in the cluster 
center is 10 and 100. The center contains 1000 words. We want to construct a 64-bit 
BS. Based on the above encoding method, the interval range is 16. That is, the first 
interval is [0, 16), second is [16, 32), and so on. Words “ACM” and “Multimedia” are 

in interval 0 and 6. Thus the BS for T is 06 22 ∧∧ + =65. If more bits are needed than 
integer, multi-integer or character can be used. 

Due to text feature’s discrete property, if two are similar, the AND (&) operation 
on two BSs must be greater than 0. By checking this result, lots of irrelevant images 
can be pruned immediately. This encoding algorithm can make sure the retrieval 
precision is exactly the same as sequential scan. Further more, the space occupied by BS 
is fixed in D bits. However, each original text feature generally takes hundreds of bytes. 

5.2   BS Generation for Visual Feature 

Different from text feature, visual features are in high dimensional uniform. And 
along each dimension, the data value is continuous. In text feature space, the fixed 
number of intervals divided from cluster center is used to produce a uniform D-bit BS 
representation since the dimensionality of text feature for each image is different. 
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However, in visual feature space, the dimensionality is fixed. Meanwhile, the 
similarity measurements between both spaces are also different. Thus we present a 
different encoding algorithm for continuous and fixed dimensionality feature spaces. 

Visual Encoding: 
1. BS=0;  
2. for i =0 to D-1  

3.        if (V[i]> VO [i]) 
4.                 BS | = 1 << i; 
5. end for 

Given a D-dimensional feature space, the above algorithm encodes each feature V 

into a D-bit BS representation given its cluster center VO . Initially, the BS is set to 
be 0 (line 1). For each dimension, if its value is greater than the center value, we set 
the bit value to be 1 at that dimension for BS (line 3-4), else remain 0. Thus in visual 
space, the BS is a coarse approximation of original data.  

BS for visual feature is derived from comparing its cluster’s center. If two images 
are similar, their BSs should also be similar. To decide whether two BSs are similar, 
we use a threshold parameter - ϕ to indicate minimum number of common bits that 
two similar BSs should have. Along a dimension, if both BSs have same bit value, 
either 0 or 1, we say both BSs have one common bit. That is, along a dimension, if 
two visual features are both greater than the center or both less than the center, then 
their BSs have one common bit. Clearly, BS representation for a visual feature 
reflects its approximate trend/signal around its local cluster center. If both BSs have 
more than ϕ number of common bits, we say two BSs are similar. Given a 64-
dimensional feature space, usually the values are float type – 4 bytes long. Thus for 
each feature, it occupies 64*4 bytes space. However, a BS occupies 64/8 bytes. There 
are 32 times differences. Again, by performing bit operations on BSs, we can fast 
prune irrelevant images before we access the original data. Since ϕ is a threshold 
parameter, it has certain side effects. If it is too small, the pruning may not be very 
effective. On the other hand, if it is too big, some relevant images may be filtered. In 
the experiments, we will see that while we keep the same accuracy as sequential scan, 
the retrieval speed can still be faster than sequential scan by times. 

So far, we have looked the encoding method to produce BSs for text and visual 
features. And both encoding algorithm use the local cluster’s center as a basis. The 
final outputs from both algorithms have the same representation model – BS.  

LBS builds a new simple feature representation called BS for each image in 
respective feature space. BS is small in size, and fast comparison since it’s only 
involved bit operations. BSs can be embedded into MSI lower than the indexing keys 
level and upper than the original data level. An example tree structure is shown in 
figure 2. Thus, after the first level pruning in MSI, a second level pruning by 
comparing BSs is performed to filter most of ‘false positives’ included in the first 
level pruning. The images whose BSs are similar to query BS are then accessed at 
data level. Experiments showed that while keeping the accuracy high, 90% more 
‘false positives’ could be effectively pruned. 
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Fig. 2. Overall Structure of MSI with LBS 

6   Performance Study 

In section, we present our experiments results on our proposals. We compare our 
indexing technique with sequential scan and multi-indices built by iDistance method 
[4], where the indexing keys are computed by similarity rather than distance. In the 
following, we refer our MSI with LBS as LBS only. 

6.1   Experiments Set Up 

Our database contains 100,000 WWW images downloaded by our web crawler 
randomly from around 40,000 websites. And we use the weighted lexical chain and 
wavelet descriptors as image’s text and visual features as explained in section 3. We 
manipulated these databases in MYSQL server. We implement our method in the 
environment of Ultra-10 SunOS 5.7 processor (333 MHz CPU and 256 MB RAM).  

Two parameters are used as measurements: Precision and Efficiency. Since our 
database is large, it’s impossible to compute the retrieval recall. Here we use fixed 
KNN (K nearest neighbor) to compute the precision.  Obviously, within this K results, 
if the precision is higher, recall is higher also. We set K=20, and test 20 image queries 
for each experiment. Efficiency is measured by the Total Response Time (TRT), 
which includes the communication time to the MYSQL server. 

6.2   Tuning ϕ 

In our LBS method, the important parameter ϕ which is used to measure the similarity 
between two BSs has to be tuned. For text feature’s BS, due to discrete nature, we 
have to access every feature point whose BS AND (bit operation &) query’s BS is 
greater than 0. So we need tune ϕ for visual features only. 

Data Level

BS Level

Leave Level 

Feature data Feature data
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In this experiment, we use image’s visual features only – the 64- data to see the 
changing of ϕ for different dimensional data space. Here we the relative precision by 
comparing LBS with sequential scan. The relative precision is defined as precision by 
LBS divided by precision by sequential scan. The following figure 3 and 4 show the 
effect of different ϕ values on retrieval precision and efficiency for two sets of visual 
features. 

From figure 3, we can see that for 64-dimendional original data, LBS can remain 
the same precision as sequential scan when ϕ is less than 36. When ϕ is greater than 
36, there is rapid decreasing on precision. This is reasonable. When ϕ is larger, more 
points can be pruned. As ϕ becomes too large, there may be only less than K 
candidates remained. When ϕ becomes 64, only the query image is the candidate to 
access the original data. Thus a ϕ value which is a bit larger than the half size of the 
dimensionality of data space can remain the precision high. 
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Fig. 3. ϕ Effects on precision 

0

5

10

15

20

25

30

6 12 18 24 30 36 52 64

Threshold value

T
o

ta
l R

es
o

n
se

 T
im

e 
(s

)

 

Fig. 4. ϕ Effects on total response time 
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Figure 4 shows the ϕ effects on the total response time. TRT for sequential scan is 
the result when ϕ=0. For 64-dimensional space, when ϕ is less than 24, there is no 
obvious reduction on TRT. This is clear that in high dimensional space, most of 
points have few common bits along few dimensions with query point, while they may 
not be necessary to be the top K nearest neighbors to the query point. However, when 
ϕ increases to be larger than the half size of the dimensionality of data space (36 in 
this case), the TRT is reduced dramatically. This indicates that most of the irrelevant 
points can be distinguished when ϕ reaches around the half size of the dimensionality. 
As ϕ becomes too large, more points can be filtered, but precision may be affected as 
shown in figure 3. Thus there is a tradeoff between precision and TRT. From figure 3 
and 4, we can see that good values for ϕ could be a bit larger than the half size of the 
dimensionality. At these values, TRT can be reduced greatly, while precision is still 
high. In our later experiments, we chose ϕ as 36 for our 64-dimensional feature. 

6.3   Comparative Study 

Now we want to compare our indexing method LBS with sequential scan and multi-
indices by iDistance [4], based on the retrieval speed. This experiment tested 3 
datasets: text feature only, visual feature only, and text combined with visual features. 
The following table shows their differences in terms of total response time (s). 

Table 1. Comparative study on retrieval speed 

From table 1, we can see that multi-indices method built by iDistance performs 
even worse than sequential scan. There are two possible reasons. First, accessing and 
searching multi-indices take more time. Second, dimensionality curse resists in such 
purely similarity based one-dimensional index because too many ‘false positives’ are 
searched. By employing single index structure and LBS, the performance is improved 
significantly. LBS is more than an order of magnitude better than sequential scan. 
Clearly, our LBS is an effective method to filter those irrelevant points.  

7   Conclusion 

In this paper, we presented a novel indexing technique called MSI to index WWW 
image’s multi-features in a single one-dimensional structure. Combined with Local 

 Text 
Feature 

Visual 
Feature  

Combination 

LBS 
 

0.8 2.1 3.2 

Sequential 
Scan 

3.5 21 33 

Multi- indices 
by iDistance  

5.7 32 41 
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Bit Stream, our method can outperform sequential scan and multi-indices by 
iDistance significantly without degrading the retrieval precision. 
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