

Y. Zhang et al. (Eds.): APWeb 2005, LNCS 3399, pp. 885 – 899, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Indexing Text and Visual Features for WWW Images

Heng Tao Shen1, Xiaofang Zhou1, and Bin Cui2

1 School of Info. Tech. and Elec. Eng.,
The University of Queensland, Brisbane, Australia

{shenht, zxf}@itee.uq.edu.au
2 Singapore-MIT Alliance, National University of Singapore

cuibin@comp.nus.edu.sg

Abstract. In this paper, we present a novel indexing technique called Multi-
scale Similarity Indexing (MSI) to index image’s multi-features into a single
one-dimensional structure. Both for text and visual feature spaces, the similarity
between a point and a local partition’s center in individual space is used as the
indexing key, where similarity values in different features are distinguished by
different scale. Then a single indexing tree can be built on these keys. Based on
the property that relevant images haves similar similarity values from the center
of the same local partition in any feature space, certain number of irrelevant
images can be fast pruned based on the triangle inequity on indexing keys. To
remove the “dimensionality curse” existing in high dimensional structure, we
propose a new technique called Local Bit Stream (LBS). LBS transforms
image’s text and visual feature representations into simple, uniform and
effective bit stream (BS) representations based on local partition’s center. Such
BS representations are small in size and fast for comparison since only bit
operation are involved. By comparing common bits existing in two BSs, most
of irrelevant images can be immediately filtered. Our extensive experiment
showed that single one-dimensional index on multi-features improves multi-
indices on multi-features greatly. Our LBS method outperforms sequential scan
on high dimensional space by an order of magnitude.

1 Introduction

WWW provides a super big pool for interesting images. Recently, WWW image
retrieval has been a very challenging research area. Such images are typically
described by both high-level (text) and low-level (visual) features. To retrieve
relevant images from large image database, two issues are essential: effectiveness and
efficiency. However, most known research results [1] are on retrieval effectiveness.
There is no clearly known research achievement on how to index this particular type
of large image database described by multi-features for efficient retrieval, especially
on indexing completely different representations: text and visual features. Current
method is to build one structure for every single feature. Given an image query, it has
to access all individual structures and integrate results from each index to get the final
results. Furthermore, these known indexing structures suffer from “dimensionality

886 H.T. Shen, X. Zhou, and B. Cui

curse”. When the dimensionality of data space reaches 20 or greater, indexing
techniques fail to outperform sequential scan [2] for nearest neighbor search.

In this paper, we propose a new method called Multi-scale Similarity Indexing
(MSI) that can index WWW images’ multi-features in a single structure. MSI exhibits
a means of indexing different features in different representations in a single tree,
such as image text and visual features, where text feature is in Weighted Lexical
Chain model [3] or others, and visual feature is in standard high dimensional data
space. MSI first partitions each feature space into clusters. Then the similarity of each
image in each feature space to its corresponding cluster’s center is computed as the
indexing key. By a simple mapping function, we can keep the keys for each cluster in
different feature space distinct in different scale level. Thus a standard B+ tree can be
easily built on these indexing keys.

However, like other existing indexing technique, MSI also suffers from
“dimensionality curse”. To release MSI from such curse, we propose a novel
technique called Local Bit Stream (LBS). LBS exhibits a way to transform the high
dimensional feature representation (big size) into a uniform, accurate and compact
representation (small size). Given clusters in each feature space, LBS encodes each
point in different feature space into a uniformly dimensional bit stream (BS). The BS
of a point in a feature space is generated by comparing this point and its cluster’s
center. Thus such transformation is localized at cluster level. The effectiveness of
LBS depends on how to generate the BS for each feature point. Due to the completely
different nature of text and visual features, both are encoded in different schemes. We
present different encoding strategies for text and visual features. However, both
encoding strategies can produce the same uniformly BS representations for text and
visual feature points. BS is an approximate representation of original data. It’s
compact, much smaller in size, and accurate for similarity measures. Furthermore, BS
comparisons involve bit operations only. Thus it is much faster in terms of efficiency.

We implement our indexing techniques on top of MYSQL server. An extensive
performance study is conducted to evaluate our methods. Our results show that single
indexing structure is supreme to multi-indexing structures, and LBS breaks the
dimensionality curse by improving the response time faster than sequential scan and
iDistance [4] by an order of magnitude without sacrificing the retrieval precision.

The rest of paper is organized as follows. In section 2, we review some related
works. In section 3, some preliminary work on image features and similarity measures
are introduced. In section 4, we present the single one-dimensional indexing structure
– MSI, and in section 5 we propose the LBS and its encoding schemes. An extensive
performance study is presented in section 6. Finally, we conclude our paper in section 7.

2 Related Work

Our related works cover several research areas: WWW image retrieval, evidence
integration, high dimensional indexing, and multi-feature query processing.

Several WWW image retrieval systems have been proposed in literature. Existing
known systems, such as AMORE [5], ImageRover [6], and WebSeek [7], allow the
WWW image retrieval on combination of multi-features, like keywords, color, shape
and texture. Recently, the high-level features of WWW images were explored by a
Weight ChainNet model [3] since low level features cannot represent the high level

 Indexing Text and Visual Features for WWW Images 887

semantic meanings for WWW images. More recently, the textual and Hyperlink
information are extracted from blocks of Web pages to improve the accuracy [24].
And relevance feedback techniques are also applied in WWW image retrieval [8, 25].
However, most of systems focus on retrieval accuracy only.

To integrate multi-features together, most of systems used linear combination by
assuming that text and visual features are linearly important. Recently, Dempster
Shafer Theory, one technique to handle uncertainty, has been also employed on
indexing of face retrieval on the web [9]. In this paper, we examine more techniques,
including Certainty Factor and Compound probability.

Recently, Nearest Neighbor (NN) search in high dimensional spaces has been a
very active research topic. Several indexing structures [2, 4, 10, 11, 12, 13] have been
proposed. However, all these techniques are for indexing an individual feature space
purpose, and they all suffer from known “dimensionality curse”. Their performances
degrade rapidly as dimensionality increases. As dimensionality reaches high (>20),
they even fail to outperform sequential scan. Most existing systems build one index
for every feature space. Given a query, each index has to be accessed. ImageRover [6]
tried to combine multi-features by first performing dimensionality reduction on each
feature then used existing indexing structure to index concatenated feature vector
from every reduced feature space. Anne et al [14] applied non-linear neural network
techniques with dimensionality reduction method, then used the similar way to index
reduced multi-visual features by existing indexing structure. However, both have the
following drawbacks. First the dimensionality curse still remains. Their techniques
reduce the spaces into a level where the retrieval accuracy is reasonably affected.
Image features spaces are typically in dimensionality of a range of tens to hundreds.
For images with multi-features, it is usually not practical to reduce the total
dimensionality of all reduced feature spaces to be less than 20 while remaining high
retrieval accuracy. Second, there was no clear report on their indexing efficiency. Third,
neural network is tedious and hard for training, especially for WWW image database
with text features. In this paper, we aim to index multi text and visual features in a one-
dimensional single index and leave the dimensionality curse to the past.

Another category of our related work is on processing multi-feature queries. Such
problem appears obviously on multi-features images database. Given a query image,
the typical steps are first to compute the similarity among the same feature space, then
combine the score from all feature spaces, and finally rank them based on the final
score. Some optimization job can be done to reduce the overall cost [15, 16]. We will
not present multi-feature query processing problem in this paper, but on indexing issues.

3 Preliminary

In this section, we briefly present the features we used to describe the WWW images
and respective similarity measures.

3.1 WWW Image Features

Without losing the generality, we use text feature and one visual feature as the
descriptors of WWW images.

888 H.T. Shen, X. Zhou, and B. Cui

3.1.1 Text Feature
Text descriptions of WWW image carry high-level semantic meanings. We choose a
recently proposed representation model called Weighted ChainNet Model [3] as the
text feature. Weighted ChainNet constructs a Lexical Chain (or sentence) network
given the WWW image’s surrounding text in its embedded web page, by assigning
different weight for different type of Lexical Chain (LC). And there are six types of
lexical chains were introduced: Title Lexical Chain Alt Lexical Chain, Page Lexical
Chain, Sentence Lexical Chain, Reconstructed Sentence Lexical Chain, and Caption
Lexical Chain. The first three types are constructed by image’s title, image’s alternate
text, and web page’s title respectively, and the last three are constructed by image
caption. To simplify the problem and illustration, here we summarize the chain
network into a single weighted lexical chain by summing all the weight in each type
of lexical china for each word in the network. The following formula is used to
compute the total weight for each word.

∑
=

=
6

1i

i
weightweight WordWord

Where i
weightWord is the weight of Word in type i lexical chain, and i ranges from 1 to 6.

Thus all the weighted words form a single weighted lexical chain, which is used as
our WWW image’s text feature. For simplicity, we denote image’s text feature as T.

3.1.2 Visual Feature
Wavelet transform is a useful tool in effectively generating compact representation
that exploits the structure of visual features of images. By using wavelet sub band
decomposition, and remain the most important sub bands (largest coefficients), we
can get fixed size dimensional feature vectors independent of resolution and scaling.
Wavelets produce the wavelet coefficients for an image as its description. And such
coefficients construct a coarse overall approximation of image’s visual feature. This
approximation captures image’s shape, texture and location information in a single
signature. We use daubechies' wavelets [17] to generate WWW image’s visual
features. In this paper, we truncate the 64 most dominating coefficients as our image’s
visual feature. Thus our WWW image’s visual feature is in 64-dimensional feature
vector. For simplicity, we denote image’s visual feature as V.

3.2 Image Similarity Measurements

For text feature, we employ the cosine formula as follows:

ji

ji

ji
text

TT

TT
TTSim

*
),(

•
=

where iT and jT is image i’s and image j’s text feature respectively.

For visual feature, the similarity between two images is computed as follows based
on Manhattan Distance:

D

VV
VVSim

D

d djdi

ji
visual

)|.|(
1),(1 ..∑ =

−
−=

where diV . and djV . is the thd dimensional value for image i’s and image j’s visual

feature respectively. D is the dimensionality of visual feature space.

 Indexing Text and Visual Features for WWW Images 889

4 Index Multi-scale Similarities

4.1 Building Indexing Structure

In this section, we present the one-dimensional single indexing technique for image’s
multi-features, called Multi-scale Similarity Indexing (MSI). MSI is mainly inspired
from the following observations. First, in the same cluster, relevant images have close
similarities to the cluster’s center. And this property is hold for both text feature space
and visual feature space. Second, based on the similarities to the cluster center,
images can be ordered within that cluster. Third, similarities are one-dimensional
values. If we can map each image into corresponding similarity value and each cluster
in each feature space can be scaled into different interval, a single one-dimensional
index like B+-tree can be easily built on these similarities. Thus in MSI, high
dimensional features spaces are transformed into one-dimensional space. Certain
amount of irrelevant images can be fast pruned based on these one-dimensional
values’ comparisons.

To build MSI, we need first to cluster each feature space into partitions and
compute their centers. Let’s assume that there are m clusters in text feature space and
n clusters in visual feature space. in text space, each cluster is assigned with a cluster
ID from 1 to m, and similarly to visual feature space with cluster ID from 1 to n.
Given an image with feature T and V, its indexing keys in different feature space are
computed as follows:

),(*_

),(*_
V
j

visualvisual

T
i

texttext

OVSimCjSCALEVkey

OTSimCiSCALETkey

++=

++=

where textkey and visualkey are the indexing keys, i and j are cluster Ids for its T and

V in text feature space and visual feature space, with cluster center T
iO and V

jO

respectively. T_SCALE and V_SCALE are two constant scales with large gap to
distinguish text and visual spaces. C is a constant to stretch the similarities range so
that features in different cluster have different range. Thus features in different
clusters can be distinguished easily. For example, an image with feature T and V, T is
in cluster i in text feature space, and V is in cluster j in visual feature space, then its
two indexing keys will be transformed into the ranges [T_SCALE+i*C,
T_SCALE+(i+1)*C] and [V_SCALE+j*C, V_SCALE+(j+1)*C] respectively.

A single B+-tree can be used to index the similarity keys for fast retrieval. And an
additional auxiliary array is used to store the clusters centers and their minimum and
maximum radii/similarity values that define the cluster’s data space, where the
minimum and maximum radii are used to facilitate searching. When there is only one
feature, MSI is similar to iDistance[4], except the keys are computed based on the
similarity, rather than distance values.

4.2 Query Processing

Given a query image Q to search for the K top relevant images (K nearest neighbors),
the searching algorithm works as follows. For each feature space, the query is first

890 H.T. Shen, X. Zhou, and B. Cui

divided into two sub queries, TQ and VQ respectively, where TQ and VQ are

image’s text and visual features. Then nearest neighbor searching is performed to

get TK and VK top ranked image Ids from text and visual feature space such that the

intersection of both set of Ids has at least K Ids in common. Evidence combination
methods are then applied to compute the final list of results.

For each subquery, the searching starts with a query sphere by a relatively small

radius R around TQ and VQ respectively. To find the desired number of most

relevant images, the searching radius cannot be predetermined. Hence an iterative
method that examines the increasing larger query sphere in each iteration has to be
used. Searching in MSI begins with scanning the auxiliary array to determine which

cluster whose data space overlaps with the searching sphere of TQ and VQ . This can

be determined by the following triangle inequality property:

RPQSimOQSim T
textT

T
text +−≤−)()(or

RPQSimOQSim V
visualV

V
visual +−≤−)()(

where P is a feature point in either text or visual feature space.

Fig. 1. Searching spaces for two queries

Figure 1 shows the searching spaces for two queries 1Q and 2Q corresponding to

a cluster O which covers a space defined by its minimum and maximum radii. From

the above triangle inequality property, for 1Q , cluster O can be directly pruned since

the similarity between 1Q and O is greater than cluster’s maximum radius/similarity

plus query searching radius R. The same situation occurs when the similarity between

 Indexing Text and Visual Features for WWW Images 891

1Q and O is less than the cluster’s minimum radius/similarity minus query searching

radius R. And this pruning situation is common to both text and visual feature spaces.
On the other hand, if both query sphere and cluster’s data space intersect, such as

2Q ’s searching sphere in figure 1, range searching has to be performed in MSI.

Given an image with TQ and VQ intersect with cluster T
iO and V

jO in text and

visual space respectively, their ranges searched in MSI are:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++

−++

ROQSimCiSCALET

ROQSimCiSCALET
T
iT

text

T
iT

text

),(*_

,),(*_

and

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++

−++

ROQSimCjSCALEV

ROQSimCjSCALEV
V
jV

visual

V
jV

visual

),(*_

,),(*_

Note that query sphere R is an increasing parameter with number of iterations.
Searching for both sub queries is concurrent. It stops when there are at least K
common image Ids are discovered in two sets of results searched from two sub
queries. Thus MSI can provide approximate K nearest neighbors quickly using one
dimensional data comparisons.

So far, we have built a single one-dimensional indexing for WWW image’s multi-
features. However, similarity-indexing key mapping function is lossy in nature.
Searching the data whose similarities to cluster’s center are close to query point may
introduce certain number of ‘false positives’. For instance, in figure 1, although
certain amount of points that are out of searching range can be pruned immediately
(white area), the candidates for data access still include a number of points far away
from query (green area, named as ‘false positive’). It will be perfect if we can remain
only the points inside of query searching sphere (pink area). In next section, we
propose Local Digital Coding to effectively filter most of these ‘false positives’.

4.3 Clustering Techniques

As mentioned earlier, the first step for building MSI is to partition each feature space.
For WWW image text feature, every image is in weighted lexical chain model. We

observed that WWW images are usually categorized by different topics. Here we
propose a method called Topic-driven Clustering, to partition the text space into
clusters.

Topic-driven Clustering Algorithm:
1. select the top K hottest keywords, and each keyword is assigned as a center.
2. assign images into these K clusters based on similarities to each center.
3. reconstruct each cluster’s center by summarizing its images’ weighted lexical

chains.
4. reassign images into K clusters based on similarities to each new center.
5. merge K clusters into a desirable number of clusters.

892 H.T. Shen, X. Zhou, and B. Cui

In this algorithm, images are initially clustered into K clusters based on the most
frequent keywords appearing in the images (step 1 and 2). Obviously, not all of the
images can be assigned into clusters since K keywords cannot cover all images. A
reclustering process is performed. In step 2, we expand each cluster’s center to be a
weighted lexical chain by summarizing all images’ lexical chains in the same way as
summarizing the image’s representation from a lexical chain network. By doing so,
the center of cluster can be properly adjusted and represent the cluster’s complete
information. Then images are partitioned again corresponding to these new centers.
Finally we merge closely related clusters into one, until we get a desirable number of
cluster we want. After we apply Topic-driven clustering algorithm, the image’s text
feature are clustered into partitions, each of which has a weighted lexical chain as the
center.

To partition the high dimensional data space, such as image’s visual feature,
several clustering methods [18, 19, 20] have been proposed in literature. In this paper
we use the elliptical K-means [21] method to detect the correlated clusters in the
space. The main purpose of finding correlated cluster is to perform the dimensionality
reduction on these clusters locally. Recently research [23] has shown that
dimensionality reduction on local correlated/elliptical cluster achieved much better
effectiveness compared to reduce the dimensionality on the whole dataset. This is
because dimensionality reduction methods such as Principle Component Analysis
(PCA) are effectively only when the data space is well correlated. Otherwise, the
retrieval accuracy should be affected greatly.

5 Local Bit Stream

In this section, we introduce our new indexing technique applied in MSI to break the
dimensionality curse by filtering the irrelevant images greatly.

LBS is inspired by the following observations. First, digital bit (0 or 1) is the
smallest data representation. If each dimension of feature space can be represented by
digital bit, the memory space can be reduced dramatically. Second, bit operation is
always fastest. However, in high dimensional space, the similarity computation on
original data is very expensive.

Realize that for WWW images, its text feature and visual feature are in different
representation models. Here, we use weighted lexical chain to represent text feature
and standard high dimensional point to represent visual feature. Both have the
following main differences. First, text feature is discrete in nature since each
dimension of lexical chain is a word basically, while visual feature is continuous
value along each dimension. Second, the dimensionality of text feature is dynamic,
while that of visual feature is fixed. Different images may have different number of
words to describe its semantics. To generate the uniform bits representation (we name
it as Bit Stream, or BS) for both features, different encoding scheme have to be used.

Except the uniform BS representation, how to produce an effective BS for each
image feature is a challenging task. Here we associate the generation of BS with the
cluster center where an image belongs. That is, for an image’s feature, we first
allocate its cluster, and then compare it with its cluster center to generate its BS. Thus
we localize the BS generation at cluster level, rather than the whole database level.

 Indexing Text and Visual Features for WWW Images 893

Next, we present the two encoding algorithms for text and visual features to
produce a D-bit long uniform BS representation, where D is the dimensionality of
feature space.

5.1 BS Generation for Text Feature

In text feature space, due to its discrete nature, two preliminary steps are needed
before we start encoding by using the property of ordered data. We first order every
image’s lexical chain and the cluster center’s lexical chain based on alphabet order of
the words. Second, every word in each image lexical chain is labeled with its position
index in the center’s lexical chain. Since the center contains all the words appearing in
all the images within the cluster, we use the center as the axis to generate the BS
representation for images inside of cluster.

The encoding algorithm for an image text feature T in a cluster TO is shown
below.

Text Encoding:
1. BS=0;

2. range = TO .size()/D + 1;
3. for every word in T
4. pos = word.index / range
5. BS | = 1 << pos;
6. end for

The BS is initialized to be 0. For an ordered center TO , we divide it into D
intervals (line 2). For each word in a text feature T, since we know its corresponding

index in TO , we first compute which interval it lies in (line 4), then update the bit
value at that position counted from left to be 1 (line 5). For example, if T contains two
words “ACM” and “Multimedia” and their respective position index in the cluster
center is 10 and 100. The center contains 1000 words. We want to construct a 64-bit
BS. Based on the above encoding method, the interval range is 16. That is, the first
interval is [0, 16), second is [16, 32), and so on. Words “ACM” and “Multimedia” are

in interval 0 and 6. Thus the BS for T is 06 22 ∧∧ + =65. If more bits are needed than
integer, multi-integer or character can be used.

Due to text feature’s discrete property, if two are similar, the AND (&) operation
on two BSs must be greater than 0. By checking this result, lots of irrelevant images
can be pruned immediately. This encoding algorithm can make sure the retrieval
precision is exactly the same as sequential scan. Further more, the space occupied by BS
is fixed in D bits. However, each original text feature generally takes hundreds of bytes.

5.2 BS Generation for Visual Feature

Different from text feature, visual features are in high dimensional uniform. And
along each dimension, the data value is continuous. In text feature space, the fixed
number of intervals divided from cluster center is used to produce a uniform D-bit BS
representation since the dimensionality of text feature for each image is different.

894 H.T. Shen, X. Zhou, and B. Cui

However, in visual feature space, the dimensionality is fixed. Meanwhile, the
similarity measurements between both spaces are also different. Thus we present a
different encoding algorithm for continuous and fixed dimensionality feature spaces.

Visual Encoding:
1. BS=0;
2. for i =0 to D-1

3. if (V[i]> VO [i])
4. BS | = 1 << i;
5. end for

Given a D-dimensional feature space, the above algorithm encodes each feature V

into a D-bit BS representation given its cluster center VO . Initially, the BS is set to
be 0 (line 1). For each dimension, if its value is greater than the center value, we set
the bit value to be 1 at that dimension for BS (line 3-4), else remain 0. Thus in visual
space, the BS is a coarse approximation of original data.

BS for visual feature is derived from comparing its cluster’s center. If two images
are similar, their BSs should also be similar. To decide whether two BSs are similar,
we use a threshold parameter - ϕ to indicate minimum number of common bits that
two similar BSs should have. Along a dimension, if both BSs have same bit value,
either 0 or 1, we say both BSs have one common bit. That is, along a dimension, if
two visual features are both greater than the center or both less than the center, then
their BSs have one common bit. Clearly, BS representation for a visual feature
reflects its approximate trend/signal around its local cluster center. If both BSs have
more than ϕ number of common bits, we say two BSs are similar. Given a 64-
dimensional feature space, usually the values are float type – 4 bytes long. Thus for
each feature, it occupies 64*4 bytes space. However, a BS occupies 64/8 bytes. There
are 32 times differences. Again, by performing bit operations on BSs, we can fast
prune irrelevant images before we access the original data. Since ϕ is a threshold
parameter, it has certain side effects. If it is too small, the pruning may not be very
effective. On the other hand, if it is too big, some relevant images may be filtered. In
the experiments, we will see that while we keep the same accuracy as sequential scan,
the retrieval speed can still be faster than sequential scan by times.

So far, we have looked the encoding method to produce BSs for text and visual
features. And both encoding algorithm use the local cluster’s center as a basis. The
final outputs from both algorithms have the same representation model – BS.

LBS builds a new simple feature representation called BS for each image in
respective feature space. BS is small in size, and fast comparison since it’s only
involved bit operations. BSs can be embedded into MSI lower than the indexing keys
level and upper than the original data level. An example tree structure is shown in
figure 2. Thus, after the first level pruning in MSI, a second level pruning by
comparing BSs is performed to filter most of ‘false positives’ included in the first
level pruning. The images whose BSs are similar to query BS are then accessed at
data level. Experiments showed that while keeping the accuracy high, 90% more
‘false positives’ could be effectively pruned.

 Indexing Text and Visual Features for WWW Images 895

Fig. 2. Overall Structure of MSI with LBS

6 Performance Study

In section, we present our experiments results on our proposals. We compare our
indexing technique with sequential scan and multi-indices built by iDistance method
[4], where the indexing keys are computed by similarity rather than distance. In the
following, we refer our MSI with LBS as LBS only.

6.1 Experiments Set Up

Our database contains 100,000 WWW images downloaded by our web crawler
randomly from around 40,000 websites. And we use the weighted lexical chain and
wavelet descriptors as image’s text and visual features as explained in section 3. We
manipulated these databases in MYSQL server. We implement our method in the
environment of Ultra-10 SunOS 5.7 processor (333 MHz CPU and 256 MB RAM).

Two parameters are used as measurements: Precision and Efficiency. Since our
database is large, it’s impossible to compute the retrieval recall. Here we use fixed
KNN (K nearest neighbor) to compute the precision. Obviously, within this K results,
if the precision is higher, recall is higher also. We set K=20, and test 20 image queries
for each experiment. Efficiency is measured by the Total Response Time (TRT),
which includes the communication time to the MYSQL server.

6.2 Tuning ϕ

In our LBS method, the important parameter ϕ which is used to measure the similarity
between two BSs has to be tuned. For text feature’s BS, due to discrete nature, we
have to access every feature point whose BS AND (bit operation &) query’s BS is
greater than 0. So we need tune ϕ for visual features only.

Data Level

BS Level

Leave Level

Feature data Feature data

896 H.T. Shen, X. Zhou, and B. Cui

In this experiment, we use image’s visual features only – the 64- data to see the
changing of ϕ for different dimensional data space. Here we the relative precision by
comparing LBS with sequential scan. The relative precision is defined as precision by
LBS divided by precision by sequential scan. The following figure 3 and 4 show the
effect of different ϕ values on retrieval precision and efficiency for two sets of visual
features.

From figure 3, we can see that for 64-dimendional original data, LBS can remain
the same precision as sequential scan when ϕ is less than 36. When ϕ is greater than
36, there is rapid decreasing on precision. This is reasonable. When ϕ is larger, more
points can be pruned. As ϕ becomes too large, there may be only less than K
candidates remained. When ϕ becomes 64, only the query image is the candidate to
access the original data. Thus a ϕ value which is a bit larger than the half size of the
dimensionality of data space can remain the precision high.

0

0.25

0.5

0.75

1

6 12 18 24 30 36 52 64

Threshold value

R
el

at
iv

e
P

re
si

ci
o

n

Fig. 3. ϕ Effects on precision

0

5

10

15

20

25

30

6 12 18 24 30 36 52 64

Threshold value

T
o

ta
l R

es
o

n
se

 T
im

e
(s

)

Fig. 4. ϕ Effects on total response time

 Indexing Text and Visual Features for WWW Images 897

Figure 4 shows the ϕ effects on the total response time. TRT for sequential scan is
the result when ϕ=0. For 64-dimensional space, when ϕ is less than 24, there is no
obvious reduction on TRT. This is clear that in high dimensional space, most of
points have few common bits along few dimensions with query point, while they may
not be necessary to be the top K nearest neighbors to the query point. However, when
ϕ increases to be larger than the half size of the dimensionality of data space (36 in
this case), the TRT is reduced dramatically. This indicates that most of the irrelevant
points can be distinguished when ϕ reaches around the half size of the dimensionality.
As ϕ becomes too large, more points can be filtered, but precision may be affected as
shown in figure 3. Thus there is a tradeoff between precision and TRT. From figure 3
and 4, we can see that good values for ϕ could be a bit larger than the half size of the
dimensionality. At these values, TRT can be reduced greatly, while precision is still
high. In our later experiments, we chose ϕ as 36 for our 64-dimensional feature.

6.3 Comparative Study

Now we want to compare our indexing method LBS with sequential scan and multi-
indices by iDistance [4], based on the retrieval speed. This experiment tested 3
datasets: text feature only, visual feature only, and text combined with visual features.
The following table shows their differences in terms of total response time (s).

Table 1. Comparative study on retrieval speed

From table 1, we can see that multi-indices method built by iDistance performs
even worse than sequential scan. There are two possible reasons. First, accessing and
searching multi-indices take more time. Second, dimensionality curse resists in such
purely similarity based one-dimensional index because too many ‘false positives’ are
searched. By employing single index structure and LBS, the performance is improved
significantly. LBS is more than an order of magnitude better than sequential scan.
Clearly, our LBS is an effective method to filter those irrelevant points.

7 Conclusion

In this paper, we presented a novel indexing technique called MSI to index WWW
image’s multi-features in a single one-dimensional structure. Combined with Local

 Text
Feature

Visual
Feature

Combination

LBS

0.8 2.1 3.2

Sequential
Scan

3.5 21 33

Multi- indices
by iDistance

5.7 32 41

898 H.T. Shen, X. Zhou, and B. Cui

Bit Stream, our method can outperform sequential scan and multi-indices by
iDistance significantly without degrading the retrieval precision.

References

[1] A Review of Content-Based Image Retrieval Systems, http://www.jtap.ac.
uk/reports/htm/jtap-054.html

[2] R. Weber and H. Schek and S. Blott, A Quantitative Analysis and Performance Study
for Similarity-Search Methods in High-Dimensional Spaces, VLDB, pp 194—205,
1998.

[3] H.T Shen, B. C. Ooi, and K.L. Tan. Giving meanings to WWW images. In Proc. of 8th
ACM Multimedia Conference, pp 39-47, 2000.

[4] C. Yu, B.C. Ooi, K.L. Tan and H.V. Jagadish: Indexing the Distance: An Efficient
Method to KNN Processing. VLDB, pp421-430, 2001.

[5] Sougata Mukherjea, Kyoji Hirata, and Yoshinori Hara. Amore: A World Wide Web
image retrieval engine.The WWW Journal, 2(3): 115-132, 1999.

[6] Stan Sclaro, Leonid Taycher, and Marco La Cascia. Imagerover: A content-based image
browser for the World Wide Web. In Proc. IEEE Workshop on Content-Based Access of
Image and Video Libraries, 1997.

[7] J. R. Smith and S.-F. Chang, An Image and Video Search Engine for the World-Wide
Web, Proceedings, IS&T/SPIE Symposium on Electronic Imaging: Science and
Technology (EI'97) - Storage and Retrieval for Image and Video Databases V, 1997.

[8] Zheng Chen, Liu Wenyin, Chunhui Hu, Mingjing Li, and Hongjiang Zhang. iFind: A
Web Image Search Engine, SIGIR 2001.

[9] Y. Alp Aslandogan and Clement T. Yu, Evaluating strategies and systems for content
based indexing of person images on the Web, ACM Multimedia, pp313-321, 2000.

[10] B. C. Ooi, K. L. Tan, C. Yu and S. Bressan, Indexing the Edges - A Simple and Yet
Efficient Approach to High-Dimensional Indexing, PODS, pp 166-174, 2000.

[11] K. Chakrabart and S. Mehrotra, The Hybrid Tree: An Index Structure for High
Dimensional Feature Spaces, International Conference on Data Engineering, pp 322-
331, 1999.

[12] V. Gaede and O. Gunther, Multidimensional Access Methods, ACM Computing
Surveys, 30(2), pp 170-231, 1998

[13] Y. Sakurai, M. Yoshikawa, S. Uemura and H. Kojima, The A-tree: An Index Structure
for High-Dimensional Spaces Using Relative Approximation, VLDB, pp 516-526, 2000.

[14] Anne H. H. Ngu, Quan Z. Sheng, Du Q. Huynh, and Ron Lei: Combining multi-visual
features for efficient indexing in a large image database. VLDB Journal 9(4): 279-293
(2001).

[15] U. Guntzer, W-T. Balke, and W. Kiessling. Optimizing Multi-Feature Queries for Image
Databases, VLDB, pp. 261-281, 2000.

[16] R. Fagin, A. Lotem and M. Naor, Optimal Aggregation Algorithms for Middleware,
PODS, 2001.

[17] James Z. Wang, G. Wiederhold, O. Firschein, Sha Xin Wei, Content-based image
indexing and searching using Daubechies' wavelets, International Journal of Digital
Libraries, 1(4), pp. 311-328, 1998.

[18] R. Aggrawal and J. Gehrke and D. Gunopulos and P. Raghavan, Automatic Subspace
Clustering of High Dimensional Data for Data Mining Applications, Proceedings of the
ACM SIGMOD Conference, pp 94-105, 1998.

 Indexing Text and Visual Features for WWW Images 899

[19] Charu C. Aggrawal and Joel L. Wolf and Philip S. Yu and C. Procopiuc and J. S. Park,
Fast Algorithms for Projected Clustering, Proceedings of the ACM SIGMOD
Conference, pp 61-72, 1999.

[20] Hinneburg and D. A. Keim, An Optimal Grid-Clustering: Towards Breaking the Curse
of Diminsionality in High Dimensional Clustering, VLDB,1999.

[21] K. K. Sung and T. Poggio, Example-Based Learning for View-Based Human Face
Detection, PAMI, 20(1):39-51, 1998.

[22] Shortliffe, E. H. Computer-based medical consultation: MYCIN. New York: Elsevier
North-Holland.

[23] H. Jin, B.C. Ooi, H. T. Shen, C. Yu, and A. Zhou. An Adaptive and Efficient Dimen-
sionality Reduction Algorithm for High-Dimensional Indexing, ICDE, page 87-98,
2003.

[24] D. Cai, X. He, Z. Li, W.-Y. Ma and J.-R. Wen, Hierarchical Clustering of WWW Image
Search Results Using Visual, Textual and Link Analysis. ACM Multimedia 2004.

[25] S. Yu, D. Cai, J.-R. Wen and W.-Y. Ma, Improving Pseudo-Relevance Feedback in
Web Information Retrieval Using Web Page Segmentation, World Wide Web, 2003.

	Introduction
	Related Work
	Preliminary
	WWW Image Features
	Image Similarity Measurements

	Index Multi-scale Similarities
	Building Indexing Structure
	Query Processing
	Clustering Techniques

	Local Bit Stream
	BS Generation for Text Feature

	Performance Study
	Experiments Set Up
	Tuning ϕ
	Comparative Study

	Conclusion
	References

