
Semantic Turkey goes SKOS
Managing Knowledge Organization Systems

Manuel Fiorelli
University of Rome, Tor Vergata

Via del Politecnico 1
00133, Rome

+39 0672597334
fiorelli@info.uniroma2.it

Maria Teresa Pazienza
University of Rome, Tor Vergata

Via del Politecnico 1
00133, Rome

+39 0672597378
pazienza@info.uniroma2.it

Armando Stellato
University of Rome, Tor Vergata

Via del Politecnico 1
00133, Rome

+39 0672597330
stellato@info.uniroma2.it

ABSTRACT
In this paper we describe a novel SKOS editor built on top of the

web browser Mozilla Firefox. Our tool is targeted towards KOS

developers and KOS consumers as well. Indeed, the ability to surf

the Web with a standards compliant browser proves useful for

both: the former may prove the soundness of a concept by

associating it with a concrete set of web resources, whereas the

latter may exploit a given KOS to effectively organize

information collected from the Web. The editor has been designed

as an extension of the knowledge management and acquisition

tool Semantic Turkey. The proposed SKOS editor creates a

dedicated perspective within an OWL compliant environment,

which eases dealing with KOSs. By relying on such rich

environment, the editor allows the user to exploit the subtle

relationship between SKOS and OWL, thus opening it up to more

elaborated modelling solutions, in contrast to other tools which

are built on top of the SKOS direct semantics.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – Domain

Engineering

I.2.6 [Artificial Intelligence]: Learning – Knowledge Acquisition

General Terms
Management, Documentation, Design, Standardization,

Languages

Keywords
Thesauri, Knowledge Organization Systems, SKOS, Information

Visualization, Knowledge Management and Acquisition,

Semantic Bookmarking, Semantic Annotation

1. INTRODUCTION
The term Knowledge Organization System was introduced by the

Networked Knowledge Organization Systems Working Group at

its initial meeting at the ACM Digital Libraries ’98 Conference in

Pittsburgh, Pennsylvania [19].

Later on, a definition of Knowledge Organization Systems (KOS)

has been provided [8], as this term is “intended to encompass all

types of schemes for organizing information and promoting

knowledge management. Knowledge organization systems

include classification schemes that organize materials at a general

level (such as books on a shelf), subject headings that provide

more detailed access, and authority files that control variant

versions of key information (such as geographic names and

personal names). They also include less-traditional schemes, such

as semantic networks and ontologies.” In what follows we use the

term KOS in a slightly narrower sense, since in our judgment

ontologies and other formal resources are best treated on their

own.

Librarians have used KOSs to assign a physical position on the

shelf to each book and, later on, to easily discover books related to

a given topic. In the modern virtual world of Information

Organization the purpose of KOSs has not changed in its

fundamentals: now that digital libraries are spreading over the

Web, KOSs are even more relevant resources and there is great

urge for their sharing and standardization.

KOSs are not only relevant to the organization of libraries, but are

widely used in Information Retrieval in general and in numerous

tasks related to Computational Linguistics and Machine Learning.

In short, KOSs are used to categorize resources (whatever they

are), in order to make it easier to retrieve them later.

In the context of the Semantic Web KOSs have progressively

found their way: from the époque of “ontologies everywhere”

now we are facing a new era where publishing interlinked

repositories of mere data is the priority and the role of rigid formal

vocabularies has been even debated (see [12]) or the many results

on blogs and mailing list archives returned by searching the Web

for: “Does the Semantic Web Need Ontologies?”). This switch

has been facilitated by the technological progress in the field

(most of modern triple stores are able to handle millions – if not

trillions – of triples1) and pushed forward by the progressive

adherence of companies and big organizations to the Linked Open

Data [1] paradigm.

KOSs are thus even more relevant in this scenario: they generally

require very weak (formal) semantics, thus easing their production

by domain experts. This simplification also facilitates the massive

reuse and export of the several concept schemes and thesauri

already available inside several organizations. At the same time,

KOSs provide mere conceptual indexes for organizing knowledge

content. KOSs may thus highly innovate the concept of traditional

search, as they provide much more than traditional controlled

vocabularies or machine readable dictionaries [9]; their

conceptualization supports the idea of a controlled set of indexes,

their multilingual lexicalization enables high recall (but still

1http://www.w3.org/wiki/LargeTripleStores

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-SEMANTICS 2012, 8th Int. Conf. on Semantic Systems, Sept. 5-7,

2012, Graz, Austria
Copyright 2012 ACM 978-1-4503-1112-0 …$10.00.

converging on the unifying concept set) and, when available,

semantic relations enable the move from “search” to “discovery”:

users may in fact discover new topics they are interested in by

exclusively navigating concept structures and only later retrieve

the content associated to them.

Although there are several types of KOSs, there is a sufficient

overlap among them so that the W3C has been able to create a

dedicated language, SKOS [17], for modelling the features mostly

recurring in existing KOSs. SKOS was thus created as an RDF

vocabulary, defined on top of the Web Ontology Language

(OWL). The need for a new language in the RDF family was

motivated by the twofold nature of concepts in a KOS, being them

objects of the domain of interest which have to be described (as if

they were owl individuals) and, at the same time, play the role of

categorizing terms (a role normally associated to classes). At the

same time, KOSs do not need any class/instance differentiation as

concepts represent the sole indexes of a domain description. The

solution has thus naturally emerged: coin a specific class

(skos:Concept) to describe KOS concepts, which consequently are

individuals (in the OWL sense) and thus can be described. Finally,

coin a dedicated vocabulary of properties which apply to these

concepts and which can thus be universally adopted and managed

by Semantic Web applications.

The subtle connection between SKOS and OWL allows

interesting modelling solutions, in which resources described in

terms of much more formal vocabularies are linked to SKOS

concepts when further formalization is not required. For example,

the Open Government Working group is editing a vocabulary,

named Data Cube2, for publishing (statistical) multi-dimensional

data on the Web. Each dimension of the hypercube expresses a

concept (e.g. the notion of reference region, age, gender, ...),

which can be represented (optionally) as a SKOS concept.

The wide adoption of SKOS is largely dependent on the

availability of conformant and practical implementations. In the

transition period the relation with OWL can be exploited to

manage a SKOS description as an ontology. However, the

promotion of the standard to the intended audience, which

comprehends mostly librarians and terminologists, requires

technologies which are closer to such users– in terms of usability

–than to knowledge engineers.

In this paper, we present a novel SKOS editing framework, hosted

as an extension for the Firefox Web Browser3, modelled over the

existing Knowledge Management and Acquisition Framework

Semantic Turkey [13] and designed specifically with the potential

KOS user in mind. The editing framework in fact does not only

support all of the editing requirements of SKOS (and SKOS-XL

[18], its language extension for characterizing lexicalizations), but

also enables a smart bookmarking/annotation feature for

associating web pages content with related concepts in a SKOS

scheme. Indeed, the ability to surf the Web with a standard

compliant browser proves useful for both KOS developers and

KOS consumers: the former may prove the soundness of concepts

by associating them with concrete web resources, the latter may

exploit existing KOSs to effectively organize information

collected from the Web.

The paper is organized as follows: in section 2 we present a few

of the most notable SKOS editors available, we then provide the

motivations behind the realization of this tool in the following

2 http://www.w3.org/TR/2012/WD-vocab-data-cube-20120405/

3http://www.mozilla.org/firefox/

section. Section 4 provides details on the user experience and on

the features provided by the tool, while section 5 provides insights

over the system extensible architecture. Finally, the two last

sections provide comments and hints for future research work on

this open source tool.

2. RELATED WORKS
We have analysed existing SKOS editors, in order to identify use

cases and how they are addressed.

The Food And Agriculture Organization4 (FAO) has developed a

tool for collaborative thesaurus and vocabulary management,

called VocBench5. Originally built to manage the

AGROVOC6 [10] thesaurus, an indexing scheme containing over

32000 concepts related to the food and agriculture domain

expressed in more than 20 languages, VocBench has recently

evolved into a general purpose thesaurus and concept scheme

management framework [10], featuring a distinctive collaborative

nature.

The framework has a satisfactory coverage of SKOS features and

has proved to be able to manage as a large thesaurus as

AGROVOC is. One of its main drawbacks is the lack of advanced

modelling solutions, as no OWL construct is available. However,

the strongest point in favour of VocBench lies in a really

interesting support for collaborative editing. The framework

manages the maintenance workflow, assuring that proposed

changes have been validated before they are consolidated into the

mainstream KOS.

VocBench offer consists of a web application, which appears to

be an appropriate choice in the highly distributed scenario where

VocBench is called to operate.

VocBench persistence system is currently based on the API of

Protégé 3 OWL [11], extended with the database backend, to be

able to manage large amounts of data. Support for SKOS is not

“direct”, as VocBench is based on a proprietary inner model

– based on OWL – for representing vocabularies. Offline utilities

for exporting its content (by directly accessing its database

backend) to SKOS and SKOS-XL are however available.

VocBench is distributed under open source conditions and terms

of reuse.

PoolParty7 is another web-based application, distributed as a

commercial solution. PoolParty features an advanced

implementation of SKOS, including consistency checks for SKOS

integrity constraints which are not bound to a formal OWL

specification (e.g. disjointness between the set of literals used as

preferred labels for a given concept, and those used for alternative

or hidden labels).

Distinguishing features are: support for linking to other KOSs

(following the principles of Linked Open Data), deployment of

services related to the managed data (such as SPARQL endpoints)

and other accompanying features which are actually applications

on their own, such as text analysers (which may be employed to

discover new concepts from documents) and text/concept

indexing of managed documents to enable semantic search.

PoolParty comprises a user management system, but has a support

for collaboration not as evolved as VocBench has.

4http://www.fao.org/

5http://aims.fao.org/tools/vocbench-2/

6http://aims.fao.org/website/AGROVOC-Thesaurus/

7http://poolparty.biz/

SKOSEd8 is a plugin for the ontology editor Protégé that provides

an additional tab (named SKOS view) for editing SKOS entities.

The layout of the SKOS view is a customized version of the

standard Protégé Individual view providing different perspectives

on the SKOS taxonomy (e.g. by filtering concepts depending on

the skos:ConceptSchemes they belong to), like the Class Tree in

the Classes View.

Further SKOS customization consists of dedicated widgets for

specific SKOS properties, so that their access is facilitated with

respect to other properties.

Differently from the previous tools, which are focused on thesauri

development, SKOSEd benefits from the capabilities inherited

from its hosting environment Protégé, allowing for an interwoven

editing of SKOS and OWL constructs, to give maximum

modelling power to the developer.

On the other hand, some ontology editing tools, such as TopBraid

Composer9, rely on their high level of customizability without

offering a dedicated view/perspective over SKOS. In fact the user

may configure the existing widgets and panels to host an

appropriate perspective over SKOS data (e.g. the concept tree

may be built by using the Association View which allows defining

taxonomies over custom properties, and then setting the

skos:broader/skos:narrower properties as the carriers for the

taxonomical relation). A dedicated collaborative application

(Enterprise Vocabulary Net10) for SKOS editing has however

been published, based on the same backing technology.

3. MOTIVATIONS
Most of the tools analyzed in section 2 are concerned with the

editing of KOSs regardless of their use for indexing or other

purposes. PoolParty and Enterprise Vocabulary Net go partially

beyond, since they provide facilities for automatic indexing and

discovery of concepts. Nevertheless in our vision the content is

not only relevant for the sake of statistical analysis, but even

human terminologists may take advantage of it in order to ground

the proposed terminology to a concrete set of examples. Under

this perspective the importance of a tool for the interactive

acquisition of knowledge from documents is clear. Furthermore,

we believe it is important to allow the acquisition of knowledge

directly from the Web, which has evolved into a very

comprehensive source of information.

The experience shows that surprisingly such kind of tool dealing

with third-party Web contents should not be deployed as web

applications. Indeed, pure web-based solutions rely on frames and

other approaches that are generally regarded as harmful11 with

respect to usability, maintainability and other concerns. The

recently launched Volunia12 social search engine uses frames to

decorate third-party web sites with a toolbar assisting users during

the navigation (e.g. providing sitemaps and social functionalities).

Unfortunately, in numerous observers’ opinion Volunia is

excessively invasive and as restrictive as the “cages” of traditional

Social Networks that it was expected to break.

It is actually the Web browser that should evolve to support new

functionalities for enhancing the Web experience, going much

8 http://code.google.com/p/skoseditor/

9 http://www.topquadrant.com/products/TB_Composer.html

10 http://www.topquadrant.com/solutions/ent_vocab_net.html

11http://en.wikipedia.org/wiki/Framing_(World_Wide_Web)

12 http://www.volunia.com/

further the simple resolution of addresses and the provision of

Web content. The strong customizability and extendibility of

current Web browsers are supporting this trend, though, on the

other hand, the lack of unified environment for programming

extensions is hampering it: in fact the main disadvantage in

developing browser extensions and plugins rather than Web

applications lies in the necessity to develop ad-hoc portings for

each different browser being supported.

Thus, our tool has been designed as an extension for the Web

browser Mozilla Firefox, enabling users to acquire knowledge

while surfing the Web by using the tool they are more proficient

with: the Web browser. A browser-hosted extension (though

backed by robust and scalable Java technologies) satisfies the

ideal requirement for an immediately usable tool. Nevertheless

our solution has to be considered a desktop application, which is

completely under the user’s control and open to unlimited

customization being an open-source and free-of-charge product.

The proposed tool has been developed as an extensions of

Semantic Turkey, a knowledge acquisition and management

platform for the development of applications targeted to such

Semantic Web standards as RDF, RDFS, OWL and SKOS.

Relying on such rich environment, our tool allows users to exploit

the subtle relationship between SKOS and OWL, which proves

useful in reusing SKOS conceptualization within other OWL

based models.

4. USER EXPERIENCE
The role of a SKOS editor is to provide a more convenient

perspective on the KOS content. Indeed, from the viewpoint of an

OWL editor SKOS concepts are but individuals of the class

skos:Concept and do not require any special treatment. The editor

will probably show SKOS concepts in a flat list rather than a tree,

since it has no understanding and special management of

hierarchical relations between concepts. Hence, a dedicated editor

is needed, able to hide unnecessary details (e.g. the fact that a

concept is an instance of the class skos:Concept) and interpret

SKOS specific constructs under a more direct interpretation.

The first step in this direction, discussed in section 4.1, is to

provide the user with a convenient perspective on the KOS

entities (e.g. concepts and schemes), paired with the basic editing

functionalities. The ability to manage the content of a KOS is but

the baseline, which is common to all tools analysed in section 2.

The distinctive feature of our tool is the support of the interactive

annotation of information resources from the Web (see figure 2).

This capability, discussed in section 4.2, is important for two

reasons (and two classes of users): terminologists may document

their conceptualizations by means of concrete examples from the

Web, while end-users may utilize an existing indexing scheme in

order to categorize web resource accordingly.

The advanced user may still exploit the connection with OWL for

more advanced modelling solutions by means of the

functionalities provided by the hosting ontology editing platform.

4.1 Main Editing Functionalities
The user is able to manage the KOS content by means of a

sidebar, which has been added to the browser.

The concepts within the edited KOS are shown in a hierarchical

manner based on the SKOS taxonomic relations (i.e. skos:broader
and skos:narrower).

Concepts may be organized into schemes, which enable a loose

form of containment, not covering statements about concepts,

which are instead asserted globally (i.e. statements about a

concept are not tied to any concept scheme). Managing multiple

schemes is useful for the purpose of linking and mapping different

KOSs, but may degrade the usability of the editor if the user

wants to focus on one of them only. This problem has been solved

by asking users to choose the scheme they want to restrict the

concept hierarchy to.

An important contribution of SKOS to RDF lies in the definition

of three properties allowing a more precise labelling of resources

through natural language expressions13. The three properties

differentiate which expressions are mostly adopted to represent a

concept in a given language (skos:prefLabel), which ones are

common synonyms or acronyms (skos:altLabel) and which ones

(skos:hiddenLabel) can be used internally by an application for

coverage of various linguistic phenomena (e.g. common

misspells) or application specific needs (e.g. word stems).

Furthermore, SKOS-XL introduces XLabels, that is reifications of

labels: this means that labels become thus first class citizens of a

domain description and, beyond their lexical form, they can be

related to each other through lexical relation or further

characterized through dedicated descriptors.

The SKOS editor of Semantic Turkey allows explicit management

of these labels and exploits their content to provide a human-

friendly representation of SKOS concepts based on their preferred

labels instead of their URI or qualified name. Within a concept

scheme in fact the preferred labels assigned to concepts can be

safely considered local identifiers, since by convention they have

to be unambiguous in a given language. Hence, it is sensible to

present concepts and schemes by their preferred labels (if any) in

the user local language instead of their qualified name (QName).

This alternative presentation may give the user a better sense of

the KOS content and it is crucial in those circumstances (e.g.

AGROVOC) where concepts are not provided with a human

friendly name.

Finally, for KOSs modelled after the SKOS-XL vocabulary, the

indirection from the concept to the lexical form of its

skosxl:prefLabel is automatically managed by the application.

4.2 Semantic Annotation and Bookmarking
Users may surf the Web with a standards compliant Web browser,

associating information found in Web documents with concepts

from the current KOS. The utility of this association is twofold:

KOS developers may document a concept by attaching a set of

web resources to it, whereas a KOS consumer may categorize

information resources tagging them with concepts from the KOS.

The nature of the association may also vary: the editor supports

both the bookmarking of web pages as a whole and the annotation

of the occurrences of concepts within a web page.

In the first case, the bookmarked page metadata are stored

together with the link to a skos:Concept through the

dcterms:subject property. That concept is not required to be

explicitly mentioned in the bookmarked page, but it is assumed to

represent a category of Web pages (e.g. related by the same topic).

Bookmarking may support topic based IR or the creation of gold

standards for tasks of document classification.

In the second case, the annotation of specific portions of text is

triggered by drag’n’drop action performed by the user. When a

portion of text is selected, dragged and finally dropped over a

13This is actually a contribution to the whole family of RDF

languages, as the subject of SKOS labelling properties is not

restricted to skos:Concepts

concept in the tree, several options are presented to the user. This

functionality is a follow-up of the original (OWL) version of

Semantic Turkey and, in general, the available options depend on

the nature of the RDF resource where the text has been dropped

on (i.e. classes or instances in the case of OWL).

In SKOS there is only the notion of skos:Concept which covers

the double role of realizing taxonomies (classes) and of holding

descriptions of relevant domain objects (individuals). For this

reason, we have provided different options combining those

already available for OWL classes and individuals.

Figure 1 illustrates, through an activity diagram, the flow of

actions which are performed when information is dropped on a

skos:Concept. Firstly, the user is prompted with a dialog window

listing the set of available options, namely:

1. add an annotation to the selected concept,

2. create a new concept (and annotate it),

3. add a new value for a property of the concept.

In the first case, an annotation is added to the concept where the

text has been dropped on. The nature of the annotation may vary,

depending on the annotation model which has been selected. In

general, an annotation for a concept will include: the selected text

as an occurring lexical form of that concept, a reference to the

page where this text has been selected, metadata about the source

User Semantic Turkey

Drag'n'drop text over Concept

show the Annotation Dialog

Choose which action to perform

add a new Annotation for

the selected/new Concept

[action is:

add new value for Property of Concept]

Choose which property to fill

[property is: DatatypeProperty]

[typedLiteral]

bind&create or bind an existing

object as value for the property

ask for language

show Class/Concept

Tree

[value = new resource]

[value = existing resource]

add new Individual named after selected text

relate object with subject through selected property

annotate object

[object is a resource]

ask nature of object

[object is a literal]

ask for type

[plainLiteral]

ask for datatype

add property Value

create a new Concept, narrower than the selected one

[Action is: create new Concept]

[Action is: add Annotation to existing Concept]

[property is: ObjectProperty]

Figure 1. UML activity diagram for semantic

bookmarking/annotation in SKOS

page, and (optionally) a punctual reference to the position of the

text in the page. The annotation model shipped with Semantic

Turkey does not register the exact position of the selected text

within the web page, resulting very similar to bookmarking.

Range Annotator14 is an extension of Semantic Turkey providing

an annotation model in which punctual references are stored as

XPointers. There can be concerns about the stability of those

annotations with respect to changes in web pages, but they do not

apply when considering a stable corpus of web pages (e.g.

Wikipedia assigns a distinguished URI to each version of every

article).

The second option allows creating a new concept, named after the

content of the selection, as a narrower concept of the one where

the text has been dropped on. An annotation is also added to the

newly created concept by using the same text content.

Finally, the third choice opens a more complex interaction to

assert a new relation in the KOS, whose subject is the concept

where the text has been dropped on. The user initially chooses a

property (see Figure 2) and decides which kind (a Literal or a

URI) of value will be associated to it (unless univocally

determined by the property type). Finally, in case of a URI, the

user can select an existing resource as the object of the relation or

create a new one for that role, named after the content of the

14 http://code.google.com/p/st-rangeannotator/

selection. In both cases, the object is annotated as described in

point 1.

4.3 Further Features
Users may exploit Semantic Turkey's SPARQL [16] capabilities

to query SKOS descriptions by means of a rich and standard

query language, which mostly operates by unification of triple

patterns with the underlying RDF graph.

The editor provides a graph view of the KOS, which has been

implemented by extending the applet for ontology visualization

already available in Semantic Turkey. The framework asks the

extender to specify what properties will be considered (e.g.

skos:narrower) and how vertices and edges will be rendered.

Finally, the editor inherits support for representation of metadata

and recursive resolution of the owl:import directive, allowing the

import of further schemes and vocabularies.

5. ARCHITECTURE
The offer of Semantic Turkey covers an extensible platform [13]

for the development of RDF based applications. The platform

features a three-layer architecture, reflecting the common

separation among presentation, business and data management.

Each layer bases on widely adopted technologies and offers

specific mechanisms for extension development. Semantic

Turkey’s SKOS editor is composed of a set of extensions for each

layer of the host platform. The resulting system is further

Figure 2. Annotating information about a concept in the hierarchy tree

extensible, as more capabilities can be added freely and the SKOS

related functionalities can be reused in different contexts.

5.1 Presentation
The presentation layer, associated with the Firefox extension, is

primarily built over technologies adopted inside the Mozilla

platform, such as XUL, JavaScript, CSS and XBL.

We have designed the presentation layer in a way that it would be

easy to reuse graphic elements and to inject further capabilities

into them. To fulfil this objective, we have broken the user

interface into reusable parts, known as widgets [15], which can be

imbued dynamically with operations (thus providing specific

extensions points for third party developers).

We have extended XUL, the Mozilla user interface definition

language, with a set of application specific widgets: these widgets

have been implemented by means of XBL bindings and automatic

attachment is guaranteed by a dedicated CSS style sheet.

Two widgets have been identified so far for SKOS: the concept

scheme list and the concept tree. As lists and trees are strictly

related (i.e. a list is a flat tree and a tree is recursively defined as a

list of trees), we have a common abstract widget which models the

interaction with a tree oriented data source. The abstract widget

specifies a set of data related operations, such as root retrieval and

children retrieval. Each widget implementation binds those

abstract operations to concrete methods, which in turn depend on

the appropriate middle layer service. The decoupling among

widgets and operation providers is guaranteed by the employment

of the well-known publish-subscribe [4] connector.

Figure 3 depicts the general architecture which guarantees the

provisioning of operations to widgets and, ultimately, to users. A

widget declares its interest in a particular topic (e.g. concept

related operations) by subscribing to it. By doing so, it has to

comply to a set of interfaces for that topic. When an operation

(e.g. concept deletion) is published on a topic, the framework

notifies its availability to registered widgets, which may decide

how to render it (e.g. by means of a toolbar button). If the user

activates the operation, it is invoked with a reference to the

widget. The operation code uses that reference to access the

provided interfaces, collect the needed information (e.g. the

currently selected concept) and, finally, execute the request (e.g.

invoke the middle layer service for the concept deletion). This

mechanism effectively decouples widgets from operations,

because neither the former know how many operations it will

have, nor the latter have to know precisely which widgets they are

attached to. Being a proxy for the underlying data (the view in a

MVC perspective), widgets remain in sync with them, updating

themselves when something interesting happens (see section 5.2).

5.2 Business
The functionalities offered to the end-user are either more

elaborated or more constrained than those provided by the

underlying OWLART API16. For each element of a KOS (e.g.

concepts and schemes) the user is provided with a set of CRUD

(Create, Read, Update, Delete) operations, the semantics of which

is imperative more than assertive. For instance, our editor refuses

to create a new concept when there is already one with the same

name, whereas the underlying API accept to perform the

operation, as the API semantics bear no issue with multiple

assertions and just ignore redundant triples. Furthermore, there are

many more operations which simply go beyond the sole scope of

RDF management (e.g. project management, user preferences

etc..). The gap between the underlying API and the operations

16OWLART API: http://art.uniroma2.it/owlart/

Figure 3. MVC Architecture

offered by the application is covered by the business level of the

SKOS editor.

The business layer services may be invoked synchronously by

means of the HTTP protocol. According to the front controller

design pattern all requests are routed to a single servlet, which in

turn will dispatch them to the appropriate handler, given the

service name parameter inside the request. Actually, business

functionalities are implemented by service handlers, which result

largely independent from web technologies (e.g. the HTTP

protocol), since those are taken in charge by the front controller.

The business level services are exposed to the presentation layer

through a set of JavaScript modules, which hide the

communication issues (e.g. the use of Ajax [7]) and takes care of

some horizontal aspects, such as firing events.

Widgets and other components managing a certain kind of

resources should listen to a small set of events which are fired by

the business layer for relevant changes of those resource. For

example, in Figure 3 it has been shown how the deletion of a

concept is notified to a widget (possibly different from the one the

request originated from) which has the chance to update itself in

order to stay in sync with the data.

5.3 Data Management
Semantic Turkey accesses RDF repositories by means of an

implementation neutral API, named OWL ART API, which

effectively allow ST to wrap different triple stores for managing

its projects content. The appropriate triple store may thus be

plugged to address different requirements, such as memory

footprint, scalability and so on.

The OWLART API provide several layers for managing RDF

repositories, ranging from mere triple-oriented management to

more advanced modelling primitives based on W3C vocabularies.

In particular, they feature operations to directly manage SKOS

and SKOS-XL entities – such as concepts, schemes and xlabels –

instead of working at triple level. Applications may be written on

top of these API to exploit SKOS descriptions for various

purposes.

Besides the uniform API for accessing data, a dedicated section of

the OWLART interface allows for inspection of the wrapped

triple store, so that different characteristics may explicitly be

exposed and thus taken into account by the application (e.g. if the

triple store is persisted in real-time or not, if it supports reasoning,

and in case which materializations, etc..), thus implying different

interaction modalities with the user, or, conversely, the

establishment of different strategies for exposing an homogenous

behaviour to them.

Extending the API to a new triple store technology mainly

includes an implementation of both their data access interface and

the model factory, which is in charge of the construction of the

model objects by means of implementation specific mechanisms.

The API provide a default implementation of the higher level,

(vocabulary oriented) interface, thus requiring minimal effort to

enable support for a new triple store.

6. CONCLUSIONS AND FUTURE WORKS
In this paper we have presented an improvement of the Semantic

Turkey framework for supporting development of KOSs through

the SKOS and SKOS-XL languages of the RDF family.

For the sake of usability essential features have been made

accessible from the main sidebar, whereas the user may learn

more advanced functionalities later, in an incremental way. Both

KOS developers and consumers may take advantage of the editor,

as each one can focus on the functionalities they need. Moreover,

the tight integration with a Web browser allows the user to surf

the Web in a natural way. Functionalities for semantic annotation

and bookmarking allow users to keep note of relevant information

found on the Web (both pages as a whole and specific portions of

text) and associate it with concepts from a KOS (or, conversely, to

acquire new conceptual content and keep the information about

the textual source where it has been observed).

We believe that the editor may benefit from capabilities for

automated knowledge acquisition. Human supervision will always

be required for the construction of critical KOSs (e.g. the

reference vocabulary of a public institution), but automated tools

could be employed for reducing the effort, by providing

suggestions about new content to add.

We are currently building on top of Semantic Turkey an open

knowledge acquisition layer, based on the CODA [3] [6]

framework, allowing users to plug their own acquisition

components, tailored to their objectives and requirements. Aiming

at maximum compatibility and compliance to standards, CODA

builds on top of the Unstructured Information Management

Architecture [5] (UIMA) and features an orchestration mechanism

for knowledge acquisition. A declarative language, PEARL [3]

[14], for projecting UIMA extracted data into RDF triples is also

provided by the CODA system. This approach will promote the

reuse of state-of-art analytics and facilitate plug-and-play

scenarios, as in [3], where users will just sit in front of the

development environment, load their ontology/concept scheme,

and automatically get knowledge extractors downloaded from the

Web.

Another direction for improvement lies in the collaborative

editing of KOSs. Semantic Turkey has already basic support for

multi-user editing, although it is not possible to define access

control policies nor these have been enforced consistently yet. In

our vision, users should work in sandboxes, so that contributions

are distinguishable from each other and from already assessed

knowledge. Thus, mechanisms should be provided for integrating

these contributions and for promoting them to the status of stable

knowledge.

7. ACKNOWLEDGMENTS
This work has been partially supported by the EU-funded project

INSEARCH17

8. REFERENCES
[1] Christian Bizer, Tom Heath, and Tim Berners-Lee, "Linked

Data - The Story So Far," International Journal on Semantic

Web and Information Systems (IJSWIS), Special Issue on

Linked Data, vol. 5, no. 3, pp. 1-22, 2009.

[2] Caterina Caracciolo et al., "Thesaurus Maintenance,

Alignment and Publication as Linked Data: The

AGROOVOC Use Case," in Metadata and Semantic

Research, Elena García-Barriocanal et al., Eds.: Springer

Berlin Heidelberg, 2011, vol. 240, pp. 489-499.

[3] Andreea Diosteanu, Andrea Turbati, and Armando Stellato,

"SODA: A Service Oriented Data Acquisition Framework,"

in Semi-Automatic Ontology Development: Processes and

Resources, Maria Teresa Pazienza and Armando Stellato,

Eds.: IGI Global, 2012, ch. 3, pp. 48-77.

17 FP7-SME-2010-1, Research for the benefit of specific groups,

GA n° 262491

[4] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and

Anne-Marie Kermarrec, "The many faces of

publish/subscribe," ACM Computing Surveys, vol. 35, no. 2,

pp. 114-131, 2003.

[5] David Ferrucci and A. Lally, "Uima: an architectural

approach to unstructured information processing in the

corporate research environment," Nat. Lang. Eng., vol. 10,

no. 3-4, pp. 327-348, 2004.

[6] Manuel Fiorelli, Maria Teresa Pazienza, Steve Petruzza,

Armando Stellato, and Andrea Turbati, "Computer-aided

Ontology Development: an integrated environment," in New

Challenges for NLP Frameworks 2010 (held jointly with

LREC2010), La Valletta, Malta, 2010, 22 May, 2010.

[7] J.J. Garrett. (2005, February) Ajax: A New Approach to Web

Applications. [Online].

http://www.adaptivepath.com/publications/essays/archives/00

0385.php

[8] Gail M. Hodge, "Systems of Knowledge Organization for

Digital Libraries: Beyond Traditional Authority Files,"

Washington, DC, ISBN 1-887334-76-9, 2000.

[9] Nancy Ide, Jean Véronis, and Aix en-provence Cedex,

"Machine Readable Dictionaries: What have we learned,

Where do we go," in In Proc. of the post-COLING ‘94 intl.

workshop on directions of lexical research, Beijing, 1994, pp.

137-146.

[10] Johannes Keizer et al., "A Collaborative Framework for

Managing and Publishing KOS," in The 10th European

Networked Knowledge Organisation Systems (NKOS)

Workshop, Berlin, Germany, September 2011.

[11] Holger Knublauch, Ray W. Fergerson, Natasha Friedman

Noy, and Mark, A. Musen, "The Protégé OWL Plugin: An

Open Development Environment for Semantic Web

Applications," in Third International Semantic Web

Conference - ISWC 2004, Hiroshima, Japan, 2004.

[12] Enrico Motta, Frank van Harmelen, Michael Witbrock, and

Tom Heath, "Does the Semantic Web Need Ontologies?," in

Panel at the International Semantic Web Conference 2009

(ISWC2009), Joel Sachs, Ed., 2009, Fake reference creata per

gli stili dove le interviste non sono disponibili. Per qls stile

che le supporti, usate la vera reference di tipo "interview".

[13] Maria Teresa Pazienza, Noemi Scarpato, Armando Stellato,

and Andrea Turbati, "Semantic Turkey: A Browser-Integrated

Environment for Knowledge Acquisition and Management,"

Semantic Web Journal, vol. 3, no. 2, 2012.

[14] Maria Teresa Pazienza, Armando Stellato, and Andrea

Turbati, "PEARL: ProjEction of Annotations Rule Language,

a Language for Projecting UIMA Annotations over RDF

Knowledge Bases," in International Conference on Language

Resources and Evaluation, Istanbul, Turkey, 2012.

[15] Ralph R Swick and Mark S. Ackerman, "The X Toolkit:

More Bricks for Building User-Interfaces or Widgets for

Hire," in USENIX Winter, Dallas, 1988, pp. 221-228.

[16] W3C. (2008) SPARQL Query Language for RDF. [Online].

http://www.w3.org/TR/rdf-sparql-query/

[17] W3C. (2009, August) World Wide Web Consortium (W3C).

[Online]. http://www.w3.org/TR/skos-reference/

[18] W3C. (2009, August) World Wide Web Consortium (W3C).

[Online]. http://www.w3.org/TR/skos-reference/skos-xl.html

[19] Ian Witten, Rob Akscyn, and Frank M. Shipman III, Eds., DL

'98: Proceedings of the third ACM conference on Digital

libraries. Pittsburgh, Pennsylvania, United States,

Pennsylvania, United States: ACM, 1998.

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/skos-xl.html

