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The brain shows complex, nonstationarity temporal dynamics, with abrupt micro- and macrostate transitions during its information 
processing. Detecting and characterizing these transitions in dynamical states of the brain is a critical issue in the field of neuroscience 
and Psychiatry. In the current study, a novel method is proposed to quantify brain macrostates (e.g. sleep stages or cognitive states) 
from shifts of dynamical microstates or dynamical nonstationarity. A ‘dynamical microstate’ is a temporal unit of the information 
processing in the brain with fixed dynamical parameters and specific spatial distribution. In this proposed approach, a phase-space-
based dynamical dissimilarity map (DDM) is used to detect transitions between dynamically stationary microstates in the time series, 
and Tsallis time-dependent entropy is applied to quantify dynamical patterns of transitions in the DDM. We demonstrate that the 
DDM successfully detects transitions between microstates of different temporal dynamics in the simulated physiological time series 
against high levels of noise. Based on the assumption of nonlinear, deterministic brain dynamics, we also demonstrate that dynamical 
nonstationarity analysis is useful to quantify brain macrostates (Sleep stages I, II, III, IV, and rapid eye movement (REM) sleep) from 
sleep EEGs with an overall accuracy of 77%. We suggest that dynamical nonstationarity is a useful tool to quantify macroscopic 
mental states (statistical integration) of the brain using dynamical transitions at the microscopic scale in physiological data.  
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I. INTRODUCTION 

he brain exhibits complex, nonstationary temporal 
dynamics of information processing. Consequently, 

electroencephalograms (EEGs) show abrupt transitions 
between brain states at micro- and macroscopic time scales. 
Previous investigation on the temporal structure of brain 
dynamics using nonlinear dynamical methods, as well as 
linear methods, has been performed to examine normal and 
pathological states. Particularly, the application of these 
nonlinear methods to EEGs in patients with neurological and 
psychiatric disorders has proven to be effective for diagnosing 
various brain diseases and for quantifying the progress of the 
diseases (for review, see [1, 2]).  

Several previous studies support the assumption of spatio-
temporal dynamics of the brain by demonstrating the presence 
of electrical microstates in the brain and their associations 
with cognitive states [3-5] or pathological states like seizure 
[6-9]. The brain microstate is defined as a temporal unit of 
neural assembles in specific spatial distribution that 
coordinates for information processing of the brain, expressed 
as the existence of potential extrema, phase synchronization of 
specific frequency bands, and so forth [3-5, 10]. In the context 
of dynamical nonstationarity, brain microstates exhibiting 
stationary dynamical properties are by extension called ‘brain 
dynamical microstates.’ Moreover, weak statistical parameters 
of time series (i.e. low-order statistics) generated by nonlinear 
deterministic systems including mean, variance, and power 
spectrum may significantly vary over time (statistical 

nonstationarity), despite all the parameters in the dynamical 
process remaining constant (dynamical stationarity). This 
indicates that statistical stationarity of brain microstates does 
not imply their dynamical stationarity. Thus, dynamically 
stationary microstates are different from its statistical 
counterpart and may imply a more general definition for 
mental-state units [1]. 

Le Van Quyen et al. [9] and Dikanev et al. [6] applied the 
dynamical nonstationarity method (i.e. spatio-temporal 
structure analysis of EEGs segmented into dynamical 
microstates) to investigate the potential predictability of 
seizures in epileptic patients. Similarly, the classification and 
clustering of the time series using nonlinear measures [6, 11] 
or the combination of linear and nonlinear methods for EEG 
recordings [12] showed that nonlinear measures are 
complementary to linear ones and have a potential to 
distinguish dynamical states and possibly to characterize 
temporal alternations in mental states (e.g. sleep stages or 
seizure onset). However, we note that nonlinear determinism 
of EEGs is controversial [1], which limits the application of 
dynamical nonstationarity.  

It was demonstrated the presence of weak nonlinear 
determinism in all sleep stages [13] and showed that it was 
particularly pronounced in deeper sleep stages (i.e. slow wave 
sleep (SWS) stages) [14, 15]. More importantly, the long-
range temporal correlations and multi-scale nature of 
electrophysiological activity in the brain [16] suggest 
nonlinear brain dynamics at the fast temporal scale and their 
statistical integration at the slower scale [17]. Hence, the 
temporal scale of consideration appears to be crucial for 
understanding the cause of nonlinearity and the underlying 
mechanism of information processing in the brain, as 
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demonstrated for sleep EEGs [18]. Previous studies using 
nonlinear methods integrated dynamical information over 
segments of physiological time series (e.g. EEGs) ranging 
from 16s to over several minutes in length [12, 15, 18], and 
directly attempted to characterize mental states based on its 
dynamical properties. However, it is supported that dynamical 
microstates could be understood as temporal units (i.e. 
hundreds of milliseconds to tens of seconds) of information 
processing [3, 5, 10, 18], forming cyclic and alternative 
patterns of brain dynamics [19]. 

In this study, we propose a method optimized for automatic 
quantification of mental states based on alternating patterns of 
dynamical microstates. The aim of this study is to investigate 
the possible multi-nature (dynamical and statistical) and multi-
scale (micro- and macroscale) coding of EEGs using the novel 
approach of dynamical nonstationarity. The structure of this 
article is organized as follows: in Section II, the methodology 
for macrostate quantification using dynamical nonstationarity 
is presented; in Section III, the applicability of dynamical 
nonstationarity method to a simulated physiological time 
series with additional noise for detecting transitions between 
dynamical states is demonstrated; Section IV presents the 
results for the quantification of sleep stages using sleep EEGs. 
We suggest that dynamical nonstationarity is a potential tool 
for characterization of mental states and for analysis of various 
abnormal EEGs recorded from neuropsychiatric disorders. 
This method may provide with insight into a possible coding 
of brain information processing from its inner dynamics. 

II. METHOD 

The core idea of this method is as follows: A time series is 
divided into short segments and their dynamics are 
reconstructed in the multi-dimensional phase space using 
Takens’ embedding theorem. A limit set of trajectories in the 
phase space is called the attractor reflecting temporal 
dynamics of the time series, and thus is compared between 
each of segments using the phase-space dissimilarity measure 
(PSDM). The dynamical dissimilarity calculated between a 
given set of reference and test segments of the time series 
results in the dynamical dissimilarity map (DDM), which is 
used to characterize the transitions between dynamical 
microstates of the brain (i.e. local dynamics). Sleep stages are 
macrostates of the brain (i.e. global brain dynamics) that 
consist of specific combinations of dynamical microstates. 
Thus, Tsallis time-dependent entropy is estimated to 
characterize the temporal changes in the dynamical pattern of 
the DDM. The calculated Tsallis entropy values are used to 
train a linear classifier to detect the transitions between 
macrostates of the brain. A schematic diagram of this method 
is illustrated in Fig. 1.  

FIG 1 HERE 

A. Estimation of Dynamical Dissimilarity 

For an one-dimensional time series (e.g. an EEG time 
series), a multi-dimensional topological geometry is 
reconstructed within a reference space, which is called the 
‘phase space’ [20]. The phase space representation of the 

given time series is the topological transposition of the 
associated system dynamics along its generalized coordinate, 
i.e. the degree of freedom. The attractor is the limit set of 
points or trajectories to which a dissipative, dynamical system 
evolves asymptotically in the reconstructed phase space. The 
attractor captures the underlying dynamics of the time series in 
the reconstructed phase space. For deterministic systems, 
changes in values of parameters can be detected in the 
equations that govern the behavior of the system. Several 
methods have been developed to detect dynamical changes 
within and between segments of a time series, including 
recurrence plot methods [21, 22], statistical analysis of a 
reconstructed phase space [23], plotting the space time index 
[24], use of nonlinear cross prediction [25], and phase-space 
dissimilarity measurement [7, 8, 26].  

For this study, a dynamical dissimilarity measure called the 
phase-space dissimilarity measure (PSDM) was chosen to 
quantify the brain microstates from physiological time series. 
The PSDM compares the occupation distributions of the 
attractors for two segments of the time series. The PSDM has 
proven to be effective in detecting alternations in dynamics in 
noisy, physiological time series, as demonstrated in the 
anticipation of onset of seizures in epileptic patients using 
EEGs [7, 8, 26]. In this study the non-connected PSDM based 
on the χ2 distance was used.  

B. Dynamical Dissimilarity Map 

Considering an automated approach, a priori access to the 
number, duration, and location of different dynamically 
stationary segments is not available. As an alternative to the 
binary decision approach (i.e. detection-or-not based on a 
threshold), a dynamical dissimilarity map (DDM) was applied 
to allow the identification of transitions between several 
different dynamical states and their evolution over time. For 
the time series x(t) of N data points, the DDM is the matrix Rref 
× Ntest that contains the dissimilarity values calculated from 
the PSDM between each of the non-redundant reference 
segments (Rref) and each of the test segments (Ntest). For each 
test segment, the Rref dissimilarity values provide an 
identification vector based on the dynamics contained in the 
reference segments. 

First, we assume Nref contiguous, non-overlapping reference 
segments of length W are chosen across the entire, original 
time series x(t); thus, Nref ~ N/W. These reference segments 
cover the distribution of the dynamical signature contained in 
the original time series. In this analysis, we assume that an 
EEG time series has a finite number of distinct dynamical 
states with finite durations, and consequently the mapping of 
the dynamical similarity contains distinct temporal patterns 
through the variations of the inter-dynamical dissimilarity (i.e. 
local dynamics). Among the Nref reference segments, several 
segments might contain redundant information about the 
different dynamics present in the time series.  

Second, test segments are chosen, each with a length of W 
points and an overlap of OV data points to span the entire time 
series, x(t). This choice yields a total number of test segments, 
Ntest = N/(W-OV). If OV = 0, the set of reference and test 
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segments are identical. The length W should be sufficiently 
large to calculate the PSDM and should contain the least 
number of different dynamical microstates so as not to mask 
the patterns of the dynamical microstate. The resolution W - 
OV is related to the duration of the shortest dynamical 
microstate. The proper values for W and OV should be 
determined by the consideration of the trade-off between the 
temporal resolution and the accuracy in the dissimilarity 
estimation (i.e. estimation of state space occupation 
distribution).  

Third, a K-clustering method was used to form K = Rref 
clusters (see Appendix-1) out of the Nref reference segments. 
The cluster centers designate the Rref non-redundant reference 
segments. Thus, the DDM originally Nref × Ntest is reduced to 
Rref × Ntest. 

C. Time-dependent Entropy for Macrostate Quantification 

The ultimate goal of this study is to provide a quantification 
of macrostates from their underlying dynamical 
nonstationarity. In Section III, we show that the DDM 
contains all relevant information for the characterization and 
identification of dynamical microstates. To characterize 
macrostates of the brain, such as sleep stages and certain 
cognitive states, we should assume that macrostates exhibit 
specific patterns of brain microstates. The shifting patterns of 
microstates are directly reflected into the DDM, which is 
quantified by time-dependent Tsallis entropy. After 
normalization into M bins, each of the Rref rows of the DDM 
exhibits a sequence of integer numbers. Transitions between 
different dynamics are represented as changes in symbolic 
sequences with long-term correlations, which can be described 
using an extensive entropy, the Tsallis entropy [27, 28]. The 
Tsallis entropy is a generalization of the standard Boltzmann-
Gibbs entropy that accounts for the nonextensive degree of 
irregularity and complexity for the system under study through 
an entropic index q [28], and is calculated as follows: 
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where M is the total number of microscopic possibilities of 
the system (i.e. the number of bins) and pi the probability of 
the i-th microscopic state. Each of the Rref row elements of the 
DDM (i.e. Rref × Ntest) is divided into windows of wTDE data 
points and ovTDE overlapping data points. The time-dependent 
version of Tsallis entropy (TDE) [29] is estimated as the 
Tsallis entropy on each of the windows of a row of the DDM. 
To describe the temporal evolution of dynamical dissimilarity 
patterns with an emphasis on frequent occurrence [29, 30], a 
fixed partition design and an entropic index of q = 1.5 were 
applied.  

D. Parameter Estimation for Phase Space Reconstruction 

The attractor is reconstructed in phase space from the 
observed sequence x(t) by plotting delay vectors using what is 
referred to as an embedding procedure. Here, the delay vectors 

( ) [ ( ), ( ),..., ( ( 1) ]y t x t x t x t d      are constructed from an 

observed single time series x(t), where τ is the time delay and 

d is the embedding dimension, to unfold the projection back to 
a multivariate phase space that is a valid representation of the 
original deterministic dynamical system; the attractor thus 
reconstructed is topologically equivalent to the original 
dynamical system under certain general conditions [20].  

To estimate the proper embedding parameters, embedding 
dimension and time delay, the method based on Kozachenko-
Leonenko (KL) differential entropy is used [31, 32]. This 
method is shown to provide the optimal pair of embedding 
dimension and time delays (d, τ) for phase-space 
reconstruction. The Kozachenko-Leonenko (KL) estimate of 
the differential entropy of the data x is given by: 

1
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where W is the number of samples in the data x, ρi is the 
Euclidian distance of the j-th delay vector of the data x to its 
nearest neighbor and CE (≈ 0.5772) is the Euler constant. 
Then, for given pair of embedding parameters (d, τ), H(x, d, τ) 
is the differential entropy estimate for the delay vector version 
of the time series x. The optimal values of embedding 
parameters are obtained from the minimum of the entropy 
ratio (ER): 
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where < >s denotes the mean over s surrogate data for the 
original time series x, xs. In Eq. 3, the ratio of differential 
entropy by the mean differential entropy over the surrogate 
data is weighted by the “minimum description length” (MDL) 
to penalize for higher embedding dimension. For ER 
estimation, it is necessary to use surrogate data for the original 
time series [33]. The surrogate data were generated herein by 
first computing the Fourier transforms of the original signals, 
randomizing the Fourier phase while preserving the moduli, 
and then performing inverse Fourier transform. Surrogate data 
have amplitude spectra identical to the original signals, but 
possible temporal correlations are destroyed. The systematic 
test against the surrogate data increases the advantages of this 
method against noise, dimensionality, and autocorrelation 
effects. For each time series, an average value of the pair (d, τ) 
was estimated over the Nref reference segments. 

For the density distribution in the phase space, different 
values of binning S were tested in the range [5, 25] to address 
several different levels of noise present in the time series and 
then integrated in the dynamical dissimilarity mapping. We 
used an uniform binning following 

 min max min( ) ( ( ( ) ) ( )s i INT S x i x x x   , where INT rounds a 

decimal value down to the next lower integer, and xmin and xmax 
are the minimum and maximum value of the given time series, 
respectively. It was empirically observed that S within the 
range [5, 10] produces the highest contrast between the 
different dynamics. 

III. DYNAMICAL MICROSTATE DETECTION 

In this section, the DDM calculated from the PSDM is 
tested for distinguishing different dynamical microstates from 
a time series with noise. An artificial physiological 
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nonstationary time series was generated using the Mackey-
Glass system [34, 35] with different levels of Gaussian noise, 
and the DDMs of these simulated time series were computed. 
A clustering method was applied to the DDM to identify the 
dynamical microstate (see appendix), and then a true rate of 
microstate identification was obtained. The quantification of 
brain macrostates is not considered in this section. 

A set of stationary time series were generated from the 
delayed differential equation using the 4th order Runge-Kutta 
integration method: 

10
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Complex stationary time series were obtained from the 
mixed patches of the time series having three primary 
stationary regimes of the Mackey-Glass system (t1 = 17, t2 = 
23, and t3 = 30) as follows: 
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The coefficient αi denotes the weight corresponding to the 
stationary time series generated using ti, i = 1, 2 and 3, and α1 
+ α2 + α3 = 1. Each mixed patch of the time series is 
designated by the value of each of the three weights, Coef = 
(α1, α2, α3). Dynamically nonstationary time series were 
generated with an exponential drift of duration Dtrans between 
stationary time series of different weight values. Transitions 
from the stationary time series A(t) to another stationary time 
series B(t) were detected from t0 to t0 + Dtrans below: 

( ) exp( 4 / )transa t t D  , (6) 

0 0( ) ( ) ( ) (1 ( )) ( )x t a t t A t a t t B t     . (7) 

Finally, the Gaussian noise was added to this simulated 
times series with the same mean as the original time series and 
with the standard deviation (SD) equal to several different 
percentages of the SD of the original time series.  

In Fig. 2, the time series (Fig.2(a), solid line) exhibited 
successive transitions between the consecutive patches of the 
stationary time series with different coefficients Coef1 = (1, 0, 
0), Coef2 = (0, 1, 0), Coef3 = (0.2, 0.3, 0.5), and Coef4 = (0.1, 
0.6, 0.3), and each with a duration of 1,000 data points (Fig. 
2(c)) after the onset of the transition (Dtrans = 100 points; Fig. 
2(c)) repeated twice in a cycle (i.e. seven transitions). The 
partition of the original simulated time series (Fig. 2(d)) was 
obtained using K-affinity propagation (see appendix-2), an 
unsupervised method attempting to recognize the number of 
clusters K, with K = 4 applied on the dynamical dissimilarity 
matrix calculated with W = 400, OV = 350, S = 5, d = 2 and τ 
=23 (Fig. 2(b)). The proposed choice of parameters for W, OV 
and S were obtained after optimization based on the true rate 
identification of the microstate and for K = 4 different 
microstates and no additional noise. Particularly, it was 
observed that given the duration of a microstate (i.e. 1,000 
data points), W >> Sd, W < 700 and (W – OV) < 50 were 
critical criterion to distinguish the dynamical microstates and 
their transitions (i.e. total true rate > 80 %). Best results were 
found for the pairs (W, OV) = (350, 330) and (400, 350). Fig. 2 
(c and d) shows that this algorithm successfully detected the 
presence of four different dynamics and their correct onset and 

offset times. This result was compared with the original 
dynamical states with additional Gaussian noise (20% SD of 
the time series as its SD) (Fig. 2(c)). 

FIG 2 HERE 
To confirm the robustness of this method against noise, the 

performance of the method was evaluated for nonstationary a 
Mackey-Glass time series exhibiting transitions between two, 
three, and four different dynamical states with an increasing 
SD of noise over 100 trials. Fig. 3 shows the performance (the 
true positive rate of detection for transitions between different 
dynamical states) of the K-affinity propagation with K set to 
the number of dynamics known to be present in the time series 
(K = 2, 3, and 4). The time series had two (i.e. Coef1, Coef2 
and K set to 2 for the K-affinity propagation), three (i.e. 
Coef1, Coef2, and Coef3, and K set to 3 for the K-affinity 
propagation), and four (i.e. Coef1, Coef2, Coef3, and Coef4, 
and K set to 4 for the K-affinity propagation) different 
dynamical states (i.e. 7 transitions of length Dtrans = 100 data 
points for a total length of N = 9,000 data points). It was found 
that the DDM calculated from the PSDM successfully 
characterized the presence of two, three and four different 
dynamics, resulting in clustering accuracy over of 80% against 
several different levels of noise, as shown in Fig. 3. The 
presence of dynamical transitions yielded approximately 4% 
error. The performance in distinguishing different dynamics 
showed about 72% or larger of correct identification rates 
even for the time series with 70% SD of additional Gaussian 
noise. 

FIG 3 HERE 

IV. RESULTS 

We investigated whether the proposed method can quantify 
macrostates of the brain from physiological datasets or not. 
The dynamical nonstationarity analysis was performed to 
quantify dynamical patterns of sleep EEGs. Sleep stages are 
typical examples of macrostates of the brain, and automatic 
sleep staging is not only clinically significant but also has 
been used as a benchmark to assess the possibility of 
physiological or clinical application for engineering methods 
[34, 36]. We applied the time-dependent Tsallis entropy to the 
DDM (Rref × Ntest,, i.e. Rref features), and investigated whether 
or not the entropic coding of the dynamical EEG patterns is 
associated with sleep stages manually determined by 
clinicians. A multivariate discriminant classifier, one of the 
simplest probabilistic classifiers based on linear discriminant 
analysis, was trained to distinguish sleep stages.  

A. Subjects & EEGs 

EEG recordings were obtained from 17 subjects in the MIT-
BIH polysomnographic database [37, 38] (which were 
available at 
http://www.physionet.org/physiobank/database/slpdb/). The 
manual segmentation information by clinicians of sleep stages 
at intervals of 30 sec was also provided at the website. Five 
subjects (slp03, slp14, slp41, slp45 and slp66) with missing 
data or high frequency transition between sleep stages (i.e. too 
considerable nonstationarity of macrostates) were discarded to 
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ensure more stability in the detection of macrostates. The 12 
subjects were selected to exhibit four different sleep stages 
such as sleep stages I and II, slow wave sleep (SWS; 
combining stages III and IV), and Rapid Eye Movement 
(REM) sleep. The EEG recordings were sampled at 250 Hz 
and recorded from either electrodes C4-A1, O2-A1 or C3-O1, 
and with duration ranging from 120 min to 390 min. As 
suggested for the same MIT-BIH database [39], ECG artifacts 
were removed from each EEG recording using Independent 
Component Analysis (ICA) from EEGLAB 6.01b on Matlab® 
[40] based on the ECG and EEG channels. Low frequency 
artifacts, including eye blinking and other movement artifacts, 
were removed using a zero-phase quadratic filter with a total 
window length of 125 data points, corresponding to a cutoff 
frequency of 2Hz [26]. 

B. Classification of Sleep Stages 

Using the phase-space dissimilarity measure (PSDM) and 
the time-dependent entropy (TDE), respectively, the local and 
global changes in brain dynamics within sleep EEGs were 
estimated. For the calculation of the DDM using the PSDM, W 
= 2,000 data points (i.e. 8 sec of recording) and OV = 1,900 
points with an interval of 100 points (400 msec of resolution) 
were chosen. The window size W was chosen to be 
sufficiently large to produce a reliable estimate of the 
distribution being considered (i.e. following the criterion W >> 
Sd, with (d, τ) estimated as (2, 17) and S = 5) and suitable for 
the estimation of a microstate of duration lower than 15 sec. 
To estimate the TDE for each row of the DDM, a window size 
wTDE = 650 and overlapping ovTDE = 645 were chosen. The 
parameters wTDE, ovTDE and Rref  were obtained after varying 
each parameter with the others fixed and based on the true 
detection rate over the subjects slp01a, slp02a and slp14 (i.e. 
subjects exhibiting all sleep stages including wake stage and 
movement time). For fixed (wTDE - ovTDE), there was no 
substantial changes for wTDE as low as 300 points [41]. This 
method provided entropy values for each Rref row of the DDM 
at an interval of (W - OV) x (wTDE - ovTDE) = (2,000 – 1,900) x 
(650 - 645) = 500 data points, which eventually correspond to 
one value every two seconds. 15 values of entropy per current 
sleep stage of 30 sec were then obtained, and they were then 
compared with the sleep stage information determined 
manually by clinicians. 

We found that the classification accuracy of this method for 
sleep staging using Rref = 20 (i.e. 20 features for the 
classification) was 77.0% (range: 66.0-94.3%) for 12 subjects 
based on the true rate of sleep stage classification (Table 1). 
The average accuracy for the classification of SWS 
(sensitivity: 88.8%; specificity: 94.9%) and REM sleep 
(sensitivity: 82.4%; specificity: 95.9%) was higher than 
80.0%. The classification of sleep stage II (sensitivity: 76.2%; 
specificity: 83.7%) had the least consistency, with a sensitivity 
ranging from 57.3% to 100%. Most of the misclassifications 
were observed between sleep stages I and II when dealing 
with all stages. 

TABLE 1 HERE 

C. Principal Component Analysis of Entropy Features 

The Rref features of the entropy-transformed DDM are 
possibly used directly in a classifier, but it would be 
impractical given their number (Rref  = 20 for sleep-stage 
classification) and their individual meaning (each selected 
reference should encode for a single microstate pattern). 
Hence, a principal component analysis (PCA) was applied to 
the Rref vectors encoding for sleep stages to obtain a more 
informative and uncorrelated perspective on the classification 
features. The PCA implies the orthogonalization of the Rref 
vectors, resulting in uncorrelated principal components 
ordered from the largest to the lowest amount of explained 
variance of the original data [42]. 

TABLE 2 HERE 
We found that, for all subjects, maximally six principal 

components (range: 2-6) were sufficient to recover 99% of the 
original variance. In Table 2, the classification using principal 
components covering 99% of the explained variance showed 
decreased accuracy (sensitivity) down to 80% for comparisons 
including sleep stages I and II, as compared with the 
classification using the original entropy features. The 
classification of sleep stages I and II obtained the worst 
accuracy (sensitivity: 78.7%; specificity: 86.2%), dramatically 
dropping after application of PCA to the entropy features 
(sensitivity: 67.5%; specificity: 75.3%). The classification 
accuracy of sleep stages SWS and REM was left relatively 
unchanged after PCA, with an accuracy decrease for the SWS 
stage of less than 1.2%. 

V. CONCLUSION 

Since nonstationarity is an intrinsic property in 
physiological and clinical recordings from biological systems, 
it is critical to understand their properties and possible roles in 
order to describe and control the system. We have considered 
biological systems as stationary and applied statistical or 
dynamical methods to the systems, which might lead to 
spurious results. Furthermore, nonstationarity in a time series 
has been defined and investigated based on statistical 
properties of the time series. In this study, we propose that 
dynamical nonstationarity of EEG recordings is associated 
with brain macrostates during the information processing of 
the brain. Although the PSDM is relatively sensitive to noise 
and artifacts, we demonstrate that the DDM reliably detects 
transitions between different dynamical states with an 
accuracy of about 80% or higher against high levels of 
Gaussian noise (SDEEG/SDNoise smaller than 30%). This 
robustness of the method against noise suggests its possible 
application to physiological or clinical time series. Moreover, 
we suggest that this proposed method is useful for determining 
transitions between different brain macrostates (e.g. sleep 
stages from artifact-free sleep EEG recordings) based on 
specific pattens of brain microstates with prominent accuracy. 

Although previous studies on sleep staging techniques have 
yielded a classification accuracy ranging between 85% - 91% 
[43], lower performance accuracy (about 61%) than that 
resulting from the method proposed here has been reported for 
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the same MIT-BIH database from previous studies, such as 
from recurrence quantification analysis [39]. Moreover, the 
existing automatic sleep-staging methods with high 
performance are often based on sophisticated experts [34, 43, 
44] and nonlinear classifiers [45]. Thus, these methods may 
suffer from database bias and low generalization, and are not 
directly comparable with the present method (i.e. feature 
extraction and linear classification). Even when the proper 
linear and nonlinear features are selected and/or combined, 
classification accuracy often saturates around 80% [12, 46]. In 
addition to reasonable classification accuracy (about 77%), the 
method proposed here applies to estimate dynamical 
nonstationarity, an intrinsic property of EEG recordings, as a 
feature to quantify and differentiate sleep stages (i.e. 
macrostates). We suggest from this preliminary finding that 
dynamical nonstationarity is useful for describing complex 
temporal dynamics of the brain using physiological time series 
like EEGs. Particularly, the duration and transition timings of 
dynamically stationary states in physiological recordings can 
be quantified using this method.   

The assumption of this method that EEG recordings are 
governed by nonlinear deterministic processes [47, 48] rather 
than stochastic processes [49, 50] is still controversial. EEGs 
have been found to have deterministic, chaotic characteristics, 
including finite values of the correlation dimension and 
positive Lyapunov exponents, but stochastic properties of 
EEGs have also been reported (for review, see [1, 2]). 
Nonlinear dynamical properties of EEGs were mostly found in 
deep sleep stages (i.e. sleep stages III and IV or slow wave 
sleep, SWS) using nonlinear dynamical measures including 
the correlation dimension [14] and coarse-graining spectral 
analysis method [15]. In these studies, nonlinear measurement 
had a higher classification performance for the SWS stage and 
stage II, while the other study demonstrated better 
performance of nonlinear measurement over spectral analysis 
for distinguishing between stage I and stage II [12]. The PCA 
analysis of entropy features revealed that the SWS and REM 
stages are best differentiated using the dynamical 
nonstationarity method (i.e. sensitivity > 92% before and after 
PCA). The entropy quantification of sleep stages I and II 
appeared to be less reliable, as the principal components 
cannot provide the stable discriminative power. In general, the 
application of nonlinear analysis methods to quantification of 
stages I, II and REM sleep have produced lowered 
performance; however, nonlinear measures that cope with 
nonstationarity, such as detrended fluctuation analysis method 
[51, 52] and dynamical nonstationarity method, might capture 
an instantaneous dynamical structure with less constraints on 
‘nonlinearity’ hypothesis. Although the present study supports 
the presence of the nonstationary, nonlinear dynamical nature 
of sleep EEGs in the multi temporal scales [53], finding it 
particularly pronounced in the SWS and REM stages, the 
assumption of dynamical nonstationarity should be used with 
extreme caution.  

In this method, proper window size is critical for reliably 
detecting brain microstates in EEG recordings. The resolution 
of 400msec was used for the estimation of the DDM map and 

a couple of seconds were used for the estimation of the 
entropic pattern of the DDM. Previous studies reported the 
existence of microstates with the duration of 100 msec or 
longer based on the global field potential extrema and spatial 
distributions [3, 5], or phase pattern dynamics of alpha waves 
using Hilbert transform [10]. They hypothesize decomposition 
of temporal brain dynamics into microstates using event-
related potentials or alpha-band EEGs. In addition, both the 
PSDM and the Tsallis entropy are statistical measures that 
require a large number of data points to reliably estimate their 
distribution functions. The current method used W = 2,000 
data points to produce reliable values in detecting dynamical 
shifts [7, 8]. However, it was important to keep the W value 
small enough to not contain too many different dynamics to 
detect microstates in the brain. The results of this study are 
consistent with previous findings on the duration of 
microstates. The results of this study suggest that, as well as 
the duration of microstates themselves, temporal patterns of 
microstates (i.e. dynamically stationary states) and their 
transitions should be considered to understand possibly 
associated mental states in a higher scale [10]. 

It is important to note that the epochs marked by clinicians 
and with movement time were not utilized here, while the 
epochs marked with single limb movement associated or with 
apnea were used. The stages I (22.6% of epochs) and II 
(57.1% of epochs) were the dominant stages in this database, 
also marked with a large amount of apnea or single limb 
movement periods: 71.1% of sleep stage I and 62.1% of sleep 
stage II. Thus, the effects of movement and apnea on the 
dynamical nonstationarity could explain the reduced 
inconsistency in classification of stage I (overall accuracy: 
72.3%; range: 57.7-100%) and II (overall accuracy: 76.2%; 
range: 57.3-100%) and should be investigated in future to 
improve the accuracy of this proposed method for sleep-
staging. Moreover, in addition to different electrode set-up, the 
presence of marked periods of apnea and single limb 
movement increased the inter-subject variability and limited 
the investigation in terms of determining the universality of 
this method.  

In summary, a novel method to quantify brain macrostates 
from the dynamical nonstationarity of EEG recordings is 
proposed in this study. We demonstrate that this method is 
useful for detecting transitions between different temporal 
dynamical states in a time series with high levels of noise. We 
suggest the possibility of sleep staging from the temporal 
quantification of dynamical nonstationarity in sleep EEG 
recordings, with an overall accuracy of 77%. There have been 
several studies reporting abnormal temporal dynamics of the 
brain and pathological transitions between brain microstates, 
such as seizures, Attention-Deficit Hyperactivity disorder 
(ADHD), Alzheimer’s disease, and Schizophrenia [6, 8, 54-
56]. Whether this method is helpful for diagnosing and 
quantifying the severity of such diseases or not should be 
further investigated.    

APPENDIX 

The affinity propagation is a recently developed clustering 
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algorithm which iteratively determines clusters and their 
centers (i.e. centroids) using cumulated and propagating 
“affinity” between pairs of data points in a time series [57]. 
Conventional K-clustering methods iterate from randomly 
chosen centroids (i.e. converge well only if the initial 
centroids are close to the good solution). The affinity 
propagation rather attributes weights or “preference” values 
which, if chosen sufficiently large, bias a point to be centroid. 
The preference is usually set to a common value for all points 
(i.e. all points are potential centroids), and the value of this 
common reference governs the final number of clusters. The 
K-cluster algorithm derived from the affinity propagation, 
which is called K-affinity propagation, estimates the optimal 
starting preference value to obtain the user-defined number of 
clusters K within a tolerance given in percentage.  

In this study, the K-affinity propagation was used for the 
two following purposes: 

1) Dimension reduction using K-affinity propagation: The 
dynamical dissimilarity map (DDM) is a matrix formed by 
Ntest vectors of Nref features. The Nref features are obtained 
from the dissimilarity between the reference segments and the 
current test segment. The selection of reference was originally 
made without a priori knowledge of their intrinsic dynamics, 
leading to the selection of segments with redundant dynamics. 
The K-clustering of the reference segment can reduce the 
number of feature for classification to non-redundant 
dynamics (pruning), however not uncorrelated, and is based 
on an optimizable, user-defined parameter K = Rref. 

2) Identification of microstate in simulated time series: In 
Section III, the K-affinity is directly applied to temporal 
clustering of the DDM (i.e. clustering of test segments). The 
purpose is to demonstrate that the DDM contains reliable 
features for the identification of different dynamical 
microstates, which is assessed using an unsupervised method 
(clustering). 
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TABLE I 
The classification accuracy (in percentage) using the linear discriminant classifier and entropy features in a leave-one-
out cross-validation. The overall accuracy of each subject was estimated over the total true rate detection of all stages, 
and the corresponding number of sleep stages used is displayed in brackets (30 sec duration each).  SWS denotes Slow 
Waves Sleep Stage (stages III and IV); REM denotes the Rapid Eye Movements Sleep Stage; Sens and Spec denote the 
sensitivity and specificity, respectively. 
 

 Classification of Sleep Stages Using the Dynamical Nonstationarity Method 

Subjects Stage I Stage II SWS REM Overall 

Slp01a Sens : 100 
Spec: 95.1 

(1) 
Sens : 81.8 
Spec: 94.1 

(103) 
Sens : 95.6
Spec: 95.9 

(109) 
Sens : 80.5 
Spec: 98.6 

(13) 88.5  

Slp01b Sens : 79.6 
Spec: 90.6 

(27) 
Sens : 82.7 
Spec: 873 

(120) 
Sens : n/a
Spec: n/a 

(0) 
Sens : 88.0 
Spec: 93.8 

(25) 82.9  

Slp02a Sens : 70.0 
Spec: 96.8 

(18) 
Sens : 81.5 
Spec: 91.5 

(197) 
Sens : 100
Spec: 94.6 

(7) 
Sens : 91.4 
Spec: 93.2 

(77) 83.8  

Slp02b Sens : 90.9 
Spec: 92.6 

(14) 
Sens : 87.4 
Spec: 98.3 

(114) 
Sens : n/a
Spec: n/a 

(0) 
Sens : 96.3%
Spec: 95.7% 

(29) 89.3  

Slp04 Sens : 62.8 
Spec: 90.7 

(58) 
Sens : 77.7 
Spec: 82.2 

(441) 
Sens : 84.6
Spec: 91.9 

(33) 
Sens : 76.8 
Spec: 96.0 

(23) 76.5  

Slp16 Sens : 64.9 
Spec: 85.9 

(108) 
Sens : 75.1 
Spec: 80.4 

(181) 
Sens : 100
Spec: 99.1 

(24) 
Sens : 68.3 
Spec: 92.5 

(65) 72.6  

Slp32 Sens : 81.5 
Spec: 92.1 

(27) 
Sens : 57.9 
Spec: 80.8 

(159) 
Sens : 80.6
Spec: 73.3 

(60) 
Sens : n/a 
Spec: n/a 

(0) 66.0  

Slp37 Sens : 57.7 
Spec: 95.9 

(18) 
Sens : 95.5 
Spec: 69.8 

(588) 
Sens : n/a
Spec: n/a 

(0) 
Sens : 89.1 
Spec: 99.7 

(11) 94.3 

Slp48 Sens : 58.6 
Spec: 72.7 

(240) 
Sens : 63.9 
Spec: 71.0 

(269) 
Sens : 100
Spec: 96.8 

(2) 
Sens : 82.4 
Spec: 95.5 

(31) 62.8  

Slp59 Sens : 62.2 
Spec: 90.6 

(105) 
Sens : 65.8 
Spec: 84.6 

(94) 
Sens : 91.7
Spec: 96.0 

(80) 
Sens : 80.9 
Spec: 92.0 

(35) 72.9  

Slp60 Sens : 86.2 
Spec: 78.4 

(340) 
Sens : 57.3 
Spec: 88.9 

(49) 
Sens : n/a
Spec: n/a 

(0) 
Sens : 70.0 
Spec: 95.2 

(31) 81.6  

Slp61 Sens : 78.0 
Spec: 87.7 

(88) 
Sens : 53.7 
Spec: 83.7 

(326) 
Sens : 81.9
Spec: 86.0 

(103) 
Sens : 85.1 
Spec: 94.9 

(75) 66.2  

Overall Sens : 72.3 
Spec: 89.9 

(1044) 
Sens : 76.2 
Spec: 83.7 

(2641) 
Sens : 88.8
Spec: 94.9 

(418) 
Sens : 82.4 
Spec: 95.9 

(415) 77.0  

TABLE II 
The classification accuracy (in percentage) between different sleep stages using 
the linear discriminant classifier and original entropy features (Rref = 20) or the 
principal components corresponding to 99% of the explained variance (after 
PCA), in a leave-one-out cross-validation. 
 

 Entropy Features Principal Components 

Stage I vs. Stage II  78.7 86.2 67.5 75.3 

Stage I vs. SWS 99.0 99.3 88.1 98.5 

Stage I vs. REM 95.0 92.3 81.5 84.2 

Stage II vs. SWS 89.2 92.7 77.7 91.5 

Stage II vs. REM 94.7 88.9 78.6 83.1 

SWS vs. REM 99.7 99.9 99.5 97.2 
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Fig. 1. Schematic diagram of dynamical nonstationarity analysis for a time
series. The dynamical dissimilarity map, calculated from the phase-space
dissimilarity measure (PSDM) between Nref segments and Ntest segments, is
reduced to Rref × Ntest to avoid redundant features. The global dynamics or
patterns of local dynamic shift of the Rref of the dissimilarity map are analyzed
using the Tsallis entropy. The resulting Rref features are then fed to a linear
discriminant classifier using a leave-one-out cross validation technique (also
known as k-fold cross validation with k=1) to determine macrostates. 

Fig. 2. Application of dynamical nonstationarity analysis to the physiological
simulated time series generated from the Mackey-Glass system having four
patches with exponential transition of length Dtrans = 100 points. (a) The
nonstationary time series of the Mackey-Glass system resampled at ΔT = 25;
(b) the dynamical dissimilarity map was obtained with W = 400, OV = 350,
S = 5, d = 2, and τ = 23; (c) 1, 2, 3, and 4 indicate the positions of four
different dynamical states, and T indicates transition timing between
different dynamical states; (d) temporal clusters of the dynamical
dissimilarity map using K-affinity propagation (K = 4; dashed line) and their
time correspondence with the time series of the Mackey-Glass system. 

Fig. 3. Accuracy of dynamical nonstationarity analysis on the detection of
different dynamical states over 100 trials: two (red), three (blue), and four
(black) different dynamical states (K=2, 3, and 4). The accuracy was
calculated as the ratio of true positive detections over the total number of
windows. The K-affinity propagation was used to cluster dynamically
stationary states from the dynamical dissimilarity map, with K set to the
number of dynamics present in the time series. 


