Computing the radius of positive semidefiniteness of a multivariate real polynomial via a dual of Seidenberg's method

Sharon Hutton
North Carolina State University

July 28, 2010

Joint Work With: Erich Kaltofen, and Lihong Zhi
(1) Introduction

- Motivation
(2) Radius of Positive Semidefiniteness
- Main Theorem
- Our Contribution
(3) Nearest Polynomial With a Real Root
- Weighted Norms, ℓ^{p}-Norm, ℓ^{∞}-Norm, ℓ^{1}-Norm
- Exact Sum-Of-Squares Certificates
(4) Deforming Polynomial Inequalities
- Linear Constraints
- KKT Conditions
(5) Nearest Consistent System
(6) Future Work

Motivation

$$
\forall x \in \mathbb{R}: 0.33 x^{2}-0.66 x+0.33 \geq 0 \quad ? ? ?
$$

Motivation

$$
\forall x \in \mathbb{R}: 0.33 x^{2}-0.66 x+0.33 \geq 0 \quad ? ? ?
$$

$\left(\frac{1}{3}-\frac{1}{100}\right) x^{2}-\frac{2}{3} x+\frac{1}{3}$

$$
\frac{1}{3} x^{2}-\frac{2}{3} x+\frac{1}{3}
$$

$\left(\frac{1}{3}+\frac{1}{100}\right) x^{2}-\frac{2}{3} x+\frac{1}{3}$

Main Theorem [Stetter; Corless, Gianni, Hitz, Hutton, Kaltofen, Karmarkar, Lakshman, Sciabica, Ruatta, Szanto, Trager, Watt, Zhi]

Given $\alpha \in \mathbb{R}^{n}: \mathcal{N}_{2}^{[f]}(\alpha)=\inf _{\tilde{f} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]}\|f-\tilde{f}\|_{2}^{2}$
s. t. $\tilde{f}(\alpha)=0$,
$\operatorname{deg}(\tilde{f}) \leq \operatorname{deg}(f)$

$$
=\frac{f(\alpha)^{2}}{\|\tau\|_{2}^{2}}
$$

where $\tau=\left[1, \alpha_{1}, \ldots, \alpha_{n}, \ldots, \alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{n}^{i_{n}}, \ldots\right]_{\left(i_{1}, \ldots, i_{n}\right) \leq \operatorname{deg}(f)}$.
The coefficient vector $\overrightarrow{\tilde{f}}$ of the minimizer is $\overrightarrow{\tilde{f}}=\vec{f}-\frac{\tau^{\top} \vec{f}}{\|\tau\|_{2}^{2}} \tau$

Main Theorem [Stetter; Corless, Gianni, Hitz, Hutton, Kaltofen, Karmarkar,

 Lakshman, Sciabica, Ruatta, Szanto, Trager, Watt, Zhi]$$
\begin{aligned}
& \text { Given } \alpha \in \mathbb{R}^{n}: \mathcal{N}_{2}^{[f]}(\alpha)= \inf _{\tilde{f} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]} \quad\|f-\tilde{f}\|_{2}^{2} \\
& \text { s. t. } \begin{aligned}
& \tilde{f}(\alpha) \\
& \operatorname{deg}(\tilde{f}) \leq \operatorname{deg}(f)
\end{aligned} \\
&=\frac{f(\alpha)^{2}}{\|\tau\|_{2}^{2}},
\end{aligned}
$$

where $\tau=\left[1, \alpha_{1}, \ldots, \alpha_{n}, \ldots, \alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{n}^{i_{n}}, \ldots\right]_{\left(i_{1}, \ldots, i_{n}\right) \leq \operatorname{deg}(f)}$.
The coefficient vector $\overrightarrow{\tilde{f}}$ of the minimizer is $\overrightarrow{\vec{f}}=\vec{f}-\frac{\tau^{\top} \vec{f}}{\|\tau\|_{2}^{2}} \tau$
Note: Generalizes to complex roots and/or complex coefficients!

Definition of Radius of Positive Semidefiniteness

$$
\rho_{2}(f)=\inf _{\alpha} \mathcal{N}_{2}^{[f]}(\alpha)
$$

Definition of Radius of Positive Semidefiniteness

$$
\rho_{2}(f)=\inf _{\alpha} \mathcal{N}_{2}^{[f]}(\alpha)
$$

- Examples

Definition of Radius of Positive Semidefiniteness

$$
\rho_{2}(f)=\inf _{\alpha} \mathcal{N}_{2}^{[f]}(\alpha)
$$

- Examples
- $\rho_{2}\left(x^{2}+1\right)=1, \quad \tilde{f}=x^{2}$

Definition of Radius of Positive Semidefiniteness

$$
\rho_{2}(f)=\inf _{\alpha} \mathcal{N}_{2}^{[f]}(\alpha)
$$

- Examples
- $\rho_{2}\left(x^{2}+1\right)=1, \quad \tilde{f}=x^{2}$
- $f=x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2}+1 \geq 1$

Nearest polynomial with a real root has distance $\rho_{2}(f)=0$ because $\left(\frac{1}{\epsilon}, \frac{1}{\epsilon}, \frac{1}{\epsilon}\right)$ is a root of $f-\epsilon^{6} x^{2} y^{2} z^{2}$

Example

- $f=x^{2}+y^{2}+1$,
$\tilde{f}=a_{20} x^{2}+a_{11} x y+a_{02} y^{2}+a_{10} x+a_{01} y+a_{00}$, root: $(\alpha, \beta)=(0,0)$

Example

- $f=x^{2}+y^{2}+1$,
$\tilde{f}=a_{20} x^{2}+a_{11} x y+a_{02} y^{2}+a_{10} x+a_{01} y+a_{00}$, root: $(\alpha, \beta)=(0,0)$
- $\mathcal{N}_{2}^{[f]}(0,0)=\inf _{\tilde{f} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]}\left(1-a_{20}\right)^{2}+\left(0-a_{11}\right)^{2}+$
$\left(1-a_{02}\right)^{2}+\left(0-a_{10}\right)^{2}+\left(0-a_{01}\right)^{2}+\left(1-a_{00}\right)^{2}$

Example

- $f=x^{2}+y^{2}+1$,
$\tilde{f}=a_{20} x^{2}+a_{11} x y+a_{02} y^{2}+a_{10} x+a_{01} y+a_{00}$, root: $(\alpha, \beta)=(0,0)$
- $\mathcal{N}_{2}^{[f]}(0,0)=\inf _{\tilde{f} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]}\left(1-a_{20}\right)^{2}+\left(0-a_{11}\right)^{2}+$ $\left(1-a_{02}\right)^{2}+\left(0-a_{10}\right)^{2}+\left(0-a_{01}\right)^{2}+\left(1-a_{00}\right)^{2}$
- From Theorem:

$$
\begin{aligned}
& \text { - } \mathcal{N}_{2}^{[f]}(0,0)=\frac{\left(0^{2}+0^{2}+1\right)^{2}}{[0,0,0,0,0,1][0,0,0,0,0,1]^{T}}=1 \\
& \text { - } \tilde{f}=x^{2}+y^{2}
\end{aligned}
$$

Example

- $f=x^{2}+y^{2}+1$,
$\tilde{f}=a_{20} x^{2}+a_{11} x y+a_{02} y^{2}+a_{10} x+a_{01} y+a_{00}$, root: $(\alpha, \beta)=(0,0)$
- $\mathcal{N}_{2}^{[f]}(0,0)=\inf _{\tilde{f} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]}\left(1-a_{20}\right)^{2}+\left(0-a_{11}\right)^{2}+$ $\left(1-a_{02}\right)^{2}+\left(0-a_{10}\right)^{2}+\left(0-a_{01}\right)^{2}+\left(1-a_{00}\right)^{2}$
- From Theorem:
- $\mathcal{N}_{2}^{[f]}(0,0)=\frac{\left(0^{2}+0^{2}+1\right)^{2}}{[0,0,0,0,0,1][0,0,0,0,0,1]^{T}}=1$
- $\tilde{f}=x^{2}+y^{2}$
- $\rho_{2}=\inf _{(\alpha, \beta)} \mathcal{N}_{2}^{[f]}(\alpha, \beta)=1$

Our contributions:

- New proof by Lagrangian multipliers
- customized formulas for equality constraints on coeff's
- can have inequality constraints via Karush-Kuhn-Tucker conditions for fixed root α get linear program
- nearest consistent system with infinity coefficient norm

Our contributions:

- New proof by Lagrangian multipliers
- customized formulas for equality constraints on coeff's
- can have inequality constraints via Karush-Kuhn-Tucker conditions for fixed root α get linear program
- nearest consistent system with infinity coefficient norm
- SOS certificates for rational lower bound $\tilde{\rho}_{2}(f)<\rho_{2}(f)$
- degree bounded SOS certificates for Motzkin like polynomials
- Seidenberg's problem with imprecise coefficients

Weighted Norms

Weighted norms $\|\vec{f}\|_{2, w}^{2}=\sum_{j} w_{j}(\vec{f})_{j}^{2}$ for weights $w_{i}>0$

$$
\begin{gathered}
\mathcal{N}_{2, w}^{[f]}(\alpha)=\frac{f\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{2}}{\sum_{\left(i_{1}, \ldots, i_{n}\right) \leq \operatorname{deg}(f)} \frac{1}{w_{i}, \ldots, i_{n}} \alpha_{1}^{2 i_{1}} \cdots \alpha_{n}^{2 i_{n}}} \\
\overrightarrow{\tilde{f}}=\vec{f}-\frac{\tau^{\top} \vec{f}}{\tau^{T}} \operatorname{Diag}(w)^{-1} \tau \\
\operatorname{Diag}(w)^{-1} \tau,
\end{gathered}
$$

Weighted Norms

Weighted norms $\|\vec{f}\|_{2, w}^{2}=\sum_{j} w_{j}(\vec{f})_{j}^{2}$ for weights $w_{i}>0$

$$
\begin{gathered}
\mathcal{N}_{2, w}^{[f]}(\alpha)=\frac{f\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{2}}{\sum_{\left(i_{1}, \ldots, i_{n}\right) \leq \operatorname{deg}(f)} \frac{1}{w_{1}, \ldots, i_{n}} \alpha_{1}^{2 i_{1}} \cdots \alpha_{n}^{2 i_{n}}} \\
\overrightarrow{\tilde{f}}=\vec{f}-\frac{\tau^{\top} \vec{f}}{\tau^{T} \operatorname{Diag}(w)^{-1} \tau} \operatorname{Diag}(w)^{-1} \tau,
\end{gathered}
$$

$w_{j} \rightarrow \infty$: coefficient remains fixed, e.g., 0
Note: for $\alpha=0$ cannot fix non-zero constant coefficient $\mathcal{N}=\frac{1}{0}$ $w_{i} \rightarrow 0$: coefficient is a "don't care" case

$$
\tilde{f}(x)=f(x)-\frac{f(\alpha)}{\alpha^{i}} x^{i}, \quad \alpha \neq 0
$$

Stetter's Results

- The dual norm $\|\ldots\|^{*}$ for $v \in \mathbb{C}^{n}$ is defined by $\left\|v^{\top}\right\|^{*}=\sup _{u \neq 0} \frac{\left|v^{\top} u\right|}{\|u\|}=\sup _{\|u\|=1}\left|v^{\top} u\right|$.

Stetter's Results

- The dual norm $\|\ldots\|^{*}$ for $v \in \mathbb{C}^{n}$ is defined by $\left\|v^{\top}\right\|^{*}=\sup _{u \neq 0} \frac{\left|v^{\top} u\right|}{\|u\|}=\sup _{\|u\|=1}\left|v^{\top} u\right|$.
- $\frac{1}{p}+\frac{1}{q}=1,1 \leq p, q \leq \infty$,

$$
\|\ldots\|=\ell^{p}-\text { norm } \Leftrightarrow\|\ldots\|^{*}=\ell^{q}-\text { norm } .
$$

Stetter's Results

- The dual norm $\|\ldots\|^{*}$ for $v \in \mathbb{C}^{n}$ is defined by $\left\|v^{T}\right\|^{*}=\sup _{u \neq 0} \frac{\left|v^{\top} u\right|}{\|u\|}=\sup _{\|u\|=1}\left|v^{\top} u\right|$.
- $\frac{1}{p}+\frac{1}{q}=1,1 \leq p, q \leq \infty$,

$$
\|\ldots\|=\ell^{p}-\text { norm } \Leftrightarrow\|\ldots\|^{*}=\ell^{q}-\text { norm } .
$$

- Theorem:

$$
\|\vec{f}-\overrightarrow{\tilde{f}}\|^{*} \geq \frac{|f(\alpha)|}{\|\tau\|}
$$

Related Results

- Hölder's Inequality: $u, v \in \mathbb{C}^{n}$, weights w_{i}, and $1 / w=\left(\ldots, 1 / w_{i}, \ldots\right)$.
- $\left|v^{T} u\right| \leq\|u\|_{\infty, w}\|v\|_{1,1 / w}$
- $\left|v^{T} u\right| \leq\|u\|_{1, w}\|v\|_{\infty, 1 / w}$
- $\left|v^{\top} u\right| \leq\|u\|_{2, w}\|v\|_{2,1 / w}$

Related Results

- Hölder's Inequality: $u, v \in \mathbb{C}^{n}$, weights w_{i}, and $1 / w=\left(\ldots, 1 / w_{i}, \ldots\right)$.
- $\left|v^{T} u\right| \leq\|u\|_{\infty, w}\|v\|_{1,1 / w}$
- $\left|v^{T} u\right| \leq\|u\|_{1, w}\|v\|_{\infty, 1 / w}$
- $\left|v^{\top} u\right| \leq\|u\|_{2, w}\|v\|_{2,1 / w}$
- Theorem:

$$
\mathcal{N}_{1, w}^{[f]}(\alpha)=\frac{|f(\alpha)|}{\|\tau\|_{\infty, 1 / w}} \text { and } \overrightarrow{\tilde{f}}=\vec{f}-\frac{f(\alpha)}{\|\tau\|_{1,1 / w}} D_{w}^{-1} v,
$$

where $v=\left[1, \operatorname{sgn}\left(\tau_{i}\right), \ldots\right]$.

Related Results

- Hölder's Inequality: $u, v \in \mathbb{C}^{n}$, weights w_{i}, and $1 / w=\left(\ldots, 1 / w_{i}, \ldots\right)$.
- $\left|v^{T} u\right| \leq\|u\|_{\infty, w}\|v\|_{1,1 / w}$
- $\left|v^{T} u\right| \leq\|u\|_{1, w}\|v\|_{\infty, 1 / w}$
- $\left|v^{\top} u\right| \leq\|u\|_{2, w}\|v\|_{2,1 / w}$
- Theorem:

$$
\mathcal{N}_{1, w}^{[f]}(\alpha)=\frac{|f(\alpha)|}{\|\tau\|_{\infty, 1 / w}} \text { and } \overrightarrow{\tilde{f}}=\vec{f}-\frac{f(\alpha)}{\|\tau\|_{1,1 / w}} D_{w}^{-1} v
$$

where $v=\left[1, \operatorname{sgn}\left(\tau_{i}\right), \ldots\right]$.

- Theorem: $\mathcal{N}_{\infty, w}^{[f]}(\alpha)=\frac{|f(\alpha)|}{\|\tau\|_{1,1 / w}}$ and

$$
\overrightarrow{\tilde{f}}_{i}=\left\{\begin{array}{lr}
\vec{f}_{i} & \text { for } i \neq i_{\max } \\
\vec{f}_{i}-\operatorname{sgn}\left(\tau_{i}\right) \frac{f(\alpha)}{\|\tau\|_{\infty, 1 / w}} \frac{1}{w_{i}} & \text { for } i=i_{\max }
\end{array}\right.
$$

$$
\text { where } i_{\max }=\operatorname{argmax}_{i}\left\{\frac{\left|\tau_{i}\right|}{w_{i}}\right\}
$$

Motzkin Example

- $\operatorname{Mot}(x, y)=x^{4} y^{2}+x^{2} y^{4}+2-3 x^{2} y^{2}$, which is $\geq 1 \forall x, y \in \mathbb{R}$ and which is not a SOS $\tau=\left[1, x^{2} y^{4}, y^{2} x^{4}, x^{2} y^{2}\right]$

Motzkin Example

- $\operatorname{Mot}(x, y)=x^{4} y^{2}+x^{2} y^{4}+2-3 x^{2} y^{2}$, which is $\geq 1 \forall x, y \in \mathbb{R}$ and which is not a SOS
$\tau=\left[1, x^{2} y^{4}, y^{2} x^{4}, x^{2} y^{2}\right]$
- Run SOS solver (SeDuMi, SOS Tools, etc.) in Matlab and obtain approximate minimum: $r=0.1285480262594671800$ for $M o t^{2}-r \tau^{T} \tau \approx S O S$

Motzkin Example

- $\operatorname{Mot}(x, y)=x^{4} y^{2}+x^{2} y^{4}+2-3 x^{2} y^{2}$, which is $\geq 1 \forall x, y \in \mathbb{R}$ and which is not a SOS
$\tau=\left[1, x^{2} y^{4}, y^{2} x^{4}, x^{2} y^{2}\right]$
- Run SOS solver (SeDuMi, SOS Tools, etc.) in Matlab and obtain approximate minimum: $r=0.1285480262594671800$ for $M o t^{2}-r \tau^{T} \tau \approx S O S$
- Can we certify a lower bound?
- If yes, proves that the polynomial has no real root (Seidenberg's Problem)

Rationalizing a Sum-Of-Squares: "Easy Case" [Peyrl,

 Parrilo, '07, '08; Kaltofen, Li, Yang, Zhi, '08]
where the affine linear hyperplane, \mathcal{X}, is tangent to the cone boundary
$\mathcal{X}=\left\{A \mid A^{T}=A, \operatorname{Mot}(\mathbf{X})^{2}-\tilde{r} \tau(\mathbf{X})^{T} \tau(\mathbf{X})=m(\mathbf{X})^{T} \cdot \widetilde{W} \cdot m(\mathbf{X})=\operatorname{SOS}\right\}$.

Rationalizing a Sum-Of-Squares: "Hard Case" [Kaltofen,

 Li, Yang, Zhi, '09]
where the affine linear hyperplane, \mathcal{X}, is tangent to the cone boundary
$\mathcal{X}=\left\{A \mid A^{T}=A, \operatorname{Mot}(\mathbf{X})^{2}-\tilde{r} \tau(\mathbf{X})^{T} \tau(\mathbf{X})=m(\mathbf{X})^{T} \cdot \widetilde{W} \cdot m(\mathbf{X})=\operatorname{SOS}\right\}$.
Singular W : real optimizers, fewer squares, missing terms

Sum of Squares Certificate for Motzkin Example

- $W=$ matrix obtained from SOS solver in Matlab $m=\left[1, x^{2} y^{2}, x^{2} y^{4}, x^{4} y^{2}, x y^{2}, x^{3} y^{2}, x^{2} y, x^{2} y^{3}, x y, x^{3} y^{3}\right]^{T}$ Want to refine W to \widetilde{W} so that $m^{\top} \widetilde{W} m=\operatorname{Mot}^{2}-\tilde{r} \tau^{T} \tau$

Sum of Squares Certificate for Motzkin Example

- $W=$ matrix obtained from SOS solver in Matlab $m=\left[1, x^{2} y^{2}, x^{2} y^{4}, x^{4} y^{2}, x y^{2}, x^{3} y^{2}, x^{2} y, x^{2} y^{3}, x y, x^{3} y^{3}\right]^{T}$ Want to refine W to \widetilde{W} so that $m^{T} \widetilde{W} m=\operatorname{Mot}^{2}-\tilde{r} \tau^{\top} \tau$
- use Newton refinement on W and convert to rational matrix

Sum of Squares Certificate for Motzkin Example

- $W=$ matrix obtained from SOS solver in Matlab $m=\left[1, x^{2} y^{2}, x^{2} y^{4}, x^{4} y^{2}, x y^{2}, x^{3} y^{2}, x^{2} y, x^{2} y^{3}, x y, x^{3} y^{3}\right]^{T}$ Want to refine W to \widetilde{W} so that $m^{\top} \widetilde{W} m=\operatorname{Mot}^{2}-\tilde{r} \tau^{T} \tau$
- use Newton refinement on W and convert to rational matrix
- Use rational SOS solver in Maple: $\operatorname{Mot}(x, y)^{2}-12854802625942833 / 100000000000000000$ $\times\left(1+x^{4} y^{8}+x^{8} y^{4}+x^{4} y^{4}\right)=\operatorname{SOS}(10$ squares $)$

Sum of Squares Certificate for Motzkin Example

- $W=$ matrix obtained from SOS solver in Matlab $m=\left[1, x^{2} y^{2}, x^{2} y^{4}, x^{4} y^{2}, x y^{2}, x^{3} y^{2}, x^{2} y, x^{2} y^{3}, x y, x^{3} y^{3}\right]^{T}$ Want to refine W to \widetilde{W} so that $m^{T} \widetilde{W} m=\operatorname{Mot}^{2}-\tilde{r} \tau^{\top} \tau$
- use Newton refinement on W and convert to rational matrix
- Use rational SOS solver in Maple: $\operatorname{Mot}(x, y)^{2}-12854802625942833 / 100000000000000000$ $\times\left(1+x^{4} y^{8}+x^{8} y^{4}+x^{4} y^{4}\right)=\operatorname{SOS}(10$ squares $)$
- This means that the non-zero coefficients of Mot need to be perturbed (by at least 0.128 in ℓ^{2}-norm squared) for Mot to have a real root.

Sum of Squares Certificate for Motzkin Example

- $W=$ matrix obtained from SOS solver in Matlab $m=\left[1, x^{2} y^{2}, x^{2} y^{4}, x^{4} y^{2}, x y^{2}, x^{3} y^{2}, x^{2} y, x^{2} y^{3}, x y, x^{3} y^{3}\right]^{T}$ Want to refine W to \widetilde{W} so that $m^{T} \widetilde{W} m=\operatorname{Mot}^{2}-\tilde{r} \tau^{\top} \tau$
- use Newton refinement on W and convert to rational matrix
- Use rational SOS solver in Maple: $\operatorname{Mot}(x, y)^{2}-12854802625942833 / 100000000000000000$ $\times\left(1+x^{4} y^{8}+x^{8} y^{4}+x^{4} y^{4}\right)=\operatorname{SOS}$ (10 squares)
- This means that the non-zero coefficients of Mot need to be perturbed (by at least 0.128 in ℓ^{2}-norm squared) for Mot to have a real root.
- $\operatorname{Mot}(x, y)>0 \forall x, y \in \mathbb{R}$ via a polynomial SOS certificate!

Linear Constraints

$$
\begin{aligned}
& \mathcal{N}_{2, w}^{[f ; H]}(\alpha)=\inf _{\tilde{f} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]}\|f-\tilde{f}\|_{2, w}^{2} \\
& \text { s. t. } \tilde{f}(\alpha)=0, H \vec{f}=p, \\
& \operatorname{deg}(\tilde{f}) \leq \operatorname{deg}(f) .
\end{aligned}
$$

Linear Constraints

$$
\begin{aligned}
\mathcal{N}_{2, w}^{[f ; H]}(\alpha)=\inf _{\tilde{f} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]} & \|f-\tilde{f}\|_{2, w}^{2} \\
\text { s. t. } & \tilde{f}(\alpha)=0, H \vec{f}=p, \\
& \operatorname{deg}(\tilde{f}) \leq \operatorname{deg}(f) .
\end{aligned}
$$

- Jacobian of Lagrange function constitutes a linear system in coefficients of $\tilde{f} \&$ multipliers!

KKT

- include inequalities, $G \overrightarrow{\tilde{f}} \leq q$

KKT

- include inequalities, $G \overrightarrow{\tilde{f}} \leq q$
- constraint functions, being linear, are always convex.

KKT

- include inequalities, $G \overrightarrow{\tilde{f}} \leq q$
- constraint functions, being linear, are always convex.
- Lagrange function

$$
L=(\vec{f}-\overrightarrow{\tilde{f}})^{T} D_{w}(\vec{f}-\overrightarrow{\tilde{f}})+\lambda_{0} \tau^{T} \overrightarrow{\tilde{f}}+\lambda_{1}^{T}(H \overrightarrow{\tilde{f}}-p)+\mu^{T}(G \overrightarrow{\tilde{f}}-q)
$$

KKT Conditions

The KKT conditions:

$$
\begin{align*}
& \frac{\partial L}{\partial \overrightarrow{\tilde{f}}_{i}}=0, \quad i=1, \ldots, s, \\
& \tau^{T} \overrightarrow{\tilde{f}}=0 \\
& H_{\overrightarrow{\tilde{f}}}=p, \tag{1}\\
& G \overrightarrow{\tilde{f}} \leq q, \\
& \mu_{i} \geq 0, \quad i=1, \ldots, m, \\
& \mu^{T}(G \overrightarrow{\tilde{f}}-q)=0 .
\end{align*}
$$

The last orthogonality conditions constitute branching: $\mu_{i}=0$ or $(G \overrightarrow{\tilde{f}}-q)_{i}=0$, and (1) form linear programs.

Systems

- solve inconsistent system via infinity norm deformations

Systems

- solve inconsistent system via infinity norm deformations
- $f_{1}, \ldots, f_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, with $d_{i}=\operatorname{deg}\left(f_{i}\right)$, The distance to the nearest system with a common root $\alpha \in \mathbb{R}^{n}$ with norm $\ell^{\infty, w}$ is

$$
\mathcal{N} \infty, w, f_{k}^{\left\{f_{1}, \ldots, f_{k}\right\}}(\alpha)=\max _{k} \frac{\left|f_{k}(\alpha)\right|}{\|\tau\|_{1,1 / w}}
$$

Systems

- solve inconsistent system via infinity norm deformations
- $f_{1}, \ldots, f_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, with $d_{i}=\operatorname{deg}\left(f_{i}\right)$, The distance to the nearest system with a common root $\alpha \in \mathbb{R}^{n}$ with norm $\ell^{\infty, w}$ is

$$
\mathcal{N}_{\infty, w}^{\left\{f_{1}, \ldots, f_{k}\right\}}(\alpha)=\max _{k} \frac{\left|f_{k}(\alpha)\right|}{\|\tau\|_{1,1 / w}}
$$

- Can be generalized to include complex coefficients and/or complex roots

Gröbner Surprise

- $f_{1}=x^{4}+y^{4}+1, f_{2}=x^{2}+x^{2} y^{2}-2 x y+1$

Gröbner Surprise

- $f_{1}=x^{4}+y^{4}+1, f_{2}=x^{2}+x^{2} y^{2}-2 x y+1$
- Compute Gröbner basis of the numerators of partial derivatives

Gröbner Surprise

- $f_{1}=x^{4}+y^{4}+1, f_{2}=x^{2}+x^{2} y^{2}-2 x y+1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.

Gröbner Surprise

- $f_{1}=x^{4}+y^{4}+1, f_{2}=x^{2}+x^{2} y^{2}-2 x y+1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.
- Compute the norm of each possible point and select the minimum value.

Gröbner Surprise

- $f_{1}=x^{4}+y^{4}+1, f_{2}=x^{2}+x^{2} y^{2}-2 x y+1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.
- Compute the norm of each possible point and select the minimum value.
- 20 digits: $x=2.5645, y=-0.2751, \mathcal{N}_{2}^{f_{1}, f_{2}}=0.9180$.

Gröbner Surprise

- $f_{1}=x^{4}+y^{4}+1, f_{2}=x^{2}+x^{2} y^{2}-2 x y+1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.
- Compute the norm of each possible point and select the minimum value.
- 20 digits: $x=2.5645, y=-0.2751, \mathcal{N}_{2}^{f_{1}, f_{2}}=0.9180$.
- 25 digits: $x=-0.9202 y=-1.1947, \mathcal{N}_{2}^{f_{1}, f_{2}}=0.64598$

Gröbner Surprise

- $f_{1}=x^{4}+y^{4}+1, f_{2}=x^{2}+x^{2} y^{2}-2 x y+1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.
- Compute the norm of each possible point and select the minimum value.
- 20 digits: $x=2.5645, y=-0.2751, \mathcal{N}_{2}^{f_{1}, f_{2}}=0.9180$.
- 25 digits: $x=-0.9202 y=-1.1947, \mathcal{N}_{2}^{f_{1}, f_{2}}=0.64598$
- Why? Truncate coefficients of fsolve

Conjecture

- If there exists a weight vector such that the radius of positive semidefiniteness is >0 then there is a SOS certificate for that polynomial.
- If $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ then $\exists w$, a vector of positive and infinite weights, s.t. $\rho_{2, w}(f)>0$ then $r^{*}>0$ in

$$
\begin{align*}
r^{*}:= & \sup _{r \in \mathbb{R}, W} r \\
& \text { s. t. } \tag{2}\\
& f(\mathbf{X})^{2}-r \tau^{T} D_{w}^{-1} \tau=m(\mathbf{X})^{T} W m(\mathbf{X}) \\
& W \succeq 0, W^{T}=W
\end{align*}
$$

Conjecture

- If there exists a weight vector such that the radius of positive semidefiniteness is >0 then there is a SOS certificate for that polynomial.
- If $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ then $\exists w$, a vector of positive and infinite weights, s.t. $\rho_{2, w}(f)>0$ then $r^{*}>0$ in

$$
\begin{align*}
r^{*}:= & \sup _{r \in \mathbb{R}, W} r \\
& \text { s. t. } \tag{2}\\
& f(\mathbf{X})^{2}-r \tau^{T} D_{w}^{-1} \tau=m(\mathbf{X})^{T} W m(\mathbf{X}) \\
& W \succeq 0, W^{T}=W
\end{align*}
$$

- Note that we have seen that $\rho_{2, w}(f) \leq 0$, if f has a projective root at infinity, and $\rho_{2, w}(f)>0$ makes f and w quite special.

Danke schön!

(Thank You)
"End Key" Wrong!

