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Motivation

∀x ∈ R : 0.33 x2 − 0.66 x + 0.33 ≥ 0 ???
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Radius of Positive Semidefiniteness Main Theorem

Main Theorem [Stetter; Corless, Gianni, Hitz, Hutton, Kaltofen, Karmarkar,

Lakshman, Sciabica, Ruatta, Szanto, Trager, Watt, Zhi]

Given α ∈ R
n : N

[f ]
2 (α) = inf

f̃ ∈R[x1,...,xn]
‖f − f̃ ‖2

2

s. t. f̃ (α) = 0,

deg(f̃ ) ≤ deg(f )

=
f (α)2

‖τ‖2
2

,

where τ = [1, α1, . . . , αn, . . . , α
i1
1 αi2

2 · · ·αin
n , . . .](i1,...,in)≤deg(f ).

The coefficient vector ~̃
f of the minimizer is ~̃

f = ~f −
τT~f

‖τ‖2
2

τ
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Main Theorem [Stetter; Corless, Gianni, Hitz, Hutton, Kaltofen, Karmarkar,

Lakshman, Sciabica, Ruatta, Szanto, Trager, Watt, Zhi]

Given α ∈ R
n : N

[f ]
2 (α) = inf

f̃ ∈R[x1,...,xn]
‖f − f̃ ‖2

2

s. t. f̃ (α) = 0,

deg(f̃ ) ≤ deg(f )

=
f (α)2

‖τ‖2
2

,

where τ = [1, α1, . . . , αn, . . . , α
i1
1 αi2

2 · · ·αin
n , . . .](i1,...,in)≤deg(f ).

The coefficient vector ~̃
f of the minimizer is ~̃

f = ~f −
τT~f

‖τ‖2
2

τ

Note: Generalizes to complex roots and/or complex coefficients!
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Radius of Positive Semidefiniteness Main Theorem

Definition of Radius of Positive Semidefiniteness

ρ2(f ) = inf
α

N
[f ]
2 (α)

Sharon Hutton (NCSU)



Radius of Positive Semidefiniteness Main Theorem

Definition of Radius of Positive Semidefiniteness

ρ2(f ) = inf
α

N
[f ]
2 (α)

Examples

Sharon Hutton (NCSU)



Radius of Positive Semidefiniteness Main Theorem

Definition of Radius of Positive Semidefiniteness
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α

N
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2 (α)

Examples

ρ2( x2 + 1 ) = 1, f̃ = x2
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Radius of Positive Semidefiniteness Main Theorem

Definition of Radius of Positive Semidefiniteness

ρ2(f ) = inf
α

N
[f ]
2 (α)

Examples

ρ2( x2 + 1 ) = 1, f̃ = x2

f = x4y2 + x2y4 + z6 − 3x2y2z2 + 1 ≥ 1
Nearest polynomial with a real root has distance ρ2( f ) = 0
because ( 1

ǫ
, 1

ǫ
, 1

ǫ
) is a root of f − ǫ6x2y2z2
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Radius of Positive Semidefiniteness Main Theorem

Example

f = x2 + y2 + 1,
f̃ = a20x

2 + a11xy + a02y
2 + a10x + a01y + a00,

root: (α, β) = (0, 0)
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Example
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f̃ = a20x

2 + a11xy + a02y
2 + a10x + a01y + a00,

root: (α, β) = (0, 0)

N
[f ]
2 (0, 0) = inf

f̃ ∈R[x1,...,xn]
(1 − a20)

2 + (0 − a11)
2+

(1 − a02)
2 + (0 − a10)
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Radius of Positive Semidefiniteness Main Theorem

Example

f = x2 + y2 + 1,
f̃ = a20x

2 + a11xy + a02y
2 + a10x + a01y + a00,

root: (α, β) = (0, 0)

N
[f ]
2 (0, 0) = inf

f̃ ∈R[x1,...,xn]
(1 − a20)

2 + (0 − a11)
2+

(1 − a02)
2 + (0 − a10)

2 + (0 − a01)
2 + (1 − a00)

2

From Theorem:

N
[f ]
2 (0, 0) =

(02 + 02 + 1)2

[0, 0, 0, 0, 0, 1][0, 0, 0, 0, 0, 1]T
= 1

f̃ = x2 + y2
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Radius of Positive Semidefiniteness Main Theorem

Example

f = x2 + y2 + 1,
f̃ = a20x

2 + a11xy + a02y
2 + a10x + a01y + a00,

root: (α, β) = (0, 0)

N
[f ]
2 (0, 0) = inf

f̃ ∈R[x1,...,xn]
(1 − a20)

2 + (0 − a11)
2+

(1 − a02)
2 + (0 − a10)

2 + (0 − a01)
2 + (1 − a00)

2

From Theorem:

N
[f ]
2 (0, 0) =

(02 + 02 + 1)2

[0, 0, 0, 0, 0, 1][0, 0, 0, 0, 0, 1]T
= 1

f̃ = x2 + y2

ρ2 = inf
(α,β)

N
[f ]
2 (α, β) = 1
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Radius of Positive Semidefiniteness Our Contribution

Our contributions:

New proof by Lagrangian multipliers

customized formulas for equality constraints on coeff’s
can have inequality constraints via Karush-Kuhn-Tucker
conditions for fixed root α get linear program
nearest consistent system with infinity coefficient norm
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Radius of Positive Semidefiniteness Our Contribution

Our contributions:

New proof by Lagrangian multipliers

customized formulas for equality constraints on coeff’s
can have inequality constraints via Karush-Kuhn-Tucker
conditions for fixed root α get linear program
nearest consistent system with infinity coefficient norm

SOS certificates for rational lower bound ρ̃2(f ) < ρ2(f )

degree bounded SOS certificates for Motzkin like polynomials
Seidenberg’s problem with imprecise coefficients
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Nearest Polynomial With a Real Root Weighted Norms, ℓp -Norm, ℓ∞ -Norm, ℓ1 -Norm

Weighted Norms

Weighted norms ‖~f ‖2
2,w =

∑
j wj(~f )2j for weights wi > 0

N
[f ]
2,w (α) =

f (α1, . . . , αn)
2

∑

(i1,...,in)≤deg(f )

1

wi1,...,in

α2i1
1 · · ·α2in

n

~̃
f = ~f −

τT~f

τTDiag(w)−1τ
Diag(w)−1τ,
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Nearest Polynomial With a Real Root Weighted Norms, ℓp -Norm, ℓ∞ -Norm, ℓ1 -Norm

Weighted Norms

Weighted norms ‖~f ‖2
2,w =

∑
j wj(~f )2j for weights wi > 0

N
[f ]
2,w (α) =

f (α1, . . . , αn)
2

∑

(i1,...,in)≤deg(f )

1

wi1,...,in

α2i1
1 · · ·α2in

n

~̃
f = ~f −

τT~f

τTDiag(w)−1τ
Diag(w)−1τ,

wj → ∞ : coefficient remains fixed, e.g., 0

Note: for α = 0 cannot fix non-zero constant coefficient N =
1

0
wi → 0 : coefficient is a ”don’t care” case

f̃ (x) = f (x) −
f (α)

αi
x i , α 6= 0

Sharon Hutton (NCSU)



Nearest Polynomial With a Real Root Weighted Norms, ℓp -Norm, ℓ∞ -Norm, ℓ1 -Norm

Stetter’s Results

The dual norm ‖ . . . ‖∗ for v ∈ C
n is defined by

‖vT‖∗ = supu 6=0
|vT u|
‖u‖ = sup‖u‖=1|v

T u|.
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Stetter’s Results

The dual norm ‖ . . . ‖∗ for v ∈ C
n is defined by

‖vT‖∗ = supu 6=0
|vT u|
‖u‖ = sup‖u‖=1|v

T u|.

1
p

+ 1
q

= 1, 1 ≤ p, q ≤ ∞,

‖ . . . ‖ = ℓp - norm ⇔ ‖ . . . ‖∗ = ℓq - norm.
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Nearest Polynomial With a Real Root Weighted Norms, ℓp -Norm, ℓ∞ -Norm, ℓ1 -Norm

Stetter’s Results

The dual norm ‖ . . . ‖∗ for v ∈ C
n is defined by

‖vT‖∗ = supu 6=0
|vT u|
‖u‖ = sup‖u‖=1|v

T u|.

1
p

+ 1
q

= 1, 1 ≤ p, q ≤ ∞,

‖ . . . ‖ = ℓp - norm ⇔ ‖ . . . ‖∗ = ℓq - norm.

Theorem:

‖~f − ~̃
f ‖∗ ≥

|f (α)|

‖τ‖

Sharon Hutton (NCSU)



Nearest Polynomial With a Real Root Weighted Norms, ℓp -Norm, ℓ∞ -Norm, ℓ1 -Norm

Related Results

Hölder’s Inequality: u, v ∈ C
n, weights wi , and 1/w = (. . . , 1/wi , . . .).

|vTu| ≤ ‖u‖∞,w‖v‖1,1/w

|vTu| ≤ ‖u‖1,w‖v‖∞,1/w

|vTu| ≤ ‖u‖2,w‖v‖2,1/w
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Related Results

Hölder’s Inequality: u, v ∈ C
n, weights wi , and 1/w = (. . . , 1/wi , . . .).

|vTu| ≤ ‖u‖∞,w‖v‖1,1/w

|vTu| ≤ ‖u‖1,w‖v‖∞,1/w

|vTu| ≤ ‖u‖2,w‖v‖2,1/w

Theorem:

N
[f ]
1,w (α) =

|f (α)|

‖τ‖∞,1/w

and ~̃
f = ~f −

f (α)

‖τ‖1,1/w

D−1
w v ,

where v = [1, sgn(τi ), . . .].
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Nearest Polynomial With a Real Root Weighted Norms, ℓp -Norm, ℓ∞ -Norm, ℓ1 -Norm

Related Results

Hölder’s Inequality: u, v ∈ C
n, weights wi , and 1/w = (. . . , 1/wi , . . .).

|vTu| ≤ ‖u‖∞,w‖v‖1,1/w

|vTu| ≤ ‖u‖1,w‖v‖∞,1/w

|vTu| ≤ ‖u‖2,w‖v‖2,1/w

Theorem:

N
[f ]
1,w (α) =

|f (α)|

‖τ‖∞,1/w

and ~̃
f = ~f −

f (α)

‖τ‖1,1/w

D−1
w v ,

where v = [1, sgn(τi ), . . .].

Theorem: N
[f ]
∞,w (α) = |f (α)|

‖τ‖1,1/w
and

~̃
fi =

{
~fi for i 6= imax

~fi − sgn(τi)
f (α)

‖τ‖
∞,1/w

1
wi

for i = imax

where imax = argmaxi{
|τi |

wi

}
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Nearest Polynomial With a Real Root Weighted Norms, ℓp -Norm, ℓ∞ -Norm, ℓ1 -Norm

Motzkin Example

Mot(x , y) = x4y2 + x2y4 + 2 − 3x2y2, which is ≥ 1 ∀x , y ∈ R and
which is not a SOS
τ = [1, x2y4, y2x4, x2y2]
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Mot(x , y) = x4y2 + x2y4 + 2 − 3x2y2, which is ≥ 1 ∀x , y ∈ R and
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Run SOS solver (SeDuMi, SOS Tools, etc.) in Matlab and obtain
approximate minimum: r = 0.1285480262594671800 for
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Nearest Polynomial With a Real Root Weighted Norms, ℓp -Norm, ℓ∞ -Norm, ℓ1 -Norm

Motzkin Example

Mot(x , y) = x4y2 + x2y4 + 2 − 3x2y2, which is ≥ 1 ∀x , y ∈ R and
which is not a SOS
τ = [1, x2y4, y2x4, x2y2]

Run SOS solver (SeDuMi, SOS Tools, etc.) in Matlab and obtain
approximate minimum: r = 0.1285480262594671800 for
Mot2 − rτT τ ≈ SOS

Can we certify a lower bound?

If yes, proves that the polynomial has no real root (Seidenberg’s
Problem)

Sharon Hutton (NCSU)



Nearest Polynomial With a Real Root Exact Sum-Of-Squares Certificates

Rationalizing a Sum-Of-Squares: “Easy Case” [Peyrl,

Parrilo, ’07, ’08; Kaltofen, Li, Yang, Zhi, ’08]

project

symmetric positive semidefinite matrices

WNewton

WadjustWSDP Newton iteration

X

W̃

where the affine linear hyperplane, X , is tangent to the cone boundary

X = {A | AT = A,Mot(X)2 − r̃τ(X)T τ(X) = m(X)T · W̃ ·m(X) = SOS}.

Sharon Hutton (NCSU)



Nearest Polynomial With a Real Root Exact Sum-Of-Squares Certificates

Rationalizing a Sum-Of-Squares: “Hard Case” [Kaltofen,

Li, Yang, Zhi, ’09]

recover an integer or rational matrix

Xsymmetric positive semidefinite matrices

WNewton

WadjustWSDP Newton iteration

W̃

where the affine linear hyperplane, X , is tangent to the cone boundary

X = {A | AT = A,Mot(X)2 − r̃τ(X)T τ(X) = m(X)T · W̃ ·m(X) = SOS}.

Singular W : real optimizers, fewer squares, missing terms
Sharon Hutton (NCSU)



Nearest Polynomial With a Real Root Exact Sum-Of-Squares Certificates

Sum of Squares Certificate for Motzkin Example

W = matrix obtained from SOS solver in Matlab
m = [1, x2y2, x2y4, x4y2, xy2, x3y2, x2y , x2y3, xy , x3y3]T

Want to refine W to W̃ so that mTW̃m = Mot2 − r̃τT τ
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use Newton refinement on W and convert to rational matrix
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Sum of Squares Certificate for Motzkin Example

W = matrix obtained from SOS solver in Matlab
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Use rational SOS solver in Maple:
Mot(x , y)2 − 12854802625942833/100000000000000000
×(1 + x4y8 + x8y4 + x4y4) = SOS (10 squares)
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Nearest Polynomial With a Real Root Exact Sum-Of-Squares Certificates

Sum of Squares Certificate for Motzkin Example

W = matrix obtained from SOS solver in Matlab
m = [1, x2y2, x2y4, x4y2, xy2, x3y2, x2y , x2y3, xy , x3y3]T

Want to refine W to W̃ so that mTW̃m = Mot2 − r̃τT τ

use Newton refinement on W and convert to rational matrix

Use rational SOS solver in Maple:
Mot(x , y)2 − 12854802625942833/100000000000000000
×(1 + x4y8 + x8y4 + x4y4) = SOS (10 squares)

This means that the non-zero coefficients of Mot need to be
perturbed (by at least 0.128 in ℓ2 -norm squared) for Mot to have a
real root.
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Nearest Polynomial With a Real Root Exact Sum-Of-Squares Certificates

Sum of Squares Certificate for Motzkin Example

W = matrix obtained from SOS solver in Matlab
m = [1, x2y2, x2y4, x4y2, xy2, x3y2, x2y , x2y3, xy , x3y3]T

Want to refine W to W̃ so that mTW̃m = Mot2 − r̃τT τ

use Newton refinement on W and convert to rational matrix

Use rational SOS solver in Maple:
Mot(x , y)2 − 12854802625942833/100000000000000000
×(1 + x4y8 + x8y4 + x4y4) = SOS (10 squares)

This means that the non-zero coefficients of Mot need to be
perturbed (by at least 0.128 in ℓ2 -norm squared) for Mot to have a
real root.

Mot(x , y) > 0 ∀x ,y ∈ R via a polynomial SOS certificate!

Sharon Hutton (NCSU)



Deforming Polynomial Inequalities Linear Constraints

Linear Constraints

N
[f ;H]
2,w (α) = inf

f̃ ∈R[x1,...,xn]
‖f − f̃ ‖2

2,w

s. t. f̃ (α) = 0,H~̃
f = p,

deg(f̃ ) ≤ deg(f ).
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Deforming Polynomial Inequalities Linear Constraints

Linear Constraints

N
[f ;H]
2,w (α) = inf

f̃ ∈R[x1,...,xn]
‖f − f̃ ‖2

2,w

s. t. f̃ (α) = 0,H~̃
f = p,

deg(f̃ ) ≤ deg(f ).

Jacobian of Lagrange function constitutes a linear system in
coefficients of f̃ & multipliers!

Sharon Hutton (NCSU)



Deforming Polynomial Inequalities KKT Conditions

KKT

include inequalities, G
~̃
f ≤ q
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KKT

include inequalities, G
~̃
f ≤ q

constraint functions, being linear, are always convex.
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Deforming Polynomial Inequalities KKT Conditions

KKT

include inequalities, G
~̃
f ≤ q

constraint functions, being linear, are always convex.

Lagrange function

L = (~f − ~̃
f )TDw (~f − ~̃

f ) + λ0τ
T~̃

f + λT
1 (H~̃

f − p) + µT (G~̃
f − q).

Sharon Hutton (NCSU)



Deforming Polynomial Inequalities KKT Conditions

KKT Conditions

The KKT conditions:

∂L

∂~̃
fi

= 0, i = 1, . . . , s,

τT~̃
f = 0

H
~̃
f = p,

G
~̃
f ≤ q,

µi ≥ 0, i = 1, . . . ,m,

µT (G~̃
f − q) = 0.





(1)

The last orthogonality conditions constitute branching: µi = 0 or

(G~̃
f − q)i = 0, and (1) form linear programs.

Sharon Hutton (NCSU)



Nearest Consistent System

Systems

solve inconsistent system via infinity norm deformations
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Nearest Consistent System

Systems

solve inconsistent system via infinity norm deformations

f1, . . . , fk ∈ R[x1, . . . , xn], with di = deg(fi ), The distance to the
nearest system with a common root α ∈ R

n with norm ℓ∞,w is

N
{f1,...,fk}
∞,w (α) = max

k

|fk(α)|

‖τ‖1,1/w

Sharon Hutton (NCSU)



Nearest Consistent System

Systems

solve inconsistent system via infinity norm deformations

f1, . . . , fk ∈ R[x1, . . . , xn], with di = deg(fi ), The distance to the
nearest system with a common root α ∈ R

n with norm ℓ∞,w is

N
{f1,...,fk}
∞,w (α) = max

k

|fk(α)|

‖τ‖1,1/w

Can be generalized to include complex coefficients and/or complex
roots

Sharon Hutton (NCSU)



Nearest Consistent System

Gröbner Surprise

f1 = x4 + y4 + 1, f2 = x2 + x2y2 − 2xy + 1
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Gröbner Surprise

f1 = x4 + y4 + 1, f2 = x2 + x2y2 − 2xy + 1

Compute Gröbner basis of the numerators of partial derivatives
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Nearest Consistent System

Gröbner Surprise

f1 = x4 + y4 + 1, f2 = x2 + x2y2 − 2xy + 1

Compute Gröbner basis of the numerators of partial derivatives

Find all real roots of the first polynomial in the basis and plug all 9
choices into a second polynomial in the Gröbner basis.

Compute the norm of each possible point and select the minimum
value.

20 digits: x = 2.5645, y = −0.2751, N
f1,f2
2 = 0.9180.
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Nearest Consistent System

Gröbner Surprise

f1 = x4 + y4 + 1, f2 = x2 + x2y2 − 2xy + 1

Compute Gröbner basis of the numerators of partial derivatives

Find all real roots of the first polynomial in the basis and plug all 9
choices into a second polynomial in the Gröbner basis.

Compute the norm of each possible point and select the minimum
value.

20 digits: x = 2.5645, y = −0.2751, N
f1,f2
2 = 0.9180.

25 digits: x = −0.9202 y = −1.1947, N
f1,f2
2 = 0.64598
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Nearest Consistent System

Gröbner Surprise

f1 = x4 + y4 + 1, f2 = x2 + x2y2 − 2xy + 1

Compute Gröbner basis of the numerators of partial derivatives

Find all real roots of the first polynomial in the basis and plug all 9
choices into a second polynomial in the Gröbner basis.

Compute the norm of each possible point and select the minimum
value.

20 digits: x = 2.5645, y = −0.2751, N
f1,f2
2 = 0.9180.

25 digits: x = −0.9202 y = −1.1947, N
f1,f2
2 = 0.64598

Why? Truncate coefficients of fsolve

Sharon Hutton (NCSU)



Future Work

Conjecture

If there exists a weight vector such that the radius of positive
semidefiniteness is > 0 then there is a SOS certificate for that
polynomial.

If f ∈ R[x1, . . . , xn] then ∃ w , a vector of positive and infinite
weights, s.t. ρ2,w (f ) > 0 then r∗ > 0 in

r∗ := sup
r∈R,W

r

s. t. f (X)2−rτTD−1
w τ = m(X)T W m(X)

W � 0, W T = W





(2)
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Conjecture

If there exists a weight vector such that the radius of positive
semidefiniteness is > 0 then there is a SOS certificate for that
polynomial.

If f ∈ R[x1, . . . , xn] then ∃ w , a vector of positive and infinite
weights, s.t. ρ2,w (f ) > 0 then r∗ > 0 in

r∗ := sup
r∈R,W

r

s. t. f (X)2−rτTD−1
w τ = m(X)T W m(X)

W � 0, W T = W





(2)

Note that we have seen that ρ2,w (f ) ≤ 0, if f has a projective root at
infinity, and ρ2,w (f ) > 0 makes f and w quite special.

Sharon Hutton (NCSU)
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Danke schön!
(Thank You)

Sharon Hutton (NCSU)
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”End Key” Wrong!

Sharon Hutton (NCSU)
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