Computing the radius of positive semidefiniteness of a multivariate real polynomial via a dual of Seidenberg's method

Sharon Hutton

North Carolina State University

July 28, 2010

Joint Work With: Erich Kaltofen, and Lihong Zhi

- Introduction
 - Motivation
- Radius of Positive Semidefiniteness
 - Main Theorem
 - Our Contribution
- Nearest Polynomial With a Real Root
 - Weighted Norms, ℓ^p -Norm, ℓ^∞ -Norm, ℓ^1 -Norm
 - Exact Sum-Of-Squares Certificates
- Oeforming Polynomial Inequalities
 - Linear Constraints
 - KKT Conditions
- Nearest Consistent System
- 6 Future Work

Motivation

$$\forall x \in \mathbb{R} : 0.33 x^2 - 0.66 x + 0.33 \ge 0$$
 ???

Motivation

$$\forall x \in \mathbb{R} : 0.33 \, x^2 - 0.66 \, x + 0.33 \ge 0$$
 ???

$$\left(\frac{1}{3} + \frac{1}{100}\right)x^2 - \frac{2}{3}x + \frac{1}{3}$$

Main Theorem [Stetter; Corless, Gianni, Hitz, Hutton, Kaltofen, Karmarkar, Lakshman, Sciabica, Ruatta, Szanto, Trager, Watt, Zhi]

Given
$$\alpha \in \mathbb{R}^n : \mathcal{N}_2^{[f]}(\alpha) = \inf_{\tilde{f} \in \mathbb{R}[x_1, \dots, x_n]} \|f - \tilde{f}\|_2^2$$

s. t. $\tilde{f}(\alpha) = 0$,

$$\deg(\tilde{f}) \leq \deg(f)$$

$$= \frac{f(\alpha)^2}{\|\tau\|_2^2},$$

where $\tau = [1, \alpha_1, \dots, \alpha_n, \dots, \alpha_1^{i_1} \alpha_2^{i_2} \cdots \alpha_n^{i_n}, \dots]_{(i_1, \dots, i_n) \leq \deg(f)}$.

The coefficient vector $\vec{\tilde{f}}$ of the minimizer is $\left| \vec{\tilde{f}} = \vec{f} - \frac{\tau^T \vec{f}}{\|\tau\|_2^2} \tau \right|$

Main Theorem [Stetter; Corless, Gianni, Hitz, Hutton, Kaltofen, Karmarkar, Lakshman, Sciabica, Ruatta, Szanto, Trager, Watt, Zhi]

Given
$$\alpha \in \mathbb{R}^n$$
: $\mathcal{N}_2^{[f]}(\alpha) = \inf_{\tilde{f} \in \mathbb{R}[x_1, \dots, x_n]} \|f - \tilde{f}\|_2^2$
s. t. $\tilde{f}(\alpha) = 0$, $\deg(\tilde{f}) \leq \deg(f)$

$$= \frac{f(\alpha)^2}{\|\tau\|_2^2},$$

where
$$\tau = [1, \alpha_1, \dots, \alpha_n, \dots, \alpha_1^{i_1} \alpha_2^{i_2} \cdots \alpha_n^{i_n}, \dots]_{(i_1, \dots, i_n) \leq \deg(f)}$$
.

The coefficient vector $\vec{\tilde{f}}$ of the minimizer is $|\vec{\tilde{f}} = \vec{f} - \frac{\tau^T \vec{f}}{\|\tau\|_2^2} \tau|$

Note: Generalizes to **complex** roots and/or **complex** coefficients!

$$\rho_2(f) = \inf_{\alpha} \, \mathcal{N}_2^{[f]}(\alpha)$$

$$\rho_2(f) = \inf_{\alpha} \, \mathcal{N}_2^{[f]}(\alpha)$$

$$\rho_2(f) = \inf_{\alpha} \, \mathcal{N}_2^{[f]}(\alpha)$$

- Examples
 - $\rho_2(x^2+1)=1$, $\tilde{f}=x^2$

$$\rho_2(f) = \inf_{\alpha} \, \mathcal{N}_2^{[f]}(\alpha)$$

- Examples
 - $\rho_2(x^2+1)=1$, $\tilde{f}=x^2$
 - $f=x^4y^2+x^2y^4+z^6-3x^2y^2z^2+1\geq 1$ Nearest polynomial with a real root has distance $\rho_2(f)=0$ because $\left(\frac{1}{\epsilon},\frac{1}{\epsilon},\frac{1}{\epsilon}\right)$ is a root of $f-\epsilon^6x^2y^2z^2$

•
$$f = x^2 + y^2 + 1$$
,
 $\tilde{f} = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$,
root: $(\alpha, \beta) = (0, 0)$

- $f = x^2 + y^2 + 1$, $\tilde{f} = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$, root: $(\alpha, \beta) = (0, 0)$
- $\mathcal{N}_{2}^{[f]}(0,0) = \inf_{\tilde{f} \in \mathbb{R}[x_{1},...,x_{n}]} (1-a_{20})^{2} + (0-a_{11})^{2} + (1-a_{02})^{2} + (0-a_{10})^{2} + (0-a_{01})^{2} + (1-a_{00})^{2}$

- $f = x^2 + y^2 + 1$ $\tilde{f} = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$ root: $(\alpha, \beta) = (0, 0)$
- $\bullet \ \mathcal{N}_2^{[f]}(0,0) = \inf_{\tilde{f} \in \mathbb{R}[x_1,...,x_n]} (1-a_{20})^2 + (0-a_{11})^2 +$ $(1-a_{02})^2+(0-a_{10})^2+(0-a_{01})^2+(1-a_{00})^2$
- From Theorem:
 - $\mathcal{N}_{2}^{[f]}(0,0) = \frac{(0^{2} + 0^{2} + 1)^{2}}{[0,0,0,0,0,1][0,0,0,0,0,1]^{T}} = 1$ $\tilde{f} = x^{2} + y^{2}$

- $f = x^2 + v^2 + 1$ $\tilde{f} = a_{20}x^2 + a_{11}xv + a_{02}v^2 + a_{10}x + a_{01}y + a_{00}$ root: $(\alpha, \beta) = (0, 0)$
- $\bullet \ \mathcal{N}_2^{[f]}(0,0) = \inf_{\tilde{f} \in \mathbb{R}[x_1,\dots,x_n]} (1-a_{20})^2 + (0-a_{11})^2 +$ $(1-a_{02})^2+(0-a_{10})^2+(0-a_{01})^2+(1-a_{00})^2$
- From Theorem:

•
$$\tilde{f} = x^2 + y^2$$

$$\bullet \ \rho_2 = \inf_{(\alpha,\beta)} \mathcal{N}_2^{[f]}(\alpha,\beta) = 1$$

Our contributions:

- New proof by Lagrangian multipliers
 - customized formulas for equality constraints on coeff's
 - ullet can have inequality constraints via Karush-Kuhn-Tucker conditions for fixed root lpha get linear program
 - nearest consistent system with infinity coefficient norm

Our contributions:

- New proof by Lagrangian multipliers
 - customized formulas for equality constraints on coeff's
 - \bullet can have inequality constraints via Karush-Kuhn-Tucker conditions for fixed root α get linear program
 - nearest consistent system with infinity coefficient norm
- SOS certificates for rational lower bound $\tilde{\rho}_2(f) < \rho_2(f)$
 - degree bounded SOS certificates for Motzkin like polynomials
 - Seidenberg's problem with imprecise coefficients

Weighted Norms

Weighted norms $\|\vec{f}\|_{2,w}^2 = \sum_j w_j (\vec{f})_j^2$ for weights $w_i > 0$

$$\mathcal{N}_{2,w}^{[f]}(\alpha) = \frac{f(\alpha_1, \dots, \alpha_n)^2}{\sum_{(i_1, \dots, i_n) \leq \deg(f)} \frac{1}{w_{i_1, \dots, i_n}} \alpha_1^{2i_1} \cdots \alpha_n^{2i_n}}$$

$$\vec{\tilde{f}} = \vec{f} - \frac{\tau^T \vec{f}}{\tau^T \mathsf{Diag}(w)^{-1} \tau} \mathsf{Diag}(w)^{-1} \tau,$$

Weighted Norms

Weighted norms $\|\vec{f}\|_{2,w}^2 = \sum_j w_j (\vec{f})_j^2$ for weights $w_i > 0$

$$\mathcal{N}_{2,w}^{[f]}(\alpha) = \frac{f(\alpha_1, \dots, \alpha_n)^2}{\sum_{(i_1, \dots, i_n) \leq \deg(f)} \frac{1}{w_{i_1, \dots, i_n}} \alpha_1^{2i_1} \cdots \alpha_n^{2i_n}}$$

$$\vec{\tilde{f}} = \vec{f} - \frac{\tau^T \vec{f}}{\tau^T \mathsf{Diag}(w)^{-1} \tau} \mathsf{Diag}(w)^{-1} \tau,$$

 $w_i
ightarrow \infty$: coefficient remains fixed, e.g., 0

Note: for $\alpha=0$ cannot fix non-zero constant coefficient $\mathcal{N}=\frac{1}{0}$

 $w_i \rightarrow 0$: coefficient is a "don't care" case

$$\tilde{f}(x) = f(x) - \frac{f(\alpha)}{\alpha^i} x^i, \quad \alpha \neq 0$$

Stetter's Results

• The dual norm $\| \dots \|^*$ for $v \in \mathbb{C}^n$ is defined by $||v^T||^* = sup_{u \neq 0} \frac{|v^T u|}{||u||} = sup_{||u||=1} |v^T u|.$

Stetter's Results

- The dual norm $\|\dots\|^*$ for $v \in \mathbb{C}^n$ is defined by $\|v^T\|^* = \sup_{u \neq 0} \frac{|v^T u|}{\|u\|} = \sup_{\|u\| = 1} |v^T u|$.
- $\bullet \ \frac{1}{p} + \frac{1}{q} = 1, \ 1 \le p, \ q \le \infty,$
 - $\|\ldots\| = \ell^p$ norm $\Leftrightarrow \|\ldots\|^* = \ell^q$ norm.

Stetter's Results

- The dual norm $\|\dots\|^*$ for $v \in \mathbb{C}^n$ is defined by $\|v^T\|^* = \sup_{u \neq 0} \frac{|v^T u|}{\|u\|} = \sup_{\|u\| = 1} |v^T u|$.
- $\bullet \ \frac{1}{p} + \frac{1}{q} = 1, \ 1 \le p, \ q \le \infty,$

$$\|\ldots\| = \ell^p$$
 - norm $\Leftrightarrow \|\ldots\|^* = \ell^q$ - norm.

Theorem:

$$\|\vec{f} - \tilde{\tilde{f}}\|^* \ge \frac{|f(\alpha)|}{\|\tau\|}$$

Related Results

- Hölder's Inequality: $u, v \in \mathbb{C}^n$, weights w_i , and $1/w = (\dots, 1/w_i, \dots)$.
 - $|v^T u| \le ||u||_{\infty,w} ||v||_{1,1/w}$
 - $|v^T u| \le ||u||_{1,w} ||v||_{\infty,1/w}$
 - $|v^T u| \le ||u||_{2,w} ||v||_{2,1/w}$

Related Results

- Hölder's Inequality: $u, v \in \mathbb{C}^n$, weights w_i , and $1/w = (\dots, 1/w_i, \dots)$.
 - $|v^T u| \le ||u||_{\infty,w} ||v||_{1,1/w}$
 - $|v^T u| \le ||u||_{1,w} ||v||_{\infty,1/w}$
 - $|v^T u| \le ||u||_{2,w} ||v||_{2,1/w}$
- Theorem:

$$\mathcal{N}_{1,w}^{[f]}(\alpha) = \frac{|f(\alpha)|}{\|\tau\|_{\infty,1/w}} \text{ and } \vec{\tilde{f}} = \vec{f} - \frac{f(\alpha)}{\|\tau\|_{1,1/w}} D_w^{-1} v,$$

where $v = [1, \operatorname{sgn}(\tau_i), \ldots].$

Related Results

- Hölder's Inequality: $u, v \in \mathbb{C}^n$, weights w_i , and $1/w = (\dots, 1/w_i, \dots)$.
 - $|v^T u| \le ||u||_{\infty,w} ||v||_{1,1/w}$
 - $|v^T u| \le ||u||_{1,w} ||v||_{\infty,1/w}$
 - $|v^T u| \le ||u||_{2,w} ||v||_{2,1/w}$
- Theorem:

$$\mathcal{N}_{1,w}^{[f]}(\alpha) = \frac{|f(\alpha)|}{\|\tau\|_{\infty,1/w}} \text{ and } \vec{\tilde{f}} = \vec{f} - \frac{f(\alpha)}{\|\tau\|_{1,1/w}} D_w^{-1} v,$$

where $v = [1, \operatorname{sgn}(\tau_i), \ldots].$

• Theorem: $\mathcal{N}_{\infty,w}^{[f]}(\alpha) = \frac{|f(\alpha)|}{\|\tau\|_{1,1/w}}$ and

$$\vec{\tilde{f}}_i = \left\{ \begin{array}{l} \vec{f}_i & \text{for } i \neq i_{max} \\ \vec{f}_i - \text{sgn}(\tau_i) \frac{f(\alpha)}{\|\tau\|_{\infty, 1/w}} \frac{1}{w_i} & \text{for } i = i_{max} \end{array} \right.$$

where $i_{max} = argmax_i \{ \frac{|\tau_i|}{w_i} \}$

Motzkin Example

• $Mot(x,y) = x^4y^2 + x^2y^4 + 2 - 3x^2y^2$, which is $\geq 1 \ \forall x,y \in \mathbb{R}$ and which is **not** a SOS $\tau = [1, x^2y^4, y^2x^4, x^2y^2]$

Motzkin Example

- $Mot(x,y) = x^4y^2 + x^2y^4 + 2 3x^2y^2$, which is $\geq 1 \ \forall x,y \in \mathbb{R}$ and which is **not** a SOS $\tau = [1, x^2y^4, y^2x^4, x^2y^2]$
- Run SOS solver (SeDuMi, SOS Tools, etc.) in Matlab and obtain approximate minimum: r=0.1285480262594671800 for $Mot^2-r\tau^T\tau\approx SOS$

Motzkin Example

- $Mot(x,y) = x^4y^2 + x^2y^4 + 2 3x^2y^2$, which is $\geq 1 \ \forall x,y \in \mathbb{R}$ and which is **not** a SOS $\tau = [1, x^2y^4, y^2x^4, x^2y^2]$
- Run SOS solver (SeDuMi, SOS Tools, etc.) in Matlab and obtain **approximate** minimum: r=0.1285480262594671800 for $Mot^2-r\tau^T\tau\approx SOS$
- Can we certify a lower bound?
 - If yes, proves that the polynomial has no real root (Seidenberg's Problem)

Rationalizing a Sum-Of-Squares: "Easy Case" [Peyrl, Parrilo, '07, '08; Kaltofen, Li, Yang, Zhi, '08]

where the affine linear hyperplane, \mathcal{X} , is tangent to the cone boundary

$$\mathcal{X} = \{A \mid A^T = A, Mot(\mathbf{X})^2 - \tilde{r}\tau(\mathbf{X})^T\tau(\mathbf{X}) = m(\mathbf{X})^T \cdot \widetilde{W} \cdot m(\mathbf{X}) = SOS\}.$$

Rationalizing a Sum-Of-Squares: "Hard Case" [Kaltofen, Li, Yang, Zhi, '09]

where the affine linear hyperplane, ${\cal X}$, is tangent to the cone boundary

$$\mathcal{X} = \{A \mid A^T = A, Mot(\mathbf{X})^2 - \tilde{r}\tau(\mathbf{X})^T\tau(\mathbf{X}) = m(\mathbf{X})^T \cdot \widetilde{W} \cdot m(\mathbf{X}) = SOS\}.$$

Singular W: real optimizers, fewer squares, missing terms

• W= matrix obtained from SOS solver in Matlab $m=[1,x^2y^2,x^2y^4,x^4y^2,xy^2,x^3y^2,x^2y,x^2y^3,xy,x^3y^3]^T$ Want to refine W to \widetilde{W} so that $m^T\widetilde{W}m=Mot^2-\widetilde{r}\tau^T\tau$

- W= matrix obtained from SOS solver in Matlab $m=[1,x^2y^2,x^2y^4,x^4y^2,xy^2,x^3y^2,x^2y,x^2y^3,xy,x^3y^3]^T$ Want to refine W to \widetilde{W} so that $m^T\widetilde{W}m=Mot^2-\widetilde{r}\tau^T\tau$
- use Newton refinement on W and convert to rational matrix

- W = matrix obtained from SOS solver in Matlab $m = [1, x^2y^2, x^2y^4, x^4y^2, xy^2, x^3y^2, x^2y, x^2y^3, xy, x^3y^3]^T$ Want to refine W to \widetilde{W} so that $m^T\widetilde{W}m = Mot^2 - \tilde{r}\tau^T\tau$
- ullet use Newton refinement on W and convert to rational matrix

- W = matrix obtained from SOS solver in Matlab $m = [1, x^2y^2, x^2y^4, x^4y^2, xy^2, x^3y^2, x^2y, x^2y^3, xy, x^3y^3]^T$ Want to refine W to \widetilde{W} so that $m^T\widetilde{W}m = Mot^2 - \tilde{r}\tau^T\tau$
- use Newton refinement on W and convert to rational matrix
- This means that the non-zero coefficients of Mot need to be perturbed (by at least 0.128 in ℓ^2 -norm squared) for Mot to have a real root.

- W = matrix obtained from SOS solver in Matlab $m = [1, x^2y^2, x^2y^4, x^4y^2, xy^2, x^3y^2, x^2y, x^2y^3, xy, x^3y^3]^T$ Want to refine W to \widetilde{W} so that $m^T\widetilde{W}m = Mot^2 - \tilde{r}\tau^T\tau$
- use Newton refinement on W and convert to rational matrix
- This means that the non-zero coefficients of Mot need to be perturbed (by at least 0.128 in ℓ^2 -norm squared) for Mot to have a real root.
- $Mot(x, y) > 0 \ \forall x, y \in \mathbb{R}$ via a polynomial SOS certificate!

Linear Constraints

$$\begin{split} \mathcal{N}_{2,w}^{[f;H]}(\alpha) &= \inf_{\tilde{f} \in \mathbb{R}[x_1,...,x_n]} \|f - \tilde{f}\|_{2,w}^2 \\ \text{s. t. } \tilde{f}(\alpha) &= 0, H\vec{\tilde{f}} = p, \\ &\deg(\tilde{f}) \leq \deg(f). \end{split}$$

Linear Constraints

$$\begin{split} \mathcal{N}_{2,w}^{[f;H]}(\alpha) &= \inf_{\tilde{f} \in \mathbb{R}[x_1,...,x_n]} \|f - \tilde{f}\|_{2,w}^2 \\ \text{s. t. } \tilde{f}(\alpha) &= 0, H\vec{\tilde{f}} = p, \\ &\deg(\tilde{f}) \leq \deg(f). \end{split}$$

• Jacobian of Lagrange function constitutes a linear system in coefficients of \tilde{f} & multipliers!

KKT

ullet include inequalities, $G \vec{\tilde{f}} \leq q$

KKT

- ullet include inequalities, $G ec{ ilde{f}} \leq q$
- constraint functions, being linear, are always convex.

KKT

- ullet include inequalities, $G \vec{\widetilde{f}} \leq q$
- constraint functions, being linear, are always convex.
- Lagrange function

$$L = (\vec{f} - \vec{\tilde{f}})^T D_w (\vec{f} - \vec{\tilde{f}}) + \lambda_0 \tau^T \vec{\tilde{f}} + \lambda_1^T (H\vec{\tilde{f}} - p) + \mu^T (G\vec{\tilde{f}} - q).$$

KKT Conditions

The KKT conditions:

$$\frac{\partial L}{\partial \vec{f}_{i}} = 0, \quad i = 1, \dots, s,
\tau^{T} \vec{f} = 0
H \vec{f} = p,
G \vec{f} \leq q,
\mu_{i} \geq 0, \quad i = 1, \dots, m,
\mu^{T} (G \vec{f} - q) = 0.$$
(1)

The last orthogonality conditions constitute branching: $\mu_i=0$ or $(G\vec{\tilde{f}}-q)_i=0$, and (1) form linear programs.

Systems

• solve inconsistent system via infinity norm deformations

Systems

- solve inconsistent system via infinity norm deformations
- $f_1, \ldots, f_k \in \mathbb{R}[x_1, \ldots, x_n]$, with $d_i = \deg(f_i)$, The distance to the nearest system with a common root $\alpha \in \mathbb{R}^n$ with norm $\ell^{\infty, w}$ is

$$\mathcal{N}_{\infty,w}^{\{f_1,\ldots,f_k\}}(\alpha) = \max_k \frac{|f_k(\alpha)|}{\|\tau\|_{1,1/w}}$$

Systems

- solve inconsistent system via infinity norm deformations
- $f_1, \ldots, f_k \in \mathbb{R}[x_1, \ldots, x_n]$, with $d_i = \deg(f_i)$, The distance to the nearest system with a common root $\alpha \in \mathbb{R}^n$ with norm $\ell^{\infty, w}$ is

$$\mathcal{N}_{\infty,w}^{\{f_1,\dots,f_k\}}(\alpha) = \max_k \frac{|f_k(\alpha)|}{\|\tau\|_{1,1/w}}$$

 Can be generalized to include complex coefficients and/or complex roots

•
$$f_1 = x^4 + y^4 + 1$$
, $f_2 = x^2 + x^2y^2 - 2xy + 1$

- $f_1 = x^4 + y^4 + 1$, $f_2 = x^2 + x^2y^2 2xy + 1$
- Compute Gröbner basis of the numerators of partial derivatives

- $f_1 = x^4 + y^4 + 1$, $f_2 = x^2 + x^2y^2 2xy + 1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.

- $f_1 = x^4 + y^4 + 1$, $f_2 = x^2 + x^2y^2 2xy + 1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.
- Compute the norm of each possible point and select the minimum value.

- $f_1 = x^4 + y^4 + 1$, $f_2 = x^2 + x^2y^2 2xy + 1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.
- Compute the norm of each possible point and select the minimum value.
- 20 digits: x = 2.5645, y = -0.2751, $\mathcal{N}_2^{f_1, f_2} = 0.9180$.

- $f_1 = x^4 + y^4 + 1$, $f_2 = x^2 + x^2y^2 2xy + 1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.
- Compute the norm of each possible point and select the minimum value.
- 20 digits: x = 2.5645, y = -0.2751, $\mathcal{N}_2^{f_1, f_2} = 0.9180$.
- 25 digits: $x = -0.9202 \ y = -1.1947, \ \mathcal{N}_2^{f_1, f_2} = 0.64598$

- $f_1 = x^4 + y^4 + 1$, $f_2 = x^2 + x^2y^2 2xy + 1$
- Compute Gröbner basis of the numerators of partial derivatives
- Find all real roots of the first polynomial in the basis and plug all 9 choices into a second polynomial in the Gröbner basis.
- Compute the norm of each possible point and select the minimum value.
- 20 digits: x = 2.5645, y = -0.2751, $\mathcal{N}_2^{f_1, f_2} = 0.9180$.
- 25 digits: $x = -0.9202 \ y = -1.1947$, $\mathcal{N}_2^{f_1, f_2} = 0.64598$
- Why? Truncate coefficients of fsolve

Conjecture

- If there exists a weight vector such that the radius of positive semidefiniteness is > 0 then there is a SOS certificate for that polynomial.
- If $f \in \mathbb{R}[x_1, \dots, x_n]$ then $\exists w$, a vector of positive and infinite weights, s.t. $\rho_{2,w}(f) > 0$ then $r^* > 0$ in

$$r^* := \sup_{r \in \mathbb{R}, W} r$$
s. t. $f(\mathbf{X})^2 - r\tau^T D_w^{-1} \tau = m(\mathbf{X})^T W m(\mathbf{X})$

$$W \succeq 0, W^T = W$$
(2)

Conjecture

- If there exists a weight vector such that the radius of positive semidefiniteness is > 0 then there is a SOS certificate for that polynomial.
- If $f \in \mathbb{R}[x_1, \dots, x_n]$ then $\exists w$, a vector of positive and infinite weights, s.t. $\rho_{2,w}(f) > 0$ then $r^* > 0$ in

$$r^* := \sup_{r \in \mathbb{R}, W} r$$
s. t. $f(\mathbf{X})^2 - r\tau^T D_w^{-1} \tau = m(\mathbf{X})^T W m(\mathbf{X})$

$$W \succeq 0, W^T = W$$

$$(2)$$

• Note that we have seen that $\rho_{2,w}(f) \leq 0$, if f has a projective root at infinity, and $\rho_{2,w}(f) > 0$ makes f and w quite special.

Danke schön!

 $(\mathsf{Thank}\ \mathsf{You})$

"End Key" Wrong!