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Motivation

Vx € R: 0.33x> —0.66x +0.33>0 7?77
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Radius of Positive Semidefiniteness Main Theorem

Main Theorem [Stetter; Corless, Gianni, Hitz, Hutton, Kaltofen, Karmarkar,

Lakshman, Sciabica, Ruatta, Szanto, Trager, Watt, Zhi]

Given oo € R : Ng[f](a) = _ inf If — F13
f

ER[x1,...,Xn] .
s. t. f(a) =0,
deg(f) < deg(f)
_ (@)
I71I3 |
where 7 =[1,a1,...,ap,... ,a?ag coealn iy, in) <deg(F)-

= - . Tf
The coefficient vector f of the minimizer is |f = f — || H
7112
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Main Theorem

Radius of Positive Semidefiniteness

Main Theorem [Stetter; Corless, Gianni, Hitz, Hutton, Kaltofen, Karmarkar

Lakshman, Sciabica, Ruatta, Szanto, Trager, Watt, Zhi]

Givena € R": Ay (o) = inf ||F — 73
fER[X1,...,Xn]
s. t. f(a ) 0,
deg(f) < deg(f)
_ f(a)?
I71I3 |
where 7 = [1,@17 ey Opyee ,(X{llalz .. -045,"’7 .. '](i1,---,in)§deg(f)'
= - . Tf
The coefficient vector f of the minimizer is |f = f — || H
7112

Note: Generalizes to complex roots and/or complex coefficients!
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Radius of Positive Semidefiniteness Main Theorem

Definition of Radius of Positive Semidefiniteness

pa(f) = inf A3 (a)
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Radius of Positive Semidefiniteness Main Theorem

Definition of Radius of Positive Semidefiniteness

pa(f) = inf A3 (a)

@ Examples
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Radius of Positive Semidefiniteness Main Theorem

Definition of Radius of Positive Semidefiniteness

@ Examples
o p(x2+1)=1, f=x?
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Radius of Positive Semidefiniteness Main Theorem

Definition of Radius of Positive Semidefiniteness

pa(f) = inf A3 (a)
@ Examples
o (X +1)=1, F=x2
o f = X4y2 +x2y4 + 2% — 3X2y222 +1>1

Nearest polynomial with a real root has distance po(f) =10

because (%,1,1)is a root of f — Ox2y?2?

€’ e’e
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Radius of Positive Semidefiniteness Main Theorem

Example

o f=x>+y>+1,
f = axox® + a11xy + ag2y? + a10x + aory + aco,
root: (a, ) = (0,0)
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Radius of Positive Semidefiniteness Main Theorem

Example

o f=x>+y>+1,
f = axox® + a11xy + ag2y? + a10x + aory + aco,
root: (a, ) = (0,0)

o M(0,0) = FER[inf ](1 — a%0)? + (0 — a11)?+
X1y.+5Xn

(1 — 302)2 + (0 — 310)2 + (0 — 301)2 + (1 — 300)2
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Radius of Positive Semidefiniteness Main Theorem

Example

o f=x>+y>+1,
f = axox® + a11xy + ao2y? + a10x + aory + oo,

root: (o, 3) = (0,0)

0.0 =, inf (11— a)+(0—au)+
X1y.+5Xn

(1 — 302)2 + (0 — 310)2 + (0 — 301)2 + (1 — 300)2
@ From Theorem:

1(0,0) =

o F=x?+y?

—1
[0,0,0,0,0,1][0,0,0,0,0,1] "
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Radius of Positive Semidefiniteness Main Theorem

Example

o f=x>+y>+1,
f = axox® + a11xy + ao2y? + a10x + aory + oo,

root: (o, 3) = (0,0)

0.0 =, inf (11— a)+(0—au)+
X1y.+5Xn

(1 — 302)2 + (0 — 310)2 + (0 — 301)2 + (1 — 300)2
@ From Theorem:

o F=x2+y?
o py = inf AT ,8)=1
P2 (('J?B)NQ (o, )

—1
~ 10,0,0,0,0,1][0,0,0,0,0,1] 7
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Radius of Positive Semidefiniteness Our Contribution

Our contributions:

@ New proof by Lagrangian multipliers
o customized formulas for equality constraints on coeff’s
@ can have inequality constraints via Karush-Kuhn-Tucker
conditions for fixed root o get linear program
@ nearest consistent system with infinity coefficient norm

Sharon Hutton (NCSU)



Radius of Positive Semidefiniteness Our Contribution

Our contributions:

@ New proof by Lagrangian multipliers
o customized formulas for equality constraints on coeff’s
@ can have inequality constraints via Karush-Kuhn-Tucker
conditions for fixed root o get linear program
@ nearest consistent system with infinity coefficient norm
@ SOS certificates for rational lower bound pa(f) < pa(f)

o degree bounded SOS certificates for Motzkin like polynomials
o Seidenberg's problem with imprecise coefficients

Sharon Hutton (NCSU)



B e L
Weighted Norms

Weighted norms H'?ng =2 WJ(F)J2 for weights w; > 0

f(al,...,an)2

f
M (@) = ) |
Z 706%1---04%’"
74 i
(i1ye.sin) <deg(f) L'
2 5 7_T,?’
f:f —D 1
7T Diag(w)~1 iag(w)~
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B e L
Weighted Norms

Weighted norms H'?ng =2 WJ(F)J2 for weights w; > 0

p f a1y...,0p 2
N”( )= ( 1 : : ~
ST
Wi,
(i1,1-in) <deg(£) ="
peg - TTI?
f = f —D 1
7T Diag(w)~1 ag(w)”

w; — oo : coefficient remains fixed, e.g., 0 1
Note: for &« = 0 cannot fix non-zero constant coefficient A/ = 0

w; — 0 : coefficient is a "don't care” case
. f .
f(x) = f(x) — (a)x’, a#0

ol
Sharon Hutton (NCSU)




U] (S0 GRS s el )
1
Stetter's Results

@ The dual norm || ... |* for v € C" is defined by

TH* vl

v = SUPu;Ao”—uﬁ = sUP||u||:1|VTU|-
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U] (S0 GRS s el )
1
Stetter's Results

@ The dual norm || ... |* for v € C" is defined by
T* _ v ul _ T
[v " = supusxo Tl — supjy|=1|v " ul.
1 1 _
°o s +5=11<p g<oo,
I|...| =¢€P-norm < ||...||" =49 - norm.
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B e L
1
Stetter's Results

@ The dual norm || ... |* for v € C" is defined by
T* _ v ul _ T
[[v "] = SUPu0 T = supjjy|=1|v " ul.
1 1 _
°o s +5=11<p g<oo,
I|...| =¢€P-norm < ||...||" =49 - norm.
@ Theorem: (0]
= % (6]
I = fl[* =
il
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U] (S0 GRS s el )
Related Results

@ Holder's Inequality: u, v € C", weights w;, and 1/w = (..., 1/w;,...).

o [vTul < lullocwllvliza/w
o vTul < flulltwlvlloo,/w
o vTul < Jlullzwlvllz/w
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B e L
Related Results

@ Holder's Inequality: u, v € C", weights w;, and 1/w = (..., 1/w;,...).

o v ul < JJulloowllVI11/w
o v ul < Jullrwlviloo/w
o vTul < Jlull2wlvll21/w
@ Theorem:
f z o f
AN (@) = N g FoF L“)D;ﬁv,
’ 171l oo,1/w (711w

where v = [1,sgn(7;),...].

Sharon Hutton (NCSU)



B e L
Related Results

@ Holder's Inequality: u, v € C", weights w;, and 1/w = (..., 1/w;,...).
o v ul < Jlulloowllvlin/m
o v ul < lullwlVilooa/w
o v ul < [lullzwlVll2/w

@ Theorem:
f > f
N]Fflv(a) = ﬂ and f =f — (;“)Dv_vlva
| 17l loo,1/w [
Where vV = []_’ Sgn(Ti), . ]
@ Theorem: Cng(o[) = M and

1:{‘ IE; for i # imax
[ it f . .
fi — Sgn(Ti) ”T”c(;:‘g/w %, for i = imax

where i = argmax,-{m}
w;
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U] (S0 GRS s el )
Motzkin Example

o Mot(x,y) = x*y? + x°y* + 2 — 3x2%y2, which is > 1 Vx,y € R and
which is not a SOS
T =[13%y% y2x*, X%y

Sharon Hutton (NCSU)



B e L
Motzkin Example

o Mot(x,y) = x*y? + x°y* + 2 — 3x2%y2, which is > 1 Vx,y € R and
which is not a SOS
= [1,x2y4,y2x4,x2y2]

@ Run SOS solver (SeDuMi, SOS Tools, etc.) in Matlab and obtain
approximate minimum: r = 0.1285480262594671800 for
Mot? — rrT1 =~ SOS

Sharon Hutton (NCSU)



B e L
Motzkin Example

o Mot(x,y) = x*y? + x°y* + 2 — 3x2%y2, which is > 1 Vx,y € R and
which is not a SOS
= [1,x2y4,y2x4,x2y2]

@ Run SOS solver (SeDuMi, SOS Tools, etc.) in Matlab and obtain
approximate minimum: r = 0.1285480262594671800 for
Mot? — rrT1 =~ SOS

@ Can we certify a lower bound?

o If yes, proves that the polynomial has no real root (Seidenberg's
Problem)

Sharon Hutton (NCSU)



Exact Sum-Of-Squares Certificates
Rationalizing a Sum-Of-Squares: “Easy Case” [Peyrl,
Parrilo, '07, '08; Kaltofen, Li, Yang, Zhi, '08]

o—»0
Wspp Woadjust

Newton iteration

0 WNewton
project

where the affine linear hyperplane, X, is tangent to the cone boundary

X ={A| AT = A Mot(X)? — Fr(X)T7(X) = m(X)T - W - m(X) = SOS}.
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Exact Sum-Of-Squares Certificates
Rationalizing a Sum-Of-Squares: “Hard Case” [Kaltofen,
Li, Yang, Zhi, '09]

o——»0
Wspp Woadjust

Newton iteration
[-) WNewton
,' recover an integer or rational matrix

-

where the affine linear hyperplane, X, is tangent to the cone boundary
X ={A| AT = A Mot(X)? — Fr(X)T7(X) = m(X)T - W - m(X) = SOS}.

Singular W: real optimizers, fewer squares, missing terms

Sharon Hutton (NCSU)



22 TR 2 G e
Sum of Squares Certificate for Motzkin Example

@ W = matrix obtained from SOS solver in Matlab
m=[1,x2y2, x2y* x*y? xy?, x3y% X2y, x*y3, xy, x>y
Want to refine W to W so that m" Wm = Mot? — ¥ r

3]T

Sharon Hutton (NCSU)



Nearest Polynomial With a Real Root Exact Sum-Of-Squares Certificates

Sum of Squares Certificate for Motzkin Example

@ W = matrix obtained from SOS solver in Matlab
m = [1,x°y2, 2y Xty xy?, x3y?, Py, xPy3, xy, 3y 3T
Want to refine W to W so that m" Wm = Mot? — ¥+ T

@ use Newton refinement on W and convert to rational matrix

Sharon Hutton (NCSU)



Nearest Polynomial With a Real Root Exact Sum-Of-Squares Certificates

Sum of Squares Certificate for Motzkin Example

@ W = matrix obtained from SOS solver in Matlab
m=[1,x2y2, x2y* x*y? xy?, x3y% X2y, x*y3, xy, x>y
Want to refine W to W so that m" Wm = Mot? — ¥ r

@ use Newton refinement on W and convert to rational matrix

3]T

@ Use rational SOS solver in Maple:
Mot(x, y)? — 12854802625942833,/100000000000000000

x (14 x*y8 + x8y* 4+ x*y*) = SOS (10 squares)

Sharon Hutton (NCSU)



2 i L G
Sum of Squares Certificate for Motzkin Example

@ W = matrix obtained from SOS solver in Matlab
m=[1,x2y2, x2y* x*y? xy?, x3y% X2y, x*y3, xy, x>y
Want to refine W to W so that m" Wm = Mot? — ¥ r

@ use Newton refinement on W and convert to rational matrix

3]T

@ Use rational SOS solver in Maple:
Mot(x, y)? — 12854802625942833,/100000000000000000
x (14 x*y8 + x8y* 4+ x*y*) = SOS (10 squares)

@ This means that the non-zero coefficients of Mot need to be
perturbed (by at least 0.128 in ¢2 -norm squared) for Mot to have a
real root.

Sharon Hutton (NCSU)



2 i L G
Sum of Squares Certificate for Motzkin Example

@ W = matrix obtained from SOS solver in Matlab
m=[1,x2y2, x2y* x*y? xy?, x3y% X2y, x*y3, xy, x>y
Want to refine W to W so that m" Wm = Mot? — ¥ r

@ use Newton refinement on W and convert to rational matrix

3]T

@ Use rational SOS solver in Maple:
Mot(x, y)? — 12854802625942833,/100000000000000000
x (14 x*y8 + x8y* 4+ x*y*) = SOS (10 squares)

@ This means that the non-zero coefficients of Mot need to be
perturbed (by at least 0.128 in ¢2 -norm squared) for Mot to have a
real root.

@ Mot(x,y) > 0Vx,y € R via a polynomial SOS certificate!

Sharon Hutton (NCSU)



Linear Constraints

Naw (@)= inf [IF =73,
fER[X1,...,Xn] .
s.t. f(a) =0,Hf = p,

deg(f) < deg(f).
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Linear Constraints

f:H . ~
N @)= inf o |IF = FIB,,
fER[X1,...,Xn] .
s.t. f(a) =0,Hf = p,

deg(f) < deg(f).

@ Jacobian of Lagrange function constitutes a linear system in
coefficients of f & multipliers!

Sharon Hutton (NCSU)



Deforming Polynomial Inequalities KKT Conditions

o include inequalities, Gf < g
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Deforming Polynomial Inequalities KKT Conditions

o include inequalities, Gf < g

@ constraint functions, being linear, are always convex.
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Deforming Polynomial Inequalities KKT Conditions

@ include inequalities, Gf < g
@ constraint functions, being linear, are always convex.

@ Lagrange function

L= (F—PTD(F =)+ At TF+ AT (HF — p)+ uT(G7 — ).

Sharon Hutton (NCSU)



KKT Conditions

The KKT conditions:

L

a—:,:O7 i=1,...,s,
of;_

7TF=0

Hf = p,

Gf <q,

IU’I'ZO, i:]-a"'ama
p'(GF—q)=0.

The last orthogonality conditions constitute branching: u; = 0 or
(Gf — q); =0, and (1) form linear programs.

Sharon Hutton (NCSU)



Systems

@ solve inconsistent system via infinity norm deformations

Sharon Hutton (NCSU)



Systems

@ solve inconsistent system via infinity norm deformations
® fi,...,fk €R[xq,...,x,], with d; = deg(f;), The distance to the
nearest system with a common root o € R” with norm " is
fi(a
{fl,---,fk}(a) — max ’ k( )‘

00,Ww

k HTHl,l/w

Sharon Hutton (NCSU)



Systems

@ solve inconsistent system via infinity norm deformations

® fi,...,fk €R[xq,...,x,], with d; = deg(f;), The distance to the
nearest system with a common root o € R” with norm " is

{ﬂ,---,fk}(a) — max ’fk(a)‘

00,Ww T_n____

k HTH1,1/W

@ Can be generalized to include complex coefficients and/or complex
roots

Sharon Hutton (NCSU)



Grobner Surprise

o A=x"+y*+1 Hh=x>+x32-2xy+1
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Grobner Surprise

o A=x"+y*+1 Hh=x>+x32-2xy+1

@ Compute Grobner basis of the numerators of partial derivatives
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Nearest Consistent System

Grobner Surprise

o A=x"+y*+1 Hh=x>+x32-2xy+1
@ Compute Grobner basis of the numerators of partial derivatives

@ Find all real roots of the first polynomial in the basis and plug all 9
choices into a second polynomial in the Grobner basis.
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Grobner Surprise

o A=x"+y*+1 Hh=x>+x32-2xy+1
@ Compute Grobner basis of the numerators of partial derivatives

@ Find all real roots of the first polynomial in the basis and plug all 9
choices into a second polynomial in the Grobner basis.

@ Compute the norm of each possible point and select the minimum
value.

Sharon Hutton (NCSU)



Grobner Surprise

(]

A=x*4+y*+1 h=x>+x%y2—2xy +1

Compute Grobner basis of the numerators of partial derivatives

(4]

Find all real roots of the first polynomial in the basis and plug all 9
choices into a second polynomial in the Grobner basis.

(4]

(]

Compute the norm of each possible point and select the minimum
value.

20 digits: x = 2.5645, y = —0.2751, A" = 0.9180.

(4]
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Grobner Surprise

o A=x"+y*+1 Hh=x>+x32-2xy+1
@ Compute Grobner basis of the numerators of partial derivatives

@ Find all real roots of the first polynomial in the basis and plug all 9
choices into a second polynomial in the Grobner basis.

@ Compute the norm of each possible point and select the minimum
value.

o 20 digits: x = 2.5645, y = —0.2751, A" = 0.9180.
o 25 digits: x = —0.9202 y = —1.1947, A" = 0.64508
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Grobner Surprise

o A=x"+y*+1 Hh=x>+x32-2xy+1
@ Compute Grobner basis of the numerators of partial derivatives

@ Find all real roots of the first polynomial in the basis and plug all 9
choices into a second polynomial in the Grobner basis.

@ Compute the norm of each possible point and select the minimum
value.

o 20 digits: x = 2.5645, y = —0.2751, A" = 0.9180.
o 25 digits: x = —0.9202 y = —1.1947, A" = 0.64508
Why? Truncate coefficients of fsolve

(4]

Sharon Hutton (NCSU)



Conjecture

@ If there exists a weight vector such that the radius of positive
semidefiniteness is > 0 then there is a SOS certificate for that
polynomial.

o If f € R[xy,...,xpn| then 3 w, a vector of positive and infinite
weights, s.t. po (f) > 0 then r* >0 in

r*:=sup r

reR,W
s.t. F(X2=rrTD7tr = m(X)T W m(X) ()
W=o0, Wl =w

Sharon Hutton (NCSU)



Conjecture

@ If there exists a weight vector such that the radius of positive
semidefiniteness is > 0 then there is a SOS certificate for that
polynomial.

o If f € R[xy,...,xpn| then 3 w, a vector of positive and infinite
weights, s.t. po (f) > 0 then r* >0 in

r*:=sup r

reR,W
s.t. F(X2=rrTD7tr = m(X)T W m(X) ()
W=o0, Wl =w

@ Note that we have seen that po ,(f) <0, if f has a projective root at
infinity, and p2 . (f) > 0 makes f and w quite special.
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Danke schon!
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"End Key" Wrong!
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