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Abstract This paper gives an overview of the research

papers published in Symbol Grounding in the period

from the beginning of the 21st century up 2012. The

focus is in the use of symbol grounding for robotics

and intelligent system. The review covers a number of

subtopics, that include, physical symbol grounding, so-

cial symbol grounding, symbol grounding for vision sys-

tems, anchoring in robotic systems, and learning sym-

bol grounding in software systems and robotics. This

review is published in conjunction with a special is-

sue on Symbol Grounding in the Künstliche Intelligenz

Journal.

Keywords Symbol Grounding · Anchoring · Cognitive

Robotics · Social Symbol Gronding

1 Introduction

The main dream of Artificial Intelligence has been to

create autonomous and intelligent systems that can rea-

son and act in the real world. For such a dream to

become true an essential ingredient is to establish and

maintain a connection between what the system reasons

about and what it can sense in the real world. This can

be considered as an aspect of the Symbol Grounding

Problem. The Symbol Grounding Problem (SGP) has

been defined by Harnad in [29] as the problem of how

to ground the meanings of symbol tokens in anything

different than other (meaningless) symbols. Since its

definition, symbol grounding has been an area of inter-

est both in the fields of psychology as well as artificial
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intelligence. Its practical application has also been stud-

ied in robotics and intelligent systems, with particular

emphasis on the problem of grounding symbols to the

data acquired by physically embedded sensors. It is this

practical application which is the focus of this paper.

The review covers the recent literature in the subject

and in particular the period from 2000 to 2012 and is

organized into two subtopics which relate to the cur-

rent approaches to SGP in robotics and intelligent sys-

tems: Physical Symbol Grounding and Social Symbol

Grounding. The ”Physical Symbol Grounding” as been

defined by Vogt in [74] as the grounding of symbols to

real world objects by a physical agent interacting in the

real world; while its social component, ”Social Symbol

Grounding”, refers to the collective negotiation for the

selection of shared symbols (words) and their grounded

meanings in (potentially large) populations of agents as

defined by Cangelosi in [10].

These are both significant and hard problems. As

explained in [74] Physical Symbol Grounding requires

constructing a consistent relation between percepts that

may vary under different conditions, and which often

have a high dimensionality. Categorising the dimen-

sionalities may yield different categories, which however

should be related to one concept often with the help of

invariant feature detectors. According to Vogt [77] the

social symbol grounding problem may even be a harder

problem to solve, because to learn what a word-form

refers to can result in Quine’s referential indeterminacy

problem: the unknown word can -theoretically- refer to

an infinite number of objects. Vogt investigated in [77]

a number of heuristics from child language acquisition

literature that help to reduce this indeterminacy: joint

attention, principle of contrast and corrective feedback.

In [76] mutual exclusivity, and a few potential dialogues
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that help to reduce referential indeterminacy have been

also implemented.

It is worth to note that a recent review of Symbol

Grounding has been published in 2005 by Taddeo [69]

which specifically addresses SGP as a general problem

from a philosophical perspective. A volume edited by

Belpaeme [2] presents current views on symbol ground-

ing both from a philosophical and robotics perspec-

tive.This review is complementary as it focuses on work

of more practical relevance to robotics and intelligent

systems. Finally Cangelosi in [12] discusses the current

progress and solutions to the symbol grounding prob-

lem and specifically identifies which aspects of the prob-

lem have been addressed and issues and scientific chal-

lenges that still require investigation.

It is the authors belief that the focus of this review

is especially timely as the steps towards the solution of

the SGP will be key to creating the next generation of

robotic systems that are capable of high level reasoning.

The review is structured in a number of subtopics.

In the Physical Symbol Grounding section learning of

categories on the basis of sensor data and grounding

of actions are considered. In addition the concept of

Anchoring of symbols to sensor data is defined and the

work in this topic is summarized. The review ends with

a summary of works in Social Symbol Grounding and

works on Symbol Grounding applied to the semantic

web.

2 Physical Symbol Grounding

When dealing with the Physical Symbol Grounding,

one of the basic challenges examined in the literature is

to ground symbols to perceptual representations (sen-

sor data), where the symbols denote categorical con-

cepts such as color, shape and spatial features. Typi-

cally, the sensor data come from vision sensors but other

modalities have also been used. The methods explored

are often inspired by connectionist models and a wide

range of learning algorithms have been applied. Unsu-

pervised methods have been investigated by Vavrecka

in [73] where a biologically inspired model for ground-

ing spatial terms is presented. Color, shape and spa-

tial relations of two objects in 2D space are grounded.

Images with two objects are presented to an artificial

retina and five-word sentences describing them (e.g.

“Red box above green circle”) are inputed. The im-

plementation is done using Self-Organizing Map and

Neural Gas algorithms. The Neural Gas algorithm is

found to lead to better performance especially in case of

scenes with higher complexity. In [36] Kittler considers

a visual bootstrapping approach for the unsupervised

symbol grounding. The method is based on a recursive

clustering of a perceptual category domain controlled

by goal acquisition from the visual environment.

A supervised method is used in a framework for

modeling language in neural networks and adaptive agent

simulations by Cangelosi [9]. In this work symbols are

directly grounded into the agents’ own categorical rep-

resentations and have syntactic relationships with other

symbols. The grounding of basic words, acquired via di-

rect sensorimotor experience, is transferred to higher-

order words via linguistic descriptions.

Emphasizing the dynamic nature of language, Pas-

tra suggests that Symbol Grounding is a bi-directional

process (double-grounding) [55, 56]; its use in artificial

intelligence agents allows one to tie symbols of differ-

ent levels of abstraction to their sensorimotor instan-

tiations (catering thus for disambiguation) and at the

same time, to untie sensorimotor representations from

their physical specificities correlating them to symbolic

structures of different levels of abstraction (catering

thus for intentionality indication). In other words, go-

ing bottom up (from sensorimotor representations to

symbols) the agent acquires a hierarchical composition

of human behaviour, while going top-down (from sym-

bols to sensorimotor representations) the agent gets

intentionality-laden interpretations of those structures.

Such two-way grounding has been captured in an

automatically built knowledge base, the PRAXICON,

which comprises a semantic network of embodied con-

cepts and pragmatic relations [57, 58]. The concepts

have multiple representations (linguistic, visual, mo-

toric) and their rich relational network builds upon

findings from neuroscience that have led to an action-

centric structure of the network [59]. This is a semantic

memory-like module with its own reasoning mechanism
for allowing an agent to generalise over learned schemas

and behaviours and deal with unexpected situations

creatively. Both the reasoner and the language process-

ing tools for the automatic population of such memory

module advocate the embodied cognition perspective,

coupling symbols to their references, dealing with ab-

stract concepts and their indirect grounding to sensori-

motor experiences, as well as with figurative language

phenomena, such as metonymy and metaphor [61,62].

The tools and knowledge bases developed within

the double-grounding perspective have been employed

in a number of robotic applications with the iCub hu-

manoid, including (a) the robot doer in response to ver-

bal requests for performing everyday activities and (b)

the robot active observer in visual scenes where the ac-

tions of a human are being observed and verbalised by

the robot 1 [60].

1 POETICON++ and POETICON projects (2008-2015) at
http://www.poeticon.eu and http://www.csri.gr/Poeticon
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A few works consider the combination of both vi-

sual and auditory data, where the combination gives a

better result than using one modality alone. In [78] a

multimodal learning system is presented by Yu that

can ground spoken names of objects in their physi-

cal referents and learn to recognize those objects si-

multaneously from vocal and vision input. The system

collects image sequences and speech input while users

perform natural tasks and grounds spoken names of

objects in visual perception, also learning to catego-

rize visual objects using teaching signals encoded in co-

occurring speech. Also Nakamura uses in [49,50] vision

and speech for multimodal categorization and words

grounding by robots. The robot uses its physical em-

bodiment to grasp and observe an object from various

view points, as well as to listen to the sound during the

observing period. The method used is Latent Dirich-

let allocation (LDA)-based framework and experimen-

tal results with 40 objects (eight categories) show an

improvement with respect to just visual categorization

and show the possibility of a conversation between a

user and the robot based on the grounded words. In [51]

a system involving vision and audio data is presented

by Needham that is capable of autonomously learning

concepts (utterances and object properties) from per-

ceptual observations of dynamic scenes. This work goes

beyond categorical learning and learns also protocols

from the perceptual observations. The motivation is the

development of a synthetic agent that can observe a

scene containing interactions between unknown objects

and agents, and learn models of these sufficient to act

in accordance with the implicit protocols present in the

scene. The system is tested by learning the protocols

of simple table-top games where perceptual classes and

rules of behaviors from real world audio-visual data is

learnt in an autonomous manner.

Additional sensor modalities have been used by Groll-

man in [28] where symbol grounding in robot perception

is considered through a data-driven approach deriving

categories from robot sensor data that include infrared,

sonar and data from a time-of-flight distance camera.

Isomap nonlinear dimension reduction and Bayesian clus-

tering (Gaussian mixture models) with model identifi-

cation techniques are used to discover categories. Trials

in various indoor and outdoor environments with dif-

ferent sensor modalities are presented and the learned

categories are then used to classify new sensor data.

2.1 Perceptual Anchoring

A special case of Symbol Grounding is the connection

of sensor data coming from physical objects to higher

level symbolic information that refers to those objects.

The process of creating and maintaining this connection

is called Anchoring and has been formally defined by

Coradeschi in [17] and then in [18].

The use of anchoring in planning, recovery plan-

ning and solving of ambibuities is explored in works of

Karlsson and Broxvall [5, 6, 35] Anchoring with other

sensor modalities like olfaction is explored in works

of Loutfi and Broxvall [7, 40–42] while the integration

of high-level conceptual knowledge on a single agent,

via the combination of a fully-fledged Knowledge Rep-

resentation and Reasoning (KR&R) system with the

anchoring framework and more specifically, the use of

semantic knowledge and common-sense information so

as to enable reasoning about the perceived objects at

the conceptual level has been considered by Lemaignan

and Daoutis in [22, 38]. Cooperative anchoring among

robots in a robot soccer application is presented by

LeBlanc in [37] while multi-agent anchoring in a smart

home environment is presented in works of Broxvall and

Daoutis [7, 20].

A framework for computing the spatial relations be-

tween anchors is presented by Melchert in [43–45] where

a set of binary spatial relations were used to provide

object descriptions. Human interaction is used to dis-

ambiguate between visually similar objects. Similarly

in [46] an approach to establish joint object reference is

formulated by Moratz. The object recognition approach

assigns natural categories (e.g. ”desk”, ”chair”, ”table”)

to new objects based on their functional design, rela-

tions (e.g. ”the briefcase to the left of the chair”) are

then established allowing users to refer to objects which

cannot be classified reliably by the recognition system

alone.

Anchoring has also been used by Lemaignan [39]

to enable a grounded and shared model of the world

that is suitable for dialogue understanding. Realistic

human-robot interactions are considered that deal with

complex, partially unknown human environments and a

fully embodied (with arms, head,...) autonomous robot

that manipulates a large range of household objects. A

knowledge base models the beliefs of the robot and also

every other cognitive agent the robot interacts with. A

framework is also presented to extract symbolic facts

from complex real scenes. The robot builds a 3D model

of the world on-line by merging different sensor modali-

ties. It computes spatial relations between perceived ob-

jects in realtime and the system allows virtually viewing

of the same scene from different points of view.

A different approach to anchoring is presented by

Heintz in [30,32,33] where anchoring is considered in the

context of unmanned aerial vehicles. In their stream-

based hierarchical anchoring framework, a classification

hierarchy is associated with expressive conditions for
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hypothesizing the type and identity of an object given

streams of temporally tagged sensor data. A metric

spatio-temporal logic is used to represent the conditions

which are efficiently evaluated over these streams using

a progression-based technique. The anchoring process

constructs and maintains a set of object linkage struc-

tures representing the best possible hypotheses at any

time. Each hypothesis can be incrementally generalized

or narrowed down as new sensor data arrives. Symbols

can be associated with an object at any level of classifi-

cation, permitting symbolic reasoning on different levels

of abstraction.

Additional approaches of anchoring are presented in

a special issue on Anchoring published by the Robotics

and Autonomous Systems Journal. In [64] an overview

of the GLAIR approach to anchoring is outlined by

Shapiro where abstract symbolic terms that denote an

agent’s mental entities are anchored to the lower-level

structures used by the embodied agent to operate in the

real (or simulated) world. In [75] the anchoring problem

is approached by Vogt using semiotic symbols defined

by a triadic relation between forms, meanings and refer-

ents. Anchors are formed between these three elements

and a robotic experiment based on adaptive language

games is presented that illustrates how the anchoring

of semiotic symbols can be achieved in a bottom-up

fashion. Person tracking using anchoring has been in-

vestigated by Fritsch in [25] where laser range data is

used to extract the legs of a person while camera images

from the upper body part are used for extracting the

faces. The results of the different percepts, which origi-

nate from the same person are combined in one anchor

for the person.

An interesting application of Anchoring is in the

field of topological maps and in particular the inves-

tigation of the connection of symbolic information to

spatial information. Work in this area has been pre-

sented by Galindo in [26,27] where a multi-hierarchical

approach is used to acquire semantic information from

a mobile robot sensors for navigation tasks. The spa-

tial information is anchored to the semantic information

and the approach is validated via experiments where a

mobile robot uses and infers new semantic information

from its environment, improving its operation. Simi-

larly Elmogy in [23] investigates how a topological map

is generated to describe relationships among features of

the environment in a more abstract form to be used in

a robot navigation system. A language for instructing

the robot to execute a route in an indoor environment is

presented where an instruction interpreter processes a

route description and generates its equivalent symbolic

and topological map representations. Finally Blodow

in [4] uses semantic mapping in kitchen environments

to help performing manipulation tasks.

3 Grounding Words in Action

The research group headed by Cangelosi has been work-

ing in cognitive robotics models using the humanoid

robot iCub. In [66,67] a cognitive robotics model is de-

scribed in which the linguistic input provided by the

experimenter guides the autonomous organization of

the knowledge of the iCub. A hierarchical organiza-

tion of concepts is used for the acquisition of abstract

words. Higher-order concepts are grounded using ba-

sic concepts and actions that are directly grounded in

sensorimotor experiences. The method used is a re-

current neural network that permits the learning of

higher-order concepts based on temporal sequences of

action primitives. In [11] a review of cognitive agent

and developmental robotics models of the grounding of

language is presented. Three models are discussed: a

multi-agent simulation of language evolution, a simu-

lated robotic agent model for symbol grounding trans-

fer, and a model of language comprehension in the hu-

manoid robot iCub. The complexity of the agent’s sen-

sorimotor and cognitive system gradually increases in

the three models. In previous works [13,15] the combi-

nation of cognitive robotics with neural modeling method-

ologies is also considered to demonstrate how the lan-

guage acquired by robotic agents can be directly grounded

in action representations, in particular language learn-

ing simulations show that robots are able to acquire

new action concepts via linguistic instructions. Finally

in [14] an embodied model for the grounding of language

in action is presented and experimented on epigenetic

robots. Epigenetic robots have an integrative vision of

language in which linguistic abilities are strictly depen-

dent on and grounded in other behaviors and skills. Ex-

periments done with simulated robots show that higher

order behavioral abilities can be autonomously built on

previously grounded basic action categories following

linguistic interaction with human users.

Another approach to learning of actions is presented

by Oladell in [54] where representational complexity is

managed using a symbolic feature representation gener-

ated via policies, affordances and goals. The approach

is demonstrated in a simulation environment with a

robot arm and camera. Learning tasks revolve around

lift, move, and drop and the policies are learnt using

QLearning. The agent learns new policies, affordances

and goals and adds them to the dictionary. After each

addition, the best common sub-structure is extracted.

Learning of meanings of both action and substantive

words is presented by Tellex in [70] where a probabilis-
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tic approach is used to learn word meanings from large

corpora of examples and use those meanings to find

good groundings in the external world. The framework

handles complex linguistic structures such as referring

expressions (for example, ”the door across from the el-

evators”) and multiargument verbs (for example, ”put

the pallet on the truck”) by dynamically instantiating

a conditional probabilistic graphical model that factors

according to the compositional and hierarchical struc-

ture of a natural language phrase.

4 Social Symbol Grounding

A recent line of research in Symbol Grounding is So-

cial Symbol Grounding. As defined by Cangelosi [10]

the social symbol grounding considers the next step af-

ter the connections between the sensor data and sym-

bols for individual agents are achieved, that is how can

these connections be shared among many agents. Sev-

eral approaches have been presented to address this is-

sue. Heintz in [31] presents a distributed information

fusion system for collaborative UAVs. In [65] Steels ex-

amines if a perceptually grounded categorical repertoire

can become sufficiently shared among the members of

a population to allow successful communication, using

color categorization as a case study. Several models are

proposed that are inspired by alternative hypotheses of

human categorization. He has proposed various robotic

models of the emergence of communication based on

the languages games for the Talking Heads experiments

and the AIBO and QRIO robots.The paper argues that

the collective choice of a shared repertoire must inte-

grate multiple constraints, including constraints com-

ing from communication. Similarly Fontanari in [24]

use language games to study evolution of compositional

lexicons. In [77] the New Ties project is presented. The

project aims at evolving a virtual simulated cultural

society where the agents evolve a communication sys-

tem that is grounded in their interactions with their

virtual environment and with other individuals. An hy-

brid model of language learning involving joint atten-

tion, feedback, cross-situational learning and the prin-

ciple of contrast is investigated. A number of experi-

ments are carried out in simulation showing that levels

of communicative accuracy better than chance evolve

quite rapidly and that accuracy is mainly achieved by

the joint attention and cross-situational learning mech-

anisms while feedback and the principle of contrast con-

tribute less. As mentioned in the introduction the so-

cial symbol grounding problem is a difficult problem to

solve, because an unknown word can -theoretically- re-

fer to an infinite number of objects. Vogt investigated

in [77] a number of heuristics from child language acqui-

sition literature that help to reduce this indeterminacy:

joint attention, principle of contrast and corrective feed-

back. In [76] mutual exclusivity, and a few potential

dialogues that help to reduce referential indeterminacy

have been also implemented. In [68] it is argued that the

primary motivation for an agent to construct a symbol-

meaning mapping is to solve a tasks, in particular it

is investigated how agents learn to solve multiple tasks

and extract cumulative knowledge that helps them to

solve each new task more quickly and accurately.

The relevance of joint attention as found by [77] and

the motivation to solve a joint task [68] indicate the rel-

evance of taking cues arising from the current situation

into account. Even more, Belpaeme & Cowley [3] argue

that the symbol grounding problem as defined by Har-

nad [29] has to be extended to incorporate the process

of language acquisition itself as language facilitates the

acquisition of meaning [1].

Indeed, studies of parent-infant interaction indicate

that parents help their infants to understand not sim-

ply the relationship between a symbol and a referent,

but rather by making sense of a whole situation to

them. They do so by presenting re-curring patterns of

interaction that facilitate further learning of new items

or actions in similar situations. Recurring patterns (or

“pragmatic frames”) contain important pragmatic in-

formation that help to decode the semantic informa-

tion. More specifically, frames provide “predictable, re-

current interactive structures” [52] (p. 171) that scaffold

the childs emerging understanding [72] as new linguis-

tic labels will be perceived as a new slot within a fa-

miliar routine. Some robotic approaches already try to

model these interactional cues by establishing frames to

achieve Joint Attention through mutual gaze [47], guid-

ing attention through saliency-based strategies [48], or

to establish a temporal alignment through synchrony-

based strategies [63] or the elicitation of contingent

feedback [8]. These frames provide more information

than the simple establishment of symbol-referent asso-

ciations. Rather, they contain - among others - informa-

tion about semantic roles (e.g. agent-patient relations

but also about the nature of goals or constraints of ac-

tions, as well as success and failure) and thus semantic-

syntactic relations which are important to enable gener-

alisation to new situations. Understanding is thus seen

as a continuous process rather than a (static) repre-

sentation that establishes associations between symbols

and internal sensori-motor concepts.

The process of how joint understanding of a shared

situation can be achieved has also been formulated in

a more formalised way through the step-wise process

of “grounding” [16] which describes 4 levels (attention,
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signal decoding, semantic processing, intention recog-

nition) that need to be grounded in order to achieve

mutual understanding.

However, while well founded in infant development,

these concepts yet lack the proof-of-concept that they

indeed facilitate language learning by providing rele-

vant information that - if taken into account - would

significantly influence the learning dynamics. If these

considerations hold true, this would mean to re-consider

Cangelosi’s definition of social symbol grounding as a

second step that enables to share connections between

percepts and symbols [10]: one would have to consider

the social symbol grounding problem as the initial step

that facilitates the acquistion of language and meaning

without which no such relations can be learned.

5 Grounding symbols in the Semantic Web

Recent trends examine the Symbol Grounding Prob-

lem in the context of web technologies and specifically

the semantic web. In [34] Semantic Web technologies

are used by Johnston for grounding robotic systems. In

particular the OBOC robotic software system includ-

ing an ontology-based vision subsystem is presented.

OBOC has been tested and evaluated in the robot soc-

cer domain. The grounding of knowledge for everyday

tasks using the World Wide Web has been considered

by Nyga and Tenorth in [53,71] while a first attempt of

an extension of the anchoring framework to handle the

grounding and integrate symbolic and perceptual data

that are available on the web is outlined by Daoutis

in [21].

The problem of giving semantics to the semantic

web is considered by Cregan in [19]. The paper argues

that the symbol grounding problem is of relevance for

the Semantic Web as inappropriate correspondence be-

tween symbol and referent can result in logically valid

but meaningless inferences. In fact ontology languages

can provide a means to relate data items to each other

in logically well-defined ways, but they are intricate

”‘castles in the air”’ without a pragmatic semantics

linking them in a systematic and unambiguous way to

the real world entities they represent.

6 Conclusions

This short review presents recent work in Symbol Ground-

ing that is focused on the use of symbol grounding in

robotics and intelligent systems applications. The field

is clearly very active and many articles have been pub-

lished in recent years. This is a consequence of the cur-

rent trends of integrating robots and distributed sys-

tems in unstructured and dynamic environments. Such

environments require a flexible handling of knowledge

and the connection of symbolic and sensory informa-

tion to be able to successfully operate. In addition sys-

tems where humans have an active role are becoming

more common. Here symbol grounding is essential to

insure meaningful natural language communication. Fi-

nally the use of the web as a source of information about

objects and their properties is providing new opportuni-

ties to access a very large and updated storage of data,

both symbolic and visual. The use of symbol grounding

to connect the information in the web to real data is

maybe the most important challenge for the field.
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