Ambient References:
Addressing Objects in Mobile Networks

Tom Van Cutsem *
Elisa Gonzalez

Jessie Dedecker *
Theo D’Hondt

Stijn Mostinckx '
Wolfgang De Meuter

Programming Technology Lab
Vrije Universiteit Brussel
Brussels — Belgium

{tvcutsem,jededeck,smostinc,egonzale,tjdhondt,wdmeuter} @ vub.ac.be

Abstract

A significant body of research in ubiquitous computing deals with
mobile networks, i.e. networks of mobile devices interconnected
by wireless communication links. Due to the very nature of such
mobile networks, addressing and communicating with remote ob-
jects is significantly more difficult than in their fixed counterparts.
This paper reconsiders the remote object reference concept — one
of the most fundamental programming abstractions of distributed
programming languages — in the context of mobile networks. We
describe four desirable characteristics of remote references in mo-
bile networks, show how existing remote object references fail to
exhibit them, and subsequently propose ambient references: remote
object references designed for mobile networks.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—distributed languages; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords pervasive computing, ubiquitous computing, mobile
ad hoc networks, remote object references, language design

1. Introduction

The past couple of years, pervasive and ubiquitous computing have
received more and more attention from academia and industry
alike. Wireless communication technology and mobile computing
technology have reached a sufficient level of sophistication to sup-
port the development of a new breed of applications. Such appli-
cations involve software running on mobile devices surrounded by
a mobile network. The network’s wireless capabilities, combined

* Research Assistant of the Fund for Scientific Research Flanders, Belgium
(FW.0.)

T Author funded by a doctoral scholarship of the Institute for the Pro-
motion of Innovation through Science and Technology in Flanders IWT-
Vlaanderen)

Copyright is held by the author/owner(s).

OOPSLA’06 October 22-26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

with the mobility of the devices, results in applications where soft-
ware entities spontaneously detect one another, engage in various
collaborations, and may disappear as swiftly as they appeared.

Although there has been a lot of active research with respect
to mobile computing middleware [17], thus far we observe that, at
the software-engineering level, there is little innovation in the field
of programming language research to tackle the issues raised by
mobile networks. Although distributed programming languages are
rare, they form a suitable development tool for encapsulating many
of the complex issues engendered by distribution [4, 6]. The dis-
tributed programming languages developed to date have either been
designed for high-performance computing (e.g. X10 [9]), for reli-
able distributed computing (e.g. Argus [15]) or for general-purpose
distributed computing in fixed, stationary networks (e.g. Emerald
[13], Obliq [8], E [19]). None of these languages has been explic-
itly designed for mobile networks. They lack the language support
necessary to deal with the radically different network topology.

This paper directly focusses on distributed programming lan-
guage support for mobile networks. This language support is
founded on what we have previously named the ambient-oriented
programming paradigm [10]. This novel paradigm of computing
is based on the hardware phenomena fundamentally distinguishing
mobile from fixed networks and advocates languages which ex-
plicitly incorporate language support for dealing with them. Within
the boundaries of this paradigm, this paper reconsiders one of the
most fundamental language abstractions of a distributed object-
oriented programming language: the remote object reference. We
show why there is a mismatch between remote object references
in their current incarnation in contemporary distributed languages
and the dynamically demarcated mobile networks in which they
must operate.

The paper contributes to the intersection of two research areas,
to wit programming language design and ubiquitous computing.
Four characteristics of remote references are identified which are
necessary to expressively address and communicate with objects
in mobile networks. Subsequently, a family of referencing abstrac-
tions named ambient references is introduced which exhibit those
necessary characteristics. In order to motivate the need for better
referencing abstractions in mobile networks, we first discuss the
impact of the mobile hardware on software in section 2. After pre-
senting the characteristics in section 3, we introduce an actor-based
computational framework to anchor our explanation of ambient ref-
erences. Ambient references themselves are introduced in section 5
and are shown to exhibit the characteristics in section 6. We briefly
touch upon the implementation of ambient references in section 7.
Before concluding, we summarize related work and discuss limita-
tions and future work.

2. Motivation

Based on the fundamental characteristics of mobile hardware, we
discern a number of phenomena which mobile networks exhibit.
Because these phenomena are so innate to the hardware from which
a mobile distributed system is composed, they form a solid foun-
dation for the desirable characteristics of remote object references
explained in section 3.

There are two discriminating properties of mobile networks:
applications are deployed on mobile devices which are connected
by wireless communication links with a limited communication
range. The type of device and the type of wireless communication
medium can vary, leading to a diverse set of possible applications.
One can imagine such devices to be physical objects “digitized”
via RFID tags, embedded devices (e.g. a car’s on-board computer)
or simply tiny computers such as cellular phones or PDAs. All
of these devices can in turn be interconnected by diverse wireless
networking technology, with ranges as wide as WiFi or as limited
as IrtDA.

In such a hardware landscape, the most modest type of applica-
tions are so-called collaborative applications [14] which are based
on e.g. a number of PDAs or laptops spontaneously interacting with
one another (e.g. a collaborative text editor). More interesting ap-
plications can be envisaged where e.g. streets, buildings, public
transportation networks and shops are all equipped with wireless
networking technology, allowing for the exchange of all kinds of
information between the system and proximate citizens, travellers,
customers, etc. Such applications are not far-fetched, they exist or
are being prototyped as we speak.

Mobile networks composed of mobile devices and wireless
communication links exhibit a number of phenomena which are
rare in their fixed counterparts. In previous work, we have remarked
that mobile networks exhibit the following phenomena [10]:

Volatile Connections. Mobile devices equipped with wireless me-
dia possess only a limited communication range, such that two
communicating devices may move out of earshot unannounced.
The resulting disconnections are not always permanent: the two
devices may meet again, requiring their connection to be re-
established. Quite often, such transient disconnections should
not affect an application, allowing both parties to continue their
collaboration where they left off.

Ambient Resources. In a mobile network, devices hosting ser-
vices or resources spontaneously join with and disjoin from the
network. As a result, in contrast to stationary networks where
applications usually know where to find their resources via
URLs or similar designators, applications in mobile networks
have to find their required resources dynamically in the envi-
ronment. Moreover, applications have to face the fact that they
may be deprived of the necessary resources or services for an
extended period of time. In short, resources are ambient: they
have to be discovered on proximate devices.

Autonomous Devices. In mobile wireless networks, devices may
encounter one another in locations where there is no access
whatsoever to a shared infrastructure (such as a wireless base
station). Even in such circumstances, two devices should be
able to discover one another in order to start a useful collab-
oration. These observations lead to a setup where each device
acts as an autonomous computing unit: a device must be capa-
ble of providing its own services to proximate devices.

In an object-oriented language, the scenarios described above
can be abstractly interpreted as a set of mobile object systems em-
bedded in a wireless ether. In such systems, remote object refer-
ences form the glue between the different object systems. However,
as the complexity of applications deployed on mobile networks in-

987

creases, the above unavoidable hardware phenomena cannot keep
on being remedied using ad hoc solutions. As we will describe next,
classical remote object references break down when the object sys-
tems physically move about in unpredictable ways. In what follows,
we describe necessary and desirable characteristics of remote ref-
erences for mobile networks.

3. Addressing Objects in Mobile Networks

This section identifies four characteristics which remote object ref-
erences should exhibit in order to adequately cope with the above
hardware phenomena. We discuss the driving forces behind the
characteristics and show how remote object references in contem-
porary distributed object-oriented languages fail to exhibit them.

3.1 Provisional Object References

In order to acquire initial remote object references to objects on
remote devices, these objects have to be initially addressed via an
external description. This description can take the form of a sim-
ple string representing an object’s name (as e.g. in Java RMI) or it
may be a more intensional description of a service (e.g. an interface
type in JIND). In traditional, stationary, distributed systems a lookup
service or name server is used to resolve such an external descrip-
tion into a remote reference. In a network composed of mobile au-
tonomous devices, it is clear that such lookup services are too in-
flexible for acquiring the addresses of services. Not only do they
superimpose a fixed infrastructure on the mobile network, most
lookup servers make use of synchronous communication to resolve
names into references. Clients query the lookup service for a name,
await a response and are faced with an exception if the requested
object is currently unavailable. However, in mobile networks, the
chances of a requested service being temporarily unavailable are
much higher than in stationary, administered networks. There is
a mismatch between the synchronous request-response model and
the asynchronous, event-driven nature of the physical environment.

In order to deal with the inflexibility of simple lookup services,
more elaborate service discovery protocols have been devised [18].
Such protocols typically employ a peer discovery protocol based
on broadcasting. In such discovery protocols, a remote reference to
a service is often acquired asynchronously via publish-subscribe
communication. The discovery mechanism allows clients to ex-
press their interest in a particular service and notifies them asyn-
chronously when it becomes available on the network, usually pass-
ing along a reference to the remote service object. Asynchronous
notification of discovery events has drawbacks of its own, however.
It is well-known that callback methods used to process asynchron-
ous replies often lack sufficient context information (i.e. the caller’s
state) to process the result unless this context is explicitly passed
along. Also, callbacks are a source of race conditions: calls and
callbacks may be processed in an interleaved manner and the call-
back’s thread (e.g. the service discovery thread) may interfere with
the calling thread (e.g. the thread that spawned a discovery request)
as they usually operate in parallel on the same scope.

In short, remote object references must be acquired from an
external description either synchronously, an impractical solution
when services are often unavailable, or asynchronously, leading to
a fragmentation of the code requesting the reference and the code
using the reference. The root cause of the problem is that remote
object references lack the ability to explicitly represent “objects
yet to be discovered”. There is no means to construct ad interim
remote object references which may act as a stand-in for objects
which are not available yet. Such a stand-in would allow the client
to send messages to and pass around the stand-in object when the
real service is not yet discovered. The discovery mechanism would
then replace the stand-in by a real service when such a service
would become available. Such an abstraction is very reminiscent

of the concept of a future [3], discussed in more detail in section
5.2.

The volatile connections and ambient resources hardware
phenomena combined imply that applications will often have to
refer to remote communication partners which have not been dis-
covered yet. These phenomena thus lead us to define the provi-
sionality characteristic: the ability of remote object references to
provisionally denote “objects yet to be discovered” via an external
description.

3.2 Resilience to Partial Failures

Once a remote reference has been acquired, it forms a communica-
tion channel between two objects, each located on another device.
However, volatile connections — omnipresent in mobile ad hoc net-
works — have a large impact on the behaviour of these commu-
nication channels. Disconnections usually immediately percolate
into the application level by means of exceptions. The obligation
to deal with potential exceptions whenever a message is sent to a
remote object precludes the developer from abstracting from tem-
porary or transient network disconnections, and requires clumsy
while-loops or more advanced scheduling code to retry sending
the message. Note that our argument against disconnection excep-
tions is no argument in favour of completely transparent distributed
communication, which is impossible to attain even in fixed net-
works [24]. It should, however, be possible for the software devel-
oper to specify in an orthogonal manner when a disconnection may
be regarded as transient and may be ignored, and when it must be
dealt with as a permanent failure.

In many languages or middleware a disconnection breaks the
remote object reference, rendering it useless. This behaviour is jus-
tified when failures are exceptional [19], but in networks where fail-
ures have a high chance of being only transient, a different mech-
anism is called for. In mobile networks, the expected behaviour is
for the remote reference to reconnect upon re-establishing a con-
nection. What is needed is a kind of “elastic” remote reference:
when the remote device it points to moves out of range, the refer-
ence should be maintained until the device comes back in range.

The volatile connections hardware phenomenon, the fact that
connections are often intermittent due to device mobility, leads us
to postulate the resilience characteristic of remote object refer-
ences: their ability to survive transient network partitions.

3.3 Transitory Addressing

Remote object references act as a designator for a remote object.
A remote object reference is fundamentally different from a local
object reference because it cannot address the remote object with
a conventional memory address, as that object lives in a separate
address space. Therefore, a remote object reference is typically
implemented via a unique ID (UID) constructed from e.g. the IP
or MAC address of the remote host. The remote reference only
exists in one’s mind’s eye: it is an empty local object storing the
UID, accompanied by a table at the remote host mapping this ID to
a local object reference.

Unfortunately, a remote reference using a UID-based address
to denote its remote object is inflexible. Remote object references
are intimately coupled to the internal UID which are only valid
as long as the particular remote object remains available. In mo-
bile networks, identical services may be available on different de-
vices. As a device roams, it is desirable to make abstraction from
the specific devices hosting a service. For example, it is typically
irrelevant to a user which wireless base station provides his or her
laptop with internet access. Similarly, when using a cellular phone,
a user is not interested in which antenna connects it to the telecom
network. Moreover, as the user moves out of range of one service
provider, the desired behaviour is for the application to reconnect to

988

an equivalent provider, i.e. the “dangling” reference from client to
service should rebind to an equivalent, yet not identical remote ser-
vice object. UIDs are usually partly comprised of the address of a
specific machine and would disallow such rebinding. Being able to
seamlessly rebind remote references is a crucial step towards more
self-reconfigurable mobile applications.

Generally, the programmer is forced to deal with the problem of
rebinding by allocating a new remote object reference. The old one
has become unusable and must be discarded. The fact that a new
remote object reference has to be allocated for addressing the con-
ceptually identical object opens up the possibility for unnecessary
and subtle bugs if not all clients of the old remote reference consis-
tently update their variables to contain the new remote reference.

In short, UIDs do not serve the role of a loosely-coupled, device-
independent, intensional description of a remote object; their only
purpose has been unique identification of a single object during
the lifetime of a single application process. However, the ambient
resources hardware phenomenon, the fact that remote services
appear and disappear spontaneously, leads us to consider remote
object references which use a transitory addressing scheme to
designate remote objects. Relationships with remote objects may
be transitory and require the remote reference to rebind to other,
equivalent but not identical remote objects.

3.4 Group Communication

Mobile networks are often comprised of a good many of devices or
services. A sensor network is one exemplar, but one can conceive
a mobile network in a supermarket comprised of base stations,
customer PDAs or wearable computers, cash registers and a myriad
of RFID tags on products and shelves. In such mobile networks, it
is often required to address not a single service, but rather a group
or even all services of a certain type. For example, one may query
for “all goods in the freezer whose expiration date is today”, “all
products in the customer’s shopping cart”, and so on.

In many distributed languages or middleware frameworks,
groups of remote objects have to be represented as a collection
of solitary remote object references. Unfortunately, this solution is
not compositional: it precludes the programmer from treating the
collection as a single remote reference that denotes an entire group
of objects. This results in decreased expressiveness and leads to
an increase in error-prone, duplicated boilerplate code to e.g. it-
erate through the collection to send a message to all members of
the group. More importantly, in mobile networks groups of devices
are often not statically determined, but rather form in an ad hoc
manner as devices roam. For example, one is often interested in
denoting a group of remote objects hosted by proximate devices
only. It becomes very impractical to let an application manually
handle such an unstable collection of proximate remote references.
The application would manually and perpetually have to track the
arrival and departure of nearby devices and deal with the influence
of such events on the elements of the collection.

Rather than treating groups of remote objects artificially as a
collection of single remote objects, collaborations in mobile net-
works require the plural of a remote object reference, a group ref-
erence atomically denoting an entire group of objects with a single
referencing and communication abstraction.

3.5 Summary

In light of our analysis of the behaviour of objects deployed on mo-
bile networks in section 2, we have distilled four characteristics of
remote object references which are deemed necessary to properly
express collaborations in mobile networks. Remote object refer-
ences must be provisional, able to represent not yet available ser-
vices. They should be resilient and allow communication to resume
after a disconnection. Because of the constant state of flux of avail-

able services in a mobile environment, the short-lived relationships
with particular service instances require a transitory addressing
scheme, allowing a reference to be reconfigured by rebinding to
equivalent services. Finally, in mobile networks comprised of large
amounts of small devices, scalable programs require the ability to
abstract from the parts and rather directly address and communi-
cate with the group as a whole. Before we can go on to describe
ambient references and how they deal with the above issues, we
first need to highlight some properties of the objects which they
connect.

4. Service Objects as Actors

In this section, we establish a computational framework for am-
bient references and some necessary terminology. This computa-
tional framework, although explained in an abstract way below, has
been implemented in a concrete programming language called Am-
bientTalk. We postpone a description of this language until section
7. From this point on, all source code examples are pseudo code.
We refrain from using AmbientTalk’s syntax for didactic purposes.
However, for the purposes of correctness and reproducibility, an ex-
tended version of this paper available as a technical report provides
the working AmbientTalk equivalent of the relevant pseudo code
examples in an appendix [22]. Before being able to describe what
constitutes an ambient reference, we first describe the structure and
behaviour of the objects they refer to.

We consider an object-oriented application model where some
special objects represent certain services. Such service objects are
special as they may be referred to by objects on other devices. Be-
cause of the inherent concurrency to which such service objects are
exposed, we equip them with a model of concurrency and distribu-
tion which is heavily inspired by the actor model of computation
[1] and its incarnation in stateful active objects in languages such
as ABCL/1[25]. We model service objects as stateful actors. Actors
are the only objects that may be remotely addressed by ambient ref-
erences and communicate with one another purely asynchronously.
The precise details regarding the nature of our actor model can be
found in previous work [10].

Every device hosts an actor system which in turn hosts a set
of actors. Actor systems may communicate with one another via a
wireless link. Service objects (represented as actors) need a way of
advertising themselves such that they can be discovered by other
devices. A built-in service discovery mechanism based on publish-
subscribe communication allows actors on different devices to get
acquainted via an external description. This external description
takes the form of a service type. Service types are best compared
with empty Java interface types (the typical “marker” interfaces
used to merely tag objects). Service types are not associated with a
set of methods. Whether or not service types are aligned with inter-
face types and hence used for static typechecking is an orthogonal
design decision which is not further pursued in this paper. A service
type is a subtype of one or more other service types. It denotes a
set of actors which conceptually provide the same service. Service
types are universal: they serve as a common ontology between all
devices in the network.

An actor may declare its compliance with one or more service
types, informing the actor system that the actor provides the ser-
vices denoted by the service types. From that moment on, the actor
is discoverable by other actors. In order to distinguish itself from
other actors providing the same service type, an actor may accom-
pany its service type advertisement with a property object whose
public fields denote the static properties of a service. Client actors
may inspect this property object to quickly filter potential commu-
nication partners based on their properties without engaging in fur-
ther remote communication.

989

As an example, consider an instant messaging application de-
ployed on PDAs or cellular phones where different “instant mes-
senger” service actors may exchange text messages whenever they
are in each other’s proximity. Although the example may seem a
bit contrived, it is a generic example of a collaborative applica-
tion. Messengers may be substituted with agendas, sensors, play-
ers in a multiplayer game, products in a shop, etc. The text mes-
sages they exchange can stand for appointments, weather updates,
traffic or product information, etc. Every instant messenger pro-
vides the InstantMessenger service and has an associated
accountid property to uniquely identify its user:

servicetype InstantMessenger < Service;

method makeInstantMessenger (id) {
return new actor {
provide (InstantMessenger, new object{accountid:id});

The service type InstantMessenger is declared to be a
subtype of Service, the most general service type. Upon cre-
ation, the instant messenger actor declares that it provides this ser-
vice by invoking the built-in provide method, passing along a
property object with an accountid property. Objects on other
devices may now refer to this service using an ambient reference,
the design of which is discussed in the following section.

5. Ambient References

An ambient reference is a local representative of a remote service
object. Because services are actors, ambient references are repre-
sented as actors as well. In what follows, we describe ambient ref-
erences from the point of view of an application programmer. An
explanation of how exactly ambient references exhibit the charac-
teristics from section 3 is postponed until section 6.

An ambient reference is a unidirectional reference to a remote
service actor created by a client actor interested in discovering a
particular service based on an external description. An ambient
reference is initialized with a required service type. For example, a
client can address an instant messenger service actor by writing:

anInstantMessenger = ambient InstantMessenger;

After executing the above code, the variable anInstantMess-—
enger contains an ambient reference which can bind to any avail-
able InstantMessenger service actor appearing in its prox-
imity. Once an ambient reference has been constructed like this,
objects can start sending it messages just as is the case with regular
remote object references.

An ambient reference can be in two states: at any point in time
it can be bound to an available remote service or it can be unbound.
When an ambient reference is bound, we refer to the bound re-
mote service as the principal. Figure 1 shows a graphical represen-
tation of an unbound ambient reference. It shows two devices, each
encapsulating an actor system A and B. Their wireless communi-
cation links are represented as dotted circles which delimit their
communication range. Each actor system hosts a number of actors
(black circles). B hosts a service actor of a service type symbolized
as a diamond (actor with embossed diamond shape). A contains an
ambient reference (white circle) initialized with a service type (the
diamond shape). The reference is unbound (shown dangling and
dotted).

Figure 2 depicts the situation where both devices move into one
another’s communication range. The ambient reference is now “in

Figure 1. An unbound ambient reference

range” of a service of the required service type and gets bound
(its shape fits into the provider’s mould). The reference is depicted
squiggly instead of rigid because its bond with the remote service
may be transient: if B should move out of range, the reference
becomes dangling again and may rebind to other services. This
scenario is depicted in figure 3: as A and B move out of one
another’s communication range, the ambient reference becomes
unbound. At a later point in time, A encounters a new actor system
B’ hosting an equivalent service (an actor of the same service type)
to which its ambient reference rebinds.

Figure 3. Ambient references may rebind.

Being a remote reference, an ambient reference is a communi-
cation channel and hence responsible for the delivery of messages
sent to it to its principal. How ambient references interact with mes-
sage passing is explained in more detail in section 5.2. For now, it
suffices to know that message passing via ambient references is
asynchronous. When a client sends a message to an ambient ref-
erence, it does not wait for the message to be forwarded by the
ambient reference to its principal. Depending on the state of the
ambient reference, messages are handled as follows: if the ambi-
ent reference is bound to a principal upon message reception, it
forwards the message to the principal; if it is unbound upon mes-
sage reception, it accumulates the message internally and forwards
it whenever it gets bound in the future.

5.1 Design Dimensions in Object Designation

From our discussion in section 3 on which characteristics a remote
referencing abstraction for mobile networks is to exhibit, it is clear
that there is no single right abstraction for all kinds of collabora-
tions. For example, collaborations with unknown devices encoun-
tered in a device’s direct proximity are likely to be transitory and
require a referencing abstraction which breaks when the service
moves out of earshot and rebinds to other services as the host device
moves about. On the other hand, an application running on a PDA
may have a reference to a service running on e.g. the user’s desktop
computer at home. Arbitrarily rebinding this reference to another

990

matching service while the user is off to work may not result in the
expected behaviour. As another example, consider the group com-
munication characteristic: some collaborations are point-to-point
while others are one-to-many or many-to-many.

Rather than designing one uniform referencing abstraction,
which is unable to capture all interesting forms of collaboration,
we have identified three axes along which the behaviour of ambi-
ent references may vary. The remainder of this section describes
each axis and the salient behaviours identified on each axis. The
result of composing the three orthogonal axes gives rise to a tax-
onomy of ambient references. We discern three dimensions in the
addressing and communication behaviour of ambient references:

The scope of binding determines which remote services an ambi-
ent reference may designate. In other words, it demarcates the
set of services to which the ambient reference may bind.

The elasticity of an ambient reference directly determines its re-
silience with respect to volatile connections. The more elastic
an ambient reference, the longer it can withstand disconnections
and is able to resume its communication upon reconnection.

The cardinality of an ambient reference determines the maximum
number of remote services it can represent simultaneously. This
can be one, a specific few or an unknown number of services.

The differences in behaviour for each of these dimensions are
discussed below.

Scope The scope of binding of an ambient reference determines
to which remote services it may bind. Scoping is delimited using
the service types introduced before. An ambient reference initial-
ized with a required service type R binds to a service actor pro-
viding a service type P if and only if P < R, i.e. the provided
service type must be a subtype of the required service type. Con-
ceptually, a provider may offer a more specialized service than the
one requested, but not a more general one.

The more specialized the required service type, the narrower the
scope of binding of the ambient reference. Nevertheless, service
types are meant to denote groups of services. It frequently hap-
pens that clients may want to distinguish between individual actors
of the same service type. As described in section 4, service actors
may more accurately describe their service by means of a property
object. Upon constructing an ambient reference using a required
service type, the scope of binding of the ambient reference may be
further restricted by means of a filter query over the properties ob-
ject of the service. A filter query is an arbitrary boolean expression
over the fields of the property object.

As a concrete example, recall that all instant messengers are of
the InstantMessenger service type and that each messenger
has an associated property object containing the user’s account
ID. The code for adding a new buddy to the buddy list, given the
buddy’s account ID friendID can be written as follows:

buddy = ambient InstantMessenger m where
m.accountid == friendID;
buddyList.add (buddy) ;

The above code shows how the scope of binding of the ambient
reference buddy is restricted by the filter query m.accountid
== friendID such that it binds only with service objects repre-
senting a specific friend. Additionally, note how ambient references
act as provisional ad interim references for their remote service: the
ambient reference may be readily added to the buddy list before the
friend is even encountered.

In short, the scope of binding of an ambient reference consists of
a service type delimiting the set of services to which the reference

may bind. If necessary, the scope can be narrowed further by
providing the ambient reference with a filter query.

Elasticity The elasticity of an ambient reference directly deter-
mines its resilience with respect to volatile connections. We have
chosen the term elasticity because this conjures up the mental im-
age of references which stretch out whenever the remote actor they
are pointing to moves out of communication range. If the ambient
reference is elastic enough, it may survive the disconnection and
allow the communication to resume. If the disconnection lasts for
too long, the ambient reference snaps, like an elastic band under too
much strain. We discern three types of ambient references based on
elasticity:

Fragile ambient references. These ambient references break the
bond with their principal from the moment the principal has
disconnected. As such, the communication channel represented
by these ambient references is the most susceptible to discon-
nection. However, remember that when an ambient reference
becomes unbound it can always rebind later on, allowing for
the communication to resume.

Elastic ambient references. These ambient references are initial-
ized with an additional elongation period. This is a timeout pe-
riod which specifies how long a disconnection may last before
the ambient reference breaks the bond with its principal. Figura-
tively speaking, the higher the elongation period, the “further”
a principal’s device may wander from the ambient reference’s
device without breaking the bond. If a disconnection outlasts
the elongation period, the reference reverts to unbound status,
similar to a fragile ambient reference. The most important dif-
ference between elastic and fragile ambient references is that
the former will not immediately rebind to another service when
it loses contact with its principal.

Sturdy ambient references. Sturdy ambient references are ambi-
ent references which never break the bond with their principal
upon disconnection. Hence, they come closest of all to the stan-
dard notion of a remote object reference. The communication
channel defined by a sturdy ambient reference is most resilient
to disconnections, although it pays the price of decreased flex-
ibility (it cannot rebind to other principals). A sturdy reference
may be initialized unbound. The sturdy reference then binds to
the first available principal and retains this bond indefinitely.

Itis clear that fragile and sturdy references can be subsumed un-
der elastic references. An elastic reference covers the entire spec-
trum between fragile and sturdy references, degenerating fragile
references to those with a zero elongation period and sturdy refer-
ences to those with an infinite elongation period.

Depending on the kind of collaboration, different values for the
elasticity of an ambient reference are appropriate. Fragile ambient
references, for example, are ideal for client-service interactions that
do not require session information, as it does not matter which exact
service is communicated with. Another useful application of fragile
ambient references is their use in encapsulating replicated services.
A fragile ambient reference may be declared with a sufficiently nar-
row scope of binding such that it only denotes services which are
each other’s replica. Hence, it does not matter which service is com-
municated with, assuming that the replicas are e.g. interconnected
via infrastructure to synchronize regularly. When a client needs the
guarantee that subsequent message sends via an ambient reference
are delivered to the same service actor, a sturdy reference is a more
suitable referencing abstraction.

Cardinality The cardinality of an ambient reference determines
how many remote services it can denote simultaneously. Remaining

991

consistent with the terminology introduced by M2MI [14], we
distinguish three cases:

Ambient Unireferences A unireference denotes at most one re-
mote actor at a time. This is the kind of ambient reference
we have implicitly assumed until now and most closely cor-
responds to a regular remote object reference.

Ambient Multireferences A multireference denotes at most n re-
mote actors at a time, where n is the multireference’s cardi-
nality. It forms a useful group abstraction mechanism when the
members or the size of the group are known upfront.

Ambient Omnireferences An omnireference denotes all remote
actors in a given scope of binding which are available for com-
munication. It is a flexible communication mechanism to dis-
cover an unknown number of services and to broadcast infor-
mation into the surrounding environment.

In order to correctly capture group communication, ambient
multi- and omnireferences are introduced. The following code ex-
cerpt declares a fragile ambient omnireference (denoted by an as-
terisk suffix) to address all proximate instant messengers and a frag-
ile ambient multireference (denoted by an array suffix), addressing
at most 10 distinct instant messengers. The multireference is not an
array of 10 unireferences.

allMessengers
tenMessengers

ambient* InstantMessenger;
ambient [10] InstantMessenger;

Multi- and omnireferences are not simply collections of ambi-
ent unireferences. Firstly, that would miss the point of group com-
munication abstractions as it would require explicitly managing a
collection of references, rather than one group reference. Second,
two separate unireferences may bind to the same remote service ob-
ject. Hence, if the above multireference would have been an array
of 10 unireferences, there would have been no guarantee that each
unireference in the array denoted a distinct service object.

Ambient multi- and omnireferences represent a set of remote
services, the principal set. A principal cannot occur in the set
more than once. Messages sent to an ambient multireference are
multicast to all remote services in the set. Figure 4 illustrates how
an omnireference at A conceptually binds with all services of the
same type available in the network.

Similar to the elasticity dimension, the cardinality dimension
can be regarded as a continuum of multireferences, unireferences
being multireferences with a cardinality of n = 1 and omnirefer-
ences being multireferences with a cardinality of n = co.

Summary Table 1 gives an overview of the different possible
ambient references which can be constructed by taking the cross-
product of the three described dimensions. It also shows which am-
bient references are parameterized by what property. The scope of
binding is orthogonal to the other two dimensions. Therefore, only
the combinations of elasticity and cardinality are listed (parameter-
ized with the scope s, i.e. a service type and optional filter query).
Elastic references are parameterized with an elongation period e
expressed in milliseconds. Sturdy references are denoted with an

i . A ‘.,‘\. o
oL i [Fe

® '

r

o o [°

.
'

Figure 4. Ambient Omnireferences

exclamation mark to stress that their bond is fixed. Multireferences
are parameterized with their cardinality n, reusing typical array
syntax. Omnireferences are denoted with an asterisk to highlight
their unbounded cardinality. Each entry in the table denotes an ex-
pression which, when evaluated, returns a new ambient reference
of the indicated kind.

Table 1. Taxonomy of Ambient Reference Expressions

Scope of binding (s)
Elasticity — | Fragile Elastic (e) Sturdy !
Cardinality |
Uni- ambient s ambient (e) s ambient! s
Multi- [n] ambient[n] s | ambient(e)(n] s | ambient![n] s
Omni- * ambients s ambient () * s ambient!s s

5.2 Message Passing Semantics

The previous section has primarily discussed ambient references
as service designators: which and how many services the reference
binds to and how long this binding remains intact after disconnec-
tion. This section focuses on ambient references as a communica-
tion channel to the services they represent.

As mentioned in section 4 service objects are actors and send
one another messages asynchronously. As ambient references are
local stand-ins for remote service objects, communication with
them is asynchronous as well. The advantage of using asynchron-
ous, non-blocking message passing is that it decouples the client
and the service in time [17]: a message can be sent to a service
even when it is not online (i.e. when its representative ambient ref-
erence is unbound) at the time the message is sent. This is made
possible by the ability of asynchronous message passing to decou-
ple the act of sending a message from the act of transmitting that
message. As such, messages that cannot be transmitted immedi-
ately are buffered by the ambient reference and will be transmitted
later, if a connection becomes available.

We now consider how message passing is influenced by the
three design dimensions. As shown below, the message passing
semantics of ambient references is independent of the scope of
binding and the elasticity of the ambient reference. On the other
hand, the cardinality of an ambient reference has a large impact
on message passing. We first detail the semantics for unireferences
and gradually note the differences for increasing cardinalities.

Unireferences An ambient unireference is either bound or un-
bound. Messages sent to it are never lost, regardless of the state
of the unireference. If it is bound, the message is forwarded to
the principal. If it is unbound, messages are buffered until it be-
comes bound. The scope of binding and elasticity only influence
the (re-)binding behaviour of an ambient reference directly, thereby
influencing the message forwarding behaviour only implicitly. The
following example shows how a nearby instant messenger may be
queried for its user’s nickname.

anInstantMessenger = ambient InstantMessenger;
nameFuture = anInstantMessenger#getNickname () ;

The # operator denotes an asynchronous message send. An
asynchronous message send to an ambient unireference always im-
mediately returns a future, which is a placeholder for the real return
value. Once the real value is computed, it “replaces” the future ob-
ject; the future is said to be resolved with the value. Futures or
promises are a frequently recurring abstraction in concurrent lan-
guages (e.g. in Multilisp [12], ABCL [25] and Argus [16]). They
reconcile asynchronous message sends with return values without

992

having to resort to clumsy callback methods. Space limitations pre-
clude us from going into more detail on the nature of futures in the
AmbientTalk language. What is important to note is that futures are
also actors and will not make a process block when it tries to use
an unresolved future. This design is detailed elsewhere [10] and is
based on that of non-blocking promises in the programming lan-
guage E [19].

Multireferences A multireference has a cardinality n which
is the maximum number of principals it may bind to. Other than
a unireference, a multireference can either be bound, unbound or
partially bound (i.e. when only £ < n principals are available).
This requires a generalisation of the message passing semantics
employed by unireferences. When a message is sent to a partially
bound multireference, there are three possible semantics to con-
sider. The message may be sent to all k£ bound principals and then
discarded, the message may be stored until the multireference be-
comes entirely bound, or the message may be sent to all k£ bound
principals and stored for the n—k unbound principal slots. Ambient
multireferences employ the third semantics because it enables mes-
sages to be sent independently to each principal at the moment it is
encountered in the mobile network. On the one hand, discarding a
message right away is wasteful as the chances of a principal being
disconnected are high. On the other hand, waiting for all principal
slots of the multireference to be bound is wasteful as the chances of
all principals being connected at the same time are low. Moreover,
the third semantics is the correct generalization of the semantics of
unireferences, i.e. the semantics of a “multireference” with cardi-
nality n = 1 coincides with that of a unireference.

Messages sent to multireferences are multicast to all principals.
As a consequence, the message is duplicated and may result in
multiple replies. Message sends to multireferences return multifu-
tures, which are futures that may be resolved multiple times. Space
considerations preclude us from going into details, which can be
found in a companion paper [21]. Sturdy multireferences come
closest to standard group communication abstractions: they encap-
sulate a fixed set and simply multicast received messages to this
set. The multireference enables an asynchronous multicast whose
return values may conveniently be collected via multifutures and
which buffers messages for those group members not connected at
message-sending time.

Omnireferences An omnireference differs from both uni- and
multireferences in that it is always partially bound. An omniref-
erence represents the set of all available services in its scope of
binding. An omnireference is never completely unbound: an empty
principal set is a valid set. Neither is it ever fully bound: there is
no upper bound on the size of its principal set. This has important
repercussions on the message passing semantics: it is clear that the
message passing semantics of uni- and multireferences cannot be
upheld, as this would require to somehow store a message for an in-
finite number of potential principals that may become available in
the future. If the message is stored only once and duplicated lazily
as new principals join the principal set, the omnireference would
have to remember which messages have already been forwarded
to what principal because principals may join and disjoin from the
network (and hence from the principal set) an arbitrary number of
times.

Ambient omnireferences employ a much simpler message pass-
ing semantics. When a message is sent to an omnireference, it is
always multicast to all principals bound at that moment. If the prin-
cipal set is empty, any message the omnireference receives is lost.
Figuratively speaking, the multireference shouts the message, with
the risk of no service being close enough to hear it. Message sends
to omnireferences return multifutures with no upper bound on the
number of expected replies.

Sustained Message Sends With respect to message sending,
clients of uni- and multireferences can abstract from the state of
the reference (i.e. whether it is bound or unbound) because mes-
sages are properly buffered. This is no longer the case for omniref-
erences. As explained above, an omnireference acts as black hole
for messages when it is “empty”. A typical programming idiom
to deal with this fact is to send a message repeatedly at regular
intervals, increasing the chances that it will eventually be received
by an interested party. This idiom expresses the intent to regularly
broadcast information to nearby devices. It is so inherently asso-
ciated with the usage of omnireferences that the intent should be
more directly expressible.

Ambient omnireferences may be sent sustained messages.
These are messages annotated with a decay period, specifying how
long the omnireference should store the sustained message. Upon
reception of a sustained message, the message is multicast to the
current principal set and to any service joining the principal set
within the decay period.

As an example, consider the following fragile ambient omniref-
erence hosted by a device which is part of the infrastructure of e.g.
arailway station or an airport which broadcasts a timetable into the
environment for interested passengers to query from their PDA. In
order to reach a maximum number of passengers, each refreshed
timetable is sent as a sustained message (using the @ notation) with
a decay period of 30 seconds:

passengers = ambient* Passenger;
passengers#announce (timetable)@30sec;

This sustained message is not continually broadcast during 30
seconds. Rather, the message is multicast once to the current prin-
cipal set and then buffered by the omnireference for the duration
of the decay period, such that it will be forwarded to services dis-
covered later on. Ambient omnireferences do not guarantee that a
sustained message is delivered to each principal only once. When
services leave the principal set due to a disconnection and recon-
nect within the decay period, they may receive the same sustained
message multiple times. When duplicate reception of a message is
an issue, messages must be parameterized with e.g. sequence num-
bers to identify duplicates.

Message sends to omnireferences which are not sustained can
be thought of as “ephemeral” messages having a decay period of 0
seconds. Message sends may declare an infinite decay period (via
an @forever syntax), which effectively allows the expression of
a message send targeting “all services of a given type that will ever
be encountered in the future”.

The problem dealt with by sustained message sends (i.e. de-
creasing the risk that messages are lost to empty omnireferences) is
not directly dealt with by the elasticity dimension of ambient ref-
erences. For example, a sturdy omnireference is a reference that
bonds with all services of a certain type it ever encounters and
which does not break these bonds upon disconnection (it “mem-
orizes” who it has already encountered). When sending messages
to such a sturdy variant, one may communicate with all services
encountered in the past, but without sustained messages one would
still lack the ability to communicate with services that will bind in
the future.

5.3 Summary

We have introduced ambient references and have focussed on its
two roles as a referencing abstraction: how they designate and bind
to remote services and how they behave as a communication chan-
nel for messages. Ambient references are no single but rather an en-
tire family of referencing abstractions. The salient differences be-
tween these abstractions stem from two properties: the reference’s

993

elasticity, the resilience of its bond to disconnections and its cardi-
nality, the maximum number of remote services it denotes. A third
property, the scope of binding, determines which remote services
are eligible principals for an ambient reference. Ambient references
feature asynchronous message passing with return values (via fu-
tures or multifutures). Messages are properly buffered by uni- and
multireferences when they are unbound. Omnireferences employ
a broadcasting semantics, but introduce sustained messages to ad-
dress the loss of messages received while they are unbound.

This section has described ambient references from the appli-
cation programmer’s point of view. The following section recon-
siders ambient references with respect to the three characteristics
outlined in section 3. The implementation of ambient references is
scrutinized in section 7.

6. Discussion

Section 3 has brought to light four necessary characteristics of
remote object reference abstractions in mobile networks. As ex-
plained in section 5.1, different collaborations require different
kinds of remote addressing abstractions. We discuss which ambient
references exhibit or lack which characteristics, making each mem-
ber of the ambient reference family suitable for a different kind of
interaction.

6.1 Ambient References are Provisional

Section 3.1 addressed the need for provisional remote object ref-
erences. Because required services are often unavailable, a remote
object reference should be able to address services which have not
yet been discovered. In doing so, the reference can abstract from
the temporary unavailability of the service and the application can
use the remote reference as if the service were already available.
Once the ambient reference is constructed with a required service
type, it can readily be used by clients as if it were a service of the
desired service type (cfr. the instant messenger example in section
5.1). In the case of uni- and multireferences, the client may safely
abstract from the fact that the reference may be either bound or
unbound. As previously discussed, messages received by the ref-
erence while unbound are properly stored and forwarded when a
service becomes available.

In the same way that futures allow one to abstract from the re-
turn value of an asynchronous message send (i.e. the result may or
may not yet have been computed), ambient references allow one to
abstract from the status of an asynchronous discovery request (i.e. a
suitable service has or has not yet been found). Messages sent to an
unbound ambient uni- or multireference are optimistically sched-
uled computations which are eventually triggered when a suitable
service is discovered. Ambient references “objectify” services to be
discovered, entirely similar to how futures “objectify” return values
to be computed. Hence, ambient references are the equivalent of the
well-known futures language abstraction in the context of service
discovery. As such, they bring about the same advantages: they do
not require an application to be artificially fragmented into call-
back methods to process asynchronous discovery events and allow
a client to directly use a service (the return value of an asynchron-
ous discovery request) in the same scope where it was asked for.

6.2 Resilience and Elasticity

In section 3.2, we argued for resilient remote object references: ref-
erences which do not always align disconnections with exceptions
or failures in order to be able to abstract over temporary disconnec-
tions.

The prime factor influencing an ambient reference’s resilience
is its elasticity. Using this parameter, the resilience of a remote
reference to disconnections can be fine-tuned to the application’s

needs. As previously remarked, there is no single “right” way of
dealing with failures: some references ought to break immediately
such that they can rebind to other equally useful services, other ref-
erences must remain sturdy in the face of disconnections because
their referent must not change. Although fragile and elastic ambient
references may break upon disconnection with their principal, this
does not render them useless. Uni- and multireferences revert to an
unbound state and any undelivered messages are properly buffered.
Although non-sturdy ambient references do not guarantee that they
will rebind to the same principal, they are still a useful communi-
cation channel which resumes its message flow upon reconnection.

6.3 Transitory Relationships

Section 3.3 stressed the importance of a transitory addressing
scheme for remote references. Such a scheme promotes reconfig-
urable references that may rebind to equivalent remote objects by
decoupling references from device-dependent object identities. The
necessity for such addressing is based on the flux of the devices in
mobile networks: similar services may be available on a multitude
of hosts at different locations, services are updated without global
administration, devices join and leave the network unannounced,
etc.

There are two factors which determine an ambient reference’s
transitory nature. The first factor is its scope of binding, which is
delimited using a service type and an optional filter query. Service
types allow clients to abstract from a service’s address (its UID)
similar to how URLSs abstract from IP addresses, variables abstract
from memory addresses, file names abstract from files etc. The sec-
ond factor is the ambient reference’s elasticity. The principal of
elastic (and fragile) ambient references may change over time, as
long as it remains within the scope of binding, enabling transitory
relationships. Sturdy ambient references, once they are bound, lose
their transitory addressing ability, guaranteeing a stable communi-
cation channel to one particular service at the cost of becoming as
brittle as UID-based referencing mechanisms.

6.4 Group Communication

The cardinality design dimension of ambient references directly
addresses the need for expressively engaging in group commu-
nication. Whereas multireferences allow for a more conventional
representation of a set of remote services, ambient omnireferences
provide a radically different messaging semantics. Omnireferences
allow for direct interaction with all services within their scope
of binding. Fragile ambient multi- and omnireferences form an
ideal addressing mechanism to denote “clouds” of services whose
boundaries are vague and change constantly due to device mobil-
ity. Such “clouds” are impossible to construct via an enumeration
of individual remote references, but they can be denoted intension-
ally via omnireferences. Whereas sturdy multireferences represent
a logical link with services whose bond is immune to the physical
changes in the network, fragile multi- or omnireferences represent
a physical link which breaks and binds in unison with changes in
the network. When the connectivity of principals of an omniref-
erence is determined by the wireless communication range of the
host devices, ambient omnireferences form an ideal abstraction for
“shouting” information to proximate devices, such as the PDAs of
interested passersby in the railway station example.

7. Implementation

Ambient references have been implemented in the actor-based dis-
tributed programming language AmbientTalk [10], which is specif-
ically designed for writing applications deployed on mobile net-
works. AmbientTalk has been implemented as an interpreter writ-
ten in Java and J2ME. The language is conceived as an exploratory

994

research vehicle to validate our language design experiments. It is
a small kernel language, supporting a minimum of operations. Lan-
guage extensions may be introduced via a metaobject protocol.

Because AmbientTalk was conceived for mobile networks, it
has a built-in service discovery mechanism based on publish-
subscribe communication. Actors may advertise themselves via
service types, as explained in section 4. The AmbientTalk kernel
has no notion of ambient references; in the kernel language, actors
have to discover one another via a standard subscription mecha-
nism. In the absence of ambient references, actors register their
interest in particular service types and are informed by the kernel
asynchronously via callback methods when a relevant service ac-
tor appears or disappears in the network. Ambient references have
been implemented reflectively via the MOP on top of this more
low-level event-based discovery system.

An ambient reference is an actor that serves the role of a proxy to
aremote service actor. It intercepts each message sent to it (reminis-
cent of the way Smalltalk objects may intercept their messages via
doesNotUnderstand:) and forwards them to its principal(s).
The principal set of an ambient reference consists of a plain col-
lection of regular UID-based remote actor references. An ambient
reference is initialized with a service type and regulates the com-
plexities of the service discovery callbacks on behalf of its client.

One aspect of the implementation which is of particular interest
is the decomposition of the behaviour of an ambient reference
actor in a collection of modular mixins. We have used mixin-
based inheritance [5] to separate the behaviour specific to each
of the three dimensions of ambient references (scope of binding,
cardinality and elasticity) into separate entities. As such, the entries
in table 1 are mere surface syntax for the creation of actors whose
behaviour is composed out of the different mixins. The fact that the
three design dimensions can be cleanly factored out into separate
mixins strongly indicates their orthogonality.

Space limitations preclude us from going into more detail on the
implementation of the mixins. A comprehensive overview of the
design of ambient references can be found in an extended version
of this paper made available as a technical report [22]. Moreover,
an explanation of the full implementation details including the
AmbientTalk reflective source code can be found in a companion
technical report [21].

8. Related Work

We now describe different addressing and communication abstrac-
tions of computational models and languages, their applicability to
mobile networks and how they differ from ambient references.

M2MI The design of ambient references has been inspired by
the notion of a handle in the many-to-many invocations (M2MI)
paradigm [14]. M2MI is a paradigm for building collaborative
systems deployed on wireless proximal ad hoc networks. M2MI
handles use Java interfaces just as we use service types to denote
remote objects in a loosely coupled fashion.

Although M2MI has influenced the design of ambient refer-
ences, there are some important differences. First, M2MI handles
offer no delivery guarantees: if a message is sent to an object
which is not in communication range at that time, the message is
lost. There is no notion of sustained message sends as introduced
by ambient omnireferences to change this delivery policy. A sec-
ond difference between M2MI handles and ambient references is
that asynchronous messages sent to M2MI handles do not return
a value: all methods of a handle’s associated interface must have
a void return type and cannot throw exceptions. M2MI’s handles
are not provisional or resilient: although they may represent as yet
undiscovered objects, any messages sent to this undiscovered ob-
ject are lost.

In short, M2MI’s handlers are a suitable remote referencing ab-
straction for mobile networks, but they are situated at a lower level
of abstraction. As a consequence, they require the programmer to
focus attention on dealing with discovery, delivery and message or-
dering, return values and disconnections.

Actors In the actor model of computation [1], actors refer to
one another via mail addresses. When an actor sends a message to
a recipient actor, the message is placed in a mail queue and is guar-
anteed to be eventually delivered by the actor system. When re-
garded as a “remote actor reference”, a mail address is neither pro-
visional nor transitory (a mail address represents a unique, existing
actor) but it is resilient to disconnections. Although its resilience
makes actor-based systems perform well in open, loosely-coupled
distributed systems, a mail address cannot be rebound to refer to
another actor.

E The E language [19] is designed for writing secure peer-to-
peer distributed programs in open networks. Interestingly, E does
not differentiate between local and remote objects. Rather, it dif-
ferentiates between different kinds of object references. Near ref-
erences may only point to local objects, while references to remote
objects must be so-called eventual references. Near references may
carry synchronous method invocations, while eventual references
only carry asynchronous message sends. Such asynchronous mes-
sage sends immediately return promises (which are similar to fu-
tures).

E’s eventual references, although providing a communication
channel geared towards mobile networks, do not feature any of the
characteristics exhibited by ambient references. They are not pro-
visional but rather always point to live remote objects. They are
not resilient: disconnections are treated as exceptions and once a
remote reference is broken, it cannot be mended. The references
are not based on a transitory addressing mechanism and cannot be
rebound. This design of remote references was intentional and en-
forces application designs where the restoration of communication
links is separated from the use of the communication links. In E,
devices can reestablish contact based on a special kind of object
reference named a sturdy reference. A sturdy reference in E can be
regarded as a persistent, resilient designator for a remote object.

A sturdy reference in E is, however, not a remote object ref-
erence the way a sturdy reference in AmbientTalk is. Rather, it is
a generator for new eventual references pointing to the remote ob-
ject it designates. E’s sturdy references were not designed for use in
mobile networks but rather for regaining connectivity to a specific
object after network partitions in traditional stationary networks.
As such, they are not provisional, do not use transitory addressing
or cater to group communication.

Tuple Spaces Tuple spaces as originally introduced in the co-
ordination language Linda [11] have received renewed interest by
researchers in the field of mobile computing. Adaptations of tuple
spaces for mobile computing distribute the tuple space across sev-
eral devices. Linda in mobile environments (Lime) [20] is one such
adaptation of Linda for mobile networks.

Because tuple spaces use a very process-oriented (as opposed
to object-oriented) approach to distributed computing, there is no
notion of a remote object reference. However, the tuple space, re-
garded as a communication channel does exhibit the characteristics
shown to be beneficial to mobile computing in section 3. Regard-
ing provisionality, tuples can be placed in a tuple space well ahead
before another process is available to read it. With respect to re-
silience, tuples are stored in the tuple space until they are read.
Hence, they survive network disconnections. With respect to tran-
sitory addressing, tuples are addressable based on their semantic
content which is device-independent and persistent. Group com-
munication can be expressed by adding multiple tuples at once to
the tuple space. On the downside, whereas remote references pro-

995

vide a private communication channel between a client and a ser-
vice, tuple space-based communication is necessarily global to the
entire space, which may lead to unexpected interactions between
concurrently communicating processes.

ActorSpace The inability of mail addresses to represent as yet
undiscovered actors have been addressed in the ActorSpace model
[7]. This model is a unification of concepts from both the actor
model and the tuple space model of Linda. Callsen and Agha note
that, on the one hand, the actor model provides a secure model
of communication as an actor may only communicate with actors
whose mail address it has been explicitly handed over via message
passing. On the other hand, this disallows actors to get acquainted
with other actors in a loosely-coupled, time- and space-independent
manner, as is the case in Linda via tuple spaces or with ambient
references using service types.

The ActorSpace model augments the actor model with patterns,
denoting an abstract specification of a group of actors. The actor
model’s send primitive, which is parameterized by a receiver mail
address and a message, is replaced by two new primitives: a send
and a broadcast primitive where the receiver of the message is
denoted by a pattern rather than a mail address. A message send
whose receiver is a pattern, e.g. send ("InstantMessenger",
"getNickname"), can be received by any actor whose own
name matches the pattern within the context of a so-called ac-
torspace. The send primitive delivers the message to a non-
deterministically chosen matching actor, while the broadcast
primitive delivers it to all matching actors. This makes patterns a
provisional, potentially resilient and transitory addressing mecha-
nism.

The semantics of the send and broadcast primitives resem-
bles the message sending behaviour of ambient uni- and multiref-
erences. However, in the ActorSpace model, a broadcast message
is suspended until a receiver is available. Ambient references in-
troduce a more general and flexible notion of sustained message
sends. Furthermore, there is no direct analogue for multireferences
nor for elastic or sturdy references in the ActorSpace model.

Jini Sun Microsystem’s Jini architecture for network-centric
computing [23, 2] is a Java-oriented development platform for
service-oriented computing. Jini introduces the notion of lookup
services. Services may advertise themselves by uploading a proxy
to the lookup service. Clients search the network for lookup ser-
vices and may launch queries for services they are interested in.
Java interface types are used as a common ontology between the
devices, similar to the service types of ambient references. Clients
may download the advertised proxy of a remote service and may
interact with the remote service through the proxy. Although Jini’s
architecture is also applicable to pure ad hoc networks, its lookup
service architecture works best in mobile networks with a shared
infrastructure.

Jini is primarily a framework for bringing clients and services
together. Once a client has downloaded a service proxy, the proxy
is the communication channel to the service. This proxy may be
implemented however the service sees fit. Using the proxy tech-
nique, it is possible to construct proxy references which e.g. cor-
rectly buffer requests thereby allowing for resilience in the face of
network partitions and which may internally use a transitory ad-
dressing scheme to contact their home service in a loosely-coupled
manner. Hence, Jini’s architecture is flexible enough to accomo-
date ambient references. However, to the best of our knowledge,
Jini does not directly offer any advanced remote “service” refer-
ences. By default, the proxies advertised by services communicate
synchronously with their service over point-to-point protocols such
as JRMP or JERL

9. Limitations and Future Work

A number of open issues which are not adequately dealt with by
ambient references are discussed below.

Service Discovery We are aware of the limited expressive power
of the discovery mechanism of ambient references based on service
types. The mechanism, however, is lightweight and sufficient for
supporting the applications it has been designed for. We consider
the use of more advanced discovery mechanisms orthogonal to the
notion of ambient references. Obviously, the discovery mechanism
of ambient references is part of a language design exercise; it is not
meant to supplant existing standardised discovery mechanisms.

Distributed Garbage Collection Distributed garbage collection
(DGC) requires a set of hosts to cooperatively clean up unrefer-
enced garbage objects by informing one another when e.g. a remote
reference has become of no use to them. In open and especially mo-
bile networks where relationships between devices are short-lived,
such cooperative DGC approaches become impractical. As illus-
trated by networking technology such as Jini, the notion of a leased
reference provides more robust garbage collection in the face of
both transient and permanent disconnections [23].

We have described ambient references as a unidirectional refer-
ence from clients to services. A service is oblivious to any ambient
references pointing to it and has no direct means of communicating
with and controlling connected clients. We are looking into the in-
corporation of leasing into ambient references. The amalgam would
be an ambient reference which, upon binding with a remote service,
establishes a contract with its service under which conditions the
connection between them remains valid. For example, both could
agree on a lease duration and the ambient reference is then respon-
sible for renewing the lease in time. The important difference with
regular ambient references is that such references explicitly involve
the remote service itself in the binding process, such that the service
can be given the opportunity to e.g. react to disconnected clients.

10. Conclusion

Applications deployed on mobile networks require language con-
structs that abstract from the complex hardware phenomena while
remaining translucent enough to deal with the inescapable issues
of distributed computing. When objects are distributed over mo-
bile devices connected by an unadministered volatile network, it is
no longer trivial to discover and communicate with remote parties.
Object references should be augmented with additional machinery
to remain aware of the hardware constellation surrounding their de-
vice. We have named such references ambient references.

Ambient references are an object-oriented language abstraction
that exhibit four distinct characteristics which prove essential to
properly address and communicate with remote parties in mobile
networks. They are provisional meaning that they can denote ser-
vices based on an external description that are not yet available.
They are resilient in the face of transient network disconnections.
They may be rebound to equivalent yet distinct service objects
on different devices via a device-independent transitory addressing
scheme. Finally, as mobile networks may be populated by a mul-
titude of small devices, it is important to make abstraction of each
individual object and to address and communicate with groups of
objects directly. Ambient multi- and omnireferences cater to such
interactions.

Rather than designing one kind of ambient reference, we have
designed a family of ambient reference kinds, the behaviour of
which may vary according to three different axes. The scope of
binding of an ambient reference demarcates the set of service ob-
jects to which the reference may bind. The elasticity of an ambient
reference determines the resilience of its bond with a remote ser-

996

vice with respect to disconnections. Finally, the cardinality of an
ambient reference determines how many services it can denote si-
multaneously. Each combination along these design axes gives rise
to a kind of reference that is suitable for a particular type of collab-
oration in a mobile network. These axes are clearly distinguishable
not only in the design of the ambient references, but also in their
implementation as a composition of independent mixin objects in
AmbientTalk. Although further research is necessary to turn our
proposal into scalable engineering, the orthogonality of these mixin
objects strongly indicates that our analysis adequately unravels the
design space of object referencing for dynamically demarcated mo-
bile networks.

References

[1]1 AGHA, G. Actors: a Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[2] ARNOLD, K. The jini architecture: Dynamic services in a flexible
network. In 36th Annual Conference on Design Automation (DAC’99)
(1999), pp. 157-162.

[3] BAKER JR., H. G., AND HEWITT, C. The incremental garbage
collection of processes. In Proceedings of Symposium on Al and
Programming Languages (1977), vol. 8 of ACM Sigplan Notices,
pp. 55-59.

BAL, H. E., STEINER, J. G., AND TANENBAUM, A. S. Program-
ming languages for distributed computing systems. ACM Comput.
Surv. 21, 3 (1989), 261-322.

BRACHA, G., AND COOK, W. Mixin-based inheritance. In
Proceedings of the Conference on Object-Oriented Programming:
Systems, Languages, and Applications / Proceedings of the European
Conference on Object-Oriented Programming (Ottawa, Canada,
1990), N. Meyrowitz, Ed., ACM Press, pp. 303-311.

BRIOT, J.-P., GUERRAOUI, R., AND LOHR, K.-P. Concurrency
and distribution in object-oriented programming. ACM Computing
Surveys 30, 3 (1998), 291-329.

[7] CALLSEN, C. J., AND AGHA, G. Open heterogeneous computing
in ActorSpace. Journal of Parallel and Distributed Computing 21, 3
(1994), 289-300.

[8] CARDELLI, L. A Language with Distributed Scope. In Proceedings
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (1995), ACM Press, pp. 286-297.

CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA, C.,
KIELSTRA, A., EBCIOGLU, K., VON PRAUN, C., AND SARKAR, V.
X10: an object-oriented approach to non-uniform cluster computing.
In OOPSLA '05: Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming systems languages and
applications (New York, NY, USA, 2005), ACM Press, pp. 519-538.

DEDECKER, J., VAN CUTSEM, T., MOSTINCKX, S., D’HONDT,
T., AND DE MEUTER, W. Ambient-oriented Programming in
Ambienttalk. In Proceedings of the 20th European Conference
on Object-oriented Programming (ECOOP) (2006), D. Thomas,
Ed., Lecture Notes in Computer Science, Springer, pp. 230-254. To
Appear.

[4]

[5

[t}

[6

=

[9

—

[10]

[11] GELERNTER, D. Generative communication in Linda. ACM
Transactions on Programming Languages and Systems 7, 1 (Jan

1985), 80-112.

HALSTEAD, JR., R. H. Multilisp: a language for concurrent symbolic
computation. ACM Trans. Program. Lang. Syst. 7,4 (1985), 501-538.

[13] JuL, E., LEVY, H., HUTCHINSON, N., AND BLACK, A. Fine-
grained mobility in the Emerald system. ACM Transactions on
Computer Systems 6, 1 (February 1988), 109-133.

[14] KAMINSKY, A., AND BISCHOF, H.-P. Many-to-many invocation:
a new object oriented paradigm for ad hoc collaborative systems.
In OOPSLA ’02: Companion of the 17th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages,

[12]

[15]

(16]

[17]

(18]

(19]

and applications (New York, NY, USA, 2002), ACM Press, pp. 72—
73.

Liskov, B. Distributed programming in Argus. Communications Of
The ACM 31,3 (1988), 300-312.

LISKOV, B., AND SHRIRA, L. Promises: linguistic support for
efficient asynchronous procedure calls in distributed systems. In
Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation (1988), ACM Press, pp. 260—
267.

MascoLo, C., CAPRA, L., AND EMMERICH, W. Mobile
Computing Middleware. In Advanced lectures on networking.
Springer-Verlag New York, Inc., 2002, pp. 20-58.

MCGRATH, R. E. Discovery and its discontents: Discovery protocols
for ubiquitous computing. Tech. Rep. UIUCDCS-R-99-2132,
Department of Computer Science University of Illinois Urbana-
Champaign, 2000.

MILLER, M., TRIBBLE, E. D., AND SHAPIRO, J. Concurrency
among strangers: Programming in E as plan coordination. In
Symposium on Trustworthy Global Computing (April 2005), R. D.
Nicola and D. Sangiorgi, Eds., vol. 3705 of LNCS, Springer, pp. 195—
229.

997

[20]

[21]

[22]

[23]

[24]

[25]

MURPHY, A., P1cco, G., AND ROMAN, G.-C. Lime: A middleware
for physical and logical mobility. In Proceedings of the The 21st
International Conference on Distributed Computing Systems (2001),
IEEE Computer Society, pp. 524-536.

VAN CUTSEM, T. A Modular Mixin-based Implementation of
Ambient References. Tech. Rep. VUB-PROG-TR-06-07, Vrije
Universiteit Brussel, 2006.

VAN CUTSEM, T., DEDECKER, J., MOSTINCKX, S., GONZALEZ,
E., D’HONDT, T., AND DE MEUTER, W. Ambient References:
Addressing Objects in Mobile Networks. Tech. Rep. VUB-PROG-
TR-06-10, Vrije Universiteit Brussel, 2006. Available online:
ftp://prog.vub.ac.be/tech.report/2006/.

WALDO, J. The Jini Architecture for Network-centric Computing.
Commun. ACM 42,7 (1999), 76-82.

WALDO, J., WYANT, G., WOLLRATH, A., AND KENDALL, S. C. A
note on distributed computing. In MOS ’96: Selected Presentations
and Invited Papers Second International Workshop on Mobile Object
Systems - Towards the Programmable Internet (1996), Springer-
Verlag, pp. 49-64.

YONEZAWA, A., BRIOT, J.-P., AND SHIBAYAMA, E. Object-
oriented concurrent programming in ABCL/1. In Conference
proceedings on Object-oriented programming systems, languages
and applications (1986), ACM Press, pp. 258-268.

