
1

Self-Adaptive Provisioning of Virtualized
Resources in Cloud Computing

Jia Rao, Student Member, IEEE , Xiangping Bu, Student Member, IEEE ,
Kun Wang, Student Member, IEEE and Cheng-Zhong Xu, Senior Member, IEEE

F

Abstract—Although cloud computing has gained sufficient popularity
recently, there are still some key impediments to enterprise adoption.
Cloud management is one of the top challenges. The ability of on-the-fly
partitioning hardware resources into virtual machine(VM) instances fa-
cilitates elastic computing environment to users. But the extra layer of re-
source virtualization poses challenges on effective cloud management.
The factors of time-varying user demand, complicated interplay between
co-hosted VMs and the arbitrary deployment of multi-tier applications
make it difficult for administrators to plan good VM configurations. In
this paper, we propose a distributed learning mechanism that facilitates
self-adaptive virtual machines resource provisioning. We treat cloud
resource allocation as a distributed learning task, in which each VM
being a highly autonomous agent submits resource requests according
to its own benefit. The mechanism evaluates the requests and replies
with feedbacks. We develop a reinforcement learning algorithm with a
highly efficient representation of experiences as the heart of the VM
side learning engine. We prototype the mechanism and the distributed
learning algorithm in an iBalloon system. Experiment results on an
Xen-based cloud testbed demonstrate the effectiveness of iBalloon.
The distributed VM agents are able to reach near-optimal configuration
decisions in 7 iteration steps at no more than 5% performance cost.
Most importantly, iBalloon shows good scalability on resource allocation
by scaling to 128 correlated VMs.

1 INTRODUCTION

One important offering of cloud computing is to deliver
computing Infrastructure-as-a-Service (IaaS). In this type
of cloud, raw hardware infrastructure, such as CPU,
memory and storage, is provided to users as an on-
demand virtual server. Aside from client-side reduced
total cost of ownership due to a usage-based payment
scheme, a key benefit of IaaS for cloud providers is
the increased resource utilization in data centers. Due
to the high flexibility in adjusting virtual machine (VM)
capacity, cloud providers can consolidate traditional web
applications into a fewer number of physical servers
given the fact that the peak loads of individual appli-
cations have few overlaps with each other [3].

In the case of IaaS, the performance of hosted appli-
cations relies on effective management of VMs’ capacity.
However, the additional layer of resource abstraction in-
troduces unique requirements for the management. First,
effective cloud management should be able to resize
individual VMs in response to the change of application

• The authors are with the Department of Electrical and Computer Engi-
neering, Wayne State University, 5050 Anthony Wayne Drive, Detroit,
MI 48202. E-mail: {jrao,xpbu,kwang,czxu}@wayne.edu

demands. More importantly, besides the objective of
satisfying Service Level Agreement (SLA) of individual
applications, system-wide resource utilization ought to
be optimized. In addition, real-time requirements of pay-
per-use cloud computing for VM resource provisioning
make the problem even more challenging.

Although server virtualization helps realize perfor-
mance isolation to some extent, in practice, VMs still
have chances to interfere with each other. It is possible
that one rogue application could adversely affect the
others [20], [10]. In [7], the authors showed that for
VM CPU scheduling alone, it is already too complicated
to determine the optimal parameter settings. Taking
memory, I/O and network bandwidth into provisioning
will further complicate the problem. Time-varying appli-
cation demands add one more dimension to the config-
uration task. Dynamics in incoming traffic can possibly
make prior good VM configurations no longer suitable
and result in significant performance degradation.

Furthermore, practical issues exist in fine-grained VM
resource provisioning. By setting the management in-
terval to 30 seconds, the authors in [23] observed that
under sustained resource demands, a VM needs minutes
to get its performance stabilize after memory reconfig-
uration. Similar delayed effect can also be observed in
CPU reconfiguration, partially due to the backlog of
requests in prior intervals. The difficulty in evaluating
the immediate output of management decisions makes
the modeling of application performance even harder.

Exporting infrastructure as a service gives cloud users
the flexibility to select VM operating systems (OS) and
the hosted applications. But this poses new challenges
to underlaying VM management as well. Because public
IaaS providers assume no knowledge of the hosted ap-
plications, VM clusters of different users may overlap on
physical servers. The overall VM deployment can show
an dependent topology with respect to resources on
physical hosts. The bottleneck of multi-tier applications
can shift between tiers either due to workload dynamics
or mis-configurations on one tier. Mis-configured VMs
can possibly become rogue ones affecting others. In the
worst case, all nodes in the cloud may be correlated and
mistakes in the capacity management of one VM may
spread onto the entire cloud.

2

Our previous work [23] demonstrates the efficacy of
reinforcement learning (RL)-based resource allocation in
a static cloud environment that VMs are deployed on
one physical machine. Based on state space defined
on co-running VM configurations, we optimize system-
wide VM performance on one machine under different
workload combinations. Although effectively managing
configurations of VMs with distinct resource demands,
the approach in [23] assumes a static environment and
relies on workload specific environment models to map
VM configurations to system-wide performance index.
This approach can not be easily extended to a dynamic
cloud environment, in which VMs are hosted on a cluster
of physical machines. First, it becomes prohibitively
expensive to maintain models for different workload
combinations as the number of VMs increases. Second,
possible VM join/leave or migration makes the opti-
mization of cluster-wide performance difficult. Finally,
the state space defined on VM configurations is not
robust to workload dynamics.

In this paper, we address the issues and present a dis-
tributed learning approach for cloud management. We
decompose the cluster-wide cloud management problem
into sub-problems concerning individual VM resource
allocations and consider cluster-wide performance to be
optimized if individual VMs meet their SLAs with a high
resource utilization. To handle workload dynamics, we
extend the state definition in [23] from VM configura-
tions to VM running status and address the issues due
to the use of continuous running status as the state space.
More specifically, our contributions are as follows:

(1) Distributed learning mechanism. We treat VM
resource allocation as a distributed learning task. Instead
of cloud resource providers, cloud users manage indi-
vidual VM capacity and submit resource requests based
on application demands. The host agent evaluates the
aggregated requests on one machine and gives feedback
to individual VMs. Based on the feedbacks, each VM
learns its capacity management policy accordingly. The
distributed approach is scalable because the complexity
of the management is not affected by the number of
VMs and we rely on implicit coordination between VMs
belonging to the same virtual cluster.

(2) Self-adaptive capacity management We develop
an efficient reinforcement learning approach for the man-
agement of individual VM capacity. The learning agent
operates on a VM’s running status which is defined
on the utilization of multiple resources. We employ a
Cerebellar Model Articulation Controller-based Q table
for continuous state representation. The resulted RL
approach is robust to workload changes because state
on low-level statistics accommodate workload dynamics
to a certain extent.

(3) Resource efficiency metric. We explicit optimize
resource efficiency by introducing a metric to measure
a VM’s capacity settings. The metric synthesizes ap-
plication performance and resource utilization. When
employed as feedbacks , it effectively punishes decisions
that violate applications’ SLA and gives users incentives

to release unused resources.
(4) Design and implementation of iBalloon. Our

prototype implementation of the distributed learning
mechanism, namely iBalloon, demonstrated its effective-
ness in a Xen-based cloud testbed. iBalloon was able to
find near optimal configurations for a total number of
128 VMs on a 16-node closely correlated cluster with
no more than 5% of performance overhead . We note
that, there were reports in literature about the automatic
configuration of multiple VMs in a cluster of machines.
This is the first work that scales the auto-configuration
of VMs to a cluster of correlated nodes under work-
conserving mode.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the challenges in cloud management.
Section 3 and Section 4 elaborate the key designs and
implementation of iBalloon, respectively. Section 5 and
Section 6 give experiments settings and results. Related
work is presented in Section 7. We conclude this paper
and discuss future works in Section 8.

2 CHALLENGES IN CLOUD MANAGEMENT

In this section, we review the complications of CPU,
memory and I/O resource allocations in cloud and dis-
cuss the practical issues behind on-the-fly VM reconfig-
uration and large scale VM management.

2.1 Complex Resource to Performance Relationship
In cloud computing, application performance depends
on the application’s ability to simultaneously access mul-
tiple types of resources [21]. In this work, we consider
CPU, memory and I/O bandwidth as the building blocks
of a VM’s capacity. An accurate resource to performance
model is crucial to the design of automatic capacity man-
agement. However, the workload and cloud dynamics
make the determination of the system model challeng-
ing. Our discussions are based on Xen virtualization
platforms, but they are applicable to other virtualization
platforms like VMware and VirtualBox. In the Xen based
platform, the driver domain (dom0) is a privileged VM
residing in the host OS. It manages other guest VMs
(domU) and performs the resource allocations. In the rest
of this paper, we use dom0 and the host interchangeably.
VMs always refer to the guest VMs or domUs.

2.1.1 CPU
The CPU(s) can be time-shared by multiple VMs in fine-
grain. For example, the Credit Scheduler, which is the
default CPU scheduler in Xen, can perform the CPU
allocation in a granularity of 30 ms. On boot, each
resident VM is assigned a certain number of virtual
CPU (VCPU), and the number can be changed on-the-
fly. Although the number of VCPUs does not determine
the actual allocation of CPU cycles, it decides the max-
imum concurrency and CPU time the VM can achieve.
In general, CPU scheduling works in a work-conserving
(WC) or non-work-conserving (NWC) mode.

3

It is convenient to obtain the VMs’ CPU utilization.
The usage can be reported by dom0 using xentop
or by the VM’s OS (e.g. the top command in linux).
However, it is easily to determine how CPU resources
are allocated to VMs. In general, there are three ways of
CPU allocation:

1) Under WC mode, set VMs’ VCPU to the number
of available physical CPU and change the CPU
allocations by altering VMs priorities (or weight in
Xen).

2) Under WC mode, change CPU allocation by al-
tering the VCPU number. It is equal to setting an
upper limit of CPU allocation to the VCPU number.
Within the limit, a VM can use CPU for free.

3) Under NWC mode, same as the first method, ex-
cept that the allocations are specified as cap values.
All the cap values add up to the total available CPU
resource.

To determine the best CPU mode in cloud manage-
ment, we compared the above three methods on a host
machine with two quad-core Intel Xeon CPUs. Two
instances of TPC-W database (DB) tier were consolidated
on the host. For more details about the TPC-W applica-
tion, please refer to Section 5. The DB tier is primary
CPU-intensive and the VMs were limited to use the first
four cores only. We make sure that the aggregated CPU
demand is beyond the total capacity of four cores.

Figure 1 draws the aggregated throughput and av-
erage response time of two TPC-W instances, under
different CPU allocation modes. WC-4VCPU refers to
the first method with equal weight of the two VMs.
Although the aggregated CPU demand is beyond four
cores, each VM actually needs a little more than two
cores. It is equivalent to work-conserving with “over-
provisioning” of CPU to individual VMs. WC-2VCPU is
similar except that there is a 2-VCPU upper limit for each
VM. In NWC-capped, we set the VMs to have 4 VCPU
and each of the VM was capped to half of the CPU time.
For example, in the case of four cores, a cap of 400 means
no limit while 200 refers to half of the capacity.

In the figure, we can see that WC-2VCPU provided
the best performance in terms of both throughput and
response time. Plausible reasons for the compromised
performance in the other two modes can be attributed
to possible wasted CPU time. CPU contentions in WC-
4VCPU may lower the CPU efficiency in serving re-
quests. In principle, NWC-capped should deliver similar
performance as WC-2VCPU. In practice, the results due
to WC-2VCPU turned out to be better than those of
NWC-capped.

Under NWC mode, there is usually a simple (and
often linear) relationship between CPU resource and
application performance. In [21], the authors showed
an auto-regressive-moving-average model can represent
this relationship well. However, in WC mode, the actual
allocated CPU time to a VM is determined by the total
CPU demand on the host, which makes the modeling
harder. We take the challenges to consider WC mode in
the VMs capacity management because it provides better

 1400

 1600

 1800

 2000

 2200

 2400

Throughput Response time
 0

 200

 400

 600

 800

 1000

T
hr

ou
gh

pu
t (

re
q/

s)

R
es

po
ns

e
tim

e
(m

s)

WC-4VCPU
WC-2VCPU

NWC-capped

Fig. 1. Performance of TPC-W under different CPU
allocation modes.

performance and avoids possible waste of CPU resource.

2.1.2 Memory
Unlike CPU, memory is usually shared by dividing the
physical address space into non-overlapping regions,
each of which is used dedicatedly by one VM. Although
it is possible for a VM to give up unused memory
through self-ballooning [19], during each management
interval we consider the allocated memory be used
exclusively by one VM. The objective of the cloud mem-
ory management is to dynamically balancing “unused”
memory from idle VMs to the busy ones. Identification
of “unused” memory pages or calculation of the memory
utilization of a running VM is not trivial. Different from
free pages, “unused” pages refer to those that once
touched but not actively being accessed by the system. It
can be calculated as the total memory minus the system
working set.

System working set size (WSS) can be estimated either
by monitoring the disk I/O and major page faults [13], or
using miss ratio curve [33]. But these methods are only
sensitive to memory pressure and are able to increase
VM memory size accordingly. Any decrease of memory
usage can not be quickly detected. As a result, the
memory of a VM may not be shrunk promptly.

In concept, the relationship between VM memory size
and application-level performance is simple. That is, the
performance drops dramatically when the memory size
is smaller than the application’s WSS. The open cloud
environment adds one more uncertainty to VM memory
management. Modern OSes usually design their write-
back policies based on system wide memory statistics.
For example, in Linux, by default the write-back is trig-
gered when 10% of the total memory is dirty. A change
of VM memory size may trigger background write-backs
affecting application performance considerably although
the new memory size is well above the WSS.

2.1.3 I/O Bandwidth
All the I/O requests from VMs are serviced by the
host’s I/O system. If the host’s I/O scheduler is selected
properly, e.g. the CFQ scheduler in Linux, VMs can have
differentiated I/O services. Setting a VM to a higher
priority leads to higher I/O bandwidth or lower latency.
The achieved I/O performance depends heavily on the

4

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 5 10 15 20 25 30 35 40
10

100

1000

10000

T
hr

ou
gh

pu
t (

re
q/

s)

R
es

po
ns

e
tim

e
(m

s)

Time (mins)

Throughput
Response time

Fig. 2. Delayed effect of VCPU reconfiguration.

sequentiality of the co-hosted I/O streams as well as
their request sizes. Thus, the I/O usage, e.g. the achieved
I/O bandwidth reported by command like iostat, does
not directly connect to application performance.

There are two key impediments in mapping the mem-
ory or I/O resources to application performance. First,
it is difficult to accurately measure the utilization of
the resources. Second, the actual resource allocation (e.g.
achieved I/O bandwidth) is determined by the charac-
teristics of the applications as well as the co-running
VMs.

2.2 Issues of VM Reconfiguration
VM capacity management relies on precise operations
that set resources to desired values assuming the ob-
servation of the instant reconfiguration effect. However,
in fine-grained cloud management, such as in [21], [23],
within the management interval the effect of a reconfig-
uration can not be correctly perceived. The work in [23]
showed up to 10 minutes delayed time before a memory
reconfiguration stabilizes. Similar phenomenon was also
observed in CPU.

We did tests measuring the dead time between a
change in VCPU and the time the performance stabilizes.
A single TPC-W DB tier was tested by changing its
VCPU. Figure 2 plots the application-level performance
over time. Starting from 4 VCPUs, the VM was removed
one VCPU every 5 minutes until one was left at the time
of the 15th minute. Then the VCPU was added back
one by one. At the 20th minute, the number of VCPUs
increased from 1 to 2. We observed a delay time of more
than 5 minutes before the response time stabilized at the
time of the 25th minute. The reason for the delay was
due to the resource contention caused by the backlogged
requests when there were more CPU available. The VM
took a few minutes to digest the congested requests.

2.3 Cluster Wide Correlation
In a public cloud, multi-tier applications spanning mul-
tiple physical hosts require all tiers to be configured ap-
propriately. In most multi-tier applications, request pro-
cessing involves several stages at different tiers. These
stages are usually synchronous in the sense that one
stage is blocked until the completion of other stages
on other tiers. Thus, the change of the capacity of one
tier may affect the resource requirement on other tiers.
In Table 1, we list the resource usage on the front-end

TABLE 1
Configuration dependencies of multi-tier VMs.

DB VCPU 1VCPU 2VCPU 3VCPU 4VCPU
APP MEM 790MB 600MB 320MB 290MB
APP CPU% 61% 47% 15% 10%

Decision-maker

VM

Host-agent

App-agent

1

2
3

4

5

6

7

8

9

10

Fig. 3. The architecture and working flow of iBalloon. (1)
The VM reports running status. (2) Decision-maker
replies with a capacity suggestion. (3) The VM submits
the resource request. (4) Host-agent synchronously
collects all VMs’ requests, reconfigures VM resources and
sleeps for a management interval. (5)-(6) Host-agent
queries App-agent for VMs’ application-level perfor-
mance. (7)-(8) Host-agent calculates and sends the
feedback. (9) The VM wraps the information about
this interaction and reports to Decision-maker. (10)
Decision-maker updates the capacity management
policy for this VM accordingly.

application tier of TPC-W as the CPU capacity of the
back-end tier changed. APP MEM refers to the minimum
memory size that prevents the application server from
doing significant swapping I/Os; APP CPU% denotes
the measured CPU utilization. The table suggests that,
as the capacity of the back-end tier increases, the demand
for memory and CPU in the front tier decreases consider-
ably. An explanation is that without prompt completion
of requests at the back-end tier, the front tier needs to
spend resources for unfinished requests. Therefore, any
mistake in one VM’s capacity management may spread
to other hosts. In the worst case, all nodes in cloud could
be correlated by multi-tier applications.

In summary, the aforementioned challenges in cloud
computing brings unique requirements to VM capacity
management. (1) It should guarantee VM’s application-
level performance in the presence of complicated re-
source to performance relationships. (2) It should ap-
propriately resize the VMs in response to time-varying
resource demands. (3) It should be able to work in
an open cloud environment, without any assumptions
about VM membership and deployment topology.

3 THE DESIGN OF IBALLOON

3.1 Overview

We design iBalloon as a distributed management frame-
work, in which individual VMs initialize the capacity
management. iBalloon provides the hosted VMs with

5

capacity directions as well as evaluative feedbacks. Once
a VM is registered, iBalloon maintains its application
profile and history records that can be analyzed for
future capacity management. For better portability and
scalability, we decouple the functionality of iBalloon
into three components: Host-agent, App-agent and
Decision-maker.

Figure 3 illustrates the architecture of iBalloon as
well as its interactions with a VM. Host-agent,
one per physical machine, is responsible for allocat-
ing the host’s hardware resource to VMs and gives
feedback. App-agent maintains application SLA pro-
files and reports run-time application performance.
Decision-maker hosts a learning agent for each VM
for automatic capacity management. We make two as-
sumptions on the self-adaptive VM capacity manage-
ment. First, capacity decisions are made based on VM
running status. Second, a VM relies on the feedback
signals, which evaluates previous capacity management
decisions, to revise the policy currently employed by its
learning agent.

The assumptions together define the VM capacity
management task as an autonomous learning process in
an interactive environment. The framework is general in
the sense that various learning algorithms can be incor-
porated. Although the efficacy or the efficiency of the ca-
pacity management may be compromised, the complex-
ity of the management task does not grow exponentially
with the number of VMs or the number of resources.
After a VM submits its SLA profile to App-agent
and registers with Host-agent and Decision-maker,
iBalloon works as illustrated in Figure 3. iBalloon consid-
ers the VM capacity to be multidimensional, including
CPU, memory and I/O bandwidth. This is one of the ear-
liest works that consider these three types of resources
together. A VM’s capacity can be changed by altering
the VCPU number, memory size and I/O bandwidth.
The management operation to one VM is defined as the
combination of three meta operations on each resource:
increase, decrease and nop.

3.2 Key Designs
3.2.1 VM Running Status
VM running status has a direct impact on management
decisions. A running status should provide insights into
the resource usage of the VM, from which constrained
or over-provisioned resource can be inferred. We define
the VM running status as a vector of four tuples.

(ucpu, uio, umem, uswap),

where ucpu, uio, umem, uswap denote the utilization of
CPU, I/O, memory and disk swap, respectively. As
discussed above, memory utilization can not be trivially
determined. We turn to guest OS reported metric to
calculate umem(See Section 4 for details). Since disk
swapping activities are closely related to memory usage,
adding uswap to the running status provides insights into
memory idleness and pressure.

3.2.2 Feedback Signal
The feedback signal ought to explicitly punish resource
allocations that lead to degraded application perfor-
mance, and meanwhile encouraging a free-up of unused
capacity. It also acts as an arbiter when resource are con-
tented. We define a real-valued reward as the feedback.
Whenever there is a conflict in the aggregated resource
demand, e.g. the available memory becomes less than
the total requested memory, iBalloon set the reward to
−1 (penalty) for the VMs that require an increase in the
resource and a reward of 0 (neural) to other VMs. In this
way, some of the conflicted VMs may back-off leading
to contention relaxation. Note that, although conflicted
VMs may give up previous requests, Decision-maker
will suggest a second best plan, which may be the best
solution to the resource contention.

When there is no conflict on resources, the reward
directly reflects application performance and resource
efficiency. We define the reward as a ratio of yield to
cost:

reward =
yield

cost
,

where yield = Y (x1, x2, . . . , xm) =

∑m

i=1
y(xi)

m ,

y(xi) =


1 if xi satisfies its SLA;

e
−p∗(|

xi−x
′
i

x
′
i

|)
− 1 otherwise,

and cost = 1 +

∑n

i=1
(1−uk

i)
1
k

n . Note that the metric
yield is a summarized gain over m performance metrics
x1, x2, · · · , xm. The utility function y(xi) decays when
metric xi violates its performance objective x

′

i in SLA.
cost is calculated as the summarized utility based on n
utilization status u1, u2, · · · , un. Both the utility functions
decay under the control of the decay factors of p and
k, respectively. We consider throughput and response
time as the performance metrics and ucpu, uio, umem,
uswap as the utilization metrics. The reward punishes
any capacity setting that violates the SLA and gives
incentives to high resource efficiency.

3.2.3 Self-adaptive Learning Engine
At the heart of iBalloon is a self-adaptive learning agent
responsible for each VM’s capacity management. Re-
inforcement learning is concerned with how an agent
ought to take actions in a dynamic environment so as to
maximize a long term reward [27]. It fits naturally within
iBalloon’s feedback driven, interactive framework. RL
offers opportunities for highly autonomous and adaptive
capacity management in cloud dynamics. It assumes no
priori knowledge about the VM’s running environment.
It is able to capture the delayed effect of reconfigurations
to a large extent.

A RL problem is usually modeled as a Markov Decision
Process (MDP). Formally, for a set of environment states
S and a set of actions A, the MDP is defined by the tran-
sition probability Pa(s, s

′) = Pr(st+1 = s′|st = s, at = a)
and an immediate reward function R = E[rt+1|st =

6

),,,(swapmemiocpu uuuu

∑
),(asQ

Memory table

Fig. 4. CMAC-based Q table.

s, at = a, st+1 = s′]. At each step t, the agent perceives
its current state st ∈ S and the available action set A(st).
By taking action at ∈ A(st), the agent transits to the next
state st+1 and receives an immediate reward rt+1 from
the environment. The value function of taking action a
in state s can be defined as:

Q(s, a) = E{
∞∑
k=0

γkrt+k+1|st = s, at = a},

where 0 ≤ γ < 1 is a discount factor helping Q(s, a)’s
convergence. The optimal policy is as simple as: always
select the action a that maximizes the value function
Q(s, a) at state s. Finding the optimal policy is equivalent
to obtain an estimation of Q(s, a) which approximates its
actual value. The estimate of Q(s, a) can be updated each
time an interaction (st, at, rt+1) is finished:

Q(st, at) = Q(st, at)+α∗[rt+1+γ∗Q(st+1, at+1)−Q(st, at)],

where α is the learning rate. The interactions consist of
exploitations and explorations. Exploitation is to follow
the policy obtained so far; in contrast, exploration is the
selection of random actions to capture the change of
environment so as to refine the existing policy. We follow
the ε-greedy policy to design the RL agent. With a small
probability ε, the agent picks up a random action, and
follows the best policy it has found for the rest of the
time.

In VM capacity management, the state s corresponds
to the VM’s running status and action a is the man-
agement operation. For example, the action a can show
in the form of (nop, increase, decrease), which indicates
an increase in the VM’s memory size and a decrease in
I/O bandwidth. Actions in continuous space remains an
open research problem in the RL field, we limit the RL
agent to discrete actions. The actions are discretized by
setting steps on each resource instead. VCPU is incre-
mented or decremented by one at a time and memory
is reconfigured in a step of 256MB. I/O bandwidth is
changed by a step of 0.5MB.

The requirement of autonomy in VM capacity man-
agement poses two key questions on the design of the
RL engine. First, how to overcome the scalability and
adaptability problems in RL? Second, how would the
multiple RL agents, each of which represents a VM,

coordinate and optimize system-wide performance? We
answer the questions by designing the VM capacity man-
agement agent as a distributed RL agent with a highly
efficient representation of the Q table. Unlike, multi-
agent RL, in which each agent needs to maintain other
competing agents’ information, distributed RL does not
have explicit coordination scheme. Instead, it relies on
the feedback signals for coordination. For example, when
resources are contented, negative feedbacks help resolve
the contention. VMs belonging to the same application
receive the same feedback, which coordinates resource
allocations in the virtual cluster. An immediate benefit of
distributed learning is that the complexity of the learning
problem does not grow exponentially with the number
of VMs.

The VM running status is naturally defined in a
multi-dimensional continuous space. Although we limit
the actions to be discrete operations, the state itself
can render the Q value function intractable. Due to
its critical impact on the learning performance, there
are many studies on the Q function representation [27],
[28]. We carefully reviewed these works and decided to
borrow the design in the Cerebellar Model Articulation
Controller (CMAC) [2] to represent the Q function. It
maintains multiple coarse-grained Q tables or so-called
tiles, each of which is shifted by a random offset with
respect to each other. With CMAC, we can achieve higher
resolution in the Q table with less cost. For example,
if each status input (an element in the status vector) is
discretized to five intervals (a resolution of 20%), 32 tiles
will give a resolution less than 1% (20%/32). The total
size of the Q tables is reduced to 32∗54 compared to the
size of 1004 if plain look-up table is used. In CMAC, the
actual Q table is stored in a one-dimensional memory
table and each cell in the table stores a weight value.
Figure 4 illustrates the architecture of a one-dimensional
CMAC. The VM running status listed in Figure 4 is only
for illustration purpose. The state needs to work with a
four-dimensional CMAC. Given a state s, CMAC uses a
hash function, which takes a pair of state and action as
input, to generate indexes for the (s, a) pair. CMAC uses
the indexes to access the memory cells and calculates
Q(s, a) as the sum of the weights in these cells.

One advantage of CMAC is its efficiency in handling
limited data. Similar VM states will generate CMAC
indexes with a large overlap. Thus, updates to one
state can generalize to the others, leading to accelerated
RL learning process. One update of the CMAC-based
Q table only needs 6.5 milliseconds in our testbed,
in comparison with the 50-second update time in a
multi-layer neural network [23]. Once a VM finishes
an iteration, it submits the four-tuple (st, at, st+1, rt) to
Decision-maker. Then the corresponding RL agent
updates the VM’s Q table using Algorithm 1. In the
algorithm, we further enhanced the CMAC-based Q
table with fast adaptation when SLA violated. We set
the learning rate α to 1 whenever receives a negative
penalty. This ensures that “bad” news travels faster than
good news allowing the learning agent quickly response

7

Algorithm 1 Update the CMAC-based Q value function
1: Input st, at, st+1, rt;
2: Initialize δ = 0;
3: I[at][0] = get index(st);
4: Q(st, at) =

∑j≤num tilings

j=1
Q[I[at][j]];

5: at+1 = get next action(st+1);
6: I[at+1][0] = get index(st+1);
7: Q(st+1, at+1) =

∑j≤num tilings

j=1
Q[I[at+1][j]];

8: δ = rt −Q(st, at + γ ∗Q(st+1, at+1));
9: for i = 0; i < num tilings; i++ do

10: /*If SLA violated, enable fast adaptation*/
11: if rt < 0 then
12: θ[I[at][i]]+ = (1.0/num tilings) ∗ δ;
13: else
14: θ[I[at][i]]+ = (α/num tilings) ∗ δ;
15: end if
16: end for

to the performance violation.

4 IMPLEMENTATION
iBalloon has been implemented as a set of user-level
daemons in guest and host OSes. The communication be-
tween the host and guest VMs is carried out through an
inter-domain channel. In our Xen-based testbed, we used
Xenstore for the host and guest information exchange.
Xenstore is a centralized configuration database that is
accessible by all domains on the same host. The domains
who are involved in the communication place ”watches”
on a group of pre-defined keys in the database. When-
ever sender initializes a communication by writing to
the key, the receiver is notified and possibly trigging
a callback function. Upon a new VM joining a host,
Host-agent, one per machine, creates a new key under
the VM’s path in Xenstore. Host-agent launches a
worker thread for the VM and the worker ”watches” any
change of the key. Whenever a VM submits a resource
request via the key, the worker thread retrieves the
request details and activates the corresponding handler
in dom0 to handle the request. The VM receives the
feedback from Host-agent in a similar way.

We implemented resource allocation in dom0 in a
synchronous way. VMs send out resource requests in
a fixed interval (30 second in our experiments) and
Host-agent waits for all the VMs before satisfying any
request. It is often desirable to allow users to submit
requests with different management intervals for flexi-
bility and reliability in resource allocation. We leave the
extension of iBalloon to asynchronous resource alloca-
tion in the future work. After VMs and Host-agent
agree on the resource allocations, Host-agent modifies
individual VMs’ configurations accordingly. We changed
the memory size of the VM by writing the new size to the
domain’s memory/target key in Xenstore. VCPU num-
ber was altered by turning on/off individual CPUs via
key cpu/CPUID/availability. For I/O bandwidth
control, we used command lsof to correlate VMs’
virtual disks to processes and change the corresponding
processes’ bandwidth allocation via the Linux device-
mapper driver dm-ioband [30].

App-agent, one per host, maintains the hosted appli-
cation SLA profiles. In our experiments, it periodically
queries participant machines through standard socket
communication and reports application performance,
such as throughput and response time, to Host-agent.
In a more practical scenario, the application performance
should be reported by a third-party application moni-
toring tool instead of the clients. iBalloon can be easily
modified to integrate such tools.

We also consider two possible implementations of
Decision-maker.

1) Centralized decision maker. In this approach, a
designated server maintains all the Q learning
tables of the VMs. Although centralized in mainte-
nance of the learning trace, VMs’ capacity manage-
ment decisions are independent of each other. The
advantages include the simplicity of management:
learning algorithms can be modified or reused
across a group of VMs; avoidance of learning over-
head: the possible overhead incurred by the learn-
ing is removed from individual VMs. However,
the centralized server can become a single point
of failure as well as performance bottleneck as the
number of VMs increases. We use asynchronous
socket and multi-threads to improve concurrency
in the server.

2) Distributed decision agent. In this approach,
learning is local to individual VMs and
Decision-maker is a process residing in
the guest OS. The scalability of iBalloon is not
limited by the processing power in the centralized
decision server, but at a cost of CPU and memory
overhead in each VM.

Quantitative comparison of the two approaches will be
presented in Section 6.5.

We use xentop utility to report VM CPU utiliza-
tion. xentop is instrumented to redirect the utilization
of each VM to separate log files in the tmpfs folder
/dev/shm every second. A small utility program parses
the logs and calculates the average CPU utilization for
every management interval. The disk I/O utilization is
calculated as a ratio of achieved bandwidth to allocated
bandwidth. The achieved the bandwidth can be obtained
by monitoring the disk activities in /proc/PID/io. PID
is the process number of a VM’s virtual disk in dom0.
The swap rate can also be collected in a similar way.
We consider memory utilization to be the guest OS
metric Active over memory size. The Active metric
in /proc/meminfo is a coarse estimate of actively used
memory size. However, it is lazily updated by guest ker-
nel especially during memory idle periods. We combine
the guest reported metric and swap rate for a better
estimate of memory usage. With explorations from the
learning engine, iBalloon has a better chance to reclaim
idle memory without causing significant swapping.

8

5 EXPERIMENT DESIGN

5.1 Methodology

To evaluate the efficacy of iBalloon, we attempt to an-
swer the following questions: (1) How well does iBalloon
perform in the case of single VM capacity management?
Can the learned policy be re-used to control a similar
application or on a different platform? (Section 6.3) (2)
When there is resource contention, can iBalloon properly
distribute the constrained resource and optimize overall
system performance? (Section 6.4) (3) How is iBalloon’s
scalability and overhead? (Section 6.5) We selected three
representative server workloads as the hosted applica-
tions. TPC-W [32] is an E-Commerce benchmark that
models after an online book store, which is primary
CPU-intensive. It consists of two tiers, i.e. the front-
end application (APP) tier and the back-end database
(DB) tier. SPECweb [31] is a web server benchmark suite
that delivers dynamic web contents. It is a CPU and
network-intensive server application. TPC-C [32] is an
online transaction processing benchmark that contains
lightweight disk reads and sporadic heavy writes. Its
performance is sensitive to memory size and I/O band-
width.

To create dynamic variations in resource demand,
we instrumented the workload generators of TPC-W
and TPC-C to change client traffic level at run-time.
The workload generator reads the traffic level from a
trace file, which models after the real Internet traffic
pattern [29]. We scaled down the Internet traces to match
the capacity of our platform.

5.2 Testbed Configurations

Two clusters of nodes were used for the experiments.
The first cluster (CIC100) is a shared research environ-
ment, which consists of a total number of 22 DELL and
SUN machines. Each machine in CIC100 is equipped
with 8 CPU cores and 8GB memory. The CPU and mem-
ory configurations limit the number of VMs that can be
consolidated on each machine. Thus, we use CIC100 as
a resource constrained cloud testbed to verify iBalloon’s
effectiveness for small scale capacity management. Once
iBalloon gains enough experiences to make decisions, we
applied the learned policies to manage a large number of
VMs. CIC200 is a cluster of 16 DELL machines dedicated
to the cloud management project. Each node features
a configuration of 12 CPU cores (with hyperthreading
enabled) and 32 GB memory. In the scale-out testing, we
deployed 64 TPC-W instances, i.e. a total number of 128
VMs on CIC200. To generate sufficient client traffic to
these VMs, all the nodes in CIC100 were used to run
client generators, with 3 copies running on each node.

We used Xen version 4.0 as our virtualization en-
vironment. dom0 and guest VMs were running Linux
kernel 2.6.32 and 2.6.18, respectively. To enable on-the-
fly reconfiguration of CPU and memory, all the VMs
were para-virtualized. The VM disk images were stored
locally on a second hard drive on each host. We created

the dm-ioband device mapper on the partition contain-
ing the images to control the disk bandwidth. For the
benchmark applications, MySQL, Tomcat and Apache
were used for database, application and web servers.

6 EXPERIMENTAL RESULTS

6.1 Evaluation of the Reward Metric
The reward metric synthesizes multi-dimensional ap-
plication performance and resource utilizations. We are
interested in how the reward signal guides the capacity
management. The decay rates p and k reflect how impor-
tant it is for an application to meet the performance ob-
jectives in its SLA and how aggressive the user increase
resource utilization even at the risk of overload. Figure 5
plots the application yield with different decay rate p.
The reward data was drawn from a 2-hour test run of
TPC-W with limited resources. During the experiment,
there were considerable SLA violations. The x (response
time) and y (throughput) axes show the difference (in
percentage) between the achieved performance and the
objective when SLA is violated. The larger the difference,
the more deviation from the target. From Figure 5, we
can see that a larger decay rate imposes stricter re-
quirements on meeting SLA. A small deviation from the
target will effectively generate a large penalty. Similarly,
k controls how the cost changes with resource usage. A
larger value of k encourages the user to use the resource
more aggressively. Finally, We decided to guarantee user
satisfaction and assume risk neutral users, and set p = 10
and k = 1.

Figure 6 shows how the reward reflect the status of
VM capacity. In this experiment, we varied the client
traffic to occasionally exceed the VM’s capacity. reward
is calculated from the DB tier of a TPC-W instance, with
a fixed configuration of 3 VCPU, 2GB memory and 2
MB/s disk bandwidth. As shown in Figure 6, when the
load is light, performance objectives are met. During this
period, yield is set to 1 and cost dominates the change
of reward. As traffic increases, resource utilization goes
up incurring smaller cost. Similarly, reward drops when
traffic goes down because of the increase of the cost fac-
tor. In contrast, when the VM becomes overloaded with
SLA violations, the factor of yield dominates reward by
imposing a large penalty. In conclusion, reward effec-
tively punishes performance violations and gives users
incentives to release unused resources.

6.2 Exploitations vs. Explorations
Reinforcement learning is a direct adaptive optimal con-
trol approach which relies on the interactions with the
environment. Therefore, the performance of the learning
algorithm depends critically on how the interactions
are defined. Explorations are often considered as sub-
optimal actions that lead to degraded performance.
However, without enough explorations, the RL agent
tends to be trapped in local optimal policies, failing to
adapt to the change of the environment. On the other

9

 0
 0.5

 1
 1.5

 2 0
 0.2

 0.4
 0.6

 0.8
 1

-1

-0.8

-0.6

-0.4

-0.2

 0

Yield

p=10

p=2

Response time

Throughput

Yield

Fig. 5. Application yield with different decay rates.

-0.2
0

0.2
0.4
0.6
0.8

1

 0 25 50 75 100 125 150 175 200

R
ew

ar
d

Time interval (30s)

Reward
 100

 200

 300

 400

 500

 600

N
um

be
r

of
 c

lie
nt

s Traffic level
Capacity

Fig. 6. Reward with different traffic levels.

hand, too much exploration would certainly result in
unacceptable application performance. Before iBalloon is
actually deployed, we need to determine the value of
exploration rate, that best fits our platform.

In this experiment, we dedicated a physical host to
one application and initialized the VM’s Q table to all
zeros. We varied the exploration rate of the learning
algorithm and draw the application performance of TPC-
W in Figure 7. The bars represent the average of 5 one-
hour runs with the same exploration rate and variations.
From the figure, we can see that the response time of
TPC-W is convex with respect to the exploration rate
with ε = 0.1 being the optimal. The same exploration
rate also gives the best throughput as well as the smallest
variations. Experiments with TPC-C suggested a similar
exploration rate. We also empirically determined the
learning rate and discount factor. For the rest of this
paper, we set the RL parameters to the following values:
ε = 0.1, α = 0.1, γ = 0.9.

6.3 Single Application Capacity Management
In its simplest form, iBalloon manages a single VM or
application’s capacity. In this subsection, we study its
effectiveness in managing different types of applications
with distinct resource demands. The RL-based auto-
configuration can suffer from initial poor performance
due to explorations with the environment. To have a
better understanding of the performance of RL-based
capacity management, we tested two variations of iBal-
loon, one with an initialization of the management policy

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 0.01 0.1 0.2 0.5 1.0
 0

 500

 1000

 1500

 2000

 2500

 3000

R
es

po
ns

e
tim

e
(m

s)

T
hr

ou
gh

pu
t (

re
q/

s)

Exploration rate

Response time
Throughput

Fig. 7. Application performance with different exploration
rates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time (ms)

Over-provisioning
Static

iBalloon w/ init
iBalloon w/o init

(a) TPC-W

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time (sec)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time (sec)

Over-provisioning
Static

iBalloon w/ init
iBalloon w/o init

(b) TPC-C

Fig. 8. Response time under various reconfiguration
strategies.

and one without. We denote them as iBalloon w/ init and
iBalloon w/o init, respectively. The initial policy was ob-
tained by running the application workload for 10 hours,
during which iBalloon interacted with the environment
with only exploration actions.

Figure 8(a) and Figure 8(b) plot the performance of
iBalloon and its variations in a 5-hour run of the TPC-
W and TPC-C workloads. Note that during each ex-
periment, the host was dedicated to TPC-W or TPC-
C, thus no resource contention existed. In this simple
setting, we can obtain the upper bound and lower bound
of iBalloon’s performance. The upper bound is due
to resource over-provisioning, which allocates more than
enough resource for the applications. The lower bound
performance was derived from a VM template whose
capacity is not changed during the test. We refer it as
static. We configured the VM template with 1 VCPU
and 512 MB memory in the experiment. If not otherwise
specified, we used the same template for all VM default
configuration in the remaining of this paper.

From Figure 8(a), we can see that, iBalloon achieved
close performance compared with over-provisioning. iBal-
loon w/o init managed to keep almost 90% of the request
below the SLA response time threshold except that a few
percent of requests had wild response times. It suggests
that, although started with poor policies, iBalloon was
able to quickly adapt to good policies and maintained
the performance at a stable level. We attribute the good
performance to the highly efficient representation of the
Q table. The CMAC-enhanced Q table was able to gener-
alize to the continuous state space with a limited number
of interactions. Not surprisingly, static’s poor result again
calls for appropriate VM capacity management.

10

TABLE 2
Performance improvement due to initial policy learned

from different applications and cloud platforms.

Throughput Response time
Trained in TPC-W

Tested in SPECweb 40% 80%
Trained in CIC100
Tested in CIC200 20% 30%

As shown in Figure 8(b), iBalloon w/ init showed al-
most optimal performance for TPC-C workload too. But
without policy initialization, iBalloon can only prevent
around 80% of the requests from SLA violations; more
than 15% requests would have response times larger
than 30 seconds. This barely acceptable performance
stresses the importance of a good policy in more com-
plicated environments. Unlike CPU, memory sometimes
shows unpredictable impact on performance. The dead
time due to the factor of memory is much longer than
CPU (10 minutes compared to 5 minutes in our exper-
iments). In this case, iBalloon needs a longer time to
obtain a good policy. Fortunately, the derived policy,
which is embedded in the Q table, can be possibly re-
used to manage similar applications.

Table 2 lists the application improvement if the learned
management policies are applied to a different appli-
cation or to a different platform. The improvement is
calculated against the performance of iBalloon without
an initial policy. SPECweb [31] is a web server bench-
mark suite that contains representative web workloads.
The E-Commerce workload in SPECweb is similar to
TPC-W (CPU-intensive) except that its performance is
also sensitive to memory size. Results in Table 2 suggest
that the Q-table learned for TPC-W also worked for
SPECweb. An examination of iBalloon’s log revealed
that the learned policy was able to successfully match
CPU allocation to incoming traffic. A policy learned on
cluster CIC100 can also give more than 20% performance
improvement to the same TPC-W application on cluster
CIC200. Given the fact that the nodes in CIC100 and
CIC200 have more than 30% difference on CPU speed
and disk bandwidth, we conclude that iBalloon policies
are applicable to heterogeneous platforms across cloud
systems.

The reward signal provides strong incentives to give
up unnecessary resources. In Figure 9, we plot the
configuration of VCPU, memory and I/O bandwidth of
TPC-W, SPECweb and TPC-C as client workload varied.
Recall that we do not have an accurate estimation of
memory utilization. We rely on the Active metric in
meminfo and the swap rate to infer memory idleness.
The Apache web server used in SPECweb periodically
free unused httpd process thus memory usage infor-
mation in meminfo is more accurate. As shown in
Figure 9, with a 10-hour trained policy, iBalloon was able
to expand and shrink CPU and I/O bandwidth resources
as workload varied. As for memory, iBalloon was able

to quickly respond to memory pressure; it can release
part of the unused memory although not completely.
The agreement in shapes of each resource verifies the
accuracy of the reward metric.

We note that the above results only show the per-
formance of iBalloon statistically. In practice, service
providers concern more about user-perceived perfor-
mance, because in production systems, mistakes made
by autonomous capacity management can be pro-
hibitively expensive. To test iBalloon’s ability of de-
termining the appropriate capacity online, we ran the
workload generators at full speed and reduced the VM’s
capacity every 15 management intervals. Figure 6.3 plots
the client-perceived results in TPC-W and TPC-C. In
both experiments, iBalloon was configured with initial
policies. Each point in the figures represents the aver-
age of a 30-second management interval. As shown in
Figure 10(a), iBalloon is able to promptly detect the mis-
configurations and reconfigure the VM to appropriate
capacity. On average, throughput and response time can
be recovered within 7 management intervals. Similar
results can also be observed in Figure 10(b) except that
client-perceived response times have larger fluctuations
in TPC-C workload.

6.4 Coordination in Multiple Applications
iBalloon is designed as a distributed management frame-
work that handles multiple applications simultaneously.
The VMs rely on the feedback signals to form their
capacity management policy. Different from the case of
a single application, in which the feedback signal only
depends on the resource allocated to the hosting VM, in
multiple application hosting, the feedback signals also
reflect possible performance interferences between VMs.

We designed experiments to study iBalloon’s perfor-
mance in coordinating multiple applications. Same as
above, iBalloon was configured to manage only the DB
tiers of TPC-W workload. All the DB VMs were homoge-
neously hosted in one physical host while the APP VMs
were over-provisioned on another node. The baseline
VM capacity strategy is to statically assign 4VCPU and
1GB memory to all the DB VMs, which is considered
to be over-provisioning for one VM. iBalloon starts with
a VM template, which has 1VCPU and 512MB memory.
Figure 11 draws the performance of iBalloon normalized
to the baseline capacity strategy in a 5-hour test. The
workload to each TPC-W instances varied dynamically,
but the aggregated resource demand is beyond the ca-
pacity of the machine that hosts the DB VMs. Figure 11
shows that, as the number of the DB VMs increases,
iBalloon gradually beats the baseline in both throughput
and response time.

An examination of the iBalloon logs revealed that iBal-
loon suggested a smaller number of VCPUs for the DB
VMs, which possibly alleviated the contention for CPU.
The baseline strategy encouraged resource contention
and resulted in wasted work. In summary, iBalloon,
driven by the feedback, successfully coordinated com-
peting VMs to use the resource more efficiently.

11

1
1.5

2
2.5

 0 10 20 30 40 50 60 70

I/O
 b

an
dw

id
th

(M
B

/s
)

Time interval (30s)

TPC-C
Traffic level

Resource level

0.5
1

1.5
2

M
em

or
y

si
ze

 (
G

B
)

SPECWeb

1
2
3
4V

C
P

U

TPC-W

Fig. 9. Resources allocations changing
with workload.

 1000

 1500

 2000

 2500

 3000

 3500

 15 30 45 60 75

T
hr

ou
gh

pu
t (

re
q/

s)

TPC-W
Reference

 10

 100

 1000

 10000

 15 30 45 60 75R
es

po
ns

e
tim

e
(m

s)

Time intervals (30 sec)

TPC-W
SLA

(a) TPC-W

 0
 200
 400
 600
 800

 1000
 1200

0 15 30 45 60 75 90 105

T
hr

ou
gh

pu
t (

re
q/

s)

TPC-C
Reference

 0.01

 0.1

 1

 10

 100

 1000

0 15 30 45 60 75 90 105R
es

po
ns

e
tim

e
(s

ec
)

Time intervals (30 sec)

TPC-C
SLA

(b) TPC-C

Fig. 10. User-perceived performance under iBalloon.

6.5 Scalability and Overhead Analysis
We scaled iBalloon out to the large dedicated CIC200
cluster and deployed 64 TPC-W instances, each with
two tiers, on the cluster. We randomly deployed the 128
VM on the 16 nodes, assuming no topology informa-
tion. To avoid possible hotspot and load unbalancing,
each node hosted 8 VMs, 4 APP and 4 DB tiers. We
implemented Decision-maker as distributed decision
agents. The deployment is challenging to autonomous
capacity management for two reasons. First, iBalloon
ought to coordinate VMs on different hosts, each of
which runs its own resource allocation policy. The de-
pendent relationships makes it harder to orchestrate all
the VMs. Second, consolidating APP (network-intensive)
tiers with DB (CPU-intensive) tiers onto the same host
poses challenges in finding the balanced configuration.

Figure 12 plots the average performance of 64 TPC-
W instances for a 10-hour test. In addition to iBalloon,
we also experimented with four other strategies. The
optimal strategy was obtained by tweaking the cluster
manually. It turned out that the setting: DB VM with
3VCPU,1GB memory and APP VM with 1VCPU, 1GB
memory delivered the best performance. work-conserving
scheme is similar to the baseline in last subsection; it sets
all VMs with fixed 4VCPU and 1GB memory. Adaptive
proportional integral (PI) method [22] directly tracks the
error of the measured response time and the SLO and
adjusts resource allocations to minimize the error. Auto-
regressive-moving-average (ARMA) method [21] builds a
local linear relationship between allocated resources and
response time with recently collected samples, from
which the resource reconfiguration is calculated. The
performance is normalized to optimal. For throughput,
higher is better; for response time, lower is better.

From the figure, iBalloon achieved close throughput
as optimal while incurred 20% degradation on request
latency. This is understandable because any change in
a VM’s capacity, especially memory reconfigurations,
bring in unstable periods. iBalloon outperformed work-
conserving scheme by more than 20% in throughput.
Although work-conserving had compromised throughput,
it achieved similar response time as optimal because it did

not perform any reconfigurations. adaptive-PI and ARMA
achieved similar throughput as iBalloon but with more
than 100% degradations on response time. These control
methods which are based either on system identification
or local linearization can suffer poor performance under
both workload and cloud dynamics. We conclude that
iBalloon scales to 128 VMs on a correlated cluster with
near-optimal application performance. In the next, we
perform tests to narrow down the overhead incurred on
request latency.

In previous experiments, iBalloon incurred non-
negligible cost in response time. The cost was due to
the real overhead of iBalloon as well as the perfor-
mance degradation caused by the reconfiguration. To
study the overhead incurred by iBalloon, we repeated
the experiment as in Section 12 except that iBalloon
operated on the VMs with optimal configurations and
reconfigurations were disabled in Host-agent. In this
setting, the overhead only comes from the interactions
between VMs and iBalloon. Figure 13 shows the over-
head of iBalloon with two different implementations of
Decision-maker, namely the centralized and the dis-
tributed implementations. In the centralized approach,
a designated server performs RL algorithms for all the
VMs. Again, the overhead is normalized to the perfor-
mance in the optimal scheme.

Figure 13 suggests that the centralized decision server
becomes the bottleneck with as much as 50% overhead
on request latency and 20% on throughput as the number
of VMs increases. In contrast, the distributed approach,
which computes capacity decisions on local VMs, in-
curred less than 5% overhead on both response time
and throughput. To further confirm the limiting factor
of centralized decision server, we split the centralized
decision work onto two separate machines(denoted as
Hierarchical) in the case of 128 VMs. As shown in
Figure 13, the overhead on request latency reduces by
more than a half. Additional experiments revealed that
computing the capacity management decisions locally in
VMs requires no more than 3% CPU resources for Q
computation and approximately 18MB of memory for
Q table storage. The resource overhead is insignificant

12

 0

 0.5

 1

 1.5

 2

2 3 4 5 6

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of VM instances

Response time
Throughput

Fig. 11. Performance of multiple appli-
cations due to iBalloon.

 0.5

 1

 1.5

 2

 2.5

Throughput Response time

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce Optimal

iBalloon
Work-conserving

Adaptive-PI
ARMA

Fig. 12. Performance due to various
reconfiguration approaches on a clus-
ter of 128 correlated VMs.

 0

 10

 20

 30

 40

 50

R
es

po
ns

e
T

im
e

(%
)

Centralized
Distributed

Hierarchical

 0

 5

 10

 15

2 4 6 8 10 12 14 16 18 20 22 24 48 128

T
hr

ou
gh

pu
t (

%
)

Number of VMs

Centralized
Distributed

Fig. 13. Runtime overhead of iBalloon.

compared to the capacity of the VM template (1VCPU,
512MB). These results conclude that iBalloon adds no
more than 5% overhead to the application performance
with a manageable resource cost.

7 RELATED WORK

Cloud computing allows cost-efficient server consoli-
dation to increase system utilization and reduce cost.
Resource management of virtualized servers is an im-
portant and challenging task, especially when dealing
with fluctuating workloads and performance interfer-
ence. Traditional control theory and machine learning
have been applied with success to the resource allocation
in physical servers; see [1], [18], [25], [15], [16], [24], [8]
for examples. Recent work demonstrated the feasibility
of these methods to automatic virtualized resource allo-
cation.

Early work [22], [26] focused on the tuning of the
CPU resource only. Padala, et al. employed a propor-
tional controller to allocate CPU shares to VM-based
multi-tier applications [22]. This approach assumes non-
work-conserving CPU mode and no interference be-
tween co-hosted VMs, which can lead to resource under-
provisioning. Recent work [14] enhanced traditional con-
trol theory with Kalman filters for stability and adapt-
ability. But the work remains under the assumption of
CPU allocation. The authors in [26] applied domain
knowledge guided regression analysis for CPU alloca-
tion in database servers. The method is hardly applicable
to other applications in which domain knowledge is not
available.

The allocation of memory is more challenging. The
work in [11] dynamically controlled the VM’s memory
allocation based on memory utilization. Their approach
is application specific, in which the Apache web server
optimizes its memory usage by freeing unused httpd
processes. For other applications like MySQL database,
the program tends to cache data aggressively. The calcu-
lation of the memory utilization for VMs hosting these
applications is much more difficult. Xen employs Self-
Ballooning [19] to do dynamic memory allocation. It
estimates the VM’s memory requirement based on OS-
reported metric: Commited_AS. It is effective expanding

a VM under memory pressures, but not being able to
shrink the memory appropriately. More accurate esti-
mation of the actively used memory (i.e. the working
set size) can be obtained by either monitoring the disk
I/O [13] or tracking the memory miss curves [33]. How-
ever, these event-driven updates of memory information
can not promptly shrink the memory size during mem-
ory idleness. Although, we have not found a good way
to estimate the VM’s working size, iBalloon relies on a
combination of performance metrics to decide memory
allocation. With more information on VMs’ business and
past trial-and-error experiences, iBalloon achieves more
accurate memory allocation.

Automatic allocation of multiple resources [21] or for
multiple objectives [17], [9] poses challenges in the de-
sign of the management scheme. Complicated relation-
ship between resource and performance makes the mod-
eling of underlying systems hard. Padala, et al. applied
an auto-regressive-moving-average (ARMA) model with
success to represent the allocation to application perfor-
mance relationship. They used a MIMO controller to
automatically allocate CPU share and I/O bandwidth
to multiple VMs. However, the ARMA model may not
be effective under workload with large variations. Its
performance can also be affected by VM inferences.

Different from the above approaches in designing a
self-managed system, RL realizes autonomic manage-
ment by performing trial-and-error interactions with en-
vironments and can possibly be applied to dynamic and
complex problems. Recently, RL has been successfully
applied to automatic application parameter tuning [6],
[4], optimal server allocation [28] and self-optimizing
memory controller design [12]. Autonomous resource
management in cloud systems introduces unique re-
quirements and challenges in RL-based automation, due
to dynamic resource demand, changing VM deployment
and frequent VM interference. More importantly, user-
perceived quality of service should also be guaranteed.
The RL-based methods should be scalable and highly
adaptive. The authors in [23] attempted to apply RL
in host-wide VM resource management. They addressed
the scalability and adaptability issues using model-based
RL that builds environment models in order to accel-
erate the learning process. However, the complexity of

13

maintaining the models for the systems under differ-
ent scenarios becomes prohibitively expensive when the
number of VMs increases. Bu et al proposed to use sys-
tem knowledge-guided trimming of the RL state space in
coordinated configuration of virtual resources and appli-
cation parameters [5]. Although it effectively reduces the
initial searching space in RL problems, it is still unable to
deal with resource allocations in multiple machines and
the state reduction will be less effective as the number of
VMs increases. In contrast, we design the VM resource
allocation as a distributed task working directly on the
system-level metrics. In a distributed learning process,
iBalloon demonstrated a scalability up to 128 correlated
VMs on 16 nodes under work-conserving mode.

8 CONCLUSION

In this work, we present iBalloon, a generic framework
that allows self-adaptive virtual machine resource pro-
visioning. The heart of iBalloon is the distributed rein-
forcement learning agents that coordinate in dynamic
environment. Our prototype implementation of iBalloon,
which uses a highly efficient reinforcement learning
algorithm as the learning, was able to find the near
optimal configurations for a total number of 128 VMs
on a closely correlated cluster with no more than 5%
overhead on application throughput and response time.

Nevertheless, there are several limitations of this work.
First, the management operations are discrete and are
in a relatively coarse granularity. Second, the RL-based
capacity management still suffers from initial perfor-
mance considerably. Future work can extend iBalloon by
combining control theory with reinforcement learning. It
offers opportunities for the control theory to provide fine
grained operations and stable initial performance.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their constructive comments. This work was supported
in part by U.S. NSF grants CNS-0702488, CRI-0708232,
CNS-0914330, and CCF-1016966.

REFERENCES

[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guaran-
tees for web server end-systems: A control-theoretical approach.
IEEE Trans. Parallel Distrib. Syst., 13, January 2002.

[2] J. S. Albus. A New Approach to Manipulator Control: the
Cerebellar Model Articulation Controller (CMAC). Journal of
Dynamic Systems, Measurement, and Control, 1975.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical report, EECS Department, University of
California, Berkeley, Feb 2009.

[4] X. Bu, J. Rao, and C.-Z. Xu. A reinforcement learning approach
to online web systems auto-configuration. In ICDCS, 2009.

[5] X. Bu, J. Rao, and C.-Z. Xu. A model-free learning approach for
coordinated configuration of virtual machines and appliances. In
MASCOTS, 2011.

[6] H. Chen, G. Jiang, H. Zhang, and K. Yoshihira. Boosting the per-
formance of computing systems through adaptive configuration
tuning. In SAC, 2009.

[7] L. Cherkasova, D. Gupta, and A. Vahdat. When virtual is harder
than real: Resource allocation challenges in virtual machine based
it environments. Technical report, HP Labs, Feb 2007.

[8] J. Gong and C.-Z. Xu. A gray-box feedback control approach for
system-level peak power management. In ICPP, 2010.

[9] J. Gong and C.-Z. Xu. vpnp: Automated coordination of power
and performance in virtualized datacenters. In IWQoS, 2010.

[10] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing
performance isolation across virtual machines in xen. In Middle-
ware, 2006.

[11] J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory overbooking
and dynamic control of xen virtual machines in consolidated
environments. In IM, 2009.

[12] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Self-optimizing
memory controllers: A reinforcement learning approach. In ISCA,
2008.

[13] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Geiger: monitoring the buffer cache in a virtual machine envi-
ronment. In ASPLOS, 2006.

[14] E. Kalyvianaki, T. Charalambous, and S. Hand. Self-adaptive and
self-configured cpu resource provisioning for virtualized servers
using kalman filters. In ICAC, 2009.

[15] A. Kamra, V. Misra, and E. M. Nahum. Yaksha: a self-tuning
controller for managing the performance of 3-tiered web sites. In
IWQoS, 2004.

[16] M. Karlsson, C. T. Karamanolis, and X. Zhu. Triage: performance
isolation and differentiation for storage systems. In IWQoS, 2004.

[17] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan.
vmanage: loosely coupled platform and virtualization manage-
ment in data centers. In ICAC, 2009.

[18] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback
control approach for guaranteeing relative delays in web servers.
In RTAS, 2001.

[19] D. Magenheimer. Memory overcommit...without the commit-
ment. Technical report, Xen Summit, June 2009.

[20] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling i/o in virtual
machine monitors. In VEE, 2008.

[21] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In EuroSys, 2009.

[22] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized
resources in utility computing environments. In EuroSys, 2007.

[23] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin. VCONF: a reinforce-
ment learning approach to virtual machines auto-configuration.
In ICAC, 2009.

[24] J. Rao and C.-Z. Xu. Online measurement the capacity of multi-
tier websites using hardware performance counters. In ICDCS,
2008.

[25] P. P. Renu, P. Pradhan, R. Tewari, S. Sahu, A. Ch, and P. Shenoy.
An observation-based approach towards self-managing web
servers. In IWQoS, 2002.

[26] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis,
and S. Kamath. Automatic virtual machine configuration for
database workloads. In SIGMOD Conference, 2008.

[27] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[28] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. On the use of
hybrid reinforcement learning for autonomic resource allocation.
Cluster Computing, 2007.

[29] The ClarkNet Internet traffic trace.
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html.

[30] The dm-ioband bandwidth controller.
http://sourceforge.net/apps/trac/ioband/wiki/dm-ioband.

[31] The SPECweb benchmark. http://www.spec.org/web2005.
[32] The Transaction Processing Council (TPC). http://www.tpc.org.
[33] W. Zhao and Z. Wang. Dynamic memory balancing for virtual

machines. In VEE, 2009.

