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Abstract. A competition between systems for doing exact real num-
ber computations was held in September 2000. We present the results
obtained and give a short evaluation of the different approaches used.

Introduction

Computable Analysis is flourishing theoretically, and during the last decade there
have also been some practical advances. Systems for doing exact real number
computations have appeared. Although still in their infancy, some of these sys-
tems are capable of non-trivial practical computations. The systems use very
different approaches and it was therefore decided to have a competition between
existing systems for exact real number computations as part of the 4th work-
shop of Computability and Complexity in Analysis at Swansea (CCA 2000). The
competition was organised by David Lester.

The aims of the competitions were: To establish the state of art in exact real
number computations; and to be a forum where competitors may debate ideas
and implementation techniques from different systems. This was a first attempt
at staging such a competition. The problems set were simple calculations that
would check basic capabilities of the systems.

The contestants are listed in Table 1.

Table 1. The contestants.

Competitor System Acronym
David Lester (Manchester) Manchester Arithmetic Package MAP
Norbert Müller (Trier) iterative Real RAM iRRAM
Marko Krznaric (Imperial College) IC
Tom Kelsey (St Andrew) Kelsey
Paul Zimmermann (INRIA Lorraine) MPFR1 MPFR

The person running the system for the competition has been entered as the
competitor. The system name has also been listed in case a specific name was
known. The entries will henceforth be referred to by the acronyms listed in the
1 Multiple Precision Floating-point Reliable library.
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table. The competitor has been the main developer of their systems except for
IC and MPFR, which are joint projects. See [1,2,3,4,5]. MPFR was a remote
entry. All contestants except Kelsey were running their systems on AMD 800
MHz machines with 256 Mbyte RAM. Since Maple was not available on these
computers, Kelsey was forced to run his system on a 233 MHz Pentium Laptop.

There were two sets of problems. One set containing the precirculated prob-
lems testing the minimum capability of the systems. The other set was announced
to the contestants shortly before the competition.

The competition was supervised by a committee consisting of Günter Hotz,
Daniel Richardson, Dieter Spreen, and the author.

Results

The results of the first set of problems is in Table 2. The tabulated timings
are in seconds. Note that the table is given for different accuracy depending on
implementation. The MAP, iRRAM, and MPFR systems computed the results
to 10000 decimal places. The IC system is for 1000 decimal places, and Kelsey’s
system is for 100 decimal places. Also note that MPFR did not restart the
system after each example as the rest of the contestants did; this explains why
MPFR gets much shorter times for cosine than for sine. IC withdrew from the
competition after two problems.

Table 2. Level 0 problems.

To Calculate MAP iRRAM MPFR IC IC2 Kelsey√
π .05 .13 .75 .78 .13

log π 16.73 1.10 1.70 30.00 .39 89.22
sin e 2.03 1.30 4.00 .30 111.26
cos e 2.10 1.30 .09 .28 126.90

sin(sin(sin 1)) 5.79 .99 4.63 2.39 106.72
cos(cos(cos 1)) 5.88 .99 4.65 1.94 111.83

eee

2.12 1.60 1.05 1.90
log(1 + log(1 + log(1 + π))) 32.42 1.37 .73 6.25 102.49
log(1 + log(1 + log(1 + e))) 78.60 1.53 .95 8.96 123.29

log(1 + log(1 + log(1 + log(1 + π)))) 112.73 1.90 1.29 10.19 141.36
log(1 + log(1 + log(1 + log(1 + e)))) 179.87 2.03 1.51 11.67 136.19

sin 1050 2.02 1.48 49.28 90.33 139.52
cos 1050 2.03 1.47 .08 90.81
e1000 1.15 2.26 .39 1.11

arctan 1050 .17 .20 10.79

The results of the second set of problems is in Table 3. The contestants were
given one hour to run these problems. The second set was not attempted by all
2 These results for IC were supplied at a later date and are for 100 decimal places and

run on a 233 MHz Pentium laptop.
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contestants. MPFR did not get this set of problems. Kelsey did not compute
any of them. Again, the accuracy was 10000 decimal places except for IC giving
1000 decimal places.

The logistic map problem was to compute 1000 iterations of the logistic map

xn+1 =
15
4

(xn − x2
n) ,

with starting value x0 = 1
π
, to ten decimal places.

Table 3. CCA 2000 problems.

To Calculate MAP iRRAM IC IC3

eπ
√

163 1.07 2.43 26.72 1.40
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9

5
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25
199.53 3.74 11.47

sin

�
3 log 640320√

163

�
15.87 1.31 3.28

Logistic map >500.00 0.07 4h

Correctness

A comprehensive checking of correctness has not been performed, although cor-
rectness of the computed results is obviously very important. Ideally, each system
should be accompanied by a proof of the correctness of the system. Such proofs
exists for IC and an earlier version of MAP.

As a quick check of correctness, MAP and iRRAM results have been checked
for some of the problems and agree up to 10000 decimal places. As these two
systems are implemented in different ways this is a good indication that they
actually compute the correct result. This consensus approach to validate results
is of course only an indication of correctness, not a proof.

Evaluation

The three systems, iRRAM, MAP, and MPFR, have in common that they com-
pute on fast converging dyadic Cauchy sequences. The iRRAM uses an iterative
bottom-up approach. It starts with a predefined precision of the inputs. The
subexpressions are then evaluated bottom-up and only the guaranteed precision
after the operation is forwarded to the next subexpression. If the precision of the
3 These results for IC were supplied at a later date and are for 100 decimal places and

run on a 233 MHz Pentium laptop.
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result is not sufficient, it recomputes the whole expression with increased pre-
cision. The method used in MPFR is also bottom-up but it uses floating point
calculations with directed rounding. MPFR rounds the expression both up and
down and if the resulting interval is too wide, it increases the input precision. In
contrast, MAP uses a top-down approach. The precision needed for each subex-
pression is derived from the expression tree. The MAP does not need to do any
recomputations.

The IC uses linear fractional transformations (LFT). In this approach, trees
of LFTs are constructed, which are then normalised to a normal form. Some
operations are derived from algorithms used on continued fractions, since these
can be encoded into LFTs. This approach has the advantage that the operations
have the best possible convergence speed. However, it also means that IC suffers
from the rapidly growing coefficients that come with long continued fractions.

Kelsey uses symbolic computations in Maple. It is clearly slower than the
other approaches. This can only partly be explained by the inferior hardware
that it was run on.

That IC did not perform very well must be taken as indication that the LFT
approach is not as efficient as the Cauchy sequence approach. This probably also
applies to approaches using pure continued fractions.

There is not much to separate the Cauchy sequence based approaches for
many of the expressions tested. However, the consistency of the iRRAM made
it the clear choice as winner in this competition.

Winner. The winner of the competition was Norbert Müller’s iRRAM.

Criticism

The value of the results presented herein should not be overestimated. It is of
course always hard to make such a competition fair and conclusive. However,
there are some issues that really should be addressed. There was no attempt to
deduce the performance of the systems as a function of the size of the problem.
By problem size one can consider both the precision required and the size of the
expression. (The logistic map example can be seen as a really big expression if the
iterations are unfolded.) One should also be careful with the choice of problems.
It may be that one approach is particularly well-suited to certain problems.

Another shortcoming of the Swansea 2000 competition was that only calcu-
lator style problems were included. For the next competition it would be nice to
see some other types of problem, e.g., integration, differential equations, linear
algebra (the iRRAM already does matrix operations). This would require the
competitors to implement other data types apart from the reals, e.g., the space
of continuous functions.
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