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ABSTRACT  

We propose to use EEG signals to make user authentication for requiring high security. EEG signals were measured 

while the subjects saw several images in sequences. Since subjects‘ EEG signals are different for known and unknown 

images, these EEG sequences may be used to identify each subject. Correlation analysis and classification results show 

the feasibility of user authentication from EEG signals.  
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1. INTRODUCTION
1.1 Motivation and goals 

As the importance of information and security has been arisen, the safer authentication or identification systems are 

desired. The codes or keys should be unique and complicated. Therefore, individual‘s biometric signatures such as 

fingerprints, irises, or voices are used for authentic systems in these days. Most of people have those features, and they 

are different from each other. Moreover, it is comfortable and convenient because biometric signatures themselves are 

used as keys or codes, which have no worries of being lost or forgotten. However, there are still limitations. Most of the 

user identification systems are not safe against rubber hose attacks, which are applying mental or physical force to obtain 

password or keys of an authentic system. Also, most of the biometric signatures have chances to be duplicated or stolen, 

and attackers can break into the system. Therefore, an identification system using brain signal with memory, which can 

be considered as the most complex biometric signature, is proposed. It is impossible to generate certain pattern of brain 

signals with today‘s technology. Brain signals are very complicated to be generated artificially, and no one can control 

his or her brain signals.  

1.2 Background 

The human brain is a very important body part and has tremendous cognitive functions. Memorizing and containing the 

information from experiences can be considered as the most important function. Every human has different experiences 

and emotions through his or her whole life, therefore, each brain contains different information. Reading people‘s mind 

or thinking has been dreamed and even tried since a long time ago. These days, human got closer to read minds with 

science and technology. Yet we cannot fully understand others‘ thinking and emotion, however, can get clues from 

signals such as facial expression, pupil diameter, skin conductance, and so on. Moreover, the technology such as 

electroencephalography (EEG), functional magnetic resonance imaging (fMRI), or positron emission tomography (PET) 

leads us to get signals from brain with noninvasive methods. Among those technologies, we used EEG to get brain 

signals and tried to show the possibilities of using brain signals with memories as biometric signature. 

Since brain signal measuring technologies have been developed, the interest in using brain signals had been increased. 

Recently few studies reported the use of implicit memory in motor-related skills in human identification and ‗pass-

thoughts‘ to replace passwords [1, 2, 3]. However, the time for gathering those skills from individuals is too long, and 

still there are chances for the authentic system to be cracked if the fixed tasks are revealed. On the other hand, human 

memory can be detected faster, as well as it can act like an embedded key. Moreover, we are proposing to use brain 

signals which are produced in passive way by presenting stimuli. 
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A technique for determining whether the specific information is contained in a person‘s brain with EEG is called brain 

fingerprinting. It is yet controversial but has been used in forensic science and the advocators of the technique argue 

about its low error rate and high statistical confidence [4, 5]. According to the research on brain fingerprinting, event 

related potentials (ERPs), especially p300 can be detected when subjects are shown to the stimuli, which are known or 

familiar. Also, ERP differences between familiar and unfamiliar faces have been reported with latencies of ERPs such as 

250ms, 300ms, 400ms and so on [6, 7]. A study on attacking revealing user‘s private information, which is opposite to 

security, was also attempted by presenting visual stimuli and the feasibility was shown even with inexpensive EEG cased 

BCI devices [8]. Inversely, we can eavesdrop other‘s memories by evoking brain signals with stimulus and they can be 

formed as a code. Brain signals can be formed into the most complicating code but does not need to be memorized. It 

means that even the users do not know the exact code. The codes or keys are already implemented in users‘ brains and 

the system will draw them out. In other words, the system drives out brain signals from the users with stimuli and they 

would produce the signals in passive way. In this research, series of visual stimulus were used to evoke brain signals 

from the subjects.  

Achieved brain signals from experiment were passed through few processes, than the users were identified. In some 

stages, we presented several methods for single-trial analysis, which is a main issue of current BCI study [9, 10]. 

2. DATA ACQUISITION
2.1 Experiments 

We recruited fourteen healthy volunteers were recruited under the approval of the Institutional Review Board (IRB). All 

of the participants were right handed and the ages were ranged in 20 to 28 years with a mean age of 23 and variance of 8.  

Visual stimuli were used in this research, and the categories for the stimuli were facial pictures, pictures of sites, and 

flags. Those categories are suitable for the stimuli because individuals without certain disabilities can all recognize 

tremendous of distinctive faces or places with familiarity, and they are relatively easier to obtain. The visual stimuli were 

carefully selected and arranged so that the composition of known stimuli can be different for each participant. Therefore, 

we had collected some pictures before the experiments from all the participants; two pictures of themselves, two pictures 

of a man or woman they know in person, such as family or friend. Some pictures of celebrities were selected and added 

for the visual stimuli. Too famous faces, which can be recognized by anyone, were avoided to control the number of 

known and unknown faces for each subject. The ideal case was each subject knows half of the faces with different 

composition from others. 

Conditions of pictures such as brightness or size were controlled. Finally, each picture became a monochrome picture 

with 400 by 400 pixels. Figures of flags were remained colored and resized with original shapes.  

Overall 150 face pictures, 50 site pictures, and 50 flags were gathered for an experiment. Thus, the total number of visual 

stimuli was 250, and 250 trials composed a session. A visual stimulus was presented in a trial. Each subject participated 

two sessions per a day, and the experiments were repeated twice again with a week interval. Overall six sessions were 

conducted for each subject. In a session, 250 trials were separated into four blocks. Different categories of pictures were 

included in different blocks, therefore, it makes two blocks of facial pictures (half for each), a block for sites, and a block 

for flags. 

All the sessions had same stimuli, because the responses from same stimuli needed to be compared. If it was needed, 

participants could have recess between blocks. When the sessions were repeated on same day, the order of stimuli was 

same as the previous one. However, the orders were different for different days. We gave fake information to the 

subjects that only some of the stimuli were same as previous day. Especially, for sessions on the third day, four to five 

‗dummy trials‘ were added to each block to prevent subjects‘ stereotype that all of the stimuli were same as before. 

Those additional stimuli were not counted as trials and neither included in analysis. 

In a trial, each visual stimulus was shown for 1s. However, to prevent sudden pop up of figure from black screen, pre-

stimulus of white noise with same size as stimulus was inserted for 0.5s before a stimulus. Using pre-stimulus is a 

popular tactic for cognitive research, such as observing EEG signals or pupillometry [12, 13]. Also, after showing a 

picture, a question was shown for 2s on the screen, such as ‗do you know the face?‘, and subjects had to speak out the 
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answers; yes or no. The oral responses would unnecessary in practical security system, however, were collected and used 

as labels for analysis and single-trial classification.  

The EEG signals were recorded with a cap from Brain Vision with 32 integrated electrodes located at standard positions 

of the International 10-20 system [11]. Among thirty-two channels, thirty are placed on scalp potentials, one below left 

eye for Electrooculogram (EOG) and the other near left collarbone for Electrocardiogram (ECG). A separate channel for 

reference was placed on FCz location. The sampling rate was 500Hz and various filters were used; notch filter at 60Hz, 

low pass filter at 70Hz, and high pass filter at 0.531Hz. Individual sensors were adjusted under 20kΩ of impedances. The 

signals were recorded with software, BrainVision Recorder 1.10 and BrainVision Analyzer 1.05 was used for data export. 

2.2 Preprocessing 

The methods of EEG signal measuring and preprocessing can be emphasized as analyzing and can effect on the result 

significantly. At the same time, they are very tricky, because it is very hard to define or revealing the best methods. In 

this research, various methods for removing noise or artifacts and enhance meaningful signals were shown. First of all, 

average-reference transformation was adopted to enhance signals of channels near reference (channel FCz). Then, 

independent component analysis (ICA) was used, and the components for eye blinking or heartbeats were removed. Low 

pass filter (high cut off frequency at 35Hz) and high pass filter (low cut off frequency at 0.95Hz) were also used to 

reduce high frequency noise and slow voltage changes. Finally, filtered and artifact removed data was segmented into 

epochs. Each epoch includes from 0.2s before to 0.6s after stimulus onset. Averaged amplitude of signal before a 

stimulus onset was used as a baseline. 

3. FEATURE EXTRACTION
Since the EEG signals were measured with 500Hz from 31 scalp channels, the data was needed to be effectively reduced. 

In this research, we aimed to analyze signals with single trials. Therefore, efficient feature extraction was necessary. 

Even though ICA and filters were used to reduce noise, each signal from a trial still contains noise that can be hardly 

ignored. Signals‘ peak amplitudes and latency are important information, however, often covered by noise. To observe 

such information and reduce meaningless frequency parts at the same time, we adopted discrete cosine transform (DCT). 

3.1 Discrete cosine transform (DCT) 

The DCT is a transform which expresses a finite sequence of data points with a sum of cosine functions [14]. In 

particular, DCT can be considered as a Fourier-related transform similar to the discrete Fourier transform (DFT) with 

real numbers only. However, the difference from magnitude of DFT is that DCT is not shift invariant [15]. With this 

characteristic, information with time domain also can be observed. Therefore, the coefficients related to latencies of 

ERPs can be preserved. At the same time, the data of high frequency range, which can be considered as noise, were 

efficiently removed. In this research, DCT type-II was used, and the length of each DCT signal was 1024. 

3.2 Observation of DCT signals 

We defined two classes of stimulus as ‗known‘ and ‗unkown‘. With the oral responses from subjects, the EEG signals 

were separated into the two classes. Then, the grand averages of DCT signals for the two classes  were examined. Some 

channel strongly showed that the grand averages for ‗known‘ were distictive from that from ‗unknown‘ class. Those 

channels were F7, T7, Pz, CP1 and CP2. Espacially, the difference could be detected in the first nine DCT coefficients. 

However, the first coefficients had great variences. Therefore, the DCT coefficients from 2
nd

 to 9
th

 from the five channels 

were slected as the feature to represent response type.  
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4. RESULTS
4.1 Behavioral results 

As it was mentioned, the stimuli were same for all the sessions and subjects. If the subjects were always naïve for the 

stimuli sets, the identification would be easier with less change in the EEG responses. However, subjects usually 

recognized many of visual stimuli from the last experiments, and the portion of ‗known‘ increased. Answers from the 

first session of each day were counted. We considered that if a subject could recall a stimulus that was presented a week 

ago, the information was stored in long-term memory. Some of the subjects hardly remembered what was shown in the 

last week‘s experiment and some called back most of the stimuli. The number of ‗known‘ stimulus was ranged from 59 

to 117 per a subject, and the average was 90. Since the total number of stimulus was 250, the ratio was 36%. For day-2, 

average number of ‗known‘ stimulus per a subject was 144, which was more than half (57.6%). Finally, some of the 

subjects answered that they remember most of the stimulus on day-3, and the average was 183.5 per a subject (73.2%).  

4.2 Single trial classification 

To support the assumption that the different resonses related to memory can be observed through EEG signals, we tried 

single-trial classification with the two classes; ‘known’ and ‘unknown’. For classifier, nonlinear support vector machine 

(SVM) with radial basis function (RBM) was used. SVM is a binary learning machine which selects discriminant hyper-

plane that maximizes the margins between classes [16, 17]. Parameters for SVM were adjusted for maximum recognition 

rate for each case. EEG responses from single-trials were classified subject dependently. In other words, single-trials 

from each subject were classified separately.  

It was shown that channel F7, T7, Pz, CP1, and CP2 has more discriminative signals for the two classes than other 

channels. Also, DCT coefficients from 2
nd

 to 9
th

 included useful data for the classification. Therefore, 8 points from those 

5 channels were concatenated, and a feature vector of 40 points was obtained for each trial. Each trial was classified with 

the feature.  

In each session, there were 250 trials. For within session classification, 3-fold cross validation was used. Trials for class 

‘known’ and ‘unknown’ were separately divided into three groups randomly. A group from each class was selected as 

test set in turrn, and the rest groups became training set. Subject-6 memorized too many stimuli, thus removed from the 

classification. Among 78 sessions (except 6 sessions from subject-6), the worst session showed error rate of 50% and the 

best session showed error rate of 24.74%. The overall mean of the error rate was 38.55%.  

4.3 Identification of session data 

There were 6 sessions for a subject, thus the total numbers of sessions from all subjects was 84. Each of the session 

includes 250 trials, and features from trials can be concatenated and form a vector for each session. To identify the users, 

the data need to be compared. For efficient comparison, we checked correlation between signals. In other words, each 

row vectors were normalized by dividing with 2-norm of the vector, and the inner product between two normalized 

vectors stands for their similarity. The maximum value would be 1, when the two vectors are identical. The correlation 

between all the pairs can be presented with correlation matrix, which is descrived in Figure 1. The diagonal components 

of the correlation matrix are always 1, because it presents the similairity between same vectors.  

The optimal correlation matrix would be the block-diagonal matrix. The block matrices size of 6 by 6, which has 1 for all 

components, should be placed on the diagonal and prove that all sessions from a subject share relatively higher 

correlation values. We expected the correlation matrix to be similar as the optimal correlation matrix. One way of 

evaluate the identification result was observing the correlation matrix. 

For the identification, it was required to use both memory information and subject distinguishability. Features were 

extracted from 2
nd

 to 16
th

 DCT coefficients. The range covers both features for memory information and subject 

distinguishability. The first DCT coefficient was not included because we had filtered the signals with high pass filter in 

preprocessing. Channels were selected for the highest identification rate. Among various compositions of channels, T7, 

T8, CP5, CP6, CP1, CP2, Pz, and Oz drew out the best identification rate (15.72%). Fifteen DCT coefficients from 

selected channels were concatenated for a trial. Then, features from 250 trials were merged and formed a vector of the 

session. 
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Figure 1: The matrix that represents correlation between all the pairs of sessions. Normalized vector x𝑛  stands for the

concatenated data for nth session. With simple matrix product, the correlation between all the pairs can be avhieved into 

correlation matrix, size of 84 by 84. 

5. DISCUSSION
An identification system using brain signals related to memory was suggested, and potentials of the system were shown. 

The research was covered from the experiment for gathering data to identification results. From the experiment, subjects 

passively generated brain responses, and the responses were obtained with EEG signals. Also, experiments were repeated 

to understand memory and brain signal variation. We assumed that EEG signals can reveal the person‘s memory 

information, and individuals have unique patterns of brain signals. The assumptions were checked in various ways, such 

as grand average observation or single-trial classification. DCT was used for the feature extration, and similarities 

between session data were observed with correlation coefficients. Those methods are unique methods for EEG signal 

analysis.  

Single-trials were classified into ‗known‘ and ‗unknown‘ classes to confirm that those passively induced EEG signals 

contain the subject‘s memory information about the stimuli. SVM classifier was used, and the results with various 

compositions of train and test set were observed. Single-trials were possibly classified into the two classes. However, 

when the EEG signals from different days were used as train and test data, the classification error rate was increased. 

After it was clarified that single trials can be discriminated into ‗known‘ and ‗unknown‘ classes, the whole sessions were 

identified. Data from a session was identified by comparing correlation with other sessions. The best result showed false 

positive of 15.71%. However, we need more study for channel selection, and which channels strongly produce brain 

signals for identification.  

Also, subjects started to know about the stimuli, and the familiarity of overall stimuli increased as the experiment 

repeated. Therefore, it was obvious that the brain responses for stimuli had been changed during the whole period of 

experiment, and it influences on the results. To overcome the brain signal variation with time passing, the database of 

identification system needs to be regularly updated. Both of the data for stimuli and the users’ brain signals can be 

updated. The signals from previous identification can be stored and used to update brain signal database. However, not 

only users’ brain signals, but also users’ memories can be varied rapidly. To catch up with what the user learned and 

experienced, life logging can be applied. If the system can be implemented with commercial grade EEG measuring tools, 

this idea can be applied in tremendous situations, such as web access or authentication of the smart phone user. For this 

research, we needed to collect data for stimuli, but information in smart phones or social networks can be gathered and 

presented in further use. Then the amount of database for stimuli would be huge and can be updated rapidly. The user 

also upload or share photoes and articles, thus automatically update the data in social networks. Yet it might sound 

cumbersome, using brain activities and memories can be a strong method of human identification and authentication. 
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