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Abstract

We present a novel finite element integration method for low order elements
on GPUs. We achieve more than 100GF for element integration on first order
discretizations of both the Laplacian and Elasticity operators.
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1 Introduction

Graphical Processing Units (GPUs) present a promising platform for scientific
simulation, offering high performance with excellent power and cost efficiency.
However, despite advances in programmability for these devices [7], few numer-
ical libraries have made use of them. The challenge of rewriting a CPU code
to make use of a GPU’s architectural differences is a major barrier, which can
lead to slower code. As a result, high level simulation algorithms, finite elements
methods (FEM) in particular, are still not widely available.

In this paper, we summarize our experience with porting general FEM integra-
tion codes from the popular FEniCS project [17] to a GPU. By adjusting the
code generation tools available from FEniCS, a user is able to reuse their high
level weak form definition in both a CPU or GPU code. Using our decomposition
of global and local portions of the FEM integration routines, our port is able to
reach up to 100 GFlops on a single machine where highly-optimized CPU codes,
including hand-coded assembly routines, only reach the 12 GFlop range [5]. By
creating tools that allow researchers to leverage a GPU’s power throughout
their code, the GPU becomes an enabler of scientific discovery rather than a
limited tool for only a few codes.

We give an overview of available GPU codes for scientific computing in sec-
tion 2 discussing general tactics for speeding up a code with a GPU version.
For completeness, we review the tensor decomposition of FEM integration and
the available form languages available from the FEniCS project in section 3.
Our GPU port is described in section 4 with the numerical tests and results in
section 5.

2 Scientific GPU Codes

Several community packages are available for basic linear algebra, such as
CUBLAS [8] for the dense case and Thrust [4], CUSP [3], and CUDASparse [9]
for the sparse case. While there has been excellent work bringing high order
methods to the GPU, discontinuous Galerkin [15] and spectral elements [16],
very little has focused on the low-order methods which make up the majority of
finite element codes. Initial work in this area comes from [18], but in this paper
we focus on optimizing the integration stage. Tools for runtime code generation
and optimization are detailed in [14], which we will make use of in our study.

There are many excellent descriptions of the NVIDIA GPU architecture in
the literature [6, 7], so we will focus on the aspects salient to our problem.
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GPUs can be characterized as a collection of small vector units which run in
single-instruction multiple-thread (SIMT) mode. In the GTX285 model from
NVIDIA on which we run our tests, the vector length is 8 and there are 30 of
these Streaming MultiProcessors (SMP), as the vector units are called. In our
integration implementation, we must allow enough concurrency to feed these
vector units, while minimizing thread divergence and synchronization, which
have large penalties on this SIMT processor. Moreover, in all GPU architectures
there is a very large latency to global memory (400-600 cycles on the GTX285),
as opposed to the shared and register memory co-located with the SM which
cost just a few cycles. Therefore, we also minimize traffic to global memory by
loading input into shared memory and storing intermediate

3 FEM Integration

In [11], it is shown that for any given multilinear weak form of arity r, we may
express the element tensor as a tensor contraction,

Ai0,...,ir = Gµ0,...,µgKi0,...,ir
µ0,...,µg . (1)

The tensor K only depends on the form itself and the reference element Tref ,
whereas the G tensor depends on the mesh geometry and physical coefficients.
Such a decomposition provides an advantage over the standard quadrature since
K can be precomputed and reused by all of a GPU’s SMPs. The arity g of G
depends on the transformation needed to map the form back onto the reference
element.

In order to illustrate this decomposition, we will give a small example, found in
Section 2 of [11]. The negative Laplacian can be expressed in weak form as

〈vi,−∆u〉 = 〈∇vi,∇u〉 (2)

=
∑
e

∫
Te
∇vi(x) · ∇u(x)dx (3)

=
∑
e

∑
j

uj

∫
Te

∂vi
∂xα

∂vj
∂xα

dx (4)

=
∑
e

∑
j

uj

∫
Tref

∂ξµ
∂xα

∂vi
∂ξµ

∂ξν
∂xα

∂vj
∂ξν
|J |dξ. (5)

where vi is any test function. Thus, the element matrix is given by

Aij = GµνKij
µν , (6)
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where the analytic tensor is

Kij
µν =

∫
Tref

∂vi
∂ξµ

∂vj
∂ξν

dξ, (7)

and the geometric tensor is

Gµν =
∂ξµ
∂xα

∂ξν
∂xα
|J | = J−1

µα J
−1
να |J |. (8)

We have used Roman indices to indicate summation over basis functions, and
Greek indices for summation over spatial dimensions.

As a second example, we express the linear elasticity operator in the same form〈
∇vi +∇Tvi,∇u +∇Tu

〉
(9)

=
∑
e

∫
Te

(
∇vi +∇Tvi

)
:
(
∇u +∇Tu

)
dx (10)

=
∑
e

∑
j

uj

∫
Te

(
∂vi,β
∂xα

+
∂vi,α
∂xβ

)(
∂vj,β
∂xα

+
∂vj,α
∂xβ

)
dx (11)

=
∑
e,j

uj

∫
Tref

(
∂ξµ
∂xα

∂vi,β
∂ξµ

+
∂ξµ
∂xβ

∂vi,α
∂ξµ

)(
∂ξν
∂xα

∂vj,β
∂ξν

+
∂ξν
∂xβ

∂vj,α
∂ξν

)
|J |dξ(12)

=
∑
e,j

uj |J |
∂ξµ
∂xα

∂ξν
∂xα

∫
Tref

(
∂vi,β
∂ξµ

+
∂vi,α
∂ξµ

)(
∂vj,β
∂ξν

+
∂vj,α
∂ξν

)
dξ. (13)

Thus the analytic tensor is

Kij
αβµν =

∫
Tref

(
∂vi,β
∂ξµ

+
∂vi,α
∂ξµ

)(
∂vj,β
∂ξν

+
∂vj,α
∂ξν

)
dξ (14)

and the geometric tensor is identical to that for the Laplacian on the diagonal
blocks,

Gµναβ = J−1
µα J

−1
να |J |. (15)

3.1 More general forms

The examples above assumed that the transformation to the reference element
was affine, so that the Jacobian matrix was constant and could be removed
from the element integration. If this is not the case, we may still address it
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using our framework by adopting the isoparametric approach. The Jacobian
will be projected into a finite element space, so that∫

Tref
∂ξµ
∂xα

∂φi
∂ξµ

∂ξν
∂xα

∂φj
∂ξν
|J |dξ (16)

= |J |
∫
Tref φkJ

−1
µα,k

∂φi
∂ξµ

φlJ
−1
να,l

∂φj
∂ξν

dξ (17)

= J−1
µα,kJ

−1
να,l|J |

∫
Tref φk

∂φi
∂ξµ

φl
∂φj
∂ξν

dξ (18)

= Gµνkl K
ijkl
µν . (19)

Notice that the new coefficients, kl, in G again depend on the particular element
being integrated.

Our formalism can accomodate any multilinear operator. As a further illustra-
tion, we present the Laplace equation incorporating an inhomogeneous coeffi-
cient w, ∫

Te ∇φi(x) · w(x)∇u(x)dx (20)

=
∑

jk ujwk
∫
Te

∂φi
∂xα

φk
∂φj
∂xα

dx (21)

=
∑

jk ujwk
∫
Tref

∂ξµ
∂xα

∂φi
∂ξµ

∂ξν
∂xα

∂φj
∂ξν
|J |dξ (22)

=
∑

jk ujwkG
µνKijk

µν . (23)

The full algebra for weak forms is detailed in [12].

Notice that the analytic K tensor is an integral over products of basis functions
and basis function derivatives (any member of the jet space). This means that
K may be calculated a priori, independent of the mesh or form coefficients. We
will use this property to design an efficient integration method on massively
parallel hardware.

3.2 Form Languages

Using the Unified Form Language (UFL) [1] from the FEniCS project, our sys-
tem accommodates generic weak forms. We use the FEniCS Form Compiler
(FFC) [12], which is implemented in Python, to process input forms and ex-
tract parts of the intermediate representation (IR) for use in GPU kernels. We
illustrate this process below using linear elasticity as an example. We begin with
a standard, primitive variable formulation,

∫
Ω

1

4

(
∇v +∇tv

)
·
(
∇u +∇tu

)
dx− v · fdx = 0 (24)
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where v is a test function, u is the solution displacement, and f is body force.
The mathematics becomes the nearly equivalent Python

from ufl import interval, triangle, tetrahedron

from ufl import VectorElement, TestFunction, TrialFunction

from ufl import Coefficient, grad, inner, dx

domains = [None, interval, triangle, tetrahedron]

element = VectorElement(’Lagrange’, domains[dim], 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Coefficient(element)

def epsilon(u):

Du = grad(u)

return 0.5*(Du + Du.T)

a = inner(epsilon(v), epsilon(u))*dx

L = inner(v, f)*dx

using the FEniCS UFL library. The FFC library can processes this form in
order to extract the G and K tensors needed for our integration routines,

import ffc

parameters = ffc.default_parameters()

parameters[’representation’] = ’tensor’

analysis = ffc.analysis.analyze_forms([a, L], {}, parameters)

ir = ffc.compiler.compute_ir(analysis, parameters)

K = ir[2][0][’AK’][0][0].A0.astype(numpy.float32)

G = ir[2][0][’AK’][0][1]

where the K tensor is just a numeric array, whereas the G object contains
instructions for constructing the geometry tensor given the element Jacobian.

4 GPU Implementation

Each integration kernel invocation will operate on a set of elements, which we
term a batch, and thus the set of elements will be divided into batches, of size
elementBatchSize, for processing. Each element integration is accomplished
by contracting the geometry tensor G with each block of the analytic tensor K,
one for each element Eij of the element matrix. We will assign one contraction
to each thread in a thread block. In order to increase concurrency, we will

TR-11-01 5



Knepley and Terrel Finite Element Integration on GPUs

allow a thread block to work on multiple elements simultaneously, with the
size being numConcurrentElements. Thus, for a vector element with dimension
numComponents and a basis of size numBasisFuncs, the thread block will have
(numBasisFuncs∗numComponents)2∗numConcurrentElements threads.

The interleaving of computation with reads and writes to global memory is a
strategy for hiding the latency of memory access. When a thread block attempts
to write the result of a tensor contraction to global memory, a second thread
block, currently in its compute phase, can be scheduled while it is waiting. In
our experiments, shown in Section 5, interleaving resulted in noticeably higher
performance, presumably due to the increased flexibility afforded to the thread
block scheduler. We also employ a thread coarsening [19] strategy to increase
performance by increasing the work per thread. This was used to great effect
by Volkov [10] in his optimization of finite difference computations.

We will construct both a CPU and GPU kernel from the same source template,
using the Mako [2] templating engine. This will allow us to both check the GPU
results, and compare timings easily. Moreover, a single testing setup will verify
both generated kernels. A similar capability could be achieved using OpenCL,
specifying a different SIMT width for CPU and GPU, and more aggressive loop
restructuring. This will be the focus of future work.

4.1 Partitioning the Computation

The integration kernel has signature

__global__ void integrateJacobian(float *elemMat,

float *geometry,

float *analytic)

on the GPU, where geometry is an array of theG tensors for elementBatchSize
elements, analytic is the K tensor, and elemMat is an array of the element
matrix for each element. On the CPU, we have

void integrateJacobian(int numElements,

float *elemMat,

float *geometry,

float *analytic)

where the number of elements is passed explicitly to the CPU kernel so that
it can execute a loop, whereas the GPU execution grid replaces this loop. In
CUDA, we use the block decomposition of kernels to partition the elements into
batches,
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/* Indexes element batch */

const int gridIdx = blockIdx.x + blockIdx.y*gridDim.x;

whereas on the CPU we use a loop over batches,

/* Loop over element batches */

const int batches = numElements/ELEMENT_BATCH_SIZE;

for(int gridIdx = 0; gridIdx < batches; ++gridIdx) {

where we note that in the code itself ELEMENT BATCH SIZE is replaced by its
numeric value.

Once a batch of elements is allocated to a thread block, we assign a thread to
each contraction. In CUDA, we use the thread block decomposition to index
into K (KROWS = numBasisFuncs*numComponents),

/* This is (i,j) for test and basis functions */

const int Kidx = threadIdx.x + threadIdx.y*KROWS;

/* Unique thread ID (K block is for a single element) */

const int idx = Kidx;

and on the CPU we have

/* Loop over test functions */

for(int i = 0; i < KROWS; ++i) {

/* Loop over basis functions */

for(int j = 0; j < KROWS; ++j) {

/* This is (i,j) for test and basis functions */

const int Kidx = i + j*KROWS;

/* Unique thread ID (K block is for a single element) */

const int idx = Kidx;

This scheme must be modified slightly when we concurrently evaluate several
elements in a single thread block. In CUDA, we use the third thread block
dimension to index the simultaneous evaluations,

/* This is (i,j) for test and basis functions */

const int Kidx = threadIdx.x + threadIdx.y*KROWS;

/* Unique thread ID

(Same K block is used by all concurrent elements) */

const int idx = Kidx + threadIdx.z*KROWS*KROWS;

and on the CPU we introduce another loop

/* Loop over test functions */

for(int i = 0; i < KROWS; ++i) {

/* Loop over basis functions */

for(int j = 0; j < KROWS; ++j) {
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/* Loop over simultaneous evaluations */

for(int k = 0; k < NUM_CONCURRENT_ELEMENTS; ++k) {

/* This is (i,j) for test and basis functions */

const int Kidx = i + j*KROWS;

/* Unique thread ID

(Same K block is used by all concurrent elements) */

const int idx = Kidx + k*KROWS*KROWS;

Hereafter we will assume that we have simultaneous evaluations, since the re-
duction to the single evaluation case is straightforward. We will refer to the
set of contractions performed by a given thread as the sequential contractions,
and contractions that happen simultaneously using different set sof threads in
a thread block as concurrent contractions. The set of threads in a thread block
which all perform contractions for the same element set will be termed a con-
traction set.

4.2 Marshaling Data

For each sequential contraction, all threads in the contraction set must access
the set of G tensors for the elements in question. Therefore, these are loaded into
shared memory from the geometry input array using a sequence of coalesced
loads followed by a remainder if necessary. We illustrate this below for the case
where G is 3× 3, elementBatchSize is 5, and there are 16 threads.

const int Goffset = gridIdx*DIM*DIM*ELEMENT_BATCH_SIZE;

__shared__ float G[DIM*DIM*ELEMENT_BATCH_SIZE];

G[idx+0] = geometry[Goffset+idx+0];

G[idx+16] = geometry[Goffset+idx+16];

if (idx < 13) G[idx+32] = geometry[Goffset+idx+32];

In the CPU version, we merely load G from memory on the first iteration. Each
thread uses a single block of K for every contraction it performs. In 2D, we
have, after unrolling the loop,

const int Koffset = Kidx*DIM*DIM;

float K[DIM*DIM];

K[0] = analytic[Koffset+0];

K[1] = analytic[Koffset+1];

K[2] = analytic[Koffset+2];

K[3] = analytic[Koffset+3];
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This load is performed after the G load, but before the call to syncthreads()

needed to make the G data available, in order to try and cover the latency of
this uncoalesced read. Finally, we allocate space to hold the element matrix
entry produced by each thread,

const int Eoffset = gridIdx*KROW*KROW*ELEMENT_BATCH_SIZE;

float E[ELEMENT_BATCH_SIZE/NUM_CONCURRENT_ELEMENTS];

however we can replace E[] with a single scalar if we interleave calculation with
writes to global storage, as shown below.

4.3 Computation

When computing the contraction of a set of G tensors with a block of K,
we can choose to update global memory after the entire set of contractions
has been processed, or after each contraction in turn. The interleaveStores

flag determines which strategy we pursue in the generated code. Interleaving
computation with writes to global memory may allow the latency of a write to
be covered by computation from another warp in the thread block, or another
thread block scheduled on the SMP.

Our generation engine allows each loop to be either generated, or unrolled
to produce straight-line code. In our examples, we will only display the loop
code due to its brevity, but unrolled versions are presented in the results (see
Section 5).

const int serialBatchSize =

ELEMENT_BATCH_SIZE/NUM_CONCURRENT_ELEMENTS;

for(int b = 0; b < serialBatchSize; ++b) {

const int n = b*numConcurrentElements;

contractBlock(’n’, dim, ’E’, ’G’, "Goffloc", ’K’, loopUnroll)

}

We then write each element matrix into memory contiguously with a fully co-
alesced write,

/* Store contraction results */

const int outputSize = NUM_CONCURRENT_ELEMENTS*KROWS*KROWS;

for(int n = 0; n < serialBatchSize; ++n) {

elemMat[Eoffset+idx+n*outputSize] = E[n];

}

where we note that this loop is fully unrolled in the generated code.

When interleaving stores, we do a single contraction and then immediately
write the result to global memory. The latency for this write can be covered by
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scheduling contractions in other warps on this SM. This strategy has produced
consistently better results than fully calculating the contractions before writing
the resulting element matrices to global memory. We show the below, where as
before the contraction is fully inlined in the generated code.

for(int b = 0; b < serialBatchSize; ++b) {

const int n = b*numConcurrentElements;

E = 0.0;

contractBlock(’n’, dim, ’E’, ’G’, "Goffloc", ’K’, loopUnroll)

/* Store contraction result */

elemMat[Eoffset+idx+b*outputSize] = E;

}

5 Results

We demonstrate the performance of our integration method using the common
Laplacian and linear elasticity operators, as shown in Fig. 5. We achieve nearly
100GF for the Laplacian, and even a little more for the elasticity operator. Note
that we achieved the highest performance using interleaved stores and having
each thread block operate on two elements simultaneously. The batch sizes are
somewhat different, but performance is not very sensitive to this variable, as
shown in Fig. 5.

6 Discussion

We note that a version of the Laplace kernel was tested in which K is loaded
into shared memory and all threads perform the complete contraction with a
given G simultaneously. However, this strategy was abandoned due to lack of
efficiency, mainly arising from the lower level of concurrency available.

We will extend these initial results to more complex operators with variable
coefficients, as well as systems of equations which arise in multiphysics prob-
lems. This will necessitate a more systematic approach to optimization over
the algorithmic variants. We plan to use the loop slicing tool Loo.py [13] and
generated, optimized quadrature rules from FFC [?] in addition to exhaustive
strategies. We have an integrated build and test framework, which allows us to
run all variants in a single execution and record the results in HDF5 for later
processing and analysis. Moreover, when processing coupled systems, we will
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Figure 1: This graph shows the peak performance achieved for element inte-
gration of the 3D P1 Laplacian and 2D P1 Elasticity operators. We use bs to
denote the element batch size, ce the number of concurrent element evaluations,
is interleaved stores, and unroll for fully unrolled contraction loops.
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Figure 2: This graph shows the dependence of flop rate on the element batch
size for the 2D P1 Elasticity operator. We use bs to denote the element batch
size, ce the number of concurrent element evaluations, is interleaved stores, and
unroll for fully unrolled contraction loops.

be able to break the weak form into blocks commensurate with different pre-
conditioning strategies and evaluate the performance. This entire package will
be integrated into both PETSc and FEniCS for easy use by projects already
these frameworks.
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