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Abstract – In this paper, we propose a new method for detecting bearing faults using vibration 
signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics 
of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations 
are used for a training process, and a two-stage classification process is used for detecting bearing 
faults and their status. The proposed approach is applied to outer-race bearing fault detection in three-
phase squirrel-cage induction motors. The experimental results show that the proposed method can 
effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis. 
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1. Introduction 
 
Induction motors are widely used as major electrical 

machines in a variety of industrial applications. Induction 
motor failures that are due to environmental stress and load 
conditions can result in severe damage to the motor itself 
as well as to motor-related industrial applications. It is well 
known that bearings are among the most common sources 
of motor faults in induction motors. Further, bearing faults 
represent 40-50% of the various types of induction motor 
faults [1, 2]. The major source of bearing faults is damage 
on the inner or outer races of the bearing due to thermal or 
mechanical stresses [2, 3]. 

For bearing fault detection, various types of sensors and 
condition-monitoring systems have been employed [2-9]. 
Vibration measurements are commonly used to identify 
bearing faults [2, 5-9]. The amplitude at the bearing fault-
related frequency is used as the fault index in the vibration 
spectrum [2, 6, 13]. In addition, there are also harmonic 
frequencies in the vibration spectrum in motors with faulty 
bearings [3, 5, 9]. The spectral analysis of vibration signals 
is performed using the fast Fourier transform (FFT) 
method, which is the basic tool used together with some 
other approaches such as machine learning and statistical 
analysis. 

To increase the accuracy of bearing fault detection, 
various machine learning and statistical analysis have been 
developed [10-13]. Neural-network-based fault diagnosis 

has been proposed for rolling bearing faults using time-
frequency domain vibration analysis [10]. The fuzzy 
classifier has been adopted to diagnose roller bearing 
faults using simple fuzzy rules and membership functions 
[11]. A support vector machine (SVM) was employed 
using time-domain and frequency-domain features for 
multiple faults diagnosis of induction motors [12]. 
Quadratic discriminant analysis and SVM have been used 
for multiple fault (air-gap eccentricity, bearing damages, 
and their combinations) detection using multiple sensors 
such as acoustic, vibration, and current sensors [13]. 
However, the effects of variations of the motor speed 
and fault severity have not been examined for SVM-based 
bearing fault detection [12, 13]. 

This paper considers bearing faults that are due to outer-
race damages to the bearing in induction motors. In 
order to detect bearing faults, we implemented a two-stage 
diagnosis method for fault and fault-severity detections 
based on the FFT and SVMs. The first SVM classifier 
distinguishes faulty motors from healthy motors, while the 
second SVM classifier is used to discriminate between 
different bearing fault severities. The proposed fault 
detection method focuses on the spectra of vibration 
signals at fault-related frequency harmonics, and uses the 
values of the peak-to-mean ratio at harmonic frequencies 
as fault indices. Using the cross-validation for the SVM, 
the fault indices and SVM parameters are optimized from 
experiment results for different load conditions. The 
proposed diagnostic method can distinguish a faulty motor 
from a healthy motor with a probability of 100% of correct 
detection and a 0% likelihood of obtaining a false alarm 
under different load conditions. It can also discriminate 
between different severities with an average detection 
probability of 98.67% and a false alarm probability of 0% 
under different load conditions. 
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2. Outer-race Rolling Bearing Faults 
 
In this section, we present characteristic frequencies that 

are due to outer-race faults of rolling bearings and an 
experimental setup for rolling bearing fault detection. 

 
2.1 Characteristic frequencies 

 
The outer-race defect of rolling bearings induces a 

specific vibration frequency as shown below: [2, 9] 
 

 1 cos
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where N represents the number of rolling elements, rf  is 
the mechanical rotational frequency, BDD  is the rolling 
element diameter, PDD  is the pitch diameter, and ϕ  is the 
contact angle. Moreover, when the defective area is large, 
the harmonics of ODf  will also lead to the vibration 
spectrum as in [3, 5, 10] 

 
 ,OD k ODf k f= ×  (2) 

 
where 1,  2, 3, k =  is the harmonic index. 

In (1) and (2), the frequencies that are commonly used as 
a diagnostic measure for bearing fault detection in [2, 3, 5, 
9, 10], and vary depending on the load conditions. Table 1 
lists the mechanical rotation frequency rf  and the outer-
race defect frequency ODf  for test motors under different 
load conditions. 

 
Table 1. Mechanical rotation frequency fr and outer-race 

defect frequency fOD for test motors 

Load condition (%) No load 50 100 
fr (Hz) 29.99 29.8 29.66 

fOD (Hz) 157.2924 156.2959 155.5616 

 
2.2 Experimental setup 

 
Experimental tests were performed with 75-kW squirrel-

cage induction motors, where the rated voltage is 3300 V, 
the rated current is 16.3 A, the supply frequency sf  is 60 
Hz, the speed is 1780 rpm, and the number of poles is 4. As 
shown in Fig. 1, the rolling bearing outer-race faults were 
simulated by making a hole in the outer race. This artificial 
fault cannot occur while a bearing is operating in a motor, 
but it is important to understand this fault in order to 
analyze the effects of bearing outer-race faults [3, 14]. For 
motor conditions, three types of test motors were used: a 
healthy motor, a motor with faulty bearing with an 8-mm 
hole, and a motor with faulty bearing with a 12-mm hole. 
In this paper, the two latter motors are labeled as “bearing 
1” and “bearing 2,” respectively. 

Fig. 2 shows the induction motor test system, which is 
composed of a test motor, a load motor, an inverter, and a 

data acquisition system (DAS) [15]. The test motor is 
equipped with a type NU318E roller bearing with 13N =  
rollers ( BDD  and PDD  are 28 and 145 mm, respectively). 
An acceleration sensor (AS-022 from B&K Vibro) is used, 
and is mounted on the test motor with 0ϕ = . The inverter 
is connected to the load motor to control the load condition 
of the test motor. In the experimental tests, we considered 
for different load conditions of test motors, i.e., no load, 
50%, and 100% load. For the vibration measurement 
experiments, the discrete time signals [ ]Sx n  with 222SN =  
were measured at a sampling frequency of 200SF =  kHz 
using the DAS, and the acquisition time was calculated as 

20.972 sacqT = . 
 
 

3. Proposed Diagnostic Method for Bearing Fault 
Detection 

 
To diagnose bearing faults using the spectra of the 

vibration signal, we propose a new detection method that is 
based on the SVM, which is a type of machine-learning 
technique based on the statistical learning theory. In the 
proposed approach, the objective of the SVM is to 
diagnose motor bearing faults using optimal fault indices 
from the fault-related harmonics of the most important 
components present in the spectrum of the vibration signals. 
In this section, we first introduce the SVM, emphasizing its 
use as a diagnostic tool for the vibration spectrum. Second, 
we propose an SVM-based two-stage diagnostic method 
that includes the feature calculation, feature selection, 
training, and classification, in order to detect the outer-race 

 
Fig. 1. Outer-race faults of roller bearings (bearing 1 and 

bearing 2). 
 

 
Fig. 2. Experimental setup. 
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faults of rolling bearings. 
 

3.1 Background of SVM 
 
The basic idea that is introduced in this paper was 

thoroughly developed based on the statistical learning 
theory [16-19]. The basic SVM deals with two-class 
problems separating two classes by a hyperplane, which is 
defined by a number of support vectors. 

In a linear separable case, there exists a separating 
hyperplane whose function is 

 
 0b⋅ + =w x , (3) 

 
where the vector w defines the boundary, x  is the input 
vector of dimension d, and b is a scalar threshold. The 
optimal hyperplane can be obtained as follows [17]:  

 

 ( ) ( )21min  , subject to 1
2 iJ y b= ⋅ + ≥w w w x , (4) 

 
where w  is the Euclidean norm of w, 1,  ,  i l=  is the 
number of training sets, and labels 1iy =  and 1iy = −  are 
for positive and negative classes, respectively. The solution 
can be obtained by 

 

 
1

l
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i
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=
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where 0iα ≥  are Lagrange multipliers and ix  are 
support vectors obtained from training. After training, the 
decision function for the linear SVM is obtained as 
follows: 

 

 ( ) ( )
1

sign
l

i i i
i

f y bα
=

⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
∑x x x . (6) 

 
In a linear non-separable case, SVMs can create a 

hyperplane, which allows linear separation in the higher 
dimension, to perform a nonlinear mapping. The nonlinear 
mapping by the kernel function converts the input vector 
x  from a d-dimensional space into a higher dimensional 

feature space. In nonlinear SVMs, kernel functions such as 
the polynomial, sigmoid, and radial basis functions (RBF) 
may be selected to obtain the optimal classification results 
[18]. In this study, the RBF kernel is used for nonlinear 
SVM and is defined by 

 
 ( ) ( )2, expK γ= − −x y x y , (7)  

 
where 0γ >  is the RBF kernel parameter. For the non-
linear SVM, the decision function is obtained by 
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3.2 Feature calculation  
 
The peak-to-average ratio (PR) has been proposed as an 

indicator to identify bearing faults in the spectrum [20]. 
The PR is defined as the sum of the peak values of the 
defect frequency and harmonics over the average value of 
the spectrum, and is defined as [20, 21] 
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where kP  is the amplitude of the maximum peak located 
at the frequency band that is centered at the kth defect 
frequency harmonic, ,OD kf , with a bandwidth BW , jS  is 
the amplitude at any frequency, J is the number of points in 
the spectrum, and K  is the number of harmonics in the 
spectrum. In (9), the PR will contain the information at all 
harmonics contained in the vibration signal; however, only 
some of them will be significant depending on load rates. 
Therefore, the peak values of the defect frequency or 
harmonics are used as fault diagnostic indices, respectively, 
and are defined by 
 

 
,
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where k  is the harmonic index, ,k jW  is the amplitude of 
frequency component at the frequency band centered at 

,OD kf  with BW, and M is the number of frequency-domain 
sample points in BW . 

 
3.3 Feature selection 

 
After feature calculation, a sequential forward search 

(SFS) creates candidate feature subsets using (2) for feature 
selection [13]. For each candidate feature subset, using υ -
fold cross-validation, the SFS examines the performance of 
a linear SVM when separating the data for healthy motors 
from those for faulty motors. In υ -fold cross validation, 
the training set is divided into subsets of equal size and a 
subset is sequentially tested using the classifier trained on 
the remaining 1υ −  subsets. Based on experimental results, 
the motor speed can be calculated using the vibration 
signal [10], and therefore, feature selection gives the 
optimal feature subsets depending on variable load rates. 

 
3.4 Training and classification 

 
Based on the SVM algorithm, a two-stage classification 

is used to detect the motor fault and its severity. From the 
selected feature subset on the each load rate, the whole test 
data set is classified by the first SVM for the bearing fault 
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detection. Then, some of the test data, which were 
classified as faulty motors by the first SVM, are classified 
by the second SVM to distinguish the severity of the 
bearing faults. The whole training set is used for the 
training of the first SVM, while the second SVM classifier 
exploits training data for faulty motors. 

In the SVM training processes, to optimize the parameters 
C for linear SVM or { },C γ  for nonlinear SVM, we use 
the υ -fold cross-validation to test all values of C  for the 
linear SVM or all of the pairs of { },C γ  for the nonlinear 
SVM, where 0C >  is the penalty parameter of the error 
term for SVMs, 5υ = , { }15 14.9 152 ,  2 ,  , 2C − −=  for the 

linear SVM, and { }10 9.5 102 ,  2 ,  , 2C − −= and γ =  

{ }10 9.5 102 ,  2 ,  , 2− −  for the nonlinear SVM [19]. Using 
the training set, υ -fold cross-validation accuracies are 
obtained by the grid search, where the cross-validation 
accuracy is the percentage of data that are correctly 
classified. The values corresponding to the best cross-
validation accuracies are then selected. With the optimal 
parameters, the entire training dataset was trained again 
to define hyperplane for SVM classifiers. The process 
employed for the proposed fault diagnosis algorithm is 
illustrated in Fig. 3. 

 
 

4. Classification Results 
 
To validate the proposed method, we performed 

experimental tests using the rolling bearings of squirrel-
cage induction motors. The experiments were performed in 
the steady-state condition and the measured vibration 
signals were analyzed using the FFT. The Hanning window 
was used to minimize frequency leakage for the FFT [22] 
and the frequency resolution for the spectrum analysis was 

0.0477fΔ = Hz. For feature calculation in (9), we set the 
following values: 3K =  and 2SJ N= . The bandwidth 
BW  was 8 Hz for feature calculation in (10). Experiments 
were performed 50 times in each load condition. 

For comparison purposes, the bearing fault detection with 
one feature was examined based on the signal detection 
theory [23]. Each fault index A and the corresponding 
threshold parameter thA  were determined for each load 
condition using the combination criterion [15], [24], where 

{ }1 2 5,  ,  , ,A PR PR PR PR∈ . The optimal fault index *A  
and optimal threshold *

thA  for the classifier with one 
feature is obtained by 

 

 { }
{ }

{ }* *
, ,

,
, arg max

th

th D A FA A
A A

A A P P= − ,     (11) 

 
where the detection probability ,D AP  and the false alarm 
probability ,FA AP  are defined as [23] 
 
 { }, 1Pr ;D A thP A A H= >  and      (12) 

 { }, 0Pr ;FA A thP A A H= > ,         (13) 
 

respectively, 1H  is the bearing faulty motor hypothesis, 
and 0H  is the healthy motor hypothesis. 

Fig. 4 shows the cumulative distributive functions 
(CDFs) of PR and PR1 under the no-load condition. For 
each fault index, the optimal threshold was determined 
based on the combination criterion. For the fault index PR, 

Fig. 3. Block diagram of the proposed fault diagnosis 
system. 

20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

←A
th

=32.4606dB

PR (dB)

C
D

F

 

 

healthy motor

bearing 1 and 2

bearing 1

bearing 2

(a) 

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

←A
th

=20.2362dB

PR1 (dB)

C
D

F

 

 

healthy motor

bearing 1 and 2
bearing 1

bearing 2

(b) 
Fig. 4. CDFs for the fault detection with one feature under 

0% load condition: (a) PR and (b) PR1. 
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bearing 1 can be easily detected, but the difference between 
the healthy motor and bearing 2 is unclear. The fault index 
PR1 is more evident than PR, and performs optimally when 
separating healthy motor from faulty motors. However, 
PR1 does not perform optimally when discriminating 
between bearing 1 and bearing 2 under no-load conditions. 

For the fault detection with one feature, *A  and *
thA  

are summarized in Table 2. The optimal fault index for no-
load and 50% load conditions is 1PR . In particular, 3PR , 
which is obtained from the third harmonic of the vibration 
signal, is the optimal fault index under 100% load 
condition. For the bearing fault detection with one optimal 
feature, the detection probability decreases as the load rate 
increases. Figs. 5(a) and 5(b) show the CDFs of PR1 and 

3PR  under 50% and 100% load conditions, respectively. 

The amplitudes of PR1 for bearing 2 are lower than those 
for bearing 1 under the 50% load condition, while the 
amplitudes of 3PR  for bearing 2 are larger than those for 
bearing 1 under the 100% load condition. This is because 
the severity of the bearing faults induces the large 
harmonic of the fault frequency [3, 5, 10]; therefore, 3PR  
is the dominant feature for bearing 2. As shown in this 
figure, fault detection with one optimal feature cannot 
guarantee an optimal performance for classifying a healthy 
motor, bearing 1, or bearing 2. 

For the proposed scheme, using the SFS method, a 
subset of features { }1 2 5,  , ,PR PR PR  is determined as 
the best feature set depending on the load rate. Fig. 6 
illustrates the first classifier with the linear SVM using the 
best feature set { }1 3,  PR PR  on the 50% load rate. The 
parameter 14.92C =  is determined from the fivefold cross-
validation analysis during the training process. Fig. 6 
indicates that the healthy motors can be easily separated 
from the motors with faulty bearings (bearing 1 and 
bearing 2). For the 50% load condition, the proposed 
scheme is better than the previous fault detection method 
with one feature, as shown in Fig. 5(a). 

For the 100% load rate, the best feature set can be 
obtained by { }1 3,  PR PR  using the SFS method for the 
first classifier with both the linear and nonlinear SVMs. 
As shown in Fig. 7(a), for the first classifier with the 
linear SVM, the detection probability is 0.98 and the 
false alarm probability is 0, where 22C = . Fig. 7(b) 
shows the performance of the first classifier with the 
nonlinear SVM, where the kernel parameters 72C =  and 

82γ =  are used for the RBF kernel. The first classifier 
with the nonlinear SVM gives the optimal performance 
under a 100% load rate. Therefore, the proposed 
approach can correctly differentiate all motors with 
faulty bearings from healthy motors using the linear 
SVM under the 50 % load condition, and nonlinear SVM 
under the 100% load condition. Table 3 summarizes the 
performance and parameters of the first classifier with 
linear and nonlinear SVMs. With the proper parameter C  
and kernel parameter γ , the linear SVM obtains the 

Table 2. Fault detection performance for the classifier with 
one feature under different load condition 

Load 
condition (%) A *

thA (dB) ,FA AP  PD,A 
(Bearings 1 and 2)

0 PR1 20.2362 0 1 
50 PR1 13.879 0.04 0.93 

100 PR3 10.471 0 0.92 
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Fig. 5. CDFs for the fault detection with an optimal feature: 
(a) PR1 under 50 % load condition and (b) PR3 
under 100 % load condition. 
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Fig. 6. The 1st classifier with linear SVM for faulty motor 

detection under 50 % load condition. 
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optimal detection probabilities under 0% and 50% load 
conditions, and the nonlinear SVM gives the optimal 
detection probability under the 100% load condition. For 
linear and nonlinear SVMs, proper kernel parameter 
selection is important to obtain good classification results; 
therefore, a grid search of C or { },C γ  is needed to obtain 
the proper SVM parameters. 

Finally, in Table 4, we present the fault classification 
using the 2nd classifier for bearings 1 and 2. It can be seen 
that almost all bearing fault types have been classified 
correctly under different load conditions. The feature set 
selected for the 2nd classifier is based on the use of the 

data obtained from faults involving bearings 1 and 2. Fig. 
8 shows that both bearings 1 and 2 are in two separate 
clusters with the feature set of { }1 3,  PR PR  for the 50% 
load rate, where 4.92C = . Compared to Fig. 6, the 
normalization set for the 2nd classifier is different from that 
for the 1st classifier, and therefore, the sample points in 
Fig. 8 are different from those in Fig. 6. Furthermore, the 
classification for bearing fault types on the 100% load rate 
has a high detection probability and low false alarm rate 
( 0.96DP =  and 0FAP = ). 

 
 

5. Conclusion 
 
In this paper, we proposed a new diagnosis method for 

rolling bearing faults in induction machines. The proposed 
method is based on the FFT and SVM methods, and 
consists of the two SVM classifiers to detect outer-race 
rolling bearing faults and their severity under different 
load conditions. The harmonics of fault-related frequency 
of vibration signal, which can be extracted from the 
vibration signal, serve as new bearing fault signatures. 
The optimization of the fault index subsets and hyperplanes 
was investigated using SVM cross-validation based on 
experimental data depending on the load conditions. An 
analysis of the experimental results shows that the 
proposed method has the higher detection probability and 
lower false alarm probability than the classifier with one 

Table 3. 1st SVM classification results for fault detection 

SVM Load  
condition(%) 

Fault  
indexes 

Kernel 
parameters FAP  PD (Bearings

1 and 2) 
Linear 0 { }1PR  1.12C =  0 1 

Linear 50 { }1 3,  PR PR  14.92C =  0 1 

Linear 100 { }1 3,  PR PR  22C =  0 0.98 

Non- 
linear 100 { }1 3,  PR PR  

72 ,C =  
8=2γ  

0 1 
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Fig. 7. The 1st SVM classifier for faulty motor detection 
under 100% load condition: (a) Linear SVM and (b)
nonlinear SVM with RBF kernel. 

Table 4. 2nd SVM classification results for fault type 
detection 

SVM Load  
condition(%)

Fault  
indexes 

Kernel 
parameters PFA PD

Linear 0 { }3PR  2.72C = 0 1 

Linear 50 { }1 3,  PR PR  3.72C −= 0 1 

Linear 100 { }1 2 3 5,  , ,  PR PR PR PR  4.62C = 0 0.96

Non-
linear 100 { }1 2 3 5,  , ,  PR PR PR PR  

32 ,C −=
7.5=2γ  
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Fig. 8. The 2nd SVM classifier used to separate bearings 1 

and 2 under 50 % load condition. 
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feature under different load conditions. Experimental results 
show that the proposed two-stage classifier significantly 
improved the detection performance of bearing faults and 
their severity conditions. The proposed method will be 
useful in other bearing-related faults detections such as 
inner-race, cage, and ball faults modifying interested 
frequency bands. 

 
 

Acknowledgements 
 
This work was supported in part by the “Development 

of Motor Diagnosis Technology for the Electric Vehicle” 
project of Korea Electrotechnology Research Institute 
(KERI) and in part by the Human Resources Development 
program (No. 20134030200310) of the Korea Institute of 
Energy Technology Evaluation and Planning(KETEP) 
grant funded by the Korea government Ministry of Trade, 
Industry and Energy. 

 
 

References 
 

[1]  W. T. Thomson and M. Fenger, “Current signature 
analysis to detect induction motor faults,” IEEE Ind. 
Appl. Mag., vol. 7, no. 4, pp. 26-34, Jul./Aug. 2001. 

[2]  A. Bellini, F. Filippetti, C. Tassoni, and G.-A. 
Capolino, “Advances in diagnostic techniques for 
induction machines,” IEEE Trans. Ind. Electron., vol. 
55, no. 12, pp. 4109-4126, Dec. 2008. 

[3]  R. R. Schoen, T. G. Habetler, F. Kamran, and R. G. 
Bartheld,  “Motor bearing damage detection using 
stator current monitoring,” IEEE Trans. Ind. Appl., 
vol. 31, no. 6, pp. 1274-1279, Nov./Dec. 1995. 

[4]  W. Zhou, T. Habetler, and R. Harley, “Bearing fault 
detection via stator current noise cancellation and 
statistical control,” IEEE Trans. Ind. Electron., vol. 
55, no. 12, pp. 4260-4269, Dec. 2008. 

[5]  B. Li, G. Goddu, and M.-Y. Chow, “Detection of 
common motor bearing faults using frequency-domain 
vibration signals and a neural network based 
approach,” Proc. of the 1998 American Control Con-
ference, June 24-26, pp. 2032-2036, 1998. 

[6]  T. W. S. Chow and S. Hai, “Induction machine fault 
diagnostic analysis with wavelet technique,” IEEE 
Trans. Ind. Electron., vol. 51, no. 3, pp. 558-565, Jun. 
2004. 

[7]  J. R. Stack, R. G. Harley, and T. G. Habetler, “An 
amplitude modulation detector for fault diagnosis in 
rolling element bearings,” IEEE Trans. Ind. Electron., 
vol. 51, no. 5, pp. 1097-1102, Oct. 2004. 

[8]  J. R. Stack, T. G. Habetler, and R. G. Harley, “Fault-
signature modeling and detection of inner-race 
bearing faults,” IEEE Trans. Ind. Appl., vol.42, no.1, 
pp. 61-68, Jan./Feb. 2006. 

[9]  C. Bianchini, F. Immovilli, M. Cocconcelli, R. Rubini, 

and A. Bellini, “Fault Detection of Linear Bearings in 
Brushless AC Linear Motors by Vibration Analysis,” 
IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1684-
1694, May 2011. 

[10]  B. Li, C. Mo-Yuen, Y. Tipsuwan, and J. C. Hung, 
“Neural-network-based motor rolling bearing fault 
diagnosis,” IEEE Trans. Ind. Electron., vol. 47, no. 5, 
pp. 1060-1069, Oct. 2000. 

[11] V. Sugumaran, and K. Ramachandran, “Fault dia-
gnosis of roller bearing using fuzzy classifier and 
histogram features with focus on automatic rule 
learning,” Expert syst. Appl., vol. 38, no. 5, pp. 4901-
4907, May 2011. 

[12] A. Widodo, B. S. Yang, and T. Han, “Combination of 
independent component analysis and support vector 
machines for intelligent faults diagnosis of induction 
motors,” Expert Syst. Appl., vol. 32, no. 2, pp. 299-
312, 2007. 

[13] E. T. Esfahani, S. Wang, and V. Sundararajan, “Multi-
sensor wireless system for eccentricity and bearing 
fault detection in induction motors,” IEEE/ASME 
Trans. Mechatronics, vol. 19, no. 3, pp. 818-826, 
June 2014. 

[14] L. Frosini, and E. Bassi, “Stator current and motor 
efficiency as indicators for different types of bearing 
faults in Induction motors,” IEEE Trans. Ind. Electron., 
vol. 57, no. 1, pp. 244-251, Jan. 2010. 

[15]  Y.-H. Kim, Y.-W. Youn, D.-H. Hwang, J.-H. sun, and 
D.-S. Kang, “High-resolution parameter estimation 
method to identify broken rotor bar faults in induct-
ion motors,” IEEE Trans. Ind. Electron., vol. 60, no. 
9, pp. 4103-4117, Sept. 2013. 

[16] V. N. Vapnik, The Nature of Statistical Learning 
Theory, New York:Springer, 1999.  

[17] C. J. C. Burges, “A Tutorial on Support Vector 
Machines for Pattern Recognition,” Data mining and 
Knowledge Discovery, vol. 12, pp.121-167, 1998.  

[18] B. Scholkopf and A. J. Smola, Learning with Kernels: 
Support Vector Machines, Regularization, Optimi-
zation, and Beyond, The MIT Press, 2002. 

[19] C. W. Hsu, C. C. Chang and C. J. Lin, “A Practical 
Guide to Support Vector Classification”, 2007. [Online], 
Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

[20] J. Shiroishi, Y. Li, S. Liang, T. Kurfess, and S. 
Danyluk, “Bearing condition diagnostics via vibration 
and acoustic emission measurements,” Mechanical 
Systems and Signal Processing, vol. 11, no. 5, pp. 
693-705, 1997. 

[21] Y. H. Kim, A. C. C. Tan, J. Mathew, and B. S. Yang, 
“Condition monitoring of low speed bearings: A 
comparative study of the ultrasound technique versus 
vibration measurement,” Proc. of WCEAM 2006, pp. 
182-191, Jul. 2006. 

[22] J.-H. Jung, J.-J. Lee, and B.-H. Kwon, “Online 
diagnosis of induction motors using MCSA,” IEEE 
Trans. Ind. Electron., vol. 53, no. 6, pp. 1842–1852, 



Don-Ha Hwang, Young-Woo Youn, Jong-Ho Sun, Kyeong-Ho Choi, Jong-Ho Lee and Yong-Hwa Kim 

 http://www.jeet.or.kr │ 37

Dec. 2006. 
[23] S. M. Kay, Fundamentals of Statistical Signal 

Processing: Detection Theory. Englewood Cliffs, NJ: 
Prentice-Hall, 1993. 

[24] W. Peterson, T. Birdsall, and W. Fox, “The theory of 
signal detectability,” Proc. IRE Prof. Group Inf. 
Theory, vol. 4, no. 4, pp. 171-212, Sep. 1954. 

 
 
 

Don-Ha Hwang received B.S., M.S., 
and Ph.D. degrees in Electrical Engi-
neering from Yeungnam University in 
1991, 1993, and 2003, respectively. He 
is currently a principal researcher at 
Korea Electrotechnology Research 
Institute (KERI), Changwon, Korea. 
His main research interest are design, 

analysis, monitoring, and diagnosis of electric machines. 
 
 

Young-Woo Youn received B.S. and 
M.S. degrees in Communication Engi-
neering from Information and Commu-
nication University, Daejeon, Korea, 
in 2005 and 2007, respectively. He is 
currently a researcher at power 
apparatus research center at Korea 
Electrotechnology Research Institute 

(KERI), Changwon, Korea. His research interests are in 
condition monitoring and signal processing. 
 
 

Jong-Ho Sun received B.S., M.S., and 
Ph.D. degrees in Electrical Engineering 
from Pusan National University in 
1986, 1988, and 2001, respectively. 
Currently, he is a principal researcher 
at Korea Electrotechnology Research 
Institute (KERI), Changwon, Korea. 
His interests are diagnosis techniques 

for electric power equipments. 
 
 

Kyeong-Ho Choi received B.S., M.S., 
and Ph.D. degrees in Electrical Engi-
neering from Yeungnam University in 
1991, 1995, and 2002, respectively. 
Currently, he is a professor in the 
departement of railroad electricity at 
Kyungbuk College, Korea.  

Jong-Ho Lee received the B.S. degree 
in electrical engineering and the M.S. 
and Ph.D. degrees in electrical engi-
neering and computer science from 
Seoul National University, Seoul, 
Korea, in 1999, 2001, and 2006, 
respectively. From 2006 to 2008, he 
was a Senior Engineer with Samsung 

Electronics, Suwon, Korea. From 2008 to 2009, he was a 
Postdoctoral Researcher with the Georgia Institute of 
Technology, Atlanta, GA, USA. From 2009 to 2012, he 
was an Assistant Professor with the Division of Electrical 
Electronic and Control Engineering, Kongju National 
University, Cheonan, Korea. Since 2012, he has been with 
the faculty of the Department of Electronic Engineering, 
Gachon University, Seongnam, Korea. His research 
interests are in the area of wireless communication systems 
and signal processing for communication with current 
emphasis on multiple antenna techniques, multi-hop relay 
techniques, physical layer security, and full-duplex wireless. 
 
 

Yong-Hwa Kim received a B.S. in 
electrical engineering in 2001 from 
Seoul National University, Seoul, Korea, 
and a Ph. D. in electrical and computer 
engineering from Seoul National Uni-
versity, Seoul, Korea, 2007. From 2007 
to 2011, he was a senior researcher 
with the Korea Electrotechnology 

Research Institute (KERI), Geonggi-do, Korea. From 2011 
to 2013, he was an assistant professor at the Division of 
Maritime Electronic and Communication Engineering, 
Mokpo National Maritime University, Korea. Since March 
2013, he has joined the faculty with the Department of 
Electronic Engineering at Myongji University, Korea. His 
general research interests include communication systems, 
motor drives and diagnosis, and digital signal processing. 
Currently, he is particularly interested in communications 
and digital signal processing for Smart Grid. 

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


