
Lwin, Khin and Qu, Rong and Kendall, Graham (2014) A 
learning-guided multi-objective evolutionary algorithm for 
constrained portfolio optimization. Applied Soft 
Computing, 24 . pp. 757-772. ISSN 1568-4946 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/28272/1/ASOC14.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution Non-commercial No 
Derivatives licence and may be reused according to the conditions of the licence.  For more 
details see: http://creativecommons.org/licenses/by-nc-nd/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


A learning-guided multi-objective evolutionary
algorithm for constrained portfolio optimization
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Abstract

Portfolio optimization involves the optimal assignment of limited capital to dif-
ferent available financial assets to achieve a reasonable trade-off between profit
and risk objectives. In this paper, we studied the extended Markowitz’s mean-
variance portfolio optimization model. We considered the cardinality, quantity,
pre-assignment and round lot constraints in the extended model. These four
real-world constraints limit the number of assets in a portfolio, restrict the min-
imum and maximum proportions of assets held in the portfolio, require some
specific assets to be included in the portfolio and require to invest the assets in
units of a certain size respectively. An efficient learning-guided hybrid multi-
objective evolutionary algorithm is proposed to solve the constrained portfolio
optimization problem in the extended mean-variance framework. A learning-
guided solution generation strategy is incorporated into the multi-objective opti-
mization process to promote the efficient convergence by guiding the evolution-
ary search towards the promising regions of the search space. The proposed al-
gorithm is compared against four existing state-of-the-art multi-objective evolu-
tionary algorithms, namely Non-dominated Sorting Genetic Algorithm (NSGA-
II), Strength Pareto Evolutionary Algorithm (SPEA-2), Pareto Envelope-based
Selection Algorithm (PESA-II) and Pareto Archived Evolution Strategy (PAES).
Computational results are reported for publicly available OR-library datasets
from seven market indices involving up to 1318 assets. Experimental results on
the constrained portfolio optimization problem demonstrate that the proposed
algorithm significantly outperforms the four well-known multi-objective evolu-
tionary algorithms with respect to the quality of obtained efficient frontier in
the conducted experiments.
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1. Introduction

Portfolio selection problem is a well-studied topic in finance and it is con-
cerned with the optimal allocation of a limited capital among a finite number
of available risky assets, such as stocks, bonds, and derivatives in order to gain
the possible highest future wealth. Markowitz’s mean-variance model [40, 41]
is considered to play an important role in the development of Modern Portfolio
Theory. The mean-variance (MV) model assumes that the future market of the
assets can be correctly reflected by the historical market of the assets. It con-
siders the trade-off between risk and reward in selecting efficient portfolios. A
portfolio is considered to be efficient if it provides the highest possible reward
for a given risk or alternatively, if it presents the least possible risk for a given
level of profit. The reward (profit) of the portfolio is measured by the average
expected return of those individual assets in the portfolio whereas the risk is
measured by its combined total variance.

While investing the capital within the MV framework, investors have two ob-
jectives: maximizing the total profit and minimizing the total risk of their port-
folios. With these two conflicting objectives to be optimized simultaneously, the
portfolio selection problem can be classified as a multi-objective optimization
problem. A single solution that optimizes all the conflicting objectives simul-
taneously hardly exists in practice. Instead, there exists a set of acceptable
‘compromise’ solutions which are optimal in such a way that no other solu-
tions are superior to them when all objectives are considered simultaneously.
Such solutions are referred to as efficient solutions, non-dominated solutions or
Pareto-optimal solutions.

The collection of such efficient portfolios conveying the compromise be-
tween risk and return is called the efficient frontier or Pareto-optimal front. The
efficient frontier helps investors to visualize the risk and return trade-off curve
in a two-dimensional graph with risk on the horizontal axis and expected return
on the vertical axis (see Fig. 13).

Since the Markowitz’s pioneering work, many researchers have pursued
studies for efficient algorithms [27, 29, 43, 52] to compute the efficient frontier
of the MV model. However, the classic MV model assumes a perfect market
where short sales are disallowed, securities can be traded in any (non-negative)
fractions, no limitation on the number of assets in the portfolio, investors have
no preferences over assets and they do not care about different assets types in
their portfolios. In practice, these assumptions are unrealistic. As a result, sev-
eral extensions and modifications have been proposed to address the real-world
constraints. In this paper, we extended the basic MV model to include four
practical constraints as follows:

Cardinality constraint

Cardinality constraint limits the number of assets (K) that compose the
portfolio. Very often in practice, investors prefer to have a limited number
of assets included in their portfolio since the management of many assets
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in the portfolio is tedious and hard to monitor. They also intend to reduce
transaction costs and/or to assure a certain degree of diversification by
limiting the maximum number of assets in their portfolios.

Floor and ceiling constraints

The floor and ceiling constraints specify the minimum and maximum lim-
its on the proportion of each asset that can be held in a portfolio. In
practice, investors prefer to avoid excessive administrative costs for very
small holdings of assets in the portfolio and/or some institutional policies
require to model their policies on the lower and upper bounds of each
asset in the portfolio. The floor and ceiling constraint is also known as
bounding or quantity constraints.

Pre-assignment constraint

The pre-assignment constraint is usually used to model the investor’s sub-
jective preferences. An investor may intuitively wish some specific assets
to be included in the portfolio, with its proportion fixed or to be deter-
mined.

Round Lot constraint

Round lot constraint requires the number of any asset in the portfolio to
be in exact multiple of the normal trading lots. In practice, several market
securities are traded as multiples of minimum lots.

These four constraints stated above are hard in the sense that they have to
be satisfied at any time. In practice, portfolios are composed of markets with
hundreds to thousands of available assets, and the calculation of risk measures
grows quickly in relation to the number of assets. By introducing the cardinal-
ity constraint alone already transforms the classic quadratic optimization model
into a mixed-integer quadratic programming problem which is an NP-hard prob-
lem [6, 47]. There are several exact approaches proposed in the literature for
cardinality constrained portfolio optimization problem [5, 6, 35, 47]. However,
all these works relaxed the cardinality constraint as an inequality constraint al-
lowing the number of assets in the portfolio to vary with maximum bound (K)
and the results showed that they are able to handle the test problems with lim-
ited size (up to 500 assets). On the other hand, Gulpinar et al. [26] considered
the strict cardinality constraint and computational results are performed on a
small test problem involving 98 assets.

When additional constraints are added to the basic MV model, the problem
thus becomes more complex and the exact optimization approaches run into
difficulties to deliver solutions within reasonable time for large problem size.
As a result, this motivates the investigation of approximate algorithms such as
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meta-heuristics [33] and hybrid meta-heuristics [56, 45]. In general, meta-
heuristics cannot guarantee the optimality of the solution, but they are efficient
in finding the optimal or near optimal solutions in a reasonable amount of time.

There exist many studies which applied meta-heuristics or other techniques
to solve portfolio optimization problem [21, 39]. The recent research in portfo-
lio optimization problem is widely carried out by incorporation of constraints in
the problem model and/or handling the problem as a multi-objective one. Al-
though the portfolio optimization problem involves two conflicting objectives,
many studies in the literature [11, 17, 20, 37] have been performed as single ob-
jective meta-heuristics approaches with aggregating function that combines two
objectives into a single scale objective, and in which the weights are varied to
generate the set of efficient solutions for portfolio selection problems with car-
dinality and quantity constraints. Mansini and Speranza [38] showed that the
portfolio selection problem with round lot constraint is an NP-complete problem
and proposed three mixed integer linear programming heuristic algorithms to
solve the problem. Lin and Liu [36] proposed a genetic algorithm with three
different models for portfolio selection problems with round lots. Chang et al.
[11] and Gaspero et al. [25] discussed the pre-assignment briefly but had not
addressed the constraint in their experiments.

In recent years, many publications had discussed the portfolio optimization
problems with multi-objective evolutionary algorithms by considering a subset
of the real-world constraints. Diosan [22] and Mishra et al. [42] applied several
well-known multi-objective evolutionary algorithms to solve the unconstrained
portfolio optimization problem. Recently, Krink et al. [34] also proposed an al-
gorithm called DEMPO inspired by the NSGA-II algorithm [19]. The difference
between NSGA-II and DEMPO is that Differential Evolution (DE) is used in-
stead of Genetic Algorithm (GA) to generate new candidate solutions during the
evolution. DEMPO is applied to solve the basic portfolio optimization problem
based on Value-at-Risk risk measure and experimental results show that DEMPO
outperforms NSGA-II. Armananzas and Lozano [3] studied greedy search, simu-
lated annealing (SA) and ant colony optimization (ACO) algorithms in a multi-
objective framework to solve the portfolio selection problem with cardinality
constraints.

Anagnostopoulos and Mamanis [2] considered the extended MV model with
cardinality and quantity constraints and tested five advanced MOEAs to inves-
tigate the performance. The cardinality constraint considered in their work is
relaxed and as a result a portfolio can be composed of any number of assets
with maximum bound (K). The experimental results confirmed that all multi-
objective algorithms considered outperformed the single objective evolutionary
algorithm. The results also concluded that SPEA-II [60] performed the best
among those algorithms tested. Branke et al. [7] also presented an envelope-
based MOEA integrating the NSGA-II [18] and the critical line algorithm. Chaim
et al. [12] proposed an order-based solution representation and considered the
cardinality constraint as a soft constraint and quantity constraint as a hard con-
straint. In their work, the cardinality constraint was relaxed and hence it was
allowed to vary the number of assets in the portfolio from the minimum limit to
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the maximum limit.
Streichert et al. [55, 54] applied a multi-objective evolutionary algorithm

(MOEA) to solve the portfolio selection problems with cardinality, floor and
round lot constraints. These works studied various crossover operators adopting
hybrid chromosome representation with binary and real values. This hybrid
encoding enhances the performance of the algorithm significantly regardless
of the choice of crossover operators. Skolpadungket et al. [50] also studied
the portfolio selection problems with cardinality, floor and round lot constraints
and tested them with various MOEAs. They adopted the same hybrid encoding
as Streichert et al. [55, 54]. Experiments are performed on the small dataset
containing 31 assets and the performance metrics showed that SPEA-II [60] is
the best algorithm among those tested. In their work, the cardinality constraint
was relaxed and only the maximum cardinality constraint was considered.

Fieldsend et al. [23] and Anagnostopoulos and Mamanis [1] considered the
cardinality constraint as an additional objective to be minimized. Brito and Vi-
cente [8] reformulated the cardinality constrained MV model as a bi-objective
problem, allowing the investors to analyse the efficient trade-off between mean-
variance and cardinality. The detailed reviews of the multi-objective evolution-
ary algorithms in portfolio optimization can be found in [10, 13, 44, 49].

In this work, we propose a new learning-guided hybrid evolutionary algo-
rithm for the mean-variance portfolio optimization problem within the context
of the multi-objective optimization. We extended the MV model to consider the
strict cardinality, quantity, pre-assignment and round lot constraints.

We for the first time investigate the performance of the learning-guided
multi-objective evolutionary algorithm with external archive (MODEwAwL) on
the extended MV model with four constraints considered. Randomly generating
a new candidate solution is very unlikely to achieve a good-quality practical so-
lution for the constrained portfolio optimization problem. Instead, a learning-
guided solution generation scheme incorporating additional problem-specific
heuristics is proposed to generate a good-quality solution. The proposed algo-
rithm contributes to enhance an efficient convergence of the search algorithm
by concentrating on the promising areas of the search space.

In this study, we consider four existing well-known multi-objective evolu-
tionary algorithms (MOEAs), the Non-dominated Sorting Genetic Algorithm
(NSGA-II) [19], the Strength Pareto Evolutionary Algorithm (SPEA2) [60], Pareto
Envelope-based Selection Algorithm (PESA-II) [16] and Pareto Archived Evolu-
tion Strategy (PAES) [30]. A large set of simulation experiments have been
conducted over a number of instances. Results demonstrate that the proposed
algorithm is highly efficient in terms of both finding solutions close to the true
Pareto-front and good distribution along the Pareto-front.

The rest of the paper is organized as follows. Section 2 describes the generic
multi-objective portfolio optimization, followed by the extended MV model con-
sidering the cardinality, quantity, pre-assignment and round lot constraints. Sec-
tion 3 introduces the proposed algorithm outlining the main differences from
the existing approaches. Section 4 provides the detailed structure of the pro-
posed algorithm. Section 5 discusses the analysis of the simulation results. In
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Section 6, conclusion and future work are presented.

2. Multi-objective portfolio optimization

Multi-objective optimization generally involves balancing all conflicting ob-
jectives and searches for a set of compromise solutions between the objectives
while satisfying the various constraints. In such context, this set of solutions is
known as Pareto-optimal solutions [18].

In multi-criteria variant of portfolio optimization problem, the MV model can
be formalized as a bi-objective optimization problem. The objective is to find a
set of efficient portfolios that maximize return and minimize risk simultaneously.
In this work, four real-world constraints, cardinality, quantity, pre-assignment
and round lot, are considered (see Section 1). Mathematically, the problem with
considered constraints can be formulated as follows:

min f1 =

N∑
i=1

N∑
j=1

wiwjσij (1)

max f2 =

N∑
i=1

wiµi (2)

subject to

N∑
i=1

wi = 1 (3)

N∑
i=1

si = K, (4)

wi = yi.υi, i = 1, ..., N, yi ∈ Z+ (5)

εisi ≤ wi ≤ δisi, i = 1, ..., N, (6)

si ≥ zi, i = 1, ..., N (7)

si, zi ∈ {0, 1} , i = 1, ..., N (8)
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where N is the number of available assets, µi is the expected return of asset
i (i = 1, . . . , N), σij is the covariance between assets i and j (i = 1, . . . , N ; j =
1, . . . , N), and wi (0 ≤ wi ≤ 1) is the decision variable which represents the
proportion held of asset i. Eq. (3) defines the budget constraint (all the money
available should be invested) for a feasible portfolio.

Eq. (4) defines the cardinality constraint where K is the number of invested
assets in the portfolio and si denotes whether asset i is invested or not. If si
equals to one, asset i is chosen to be invested and the proportion of capital wi
lies in [εi, δi], where 0 ≤ εi ≤ δi ≤ 1. Otherwise, asset i is not invested and wi
equals to zero.

In this study, we adopted the strict cardinality constraint [3, 11, 37, 39,
55, 54] and thus require to select fixed K number of assets. Experimental
results from the literature [11, 55] showed that when the cardinality constraint
with high K value is imposed, the approximation of the constrained efficient
frontier tends to approach towards the unconstrained efficient frontier (UCEF).
The cardinality constraint has been relaxed in several related works [2, 7, 50],
where the equality constraint is replaced by inequality constraint (i.e. up to K
assets can be included in the portfolio). In some works [12, 25], the cardinality
constraint is alternatively relaxed by specifying the maximum and minimum
number of assets that a portfolio can hold.

Eq. (7) defines the pre-assignment constraint to fulfil the investors’ subjec-
tive requirements where the binary vector zi denotes if asset i is in the pre-
assigned set that has to be included in the portfolio or not. Eq. (5) defines
the round lot constraint where yi is a positive integer variable and υi is the
minimum lot that can be purchased for each asset. The inclusion of round lot
constraint may make it impossible to exactly satisfy the budget constraint (see
Eq. (3)) as the total capital might not be the exact multiples of the required
trading lot for various assets.

The above stated model could be solved by obtaining a set of efficient port-
folios. These obtained solutions are optimal in the sense that there are no other
solutions in the solution domain or search space that are superior to them when
all objectives are considered simultaneously [18]. The complete set of these
efficient portfolios forms the efficient frontier that represents the best trade-
offs between the mean return and the variance (risk). In practice, when more
real-world constraints are considered, the efficient frontier reduces to a smaller
curve.

In a two-dimensional space of risk and return, a solution a is said to be
efficient (i.e., Pareto- optimal) if there does not exist any solution b such that b
dominates a [24]. Solution a is considered to dominate solution b if and only if:

f1(a) ≤ f1(b) AND f2(a) > f2(b)

OR

f2(a) ≥ f2(b) AND f1(a) < f1(b)

The ultimate goals in a multi-objective portfolio optimization problem are
to find a set of solutions as close as possible to the Pareto-optimal front and to
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find a good distribution of solutions along the Pareto front. Once the efficient
frontier is obtained, the decision maker determines the portfolio based on the
investor’s risk preference. Hence, the diversity of the solutions along the effi-
cient frontier is important for the decision maker not to miss certain trade-off
portfolios which he/she might be interested.

3. Learning-guided Multi-objective Evolutionary Algorithm (MODEwAwL)

The multi-objective portfolio optimization problem becomes too complex
to solve by numerical methods when those practical constraints reflecting in-
vestors’ preferences and/or institutional trading rules are considered. Over the
last two decades, multi-objective evolutionary algorithms (MOEAs) have re-
ceived a significant amount of attention and demonstrated their effectiveness
and efficiency in approximating the Pareto-optimal front [13].

DEMO [46] is one of the recent algorithms which combines the advantages
of DE [53] with the mechanisms of Pareto-based sorting and crowding distance
sorting [19]. It had been successfully tested on the carefully designed test func-
tions (ZDT) introduced in [59]. The procedure of the DEMO is described in
Fig. 1. DEMO maintains a population of individuals, where each represents a
potential solution to the optimization problem. During the evolution, it allows
its population capacity expand in order to add newly found non-dominated so-
lutions (see Fig. 1, line 3-9). Hence, it enables the newly found non-dominated
solutions to immediately take part in the generation of the subsequent candi-
date solutions. This feature of DEMO promotes fast convergence towards the
true Pareto front. In each generation, if the population exceeds the size limit,
it is sorted based on the non-domination and crowding distance metrics [19] in
order to identify those individuals to be truncated. It thus aims to maintain a
good distribution of non-dominated portfolios.

Differential Evolution for Multi-objective Optimization

1. evaluate the initial population P of random individuals.
2. while stopping criterion not met:
3. for each individual pi(i = 1, ..., PSize)
4. create a candidate p′ from parent pi
5. evaluate p′.
6. if p′ dominates pi, p′ replaces pi.
8. else if pi dominates p′, discard p′.
9. else add p′ to P .
10. if | P |≥ PSize, truncate it.
11. randomly enumerate the individuals in P .

Figure 1: The procedure of DEMO [46].
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In this work, we propose a learning-guided multi-objective evolutionary al-
gorithm (MODEwAwL) for the constrained portfolio optimization. The pro-
posed algorithm adopts a new approach to extend generic DEMO scheme to
solve the constrained portfolio optimization problem. The main differences of
our approach with respect to the DEMO scheme in the literature can be outlined
as follows:

1. A secondary population (i.e. an external archive) is introduced to store
the well spread non-dominated solutions found throughout the evolution
(see Section 4.9).

2. A learning mechanism is proposed to extract the important features from
the efficient solutions found throughout the evolution (see Section 4.4).

3. An efficient solution generation scheme utilizing the learning mechanism,
problem specific heuristics and effective direction-based search methods
is proposed to guide the search towards the promising search space (see
Section 4.5).

The proposed MODEwAwL use the archive to extract the important fea-
tures of non-dominated solutions. Incorporating learning mechanism and prior
problem-specific knowledge exploitation in the evolution process allows the pro-
posed MODEwAwL to generate promising offspring solutions. The proposed
MODEwAwL thus aims to promote convergence by concentrating on the promis-
ing regions of the search space. The pseudocode of the proposed algorithm is
described in Fig. 2.
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Pseudocode: MODEwAwL

1. INITIALIZATION:
2. randomly create initial population P .
3. maintain the archive A with non-dominated solutions from P .
4. while stopping criterion not met:
5. LEARNING MECHANISM:
6. learn from the archive A to identify the promising asset(s)
7. EVOLVE:
8. for each individual pi(i = 1, ..., NP ) in P
9. CANDIDATE GENERATION:
10. create new candidate p′ from P and learning mechanism.
11. REPAIR:
12. repair p′ if constraints are violated.
13. evaluate the candidate p′ by f1 and f2 (see Eq.1,2)
14. SELECT:
15. if p′ dominates pi, p′ replaces pi.
16. else if pi dominates p′, discard p′.
17. else add p′ to the current population P .
18. TRUNCATE:
19. if | P | ≥ NP
20. maintain P with best NP solutions, ranked by non-domination
21. and crowding distance metrics
22. ARCHIVE:
23. maintain the archive A with non-dominated solutions from P
24. if | A | ≥M
25. maintain A with M least crowded non-dominated solutions
26. randomly enumerate the individuals in P
27. Output: the non-dominated solutions in the archive.

Figure 2: The procedure of the proposed MODEwAwL.
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4. The proposed MODEwAwL

4.1. Notation

Let
A = the archive maintaining the set of non-dominated portfolio(s)
CR = the crossover probability for differential evolution
F = the scaling factor for differential evolution
K = the number of assets in a portfolio, i.e. the cardinality
L = the number of assets in the pre-assignment set
M = the maximum size of the archive
N = the number of available assets
NP = the number of individuals in the population
P = list of portfolios in the population
ci = the concentration of ith asset in the archive
pi = the ith portfolio in the population
wi = the proportion of capital invested in the ith asset
υi = the minimum trading lot of the ith asset
εi = the lower bound on the proportion of the ith asset
δi = the upper bound on the proportion of the ith asset
r[x1, x2] = random real value between x1 and x2, both inclusive
R[x1, x2] = random integer value between x1 and x2, both inclusive

si =

{
1 if the ith (i = 1, . . . , N) asset is chosen
0 otherwise

zi =

{
1 if ith asset is in pre-assigned set
0 otherwise

4.2. Solution representation and encoding
In our solution representation, two vectors of size N are used to define a

portfolio p: a binary vector si, i = 1, . . . , N denoting whether asset i is included
in the portfolio, and a real-value vector wi, i = 1, . . . , N representing the pro-
portions of the capital invested in the assets. Some existing research studies
[2, 50, 55, 54] adopt similar encoding to define a portfolio. When the cardinal-
ity and pre-assignment constraints are considered, the introduction of binary
variables si in the multi-objective portfolio model enhances the evaluation of
the algorithm.

4.3. Initial population generation
To generate an initial population, K different assets (including all assets in

the pre-assignment subset) are randomly selected and proportions are assigned
to those selected assets randomly. If the generated portfolio violates the budget
and/or quantity constraints, such solution is corrected by the constraint han-
dling techniques provided in Section 4.6. Hence, all generated solutions in the
trial population are feasible.
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4.4. Learning mechanism
At each generation, the distribution of assets from non-dominated solutions

in the external archive is observed to identify the promising assets. The con-
centration score of each asset ci is calculated by counting its occurrences in the
archive divided by archive size.

ci =

|A|∑
j=1

si,j

| A |
.

The new solutions to be generated are encouraged to compose with those assets
by exploiting the knowledge obtained throughout the evolution to direct the
search towards the promising search space. The proposed learning mechanism
is computationally cheap as it only uses a single update at each generation. A
similar form of scoring function has been used as one of the components in the
trade-off studies by Smith et al. [51].

4.5. Candidate generation
One of the factors to consider in designing the portfolio model in the pro-

posed MODEwAwL is to find an effective way to generate offsprings. We aim to
find effective and efficient scheme with a good balance between the exploitation
and exploration. The new solution is generated by two phases: the selection of
assets from a universe ofN available assets and the allocation of capital to those
selected assets. The idea presented here is to use DE for exploring the real de-
cision variables and exploit learning mechanism and problem specific heuristics
described below to select the promising assets in the new solution.

The information about the concentration of the assets in the non-dominated
portfolios in the archive is exploited in selecting the promising assets for the
new candidate portfolio. Hence the assets are ranked according to their con-
centrations in the archive non-dominated solutions. The assets which score
greater than zero are considered to be promising ones. The higher the score of
the asset, the higher its chances to be included in the new candidate portfolio
(see Section 4.4).

In finance literature, it is considered to be a fundamental premise to utilize
assets that have low correlation with each other. Hence the assets which are
less correlated to each other are preferable to the heavily correlated assets. It
is also commonly believed that it is beneficial to reduce the portfolio’s standard
deviation of return. Intuitively, investors prefer higher return assets with less
risk [28].

In order to generate a new candidate solution, the L assets are firstly se-
lected if the pre-assignment constraint is considered. By taking into account of
the above stated intuitive learning, in this work, the proposed MODEwAwL then
alternatively uses the following selection schemes to fill the remaining assets:

S1: The (K − L) assets are selected by roulette wheel selection based on the
concentration score ci.
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S2: The (K − L) assets which have the highest concentration score ci are
selected.

S3: The (K − L) assets which have the highest expected return values are
selected.

S4: The random n assets (where n = R[0,K − L]) which have the highest
concentration score ci are selected. The remaining (K − n) assets are
filled by randomly selecting one of the following methods.

• Select those assets which have the lowest risk values.

• Select those assets which have the highest return values (i.e. S3).

• Select those assets which have the least correlation from those n as-
sets already chosen.

By adopting the above stated selection scheme, the new candidate solu-
tion satisfies the pre-assignment and cardinality constraints. The proportions
of those selected assets for the new candidate solution are assigned by using a
direction-based offspring generation scheme where p1, p2 and p3 are randomly
selected portfolios from the current population P as follows:

W1: w′i := w3i + r[0, 1]× (w1i − w2i)

W2: w′i := w3i + F × (w1i − w2i)

W3: rank p1, p2 and p3 by dominance and crowding distance measure (i.e. p1
is the best portfolio and p3 is the worst portfolio among three portfolios)
and generate weight allocations of candidate portfolio by directing away
from p3 and towards the middle between p1 and p2 as follows:

w′i := (w1i + w2i)/2

The detailed procedure of the candidate generation is provided in Fig. 3.
The proposed candidate generation mechanism intends to guide the search to-
ward promising direction by learning from the reference assets from the archive
and reference proportions from the current population. In this way, the pro-
posed algorithm converges efficiently. The new candidate portfolio is repaired
if the quantity and round lot constraints are violated (see the repair mechanism
in Section 4.6).
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Candidate Generation

1. Input: concentration score of assets ci(i = 1, ..., N)
2. randomly select K assets by S1, S2, S3 or S4.
3. randomly select an index i from those K selected and assign i to j and χ
4. for each selected asset
5. randomly select three different portfolios: p1, p2, p3 ∈ P
6. if r(0, 1) < CR || j == χ
7. allocate weight w′ by W1, W2 or W3
8. else
9. allocate weight w′ randomly.
10. randomly select an index i from those K selected and assign i to j
12. Output: candidate solution p′.

Figure 3: The procedure of generating a candidate solution.

4.6. Constraint handling
When using an evolutionary algorithm to solve constrained optimization

problems, there are various methods proposed in the literature [15] for han-
dling constraints in evolutionary optimization, such as penalty function method,
special representations and operators, repair methods and multi-objective meth-
ods. Among those methods, repair method is one of the effective approaches to
locate feasible solutions.

During the population sampling, each constructed individual portfolio is re-
paired if it does not satisfy all considered constraints. As described in Section
4.5, the new solution generated by our proposed MODEwAwL already satisfies
the cardinality and pre-assignment constraints.

Hence, the following repair mechanism stated in [50, 54] is applied:

1. All weights of selected assets in the candidate solution are adjusted by
setting w′i = εi +

w′
i−εi∑

(w′
i−εi)

.

2. The weights are then adjusted to the nearest round lot level by setting
w′i = w′i − (w′i mod υi). The remaining amount of capital is redistributed
in such a way that the largest amount of (w′i mod υi) is added in lot of
υi until all the capital is spent.

4.7. Selection scheme
The proposed MODEwAwL applies the elitist selection scheme based on

Pareto optimality (see Fig. 2). During the evolution, the population is extended
by adding the newly found non-dominated solutions. Hence, at each genera-
tion, the number of portfolios in the current population will be between NP
and 2NP .
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4.8. Truncate population
In each generation, if the number of portfolios in the current population

exceeds its limit NP , it needs to identify those which need to be removed.
The individuals in the population are sorted based on the non-dominance and
crowding distance measures. Then the current population is truncated by keep-
ing the best NP individuals for the next generation.

4.9. Maintaining the external archive
The main objective of the external archiveA is to keep all the non-dominated

solutions encountered along the search process. This approach is adopted in
order to save and update all well spread non-dominated solutions generated by
the algorithm during the search.

In each generation, the archive A is updated with the non-dominated so-
lutions from the trial population. The computational time of maintaining the
archive increases with the archive size [14, 32, 60]. The size of the archive
is therefore restricted to a pre-specified value. When the external archive has
reached its maximum capacity M , the crowding distances of the solutions are
calculated to determine the most crowded archive members which need to be
discarded.

5. Performance evaluation

In this section, we first introduce the test problems and performance metrics
used for evaluating the proposed MODEwAwL. We then study the effectiveness
of the two components extended for MODEwAwL, i.e. the external archive
and the learning-guided solution generation scheme, respectively. Finally, we
compare the proposed MODEwAwL with four state-of-the-art multi-objective
evolutionary algorithms in terms of the performance metrics.

5.1. Dataset
Seven test problems based on well-known major market indices for the port-

folio optimization problems from the publicly available OR-library [4] is used
to evaluate the performance of the algorithms. Table 1 shows the details of
these benchmark indices and their sizes. The first five datasets (D1 – D5) built
from weekly price data from March 1992 to September 1997 are available at:
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html.
They were first introduced by Chang et al [11].

The remaining two datasets were built based on the index tracking problem
and they were first introduced by Canakgoz and Beasley [9]. These two datasets
(D6 and D7) are available at:
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html.

These problem instances have been used for portfolio optimization with car-
dinality, quantity, pre-assignment and round lot constraints in order to study the
performances of the algorithms. All algorithms have been implemented in C#
and run on a personal computer Intel(R) Core(TM)2 Duo CPU E8400 3.16GHz.
The experimental results obtained for each algorithm are the average of 20 runs.
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Instance Origin Name Number of assets
D1 Hong Kong Hang Seng 31
D2 Germany DAX100 85
D3 UK FTSE 100 89
D4 US S&P 100 98
D5 Japan Nikkei 225
D6 US S&P 500 457
D7 US Russell 2000 1318

Table 1: The benchmark instances from OR-library.

5.2. Quality indicators
To evaluate the performance of the multi-objective evolutionary algorithms

from various aspects, several performance metrics have been proposed in the
literature which mainly consider proximity, diversity and distribution. In this
study we use four widely adopted performance evaluation metrics namely gen-
erational distance, inverted generational distance, diversity and hypervolume.

5.2.1. Inverted generational distance (IGD)
The inverted generational distance [48] uses the true Pareto front as a ref-

erence and measures the distance of each of its elements from the true Pareto
front to the non-dominated front obtained by an algorithm. It is mathematically
defined as:

IGD =

√
Q∑
i=1

d2i

Q

where Q is the number of solutions in the true Pareto front and di is the Eu-
clidean distance between each of the solution and the nearest member from the
set of non-dominated solutions found by the algorithm. This metric measures
both the diversity and the convergence of an obtained non-dominated solution
set. The smaller the value of this metric, the closer the obtained front is to the
true Pareto front.

The true Pareto front for highly constrained multi-objective portfolio opti-
mization problem considered in this work is unknown. We use the best known
unconstrained efficient frontier (UCEF) provided by the OR-library [4] as the
true Pareto front reference set. This has been widely adopted in the literature.

5.2.2. Generational distance (GD)
The generational distance [57] is a variant of IGD. It measures how far the

solutions of the computed Pareto front obtained by an algorithm are from those
at the true Pareto front. The smaller value indicates that all the generated
solutions are on the true Pareto front.
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5.2.3. Diversity metric (∆)
The diversity metric (∆) [19] measures the performance indices of distribu-

tion and spread simultaneously for two-objective optimization problems. The
diversity metric (∆) is defined as follows:

∆ =

df + dl +
|Q|−1∑
i=1

| di − d |

df + dl + (| Q | −1)d

where di is the Euclidean distance in the objective space between consecutive
solutions in the obtained non-dominated front Q, and d̄ is the average of these
distances. The parameters df and dl are the Euclidean distance between the
extreme solutions and the boundary solutions of the obtained non-dominated
front Q. The lower value of the spread (∆) indicates a better diversity.

5.2.4. Hypervolume (HV)
Hypervolume metric [61], also known as S-metric or Lebesgue measure, is

widely recognized as a unary value which is able to measure both convergence
and diversity. This metric calculates the normalized volume of the objective
space covered by the obtained Pareto set Q bounded by a reference point r.
Therefore, higher values are preferable. For each solution i ∈ Q, a hypercube ci
from solution i and the reference point r is measured. The hypervolume HV is
calculated as:

HV = volume(∪|Q|i=1ci)

An accurate calculation of HV requires a normalized objective space and we
used the linear normalization technique proposed by Knowles et al [31] as fol-
lows:

fi =
fi − fmini

fmaxi − fmini

where fmini and fmaxi are the minimum and maximum value of the ith ob-
jective. The value of fmini and fmaxi are set as the minimum and maximum
value obtained from running all algorithms. The reference point was chosen as
r={1,0}.

5.3. Effectiveness of the learning-guided solution generation and archive
In this section, our experiments focus on the impact of the learning-guided

solution generation mechanism. In order to evaluate the performance of the
MODEwAwL, we compare it with two variants of the algorithm: the multi-
objective differential evolution (MODE) and the multi-objective differential evo-
lution with archive (MODEwA). Fig. 4 shows the comparisons of the three al-
gorithms in terms of IGD, GD and ∆. The experimental results distinctly show
that the proposed algorithm with the learning-guided solution generation mech-
anism outperforms MODE and MODEwA in most instances.
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Figure 4: Effectiveness of the learning-guided solution generation scheme and archive.

5.4. The Overall Performance Evaluation
In order to evaluate the overall performance of the proposed MODEwAwL,

we compare it with four state-of-the-art multi-objective evolutionary algorithms
in the literature.

• NSGA-II: the Non-dominated Sorting Genetic Algorithm II was proposed
by Deb et al. [19]. The algorithm uses binary tournament selection based
on the crowding distance. It performs crossover and mutation by simu-
lated binary crossover and polynomial mutation operators.

• SPEA2: the Strength Pareto Evolutionary Algorithm was proposed by Zit-
zler et al. [60]. The algorithm employs fine-grained fitness assignment,
density estimation techniques and archive truncation methods. Like NSGA-
II, it uses binary tournament selection, simulated binary crossover and
polynomial mutation evolutionary operators.

• PESA2: the Pareto Envelope-based Evolutionary Algorithm was proposed
by Corne et al. [16]. The algorithm uses hyper-boxes to assign fitness and
employs the simulated binary crossover and polynomial mutation opera-
tions.

• PAES: the Pareto Archived Evolution Strategy was proposed by Knowles
and Corne [30]. The algorithm uses a simple (1+1) local search evolu-
tion strategy. It maintains an archive of non-dominated solutions and it
exploits those Pareto solutions to estimate the quality of new solutions.
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In order to ensure a fair comparison, we have used the same population size and
archive size (if applicable) for all the algorithms tested in this work. We have
chosen to run all the algorithms run for the same stopping criteria (i.e. the same
number of evaluations) to generate the Pareto front. Each algorithm also uses
the same encodings (see Section 4.2) and repair mechanism (see Section 4.6)
when a newly constructed portfolio violates the considered constraints. Before
the experiments were performed, parameters are tuned for all algorithms using
the smallest problem instance, i.e. Hang Seng. Table 2 shows the best parameter
values of the algorithms.

Parameters MODEwAwL NSGA-II SPEA2 PESA-II PAES
Number of population (NP ) 100 100 100 100 100
Number of generation 1,000N 1,000N 1,000N 1,000N 1,000N
Scaling factor (F ) 0.3 – – – –
Crossover probability (CR) 0.9 0.9 0.9 0.9 –
Crossover distribution index – 20 20 20 –
Mutation probability – 1/N 1/N 1/N 1/N
Mutation distribution index – 20 20 20 20
Tournament round – – 1 – –
Number of bisection – – – 5 5
Archive size (M) 100 – 100 100 100

Table 2: Parameter setting of five algorithms.

Figure 5: Performance comparisons of five algorithms in term of GD, IGD and ∆ metrics for Hang
Seng dataset.
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Figure 6: Performance comparisons of five algorithms in term of GD, IGD and ∆ metrics for DAX
100 dataset.

Figure 7: Performance comparisons of five algorithms in term of GD, IGD and ∆ metrics for FTSE
100 dataset.
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Figure 8: Performance comparisons of five algorithms in term of GD, IGD and ∆ metrics for S & P
100 dataset.

Figure 9: Performance comparisons of five algorithms in term of GD, IGD and ∆ Metrics for Nikkei
dataset.
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Figure 10: Performance comparisons of five algorithms in term of GD, IGD and ∆ metrics for S & P
500 dataset.

Figure 11: Performance comparisons of five algorithms in term of GD, IGD and ∆ metrics for Russell
2000 dataset.
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5.5. Comparisons of the algorithms
In this section, we have performed a number of experiments. The results

of GD, IGD and ∆ and running time of the five algorithms performed on seven
datasets from OR-library are shown in Figs. [5, 6, 7, 8, 9, 10, 11]. For example
in Fig. 11, top left boxplot represents the performance of each algorithm con-
sidered in terms of GD metric, top right boxplot represents the performance of
each algorithm considered in terms of IGD metric, bottom left shows the perfor-
mance of each algorithm in terms of Diversity metric and bottom right boxplot
displays the computational time for each algorithm considered. These results
are obtained for the constrained portfolio optimization problem with cardinality
K = 10, floor εi = 0.01, ceiling δi = 1.0, pre-assignment z30 = 1 and round lot
υi = 0.008.

The results show that for most of the problem instances, the MODEwAwL
obtains the smallest mean values for GD, IGD and ∆ , compared with the
other four algorithms, demonstrating the best performance among the five al-
gorithms. NSGA-II comes at the second and SPEA2 comes at the third places.
NSGA-II and SPEA2 seem to have almost comparable results for most problem
instances. However, SPEA2 is the most computationally expensive algorithm in
terms of CPU time. The results also confirm that PAES is the worst algorithm
for the portfolio optimization with considered constraints. However, PAES is the
second fastest algorithm after MODEwAwL. For most of the problem instances,
the proposed algorithm MODEwAwL is also computationally efficient compared
to the others. Fig. 12 shows the hypervolume (HV) calculation performed on
seven datasets and for each problem instance, the results reconfirm the superi-
ority of MODEwAwL since it outperforms in six out of seven datasets.

For illustrative purpose, the obtained efficient frontiers of the algorithms
for seven instances along with the true unconstrained efficient frontier (UCEF)
are provided in Fig. 13. When the problem sizes are small, the Pareto sets
obtained by the considered algorithms are very competitive to each other such
that it would be hard to differentiate visually. As the problem sizes increase, the
proposed algorithm obtained significantly better efficient frontier than those
obtained by other MOEAs considered in this work. Based on the analysis, we
conclude that the proposed MODEwAwL is able to solve large-scale real-world
portfolio optimization efficiently. The results also demonstrate that NSGAII and
SPEA2 loose their effectiveness when the problem dimension increases.

To gain an intuitive view of the five algorithms over generations, we plot
the GD, IGD and ∆ metrics over generations on five selected instances in Fig.
14 where the results are averaged over 20 runs. The results confirm that all
algorithms considered are able to converge and MODEwAwL is able to converge
the fastest in most problem instances.

Experiments are also performed for different cardinality values with K = 15
and K = 5. The results are made publicly accessible at:
http://cs.nott.ac.uk/~ktl/results/MODEwAwL-results.pdf. On the ma-
jority of datasets, MODEwAwL is significantly better than the other compared
MOEAs. The experimental results have further demonstrated that the proposed
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Figure 12: Performance comparisons of five algorithms in term of HV metric.

algorithm is efficient for various search spaces with different values of K. The
proposed MODEwAwL is thus more robust than the compared MOEAs.

As stated in Section 5.2.1, IGD can provide the overall performance of an
algorithm, measuring its convergence and diversity simultaneously. We com-
pare the IGD values of the five algorithms by using Student’s t-test [58]. The

24



Figure 13: Comparison of efficient frontiers for seven datasets.
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Figure 14: Comparisons of convergence of five algorithms.
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Algorithm1↔ Algorithm2 Hang Seng DAX 100 FTSE 100 S & P 100 Nikkei S & P 500 Russell 2000
MODEwAwL↔ NSGA-II ∼ + + + + + +
MODEwAwL↔ SPEA2 − + + + + + +
MODEwAwL↔ PESA-II ∼ + + + + + +
MODEwAwL↔ PAES + + + + + + +
NSGA-II↔ SPEA2 − + ∼ ∼ + + ∼
NSGA-II↔ PESA-II + + + ∼ + + ∼
NSGA-II↔ PAES + + + + ∼ + −
SPEA2↔ PESA-II + ∼ ∼ ∼ + ∼ ∼
SPEA2↔ PAES + + + + − ∼ −
PESA-II↔ PAES + + + + − ∼ −

Table 3: Student’s t-test results of different algorithms on seven problem instances with K=10,
εi = 0.01, δi = 1.0, z30 = 1 and υi = 0.008.

statistical results obtained by a two-tailed t-test with 38 degrees of freedom at a
0.05 level of significance are given in Table [3, 4, 5]. The result of Algorithm-1
↔ Algorithm-2 is shown as “+”, “−”, or “∼” when Algorithm-1 is significantly
better than, significantly worse than, or statistically equivalent to Algorithm-2,
respectively. Results show that MODEwAwL outperforms other algorithms in
most of the problem instances except Hang Seng dataset. For Hang Seng test
problem, the performance of SPEA2 outperforms MODEwAwL when K = 10.
We therefore can conclude that the proposed MODEwAwL has the best opti-
mization performance for the portfolio optimization problem with considered
constraints.

Algorithm1↔ Algorithm2 Hang Seng DAX 100 FTSE 100 S & P 100 Nikkei S & P 500 Russell 2000
MODEwAwL↔ NSGA-II ∼ + + + + + +
MODEwAwL↔ SPEA2 ∼ + + + + + +
MODEwAwL↔ PESA-II + + + + + + +
MODEwAwL↔ PAES + + + + + + +
NSGA-II↔ SPEA2 + ∼ + + + ∼ ∼
NSGA-II↔ PESA-II + + + + + ∼ ∼
NSGA-II↔ PAES + + + + + + ∼
SPEA2↔ PESA-II + ∼ ∼ ∼ + ∼ ∼
SPEA2↔ PAES + + + + − ∼ ∼
PESA-II↔ PAES + + + + − ∼ ∼

Table 4: Student’s t-test results of different algorithms on 5 problem instances with K=15, εi = 0.01,
δi = 1.0, z30 = 1 and υi = 0.008.

Algorithm1↔ Algorithm2 Hang Seng DAX 100 FTSE 100 S & P 100 Nikkei S & P 500 Russell 2000
MODEwAwL↔ NSGA-II + + + + + + +
MODEwAwL↔ SPEA2 + + + + + + +
MODEwAwL↔ PESA-II + + + + + + +
MODEwAwL↔ PAES + + + + + + +
NSGA-II↔ SPEA2 − + ∼ + + ∼ ∼
NSGA-II↔ PESA-II + + ∼ + + ∼ ∼
NSGA-II↔ PAES + + + + − − −
SPEA2↔ PESA-II + ∼ ∼ ∼ + ∼ ∼
SPEA2↔ PAES + + ∼ ∼ − − −
PESA-II↔ PAES ∼ + ∼ + − − −

Table 5: Student’s t-test results of different algorithms on five problem instances with K=5, εi =
0.01, δi = 1.0, z30 = 1 and υi = 0.008.
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6. Conclusion and future work

In this work, we investigated the portfolio selection problem with four prac-
tical constraints which limit the number of assets in a portfolio, restrict the min-
imum and maximum proportions of assets held in the portfolio, require some
specific assets to be included in the portfolio and require to invest the assets in
units of a certain size respectively.

We have demonstrated that maintaining a secondary population of solution
set in combination with learning-guided candidate solution generation scheme
contribute to better performance over four existing well-known MOEAs, NSGA-
II, SPEA2, PEAS-II and PAES. The experimental results not only show that the
quality of the generated Pareto set approximations significantly improved, but
also that the overall computation time can be reduced. As to the Pareto set
approximation, the proposed solution generation scheme embedding learning
mechanism, problem specific heuristics and direction-based search methods
plays a major role, while the efficiency is mainly because the proposed algorithm
is computationally cheap as it only uses a single update at each generation. Per-
formance wise, the proposed MODEwAwL algorithm is not only capable to de-
liver high-quality portfolios enriched with additional constraints but also able to
efficiently solve a reasonable size of asset up to 1318. The proposed algorithm
could be applied to other practical applications such as knapsack problems with
relevant constraints. For future work, the proposed algorithm can be extended
to include constraints such as transaction cost and short selling.
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