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a b s t r a c t

A procedure relying on linear programming techniques is developed to compute (regres-
sion) quantile regions that have been defined recently. In the location case, this pro-
cedure allows for computing halfspace depth regions even beyond dimension two. The
corresponding algorithm is described in detail, and illustrations are provided both for sim-
ulated and real data. The efficiency of a Matlab implementation of the algorithm1 is also
investigated through extensive simulations.
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1. Introduction

Due to the lack of a satisfactory concept of multivariate quantile, Koenker and Bassett (Econometrica 1978)’s celebrated
theory of quantile regression has for long been restricted to single-output regression problems, which constitutes a severe
limitation. Various works tried to extend quantile regression to the multiple-output context; see, e.g., Chaudhuri (1996),
Koltchinskii (1997), Chakraborty (2003), Wei (2008), or Kong and Mizera (2008). Here, the focus is on the quantiles that
were proposed in Hallin et al. (2010) — hereafter referred to as HPŠ10 — and that can be described as follows.

Consider amultiple-output regression problemwhere them-variate response Y is to be regressed on the p-variate vector
of regressors X = (1,W ′)′—so that {(w ′, y ′)′ : w ∈ Rp−1, y ∈ Rm

} = Rp−1
× Rm is the natural space for considering fitted

regression ‘‘objects ’’. Assume that corresponding data points (xi, yi) ∈ Rp
× Rm, i = 1, . . . , n, are given. For any τ ∈ (0, 1)

and u ∈ Sm−1
:= {y ∈ Rm

: ∥y∥ = 1}, the sample HPŠ10 (τu)-quantile is defined as any element of the collection Π
(n)
τu of

hyperplanes π
(n)
τu := {(w ′, y ′)′ ∈ Rp−1

× Rm
:b′

τuy −a′
τu(1,w

′)′ = 0}, with

(a′

τu,
b′

τu)
′
∈ argmin

n
i=1

ρτ (b′yi −a′xi) subject to u′b = 1, (1)

where ρτ (x) = x(τ − I(x < 0)) is the well-known τ -quantile check function. In other words, this regression (τu)-
quantile simply is the traditional (single-output) Koenker and Bassett (1978) regression quantile of order τ obtained when
considering, inRm+p−1, the oriented vectorial line bearing (0′

p−1, u
′)′ as the ‘‘vertical’’ axis (that is, as the axis of the univariate

response).
Each optimal solution (a′

τu,
b′

τu)
′ to (1) can be associated with the upper (τu)-quantile halfspace H(n)+

τu = {(w ′, y ′)′ ∈

Rp−1
× Rm

:b′
τuy −a′

τu(1,w
′)′ ≥ 0}. For τ ∈ (0, 1), HPŠ10 then defines (sample) τ -quantile regions as

R(n)(τ ) :=


u∈Sm−1


H(n)+

τu

, (2)
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where


H(n)+
τu


stands for the intersection over all optimal solutions corresponding to the fixed τ and u. In the location

case p = 1, these regions were shown to coincidewith the Tukey (1975) halfspace depth regions; see Theorem 4.2 of HPŠ10.
In the general regression case p > 1, they form a family of nested polyhedral regions wrapping, up to the classical quantile
crossings, a median or deepest regression hypertube. As shown in Section 7 of HPŠ10, these quantile regions allow for a
much richer regression analysis than any traditional multiple-output regression method can provide.

Computing R(n)(τ ) (for some fixed τ ), however, is a very challenging problemevenwhen all the regression (τu)-quantiles
are uniquely defined. In this case, each such regression quantile hyperplane (as any standard single-output Koenker and
Bassett (1978) regression quantile hyperplane in Rm+p−1) must containm+p−1 data points almost surely if the underlying
distribution of (W ′, Y ′)′ is absolutely continuous with respect to the Lebesgue measure. This implies that the collection of
all such regression quantiles is finite, and that R(n)(τ ) could then be in principle computed exactly. Nevertheless, considering
all (m + p − 1)-tuples of data points is unfeasible for practical datasets, so that computing the quantile regions remains a
very difficult issue. Even in the location case where the problem reduces to computing halfspace depth regions, there is no
exact implementable (non-trivial) solution beyond dimension two, at least to the best of the authors’ knowledge.

Themain objective of this paper is to provide a solution to this problem in the general regression case (p ≥ 1), by showing
how to compute efficiently, for any fixed τ ∈ (0, 1), the finite collection of all regression (τu)-quantiles. Since computing
a single upper quantile halfspace H(n)+

τu can be done in a straightforward way (by using single-output quantile regression
techniques), the challenge here is to efficiently aggregate the information associated with the various fixed-τ directional
quantile halfspaces.

The presentwork hasmuch in commonwith parametric programming and sensitivity analysis and is particularly close to
Shi and Lukas (2005) and Lukas and Shi (2006) that deal with sensitivity of constrained linear L1 regression. Perturbations in
rows and columns of the constraints matrix have been widely discussed in the general linear programming context as well;
see Kon-Popovska (2003), and references therein. Interestingly, the very special formof the problem considered here and the
row and column permutations employed lead to surprisingly simple and neat results, which makes it possible to solve the
problem for all u’s efficiently. This contribution therefore confirms the trend that applications of parametric programming
in computational geometry still grow in number; see Raković et al. (2004) for another paper on this topic.

The outline of the paper is as follows. Section 2 derives a procedure that solves problem (1) with a given fixed τ ∈ (0, 1)
for all u ∈ Sm−1 bymeans of parametric linear programming. In Section 3, the corresponding algorithm is described in detail
(a Matlab implementation of this algorithm can be downloaded from http://homepages.ulb.ac.be/~dpaindav). Section 4
provides some illustrations of quantile regions, both on simulated data (Section 4.1) and real data (Section 4.2). Extensive
simulations are conducted in Section 5 to evaluate the efficiency of the Matlab implementation of the algorithm. Finally,
some technical matters related to the algorithm are discussed in Appendix.

2. Description of the procedure

This section describes a solution to the problem from the Introduction by means of parametric linear programming, and
provides the theoretical background for the algorithm presented in Section 3. The structure of this section closely follows
the accompanyingMatlab code and is split into three subsections. Section 2.1 rewrites the problem (1) as a linear program
in a convenient way and shows that the assumption u ∈ Sm−1 can be relaxed without any harm into u ∈ Rm (or more
precisely, into Rm

\ {0}). Section 2.2 then demonstrates that the resulting space Rm of the u’s can be segmented into (a finite
collection of) polyhedral cones, each corresponding to a single (τu)-quantile halfspace H(n)+

τu . Finally, Section 2.3 explains
how to find all neighboring cones adjacent to a given one by means of simplex post-optimization, which paves the way for
finding the whole conic segmentation and thus solves the problem completely.

2.1. Simplification of the linear problem

The following notation will be used throughout. The vectors 0ℓ and 1ℓ are defined as the ℓ-dimensional zero vector
and the ℓ-dimensional vector of ones, respectively. The symbols Iℓ×ℓ and Or×s respectively refer to the ℓ-dimensional
identity matrix and the zero r × s matrix. The positive and negative parts of an ℓ-vector v = (v1, . . . , vℓ)

′ are defined as
v+ := (max(v1, 0), . . . ,max(vℓ, 0))′ and v− := (max(−v1, 0), . . . ,max(−vℓ, 0))′, respectively, which yields v = v+ −v−.
The vector of residuals ri = ri(a,b) := b′yi −a′xi, i = 1, . . . , n, will be denoted as r = (r1, . . . , rn)′. From the n × m
(response) matrix

Y := (y1, . . . , yn)′ =: (yc
1, . . . , y

c
m)

and the n × p (design) matrix

X := (x1, . . . , xn)′ =: (xc1, . . . , x
c
p),

one can construct

Uy
:= (yc

1, −yc
1, . . . , y

c
m, −yc

m) and Vx
:= (xc1, −xc1, . . . , x

c
p, −xcp),

http://homepages.ulb.ac.be/~dpaindav
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respectively. In the setup described in the Introduction, xc1 = 1n. The general notation is used here because sometimes
it may be interesting to work with another xc1 (for example, when multiple identical observations occur in the sample,
which may be relevant for resampling procedures) and because the algorithm presented in Section 3 does not require any
special assumption on xc1 at all. Finally, to make the connection between the text and the code as tight as possible, all vector
inequalities are interpreted coordinate-wise and some basic Matlab notation is used hereinafter, mainly for submatrices
and subvectors with possibly permuted rows or columns.

With this notation, the optimization problem (1), for any u = (u1, . . . , um)′ ∈ Sm−1, can be represented as the linear
program

min
zP

c ′

PzP subject to APzP = bP , zP ≥ 0, (P)

with its dual twin brother

max
(λ,µ′

P )′
λ subject to A′

P(λ, µ′

P)
′
≤ cP , (D)

where

zP = (a′(a), b′(b), r ′

+
, r ′

−
)′ ∈ R2p+2m+2n,

a = a(a) = (a1+,a1−, . . . ,ap+,ap−)′ ∈ R2p,

b = b(b) = (b1+,b1−, . . . ,bm+,bm−)′ ∈ R2m,

cP = (0′

2p+2m, τ1′

n, (1 − τ)1′

n)
′
∈ R2p+2m+2n,

bP = (1, 0′

n)
′
∈ Rn+1,

AP =


A1

P(1×(2p+2m+2n))
A2

P(n×(2p+2m+2n))


=


0′

2p ω′

2m 0′

n 0′

n
−Vx

n×2p Uy
n×2m −In×n In×n


,

ω2m = (u1, −u1, . . . , um, −um)′ ∈ R2m,

and (λ, µ′

P)
′ is the Lagrange multiplier vector corresponding to the equality constraints in (P).

Now, consider some u0 such that there exists a solution (a′
τu0 ,

b′
τu0)

′ to (1) with only non-zero entries, and denote byzP
the corresponding optimal solution to (P). One can then define

• Ia (resp.,Ia) as the vector containing indices of positive coordinates in a(aτu0) (resp., a(−aτu0)), andIa as the vector
collecting the indices from {1, 2, . . . , 2p} contained neither in Ia nor inIa. The vectors Ia andIa have a common
dimension p′, say, so thatIa has a dimension 2(p − p′). For instance, if aτu0 = (2, 0, −4)′, then one has a(aτu0) =

(2, 0, 0, 0, 0, 4), Ia = (1, 6)′, a(−aτu0) = (0, 2, 0, 0, 4, 0),Ia = (2, 5)′, andIa = (3, 4)′.
• Ib,Ib andIb as the vectors obtained by adding 2p to each entry of the vectors obtained analogously from b(bτu0) and

b(−bτu0). The vectors Ib andIb have a common dimension m′, say, so thatIb has a dimension 2(m − m′); with the sameaτu0 as above (yielding p = 3) andbτu0 = (−1, 2, 0)′, one obtains Ib = (2, 3)′ + (6, 6)′ = (8, 9)′,Ib = (1, 4)′ + (6, 6)′ =

(7, 10)′, andIb = (5, 6)′ + (6, 6)′ = (11, 12)′.
• IZ , Ie andIe as the vectors containing indices of observations with zero, positive, and negative residuals, respectively.

Their dimensions — ζ , π , and ν, say (satisfying ζ +π +ν = n) — of course are the numbers of zero, positive and negative
residuals, respectively. For any u0, an optimal solutionzP with ζ = p + m − 1 can almost surely be found.

It is further assumed that Ia,Ia,Ia, Ib,Ib,Ib, IZ , Ie andIe are sorted in ascending order. Although an optimal solution with
non-zero entries (i.e., with m = m′, p = p′ and empty vectorsIa andIb) can be found almost surely for any u0, the general
case m′ < m and p′ < p may occur (but always with ζ = p′

+ m′
− 1, equivalently with p′

+ m′
+ π + ν = n + 1) during

the simplex post-optimization (see Section 2.3) leading from the optimal basis for u0 to different optimal bases for other
vectors u. This is the reason why the general case is considered here.

Below, only the case π ≠ 0 and ν ≠ 0 is treated, but the other (simpler) cases can be handled analogously. Finally, put

IB = (I ′a, I
′

b, 2(p + m)1′

π + I ′e, (2p + 2m + n)1′

ν +I ′e)′, IR = (I ′Z , I
′

e,
I ′e)′

and

IC = (I ′B,I ′a,I ′b,I ′a,I ′b, 2(p + m)1′

ζ + I ′Z , (2p + 2m + n)1′

ζ + I ′Z , (2p + 2m + n)1′

π + I ′e, 2(p + m)1′

ν +I ′e)′;
the vector IB then consists of all the indices of basic variables. Therefore, it seems natural to permute the rows and columns
of AP according to IR and IC (in the spirit of Narula and Wellington, 2002), and to replace (P) with the strictly equivalent
problem

min
zN

c ′

NzN subject to ANzN = bN , zN ≥ 0, (N)
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where

zN = zP(IC ), cN = cP(IC ), bN = bP

and

AN =


A1

N(1×(2p+2m+2n))
A2

N(n×(2p+2m+2n))


=


A1

P(IC )
A2

P(IR, IC )


(the vector bP remains untouched by this change since its last n components are equal). Alternatively,

zN = P′

CzP , cN = P′

CcP , bN =


1 0′

n
0n PR


bP and AN =


1 0′

n
0n PR


APPC ,

where PR and PC are the row and column permutation matrices (so that P′

R = P−1
R and P′

C = P−1
C ). One can easily check that

cN = (0′

p′ , 0′

m′ , τ1′

π , (1 − τ)1′

ν, 0
′

p′ , 0′

m′ , 0′

2(p−p′), 0
′

2(m−m′), τ1
′

ζ , (1 − τ)1′

ζ , (1 − τ)1′

π , τ1′

ν)
′

=: (c ′

0, c
′

1, c
′

2, c
′

3,c ′

0,c ′

1,c ′

2,c ′

3,c ′

4,c ′

5,c ′

6, c ′

7)
′

=: (c ′

(n+1)×1,c ′

(2p+2m+n−1)×1)
′

and that AN is of the form AN =

B(n+1)×(n+1)

...B(n+1)×(2p+2m+n−1)

, with

B =


0′

p′ x′

m′ 0′

π 0′

ν

E1
ζ×p′ F1

ζ×m′ Oζ×π Oζ×ν

E2
π×p′ F2

π×m′ −Iπ×π Oπ×ν

E3
ν×p′ F3

ν×m′ Oν×π Iν×ν


and

B =


0′

p′ −x′

m′ 02(p−p′) x̄2(m−m′) 0′

ζ 0′

ζ 0′

π 0′

ν

−E1
ζ×p′ −F1

ζ×m′ −Ē1
ζ×2(p−p′) −F̄1

ζ×2(m−m′) −Iζ×ζ Iζ×ζ Oζ×π Oζ×ν

−E2
π×p′ −F2

π×m′ −Ē2
π×2(p−p′) −F̄2

π×2(m−m′) Oπ×ζ Oπ×ζ Iπ×π Oπ×ν

−E3
ν×p′ −F3

ν×m′ −Ē3
ν×2(p−p′) −F̄3

ν×2(m−m′) Oν×ζ Oν×ζ Oν×π −Iν×ν

 ,

where xm′ and x̄2(m−m′) are two disjoint subvectors ofω2m andEi, Fi, Ēi, and F̄i, i = 1, 2, 3, are some known data-dependent
matrices related to Uy or Vx.

The columns of B correspond to the optimal basic variables of (N) so thatzN(n + 2 : 2p + 2m + 2n) is zero andzN(1 : n + 1) = B−1bN = B−1(:, 1), where B−1 can be easily computed thanks to the special blockwise structure of
B:

B−1
=

 C−1
1 O(ζ+1)×π O(ζ+1)×ν

C2C−1
1 −Iπ×π Oπ×ν

−C3C−1
1 Oν×π Iν×ν

 ,

where

C1 =


0′

p′ x′

m′

E1
ζ×p′ F1

ζ×m′


, C2 =


E2

π×p′

...F2
π×m′


, and C3 =


E3

ν×p′

...F3
ν×m′


.

Under the assumption that the data points (xi, yi) ∈ Rp
× Rm, i = 1, . . . , n, deprived of their first coordinate, come

from a continuous distribution over Rm+p−1, all matrix inverses considered in the paper do exist — and, more generally, the
proposed algorithm applies — with probability one.

Focus now on the standard case for whichm = m′ and p = p′. There

AN =


0′

p x′

m 0′

π 0′

ν 0′

p −x′

m 0′

ζ 0′

ζ 0′

π 0′

ν

E1
ζ×p F1

ζ×m Oζ×π Oζ×ν −E1
ζ×p −F1

ζ×m −Iζ×ζ Iζ×ζ Oζ×π Oζ×ν

E2
π×p F2

π×m −Iπ×π Oπ×ν −E2
π×p −F2

π×m Oπ×ζ Oπ×ζ Iπ×π Oπ×ν

E3
ν×p F3

ν×m Oν×π Iν×ν −E3
ν×p −F3

ν×m Oν×ζ Oν×ζ Oν×π −Iν×ν

 ,

where ζ = p + m − 1, and one can write

C1 =


0 (0′

p−1, x
′

m)

E1(:, 1) Dζ×ζ


.

Writing x for xm, the blockwise inversion of C1 leads to

C−1
1 =

1
t(x)


G0 +

m
i=1

xiGi


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with t(x) = x′s(p : ζ ), s = −D−1E1(:, 1),

G0 =


1 0′

ζ

s Oζ×ζ


and Gi =


0 −D−1(p − 1 + i, :)
0ζ s(p − 1 + i)D−1

− sD−1(p − 1 + i, :)


,

i = 1, . . . ,m; note that Gi(p + i, :) = 0′
m+p, i = 1, . . . ,m. Here, it should be stressed that

zN(1 : p + m) =
1

t(x)

1
s


depends on x (or u) only through t(x) and B, which ensures that all non-zero u’s associated with the same optimal basis B
lead to a common upper halfspace H(n)+

τu .

2.2. Towards the cones associated with the optimal bases

Of course, the question is when B = B(u) ceases to be optimal. According to the theory of linear programming, B is
optimal if and only if x (or u) satisfies both primal and dual feasibility conditions (PF) and (DF):

z = B−1(:, 1) =
1

t(x)

 G0(:, 1)
C2G0(:, 1)

−C3G0(:, 1)


≥ 0n+1, (PF)

d ′
:= c ′B−1B −c ′

≤ 0′

2p+2m+n−1. (DF)

Fortunately, as is shown below, the (2p + 2m + 2n) conditions in (PF) and (DF) may be reduced dramatically in the special
context considered here.

First, (PF) is equivalent to the scalar inequality

t(x) ≥ 0

(t(x) > 0 almost surely) since (PF) must be satisfied at least for u0 by assumption, z(1) = 1/t(x) and z changes with x only
through t(x) (with the same constant matrix B).

Then, focus on d and partition it according toc into

d = (d ′

0, d
′

1, d
′

2, d
′

3, d
′

4, d
′

5, d
′

6, d
′

7)
′.

Simple algebra leads to d0 = 0p′ , d1 = 0m′ , d6 = −τ1π − (1 − τ)1π = −1π , and d7 = −(1 − τ)1ν − τ1ν = −1ν , so that
the corresponding inequalities in (DF) are always satisfied. If further p = p′ and m = m′, then moreover d2 = d3 = ∅, and
(DF) thus becomes equivalent to

(d ′

4, d
′

5)
′
≤ 02ζ .

This last set of 2ζ inequalities can be rewritten as

Qxx ≤ 02ζ , (3)

where

Qx =

 q′

1
...

q′

2ζ

 =


−Vx − τ1ζ s(p : ζ )′

Vx − (1 − τ)1ζ s(p : ζ )′


=


−Vmod

Vmod − 1ζ s(p : ζ )′


,

Vmod = Vx + τ1ζ s(p : ζ )′, Vx =

v1 · · · vm


,

vi = Gi(:, 2 : m + p)′h, i = 1, . . . ,m,

and

h = (h1, . . . , hm+p)
′
= τC′

21π − (1 − τ)C′

31ν .

Most importantly, (3) (equivalent to (DF)) entails

0 ≤ min
i=1,...,ζ


Vmod(i, :)x


≤ max

i=1,...,ζ


Vmod(i, :)x


≤ s(p : ζ )′x = t(x), (4)

hence implies (PF). Consequently, the whole set of (2m + 2p + 2n) primal and dual feasibility conditions (PF) and (DF) is
equivalent to (3).
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Note that the vector µ′

N := (λ, µr0
ζ

′
, µr+

π
′
, µr−

ν
′
) = c ′B−1 hidden in (DF) solves the problem dual to (N) and contains the

Lagrange multipliers corresponding to the equality constraints in (N). Clearly,

λ =
1

t(x)

τ1′

πC2G0(:, 1) − (1 − τ)1′

νC3G0(:, 1)

(=c ′

NzN = c ′

PzP),
µr0

=
1

t(x)
Vxx, µr+

= −τ1π , and µr−
= (1 − τ)1ν,

which, in view of (3), implies −τ1ζ ≤ µr0
≤ (1 − τ)1ζ .

The inequalities from (3), equivalent to the primal and dual feasibility conditions (PF) and (DF), can be rewritten bymeans
of u as

Quu ≤ 02ζ , (5)

whereQu is defined throughQuu ≡ Qxx (actually,Qu := Qxdiag(sign(bτu0)), where diag(sign(bτu0)) stands for the diagonal
matrix whose entry (i, i) is the sign of (bτu0)i). If the assumption u ∈ Sm−1 is removed, then all u’s satisfying (5) form a
polyhedral cone, say Cu0 . Such cones (corresponding to various u0’s) span the whole space Rm and the goal is to find them
all, together with the corresponding optimal bases and upper halfspaces.

2.3. Finding the conic segmentation

Assume that all non-redundant constraints in (5) and facets of Cu0 have been identified. Each such facet must be shared
with another (adjacent) cone. That is why one may simply pass through all the cones Cu counter-clockwise whenm = 2. In
general, it is possible to use the breadth-first search algorithm and always consider all such Cu’s that are adjacent to a cone
treated in the previous step and that have not been considered yet.

It remains to clarify the process leading to the adjacent cone from a facet F of Cu0 . This facet corresponds to the j-th
row of Qu, say, and has an interior point uF (defined, e.g., as the average of all non-zero vertices of F ∩ [−1, 1]m) that
also identifies the facet F uniquely. This point is still certain to meet the primal feasibility conditions (PF) and the strategy
therefore consists in using it as an input in the simplex post-optimization algorithm (that preserves primal feasibility and
looks for dual feasibility) until the optimal basis of the adjacent cone is found.

This process can be described in more detail as follows. The IC (n + 1 + p′
+ m′

+ j)-th original variable will be the first
to enter the basis. Then one should compute the auxiliary vector

ϱ := B−1B(:, p′
+ m′

+ j),

find an index i satisfying

zi
ϱi

= min


zh
ϱh

: ϱh > 0, h = 1, . . . , n + 1


, (6)

and displace the IC (i)-th original basic variable to get a new primal feasible basis, sayB1 (it may be noted thatB(:,m′
+p′

+ j)
contains only one non-zero coordinate if j > 2(p − p′) + 2(m − m′)). The basis B1 is optimal if and only if

d2345 = (d ′

2, d
′

3, d
′

4, d
′

5)
′
≤ 02(p+m−1), (7)

where d ′
= d ′

B1
= c ′

B1
B−1
1
B1−c ′

B1
. Although the blockwise structure ofB−1

1 can be employed again,C−1
1 should be computed

directly this time, with x corresponding to uF .
If B1 fails this optimality test or ζ ≠ p + m − 1, then one has to find an index j such that d2345(j) ≥ 0 and repeat the

previous steps until the optimal basis of the adjacent cone with ζ = p + m − 1 is found. Of course, the choice of jmust not
lead to the situation for which the new original variable to enter is the same as the one just removed.

3. Algorithm

The procedure described in the previous section leads quite straightforwardly to the algorithmpresented here. To sumup,
the basic form of the algorithm can always be performed in the following steps, where→ indicates the flow of computation
and the highlighted text refers to the topical sections of the Appendix that discuss some issues in more detail.

1. Adjust the data and τ if necessary; see Input Data and Choice of τ , respectively.
2. For a given directional vector u0, consider (P) and find its optimal solutionzP and optimal basisB = B(u0); see Computing

the first directional quantile. (zP →aτu0 ,
bτu0 , r+, r− → Ia,Ia,Ia, Ib,Ib,Ib, IZ , Ie,Ie → IB, IR, IC → AN , cN → B,B).
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Fig. 1. In subfigure (a), quantile contours of order τ = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45 are plotted from a sample of n = 2499
observations drawn independently from the uniform distribution over [0, 1]2 . Subfigure (b) reports the corresponding contours after the weights of the
first ten data points (that are plotted in the figure) were changed from 1 to 2499/20.

3. Set Bnew := {B(u0)} and T := {∅}.
4. Set Bold := Bnew, then Bnew := ∅.
5. For each B = B(u) in Bold,

(a) compute Qu that determines the inequalities (5) defining the cone Cu of all directions leading to the same quantile
hyperplane as u. (B → C1, C2, C3 → D, s, h → Vx → Qx → Qu)

(b) find all facets and vertices of the polytope Pu := Cu ∩ [−1, 1]m, drop the facets not belonging to Cu and compute uF

for each remaining facet; see Finding non-redundant constraints, facets and interior points
(c) for each such uF , check whether uF belongs to T or not. If it does (equivalently, if the corresponding facet has

already been considered), then do nothing. If it does not, then find Bnew(uF ) from B by means of the simplex post-
optimization described at the end of Section 2.3 and add uF to T and Bnew to Bnew; see Realization of the breadth-first
search algorithm.

6. If Bnew is non-empty, go back to Step 4. Otherwise, the algorithm terminates successfully (all cones C have been found
and there is no new cone facet to investigate).

This algorithm can be implemented with computational complexity at worst Oi + O(nΣn), where Oi denotes the
computational complexity of solving the linear programming problem (P) from scratch in Step 2 and Σn stands for the total
number of different quantile hyperplanes for a given τ . Both Oi and Σn, however, depend on the specific data configuration.
On average, Oi can be made quite low by choosing a suitable solver for (P); see Section 6.4.4 in Koenker (2005). As for Σn,
it can be as low as O(1) and is never higher than O(nm). In most cases, it seems reasonable to assume it to be O(nm−1) on
average for a random τ ∈ (0, 0.5). This would be compatible with the empirical results of Section 5 that also indicate that
the average computational complexity is not worse than O(nm).

4. Illustrations

This section presents some illustrative examples of quantile regions obtained from a Matlab implementation of the
algorithm described above. What is plotted for each quantile region is its boundary, called the quantile contour. Both
simulated and real data are considered.

4.1. Simulated data

Bivariate location case. Starting with the bivariate location case (m = 2 and p = 1), data points yi, i = 1, . . . , n = 2499,
were generated independently from the uniform distribution over the unit square [0, 1]2. Fig. 1(a) plots the resulting
quantile contours for τ = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45. These contours match very well their
population counterparts, namely the population halfspace depth contours; see Rousseeuw and Ruts (1999). The code can
also deal withweighted observations (which in particular allows formultiple observations): if weightsωi > 0, i = 1, . . . , n
(summing up to one or not) are given, the resulting ‘‘weighted’’ optimization problem is obtained by substituting yωi := ωiyi
and xωi := ωixi, i = 1, . . . , n, for the yi’s and xi’s in (1). Fig. 1(b) reports, for the same τ ’s as in Fig. 1(a), the quantile contours
associated with weighted data points yωi := ωiyi, i = 1, . . . , n, where the weights are given by

ωi =


2499
20

for i = 1, . . . , 10

1 for i = 11, . . . , n = 2499,



D. Paindaveine, M. Šiman / Computational Statistics and Data Analysis 56 (2012) 840–853 847

Fig. 2. In subfigure (a), quantile contours of order τ = 0.05, 0.15, and 0.25 are plotted from a sample of n = 249 observations drawn independently from
the uniform distribution over [0, 1]3 . Subfigure (b) reports the quantile regions of order τ = 0.05, 0.15, 0.30, and 0.45 for n = 249 observations drawn
independently from the regression model described in Section 4.1.

and the original data points yi are the same as in Fig. 1(a). The ten points that can be seen in Fig. 1(b) are the original data
points yi, i = 1, . . . , 10, that receive the larger weight.

Trivariate location case. Fig. 2(a) illustrates the trivariate location case with m = 3 and p = 1. The sample considered
there consists of n = 249 data points obtained independently from the uniform distribution over the unit cube [0, 1]3. The
figure reports the resulting quantile contours — that is, the sample halfspace depth contours — for τ = 0.05, 0.15, and 0.25.
This paper therefore brings a practical solution to the notoriously difficult problem of computing halfspace depth regions
beyond dimension two.

Regression setup with two responses and one random covariate. The third setup considered is the simple heteroscedastic
regression model

Y = (W ,W )′ +
√
Wε,

where the random covariate W is uniformly distributed over [0, 1] and the random vector ε (which is independent of W )
is uniformly distributed over the unit square [0, 1]2. Here, n = 249 data points (x′

i, y
′

i )
′

= (1, wi, y ′

i )
′

∈ Rp
× Rm

=

R2
× R2, i = 1, . . . , n, were obtained independently. Fig. 2(b) displays the resulting (trivariate, since they are objects of the

(w, y)-space) regression quantile contours for τ = 0.05, 0.15, 0.30, and 0.45. Of course, such regression contours are often
hard to plot and to interpret, so that it is usually better to consider (a finite collection of) cuts obtained as the intersections
of the regression contours under study with hyperplanes of the form w = w0, where w0 is some fixed value of the random
covariate; see Section 7 of HPŠ10 for an illustration. A similar strategy is also adopted here for the real data considered in
Section 4.2.

4.2. Real data

A real dataset of Rouncefield (1995) is now considered. The dataset contains some development and demographic
characteristics for different countries, and it may be interesting to study the dependence of both male life expectancy
at birth (Y1) and death rate (Y2) on the various covariates available. Actually, the goal here is not to perform a thorough
regression analysis for the bivariate response (Y1, Y2)

′ involving the complete collection of covariates, but rather to show in
a simple model how quantile regression contours might look like in practice. Therefore, only an exploratory analysis of the
dependence of (Y1, Y2)

′ on GNP per capita (Z) is performed, with regressors X1 = 1, X2 = log Z and X3 = (log Z)2 (which
yieldsm = 2 and p = 3).

Various regression quantile contours (for the 91 countries whose records do not contain any missing value) were
computed. These contours are objects inR4, hence cannot be plotted. However, parallel to the artificial regression illustration
in Section 4.1, cuts of these contours associated with various fixed values of the covariate Z can be considered here. In the
present setup, cuts are not obtained by intersecting the quantile contours with some hyperplanes, but rather with some
vectorial spaces of dimension two in R4; fixing the value of Z to some z0, say, indeed fixes the value of X2 and X3. The
resulting cuts live in R2 and can be plotted easily.

Fig. 3(a) reports, in a single two-dimensional picture, the 300 cuts of the (τ = 0.10)-quantile regression contour that
are associated with z0 = 100, 200, 300, . . . , 29 900, and 30 000. Fig. 3(b)–(f) show the corresponding cuts computed from
the quantile regions with order τ = 0.15, 0.20, 0.25, 0.30, and 0.35, respectively. Clearly, these cuts provide interesting
information about the trend (for high values of τ ) and about the shape (for low values of τ ).
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Fig. 3. Subfigure (a) reports, for the real dataset considered in Section 4.2, 300 two-dimensional cuts (each associated with one fixed value of GNP per
capita) of the (four-dimensional) quantile regions of order τ = 0.10. Subfigures (b)–(f) show the corresponding plots for τ = 0.15, 0.20, 0.25, 0.30, and
0.35, respectively; see Section 4.2 for details.

5. Simulations

This section presents empirical results that quantify the speed (and show the possibilities) of theMatlab implementation
of the algorithm proposed in this paper. An Apple computer with Intel Core Duo 1.83 GHz, 512 MB RAM only, Win XP SP2
andMatlab 7.3.0.267was used. Of course, other hardware or initial settings (see the Appendix)may lead to different results.

5.1. Speed comparison

In the location case (p = 1), the quantile regions provided coincide with the halfspace depth contours. As already
mentioned, there is no exact implementable algorithm that could be used as a competitor to the proposed Matlab code
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Table 1
(2D location settings: m = 2 and p = 1.) Average execution time (in seconds) of our code is provided for given scenario S, number of observations n, and
order τ in the bivariate location context. The numbers in parentheses indicate how many times it is faster than the benchmark.

S n \ τ Absolute and relative execution times
0.010 0.025 0.050 0.100 0.200 0.400

1: 50 0.08 (1.6) 0.09 (2.2) 0.10 (2.8) 0.12 (3.7) 0.14 (5.2) 0.17 (5.6)
2: 50 0.08 (2.1) 0.10 (2.4) 0.11 (2.9) 0.13 (3.8) 0.15 (4.7) 0.16 (5.5)
1: 100 0.09 (3.8) 0.10 (4.2) 0.13 (5.8) 0.16 (6.9) 0.22 (8.3) 0.27 (9.6)
2: 100 0.10 (3.8) 0.12 (4.5) 0.15 (5.5) 0.18 (7.2) 0.23 (8.4) 0.26 (9.5)
1: 150 0.10 (4.2) 0.13 (5.5) 0.16 (7.3) 0.23 (8.6) 0.31 (10.8) 0.38 (12.1)
2: 150 0.11 (4.5) 0.15 (5.7) 0.19 (7.1) 0.24 (9.1) 0.32 (10.5) 0.37 (11.8)
1: 200 0.12 (5.5) 0.16 (6.9) 0.20 (8.7) 0.28 (10.4) 0.39 (12.2) 0.51 (13.3)
2: 200 0.15 (5.5) 0.19 (6.9) 0.24 (8.5) 0.31 (10.3) 0.40 (12.1) 0.49 (13.1)
1: 300 0.18 (5.9) 0.23 (7.4) 0.32 (9.3) 0.42 (12.1) 0.60 (14.0) 0.78 (15.6)
2: 300 0.21 (5.9) 0.29 (6.9) 0.36 (9.3) 0.48 (11.7) 0.61 (13.6) 0.75 (15.1)
1: 500 0.23 (7.7) 0.33 (9.5) 0.47 (11.6) 0.68 (14.0) 1.00 (15.9) 1.33 (16.9)
2: 500 0.31 (7.0) 0.42 (8.9) 0.56 (11.4) 0.77 (13.6) 1.03 (15.7) 1.29 (16.8)
1: 1 000 0.51 (8.0) 0.78 (9.9) 1.24 (10.9) 1.95 (12.1) 3.13 (12.5) 4.07 (14.0)
2: 1 000 0.68 (7.4) 1.08 (9.1) 1.53 (10.4) 2.15 (12.2) 2.72 (14.9) 3.41 (15.6)
1: 2 000 1.06 (8.8) 1.85 (10.2) 3.03 (11.0) 5.14 (11.4) 7.85 (12.3) 10.82 (12.8)
2: 2 000 1.57 (7.6) 2.49 (9.2) 3.67 (10.4) 5.75 (11.2) 8.05 (12.3) 10.32 (12.7)
1: 5 000 3.22 (9.1) 6.33 (9.7) 10.36 (10.5) 17.39 (11.1) 26.82 (12.0) 39.19 (11.7)
2: 5 000 5.31 (7.2) 7.92 (9.6) 13.12 (9.8) 19.85 (10.8) 28.93 (11.4) 37.97 (11.6)
1: 10000 9.99 (7.2) 19.33 (7.9) 33.45 (8.2) 56.07 (8.7) 90.05 (9.1) 121.30 (9.7)
2: 10000 14.93 (6.4) 25.42 (7.7) 40.35 (8.2) 64.04 (8.5) 92.03 (9.1) 115.09 (9.6)
1: 20000 34.62 (7.2) 71.35 (7.3) 126.92 (7.5) 205.54 (8.1) 316.75 (8.7) 432.15 (9.0)
2: 20000 51.21 (6.3) 91.65 (7.1) 151.56 (7.0) 229.96 (7.9) 327.60 (8.5) 411.33 (8.8)

for m > 2. For the bivariate case (m = 2), however, this Matlab code can be compared to that coauthored and kindly
provided to the authors by Ivan Mizera, chosen as a benchmark here.

In order to do so, n i.i.d. bivariate observations were generated (i) from the bivariate standard normal distribu-
tion N(0, 1)2 (S = 1) and (ii) from the centered bivariate uniform distribution over the unit square U([−0.5, 0.5])2
(S = 2). For any combination of τ = {0.010, 0.025, 0.050, 0.100, 0.200, 0.400} andn ∈ {50, 100, 150, 200, 300, 500, 1000,
2000, 5000, 10 000, 20 000}, the computation was run ten times for each scenario—actually, with the following changes
to the default settings of the Matlab code: CTechST.InCheckI = 0, CTechST.ReportI = 0, CTechST.TestModeI = 0, and
CTechST.OutSaveI = 0 (this suppresses checking the input for correctness, detailed output on the screen, computing some
auxiliary technical statistics and storing the output on the disk, all that to make the Matlab code faster and possible to use
in an extensive simulation). Note that the output form = 2 and n ≤ 10 000 is usually small enough to be kept in the internal
memory; so the last option does not affect the results too much here. Average execution times in seconds are reported in
Table 1 and show that the computation hardly takes more than 2 min even for n = 10 000.

Of course, the comparison with the benchmark should be interpreted with care as each program leads to a different
output. The proposed Matlab code produces halfspaces whose intersection equals the sample halfspace depth region.
Therefore they can be used straightforwardly for identifying points inside, on, or outside the contours. On the other hand,
the benchmark leads to the vertices of the halfspace depth region and identifies its inner points (details were not available to
the authors). Both representations may be useful but a vertex–facet or facet–vertex enumeration method has to be used for
converting one into the other. Besides, it should be kept in mind that the proposed Matlab code provides enough material
for computing two neighboring contours at once (see the comments below the proof of Theorem 4.2 in HPŠ10) while the
benchmark does not.

It should also be noted that the present study does not compare the algorithms but only their implementations. The
benchmark has originally been developed only for auxiliary validation, with no speed optimization in mind. On the other
hand, the search for the first optimal solution in theMatlab code is not likely to be the fastest possible as well.

Despite the limitations of this comparison, the results seem to demonstrate high stability and superiority of the proposed
code because it was always observed faster than the benchmark, sometimes even more than 16 times. It excels especially
when applied to medium-sized datasets and not too extreme values of τ .

The decrease of relative efficiency of the proposed code for very small values of τ or n can be explained by the fact that
it is the slow finding of the initial solution that contributes the most to the overall execution time in these cases. Indeed,
profiling of the code in Matlab shows that this contribution is usually higher than 30% even for n = 5000 if τ = 0.01 (and
exceeds 75% for n = 50 and the same τ ). On the other hand, if τ = 0.3, then this contribution is still often larger than 30% for
n = 50 but usually drops below 5% for n = 5000. Different memory space requirements may also play some role, especially
if n is set very high.

5.2. General regression case

Next, the general regression case is considered through the simple model
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Table 2
(2D regression settings:m = 2.) Average execution time (in seconds) of our code, based on r = 10 replications, is provided for quantile order τ , p regressors
(including the intercept) and n observations. The numbers in parentheses indicate how many times it is faster than the code from Paindaveine and Šiman
(submitted for publication).

p n \ τ Absolute and relative execution times
0.010 0.025 0.050 0.100 0.200 0.400

1: 100 0.09 (0.7) 0.10 (0.5) 0.13 (0.7) 0.16 (0.6) 0.22 (0.6) 0.27 (0.6)
2: 100 0.09 (0.9) 0.11 (0.9) 0.15 (0.8) 0.19 (0.7) 0.24 (0.7) 0.31 (0.7)
3: 100 0.10 (0.9) 0.12 (0.9) 0.15 (0.9) 0.20 (0.8) 0.28 (0.8) 0.35 (0.7)
6: 100 0.14 (0.9) 0.15 (0.9) 0.20 (0.8) 0.25 (0.8) 0.34 (0.7) 0.46 (0.7)

1: 200 0.12 (0.7) 0.16 (0.6) 0.20 (0.7) 0.28 (0.6) 0.39 (0.6) 0.51 (0.6)
2: 200 0.13 (0.8) 0.17 (0.8) 0.23 (0.8) 0.32 (0.7) 0.44 (0.7) 0.58 (0.7)
3: 200 0.14 (0.9) 0.18 (0.9) 0.24 (0.8) 0.35 (0.8) 0.51 (0.7) 0.66 (0.7)
6: 200 0.18 (0.8) 0.23 (0.8) 0.30 (0.8) 0.45 (0.8) 0.67 (0.7) 0.87 (0.7)

1: 300 0.16 (0.6) 0.20 (0.6) 0.29 (0.7) 0.41 (0.6) 0.59 (0.6) 0.77 (0.6)
2: 300 0.17 (0.9) 0.23 (0.8) 0.32 (0.8) 0.46 (0.7) 0.66 (0.7) 0.88 (0.7)
3: 300 0.18 (0.9) 0.25 (0.8) 0.35 (0.8) 0.53 (0.8) 0.76 (0.7) 1.03 (0.7)
6: 300 0.23 (0.8) 0.33 (0.8) 0.46 (0.8) 0.71 (0.7) 0.99 (0.7) 1.36 (0.7)

12: 300 0.38 (0.8) 0.48 (0.8) 0.67 (0.7) 1.02 (0.7) 1.51 (0.7) 2.10 (0.7)

1: 500 0.22 (0.7) 0.31 (0.6) 0.45 (0.7) 0.66 (0.7) 0.98 (0.6) 1.33 (0.6)
2: 500 0.23 (0.9) 0.34 (0.8) 0.50 (0.8) 0.76 (0.7) 1.12 (0.7) 1.51 (0.7)
3: 500 0.26 (0.9) 0.40 (0.8) 0.59 (0.8) 0.91 (0.7) 1.31 (0.7) 1.77 (0.7)
6: 500 0.35 (0.9) 0.53 (0.8) 0.80 (0.8) 1.22 (0.7) 1.88 (0.7) 2.41 (0.7)

12: 500 0.61 (0.7) 0.87 (0.7) 1.28 (0.7) 2.01 (0.7) 2.83 (0.7) 3.81 (0.7)

1: 1 000 0.41 (0.7) 0.61 (0.7) 0.94 (0.7) 1.46 (0.7) 2.24 (0.7) 3.03 (0.7)
2: 1 000 0.46 (0.8) 0.68 (0.8) 1.06 (0.8) 1.70 (0.8) 2.54 (0.8) 3.44 (0.8)
3: 1 000 0.50 (0.8) 0.79 (0.9) 1.22 (0.8) 1.92 (0.8) 2.96 (0.8) 4.00 (0.8)
6: 1 000 0.65 (0.9) 1.07 (0.9) 1.67 (0.8) 2.67 (0.8) 4.12 (0.8) 5.74 (0.8)

12: 1 000 1.05 (0.9) 1.67 (0.9) 2.66 (0.9) 4.30 (0.8) 7.26 (0.8) 9.04 (0.7)

1: 2 000 0.84 (0.9) 1.41 (0.7) 2.25 (0.7) 3.64 (0.7) 5.59 (0.7) 7.64 (0.7)
2: 2 000 0.97 (0.8) 1.60 (0.9) 2.60 (0.8) 4.21 (0.8) 6.44 (0.8) 8.80 (0.8)
3: 2 000 1.11 (0.9) 1.88 (0.9) 3.04 (0.8) 4.93 (0.8) 7.57 (0.8) 10.35 (0.8)
6: 2 000 1.50 (0.9) 2.65 (0.9) 4.37 (0.8) 7.07 (0.8) 11.00 (0.8) 15.02 (0.8)

12: 2 000 2.55 (0.9) 4.58 (0.8) 7.52 (0.8) 12.47 (0.8) 19.19 (0.8) 26.24 (0.8)

1: 5 000 3.19 (0.8) 6.15 (0.8) 9.83 (0.8) 15.47 (0.8) 23.95 (0.8) 34.75 (0.7)
2: 5 000 3.66 (0.9) 6.83 (0.9) 11.18 (0.9) 18.56 (0.8) 28.56 (0.9) 40.38 (0.8)
3: 5 000 4.48 (1.0) 8.35 (0.9) 14.10 (0.8) 24.34 (0.8) 34.78 (0.9) 63.73 (0.7)
6: 5 000 7.40 (0.9) 13.00 (0.9) 24.66 (0.8) 38.47 (0.8) 55.48 (0.8) 96.50 (0.7)

12: 5 000 18.16 (0.7) 37.23 (0.6) 63.93 (0.7) 86.76 (0.7) 126.10 (0.7) 217.51 (0.6)

1: 10000 11.91 (0.8) 22.49 (0.8) 37.23 (0.7) 56.15 (0.8) 98.82 (0.7) 138.13 (0.7)
2: 10000 13.36 (0.8) 25.13 (0.9) 43.38 (0.8) 68.45 (0.9) 112.20 (0.9) 161.86 (0.8)
3: 10000 16.04 (0.9) 32.49 (0.9) 54.25 (0.8) 85.09 (0.8) 143.79 (0.8) 201.51 (0.8)
6: 10000 32.09 (0.7) 66.57 (0.7) 110.53 (0.7) 177.90 (0.6) 262.00 (0.7) 386.81 (0.7)

12: 10000 74.71 (0.7) 156.73 (0.7) 274.30 (0.7) 456.35 (0.7) 733.66 (0.7) 1031.65 (0.6)

Yp×1 = Bp×mXm×1 + εp×1,

where X1 = 1, (X2, . . . , Xp)
′ has i.i.d. marginals that are uniformly distributed over (0, 1), ε is p-variate standard normal,

and B can be obtained from the p × m matrix of ones by replacing the elements in the first column with zeros. Average
execution times in seconds (still with the same change to the default settings as in Section 5.1), for a total of r replications,
are recorded for many combinations of n, p and τ in Table 2 (form = 2 with r = 10), in Table 3 (form = 3 with r = 5, and
for m ∈ {4, 5} with r = 3), and in Table 4 that focuses on outlier detection (for m = 3 with r = 3 and with very low values
of τ ).

These results can be used by the reader for estimating the time requirements of his/her own computation with the
proposed code. It appears that the computation can hardly take more than some 18 min on average in the case of two-
dimensional responses (m = 2), n ≤ 10 000 and p ≤ 12. Unfortunately (but not surprisingly), the time requirements and the
size of output growwith an increasing dimension of the response. Ifm = 3, then the computation appears advantageous for
500 observations atmost, perhaps except for some very low τ ’s and p’s. Ifm > 3, then it is hard to evaluate the correctness of
the results. But it appears that all the halfspaces can still be computed in a reasonable time for a fewhundreds of observations
and extreme τ ’s even in four and five dimensions, which might be employed for outlier identification.

Virtually the same regression quantile regions can also be obtained from a competing directional (projectional) quantile
concept; see Kong and Mizera (2008) and Theorem 4.3 in Paindaveine and Šiman (2011a). Therefore, it makes sense to use
as a competitor here the Matlab implementation for this competing concept; see Paindaveine and Šiman (submitted for
publication).
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Table 3
(Multidimensional regression settings.) Average execution time (in seconds) of our code, based on r = 5 replications if m = 3 and on r = 3 replications
otherwise, is provided for quantile order τ , p regressors (including the intercept) andm-dimensional responses. The numbers in parentheses indicate how
many times it is faster than the code from Paindaveine and Šiman (submitted for publication).

p n \ τ Absolute and relative execution times
m = 3 m = 4 m = 5
0.010 0.025 0.100 0.200 0.010 0.025 0.010

1: 100 1.31 (0.7) 2.03 (0.7) 12.29 (0.8) 28.00 (0.8) 6.40 (0.9) 18.56 (0.8) 47.52 (1.0)
2: 100 1.18 (0.9) 2.42 (0.9) 13.13 (0.9) 32.22 (0.9) 7.14 (0.7) 25.47 (0.9) 68.71 (0.6)
3: 100 1.59 (1.0) 2.74 (1.0) 16.09 (0.9) 40.21 (0.9) 11.95 (1.0) 31.56 (1.1) 141.44 (0.9)
4: 100 2.11 (1.1) 3.18 (1.1) 18.61 (1.0) 48.30 (0.9) 20.82 (1.2) 41.35 (1.3) 278.46 (1.2)
6: 100 3.69 (1.2) 4.32 (1.3) 23.61 (1.1) 62.26 (1.0) 56.74 (1.6) 70.54 (1.6) 870.27 (2.1)

1: 200 2.50 (0.8) 6.67 (0.8) 45.69 (0.9) 119.01 (0.9) 22.95 (1.0) 141.65 (0.9) 250.36 (1.1)
2: 200 2.27 (0.9) 6.77 (0.9) 53.65 (0.9) 147.98 (0.9) 21.65 (1.0) 147.92 (1.0) 278.24 (1.0)
3: 200 2.66 (1.0) 7.95 (1.0) 68.20 (1.0) 188.83 (1.0) 31.96 (1.2) 197.96 (1.1) 456.35 (1.2)
4: 200 3.34 (1.1) 9.59 (1.1) 84.39 (1.0) 229.96 (1.0) 42.98 (1.3) 254.30 (1.3) 722.96 (1.4)
6: 200 5.37 (1.2) 12.81 (1.1) 113.01 (1.0) 311.21 (1.0) 96.51 (1.6) 390.32 (1.5) 2 105.63 (1.9)

1: 300 4.05 (0.8) 11.70 (0.9) 106.65 (0.9) 295.88 (1.0) 59.52 (1.0) 399.05 (1.0) 954.42 (1.1)
2: 300 3.89 (1.0) 14.10 (1.0) 130.45 (1.0) 372.47 (1.0) 56.92 (1.1) 532.29 (1.1) 1 043.26 (1.1)
3: 300 4.78 (1.1) 17.45 (1.1) 167.02 (1.0) 488.94 (1.0) 81.45 (1.3) 745.07 (1.2) 1 699.08 (1.3)
4: 300 5.80 (1.1) 20.89 (1.1) 202.64 (1.0) 619.82 (1.0) 111.17 (1.4) 1 011.19 (1.3) 2 601.44 (1.6)
6: 300 8.53 (1.2) 28.38 (1.1) 282.73 (1.0) 914.93 (1.0) 193.51 (1.7) 1 645.31 (1.5) 6 312.76 (2.7)

12: 300 25.99 (1.4) 55.12 (1.3) 552.25 (1.1) 2 049.57 (1.1)

1: 400 6.40 (0.9) 23.34 (1.0) 200.31 (1.0) 619.14 (1.0) 126.85 (1.1) 1 315.83 (1.1) 2 893.89 (1.1)
2: 400 6.59 (1.0) 25.98 (1.0) 249.81 (1.0) 802.98 (1.0) 134.28 (1.2) 1 613.57 (1.1) 3 378.44 (1.1)
3: 400 8.16 (1.1) 33.05 (1.1) 321.81 (1.1) 1 096.18 (1.0) 190.38 (1.3) 2 345.77 (1.2) 5 887.78 (1.5)
4: 400 9.86 (1.2) 39.29 (1.1) 402.81 (1.1) 1 412.22 (1.0) 260.52 (1.4) 3 340.39 (1.3) 10795.80 (2.2)
6: 400 13.09 (1.2) 53.08 (1.1) 580.36 (1.1) 2 163.63 (1.0) 418.55 (1.6) 5 824.98 (1.5) 49921.42

12: 400 34.72 (1.4) 102.65 (1.2) 1261.70 (1.1) 4 989.74 (1.1)

1: 500 9.51 (1.0) 32.58 (1.0) 343.61 (1.0) 1 153.78 (1.0) 239.93 (1.1) 2 654.41 (1.1) 16261.68
2: 500 9.72 (1.1) 39.45 (1.1) 436.31 (1.1) 1 554.20 (1.1) 256.04 (1.2) 4 007.90 (1.2) 21937.23
3: 500 11.93 (1.1) 50.36 (1.1) 571.70 (1.1) 2 169.23 (1.1) 368.81 (1.4) 6 409.06 (1.3) 68397.79
4: 500 14.64 (1.2) 61.26 (1.1) 729.85 (1.1) 2 833.84 (1.0) 490.68 (1.5) 10260.22 (1.7)
6: 500 20.31 (1.3) 85.52 (1.2) 1057.88 (1.1) 4 438.13 (1.1) 817.93 (1.7) 30238.22 (2.2)

12: 500 46.38 (1.4) 160.29 (1.2) 2286.70 (1.1) 10633.56 (1.1)

Table 4
(3D outlier detection: m = 3.) Average execution time (in seconds) of our code, based on r = 3 replications, is provided for quantile order τ , p
regressors (including the intercept) and n three-dimensional responses. The numbers in parentheses indicate how many times it is faster than the code
from Paindaveine and Šiman (submitted for publication).

τ Absolute and relative execution times
p \ n 750 1000 1200 1500 2000

0.010

1: 18.14 (1.1) 35.55 (1.2) 56.09 (1.3) 94.28 (1.4) 195.29 (1.5)
2: 23.48 (1.2) 41.68 (1.3) 68.35 (1.3) 117.58 (1.4) 246.84 (1.5)
3: 29.19 (1.2) 54.74 (1.3) 88.14 (1.3) 152.60 (1.4) 326.46 (1.5)
4: 35.66 (1.2) 67.12 (1.3) 108.72 (1.3) 190.93 (1.4) 418.35 (1.4)
6: 48.88 (1.3) 97.84 (1.3) 155.05 (1.2) 290.53 (1.3) 637.53 (1.4)

0.025

1: 86.18 (1.1) 171.83 (1.2) 262.79 (1.3) 474.01 (1.4) 1 058.50 (1.4)
2: 109.89 (1.2) 210.19 (1.3) 328.72 (1.3) 623.02 (1.4) 1 410.02 (1.4)
3: 142.86 (1.2) 279.95 (1.2) 439.60 (1.3) 837.58 (1.3) 1 913.23 (1.4)
4: 174.72 (1.2) 344.79 (1.2) 561.45 (1.2) 1063.29 (1.3) 2 519.76 (1.3)
6: 249.20 (1.2) 512.89 (1.2) 836.57 (1.2) 1649.89 (1.2) 3 914.40 (1.2)

0.050

1: 294.01 (1.1) 593.70 (1.2) 1006.57 (1.2) 1968.37 (1.3) 4 719.26 (1.3)
2: 376.06 (1.2) 760.21 (1.2) 1328.50 (1.2) 2620.97 (1.3) 6 531.65 (1.3)
3: 496.03 (1.1) 1042.85 (1.2) 1834.28 (1.2) 3616.83 (1.3) 9 239.28 (1.2)
4: 619.62 (1.1) 1328.00 (1.2) 2400.54 (1.2) 4805.97 (1.2) 12477.26 (1.2)
6: 924.38 (1.1) 2039.12 (1.1) 3700.73 (1.1) 7747.52 (1.2) 20362.39 (1.2)
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Appendix. Technical details

This section discusses some technical matters related to the algorithm described in this paper.
Choice of τ . If nτ is an integer, then the linear programming problem (P) has infinitely many solutions for each u. If such

a complication occurs, it is solved by a small perturbation of τ , which can hardly make any important difference in most
applications. Besides, there is only a finite number of different quantile regions anyway, so that such small perturbations of
τ could always be done without loss of generality when the goal is only to compute the quantile regions.

Input data. The code assumes m ∈ {2, 3, . . . , 8} and n ≤ 100 000 and its output should be quite reliable for m ∈

{2, 3}, p ≤ 10 and n ≤ 10 000 (ifm = 2) or 500 (ifm = 3) at least. Now, the program was heavily tested only on data from
the simulation study of Section 5, with all coordinates less than 5 or so. This is why it is suggested to standardize the input
observations in some way to a similar range whenever possible, which should enhance numerical stability of the algorithm.
Besides, most real data are discrete because they are measured or recorded only with limited precision. This makes some
bad data configurations more likely than almost impossible. Therefore it is also recommended to perturb the input data
points by some random noise of a reasonably small magnitude to prevent their discreteness from causing any trouble.

When a few identical observations occur, one may either aggregate the same rows of AP into a single one or introduce
(positive) weights into cP and proceed analogously (the formulae would have to be changed a little but the crucial
simplification of (DF) would persist). The first approach is preferred as it is faster, easier to implement and still leads to
the right quantile coefficients. Since the algorithm does not rely on any special form of xc1, the code can also handle such
aggregated or weighted rows (corresponding to weighted residuals). Therefore the program can be used even for bootstrap
and subsampling methods quite easily. We might also refer to Hlubinka et al. (2010) for another interesting attempt to
combine weights with halfspace depth ideas.

Computing the first directional quantile. The problem (P) is solved with the aid of the free Matlab toolbox SeDuMi 1.1
(see Pólik, 2005; Sturm, 1999) that exploits sparsity and is very fast, flexible, and easy-to-use. Of course, any fast and reliable
solver designed for univariate quantile regression might be substituted here.

As mentioned above, the assumption u ∈ Sm−1 can be relaxed without any loss of generality because all non-zero
vectors u in the same direction lead to the same upper halfspace H(n)+

τu . In general, the proposed Matlab code chooses
u0 as a normalized corner of the hypercube [−1, 1]m. Large or high-dimensional problems can be solved more effectively
by segmenting the whole space to U0 regions of the form

U0 = {u ∈ Rm
: sign(u) = sign(u0)}

and considering each of these 2m different orthants separately.
If the starting direction leads to troubles, then other choices are tried until the optimal solutionwith the required number

of non-zero coordinates is found.
Finding non-redundant constraints, facets and interior points. If m = 2, then the problem of finding non-redundant

constraints and facets can be solved by assigning angles (say θ ’s) to all the constraints in a clever way. The interior point can
then be found simply by means of the facet normal vector.

For m > 2, the problem is far more complicated. First, the problem is made bounded by restricting it to vectors u in
[−1, 1]m, which turns the cones from (5) into polytopes. Then all vertices and facets of such a polytope are found by means
of the dual relationship between vertex and facet enumeration (see Bremner et al., 1998) and program qhull (see Barber
et al., 1996) for the latter one, fortunately accessible inMatlab (in fact, it was sufficient tomodify the function con2vert.m by
Michael Kleder fromMatlab Central File Exchange). This enumeration procedure requires an interior point of the resulting
polytope to start. It is searched for from the scaled center of the known (parent) facet and in the direction of its normal
vector.

In principle, uF might be found even without the artificial bounding with subsequent vertex enumeration and the zero
vertex problemmight be addressed as well; see Chvátal (1983). However, the proposed code is tailored for qhull, which is an
already developed and mature tool for solving similar problems that is quite stable, fast and familiar with rounding errors.

Realization of the breadth-first search algorithm. When this algorithm is employed, then some identifiers (scaled facet
centers or facet normal vectors) of all (or lastly) used facets are stored in sorted archive(s) and a new facet is used for building
the adjacent cone only if its identifier differs from all those archived, which is checked by the binary search algorithm.

Plotting the contours. The program output describes the upper halfspaces whose intersection equals the quantile region
of interest (if all of them are uniquely defined). Vertices of these regions could be obtained by the vertex enumeration
mentioned above. The quantile contour with known vertices can then be plotted as their convex hull, for example. Such a
procedure was also used to generate all figures of this paper.
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Computing many (or all) contours at once. The first (initial) solutions could be found faster for all relevant τ ’s at once
than for each τ separately, by linear programming parametric in τ . In the purely location case, it would be advantageous
to compute the contours from the highest τ < 0.5 to the lowest and to reduce the dataset in each step (together with
adjusting τ accordingly), since inner points are redundant for computing outer contours. If the interest is even in the
individual quantile hyperplanes and their coefficients in the general regression case, one could still replace all the surely
interior observations with a single aggregated pseudo-observation keeping the new resulting subgradient conditions the
same as before (as Roger Koenker kindly suggested to us). These proposals are not implemented in the proposed Matlab
code as it is designed to compute a single contour only.
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