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Abstract— Given any image input by users, how to automat-
ically cutout the object-of-interest is a challenging problem due
to lack of information of the object-of-interest and the back-
ground. Saliency detection techniques are able to provide some
rough information about object-of-interest since they highlight
high-contrast or high attention regions or pixels. However, the
generated saliency map is often noisy and directly applying it
for segmentation often leads to erroneous results. Motivated
by the recent progress on image co-segmentation and internet
image retrieval techniques, in this paper, we propose to use the
user input image for segmentation as a query image to Google
Images and then employ the top returned Google images to
build up the knowledge about the object-of-interest in the user
input image. Particularly, we develop a lightweight algorithm
to learn the knowledge of the object-of-interest in the retrieved
images to enhance the saliency map of the input image. Then,
the enhanced saliency map is used to initialize the graph-cut to
extract the object-of-interest. Experiments with the Mcgill dataset
and multiple challenge cases demonstrate the effectiveness of our
method in terms of producing a clean cutout.

I. INTRODUCTION

Object cutout, which attempts to segment an image into
the object-of-interest and its corresponding background, is of
great practical importance in image editing tasks, such as
image montage orcolorization et al. This problem is chal-
lenging due to lack of information for the object-of-interest
and the background. Fully supervised methods [1] learn the
information from pre-labeled databases, which can only be
used to detect the objects existing in the databases. Semi-
supervised methods [2] which rely on a small amount of user
input to obtain some prior information have achieved great
success. Nevertheless, when the number of images is large,
user input is time consuming and infeasible.

To reduce the workload of the user and develop fully auto-
matic object cutout systems, saliency detection techniques [3],
[4], [5], [6] which measure the pixels’ distinctiveness have
been used to replace the user input [7], [8] and have achieved
certain degree of success. Cheng et al’s work [6] is among
the latest, which can detect regions highly contrast with its
neighbors and achieves state-of-the-art detection results. Using
the saliency detection followed by one of the existing seg-
mentation algorithms such as [2] might be viable to segment
a single image if the object-of-interest is prominent and the
background is not too cluttered. This assumption, however,
is not often met in real-world images. The segmentations on
real-world images based on the saliency detection often lead
to considerable noise and errors.

Recently, object co-segmentation of multiple images is

introduced to avoid the dilemma of single image segmen-
tation. The image co-segmentation problem was first intro-
duced in [9], which deals with automatically segmenting a
similar foreground object from two images with unrelated
backgrounds. With the additional image, the knowledge about
the object-of-interest is greatly enhanced, while the effect of
background clutter is alleviated because the backgrounds in
the two images are likely to be different. The co-segmentation
problem was later being extended to scale invariance and
multiple images and improved with multiple cues or a co-
saliency prior [10]. Despite the novel idea, co-segmentation
heavily relies on the assumption that the set of images have
small variation in the object-of-interest but large variation for
the background. For the application of segmenting one user
input image, it is not easy to find such a set. In addition, to
co-segment more than two images, current methods [9], [10]
could take several minutes or hours.

Motivated by the idea of image co-segmentation and recent
progress in internet image retrieval techniques, in this paper,
we propose to automatically segment a user input image with
the help of Google Images. Since 2011, Google begins to
provide “Search Visually Similar Image” function, which can
return many images that contain prominent objects which
look similar to the object-of-interest in input image. Thus,
we propose to use the user input image for segmentation as
a query image to Google and then employ the top returned
images to build up the knowledge about the object-of-interest
in the user input image. To the best of our knowledge, such
an idea has not been proposed in literature before. We would
like to point out that our internet assisted image segmentation
is different from the co-segmentation problem [9], [10] or the
co-saliency detection problem [11], [10]. First, our target is to
not to segment a set of images, but to cutout the object-of-
interest from a single user input image, with the aid from
a set of Google retrieved images. Thus, it is possible to
develop lightweight and fast segmentation algorithms. Second,
as the Google returned images might contain objects which
have large variations to the object-of-interest in the user input
image, even for the top ranked retrieved images, thus we can
only deem that the object-of-interest of the input image and
the top retrieved images share some appearance similarity,
especially in local structure and color. Noted, some works
have used extrinsic images in saliency detection tasks [12],
[13], however they either require human annotated samples
or the extrinsic images should contain objects that can be
aligned with the object of interest in the user input image,



which restrict the application of the methods.
Particularly, we propose to enhance the saliency map of the

user input image by highlighting the regions that frequently
appear in the salient areas of the top Google retrieved images
and the regions that match the global color prior model
trained from the common salient areas of the Google images.
Extensive experiments on multiple challenging cases show
that, with the help of Google Images, the proposed method
is able to boost the object-of-interest’s saliency and suppress
the saliency of the background. Initialized with the enhanced
saliency map, the existing iterative graph cut algorithm [2] is
able to generate a much cleaner and accurate salient object.

II. OUR METHOD

The proposed system consists of two major steps: ‘saliency
detection & salient region formation’, and ‘saliency map
enhancement’.

A. Saliency Detection & Salient Region Formation

In this first step, we apply Cheng et al’s saliency detection
method [6] to each image (including top Google returned
images and the user input image) to assign each pixel a
‘Saliency’ value. We choose Cheng et al’s method because
it offers state-of-the-art detection result. The Saliency values
essentially highlight those salient pixels that are of high local
contrast. However, salient pixels are often noisy and distributed
everywhere, which does not provide sufficient regional infor-
mation to lead to the object-of-interest.

Thus, we use the iterative graph cut scheme [2] to further
process the initial saliency map to form the salient areas in
each Google retrieved images Ik, k = 1, 2, .., L (we only
consider the top 10 returned images, i.e. L = 10). In particular,
for each image, we first train the Gaussian Mixture Models
(GMMs) for the graph cut. We treat the pixels with saliency
values larger than the mean value as the foreground seeds and
the pixels within a 10-pixel distance to the image boundary as
the background seeds, which is according to the conventional
photography composition rule that people usually do not
place the object-of-interest at the image boundary. Then, we
apply the graph cut algorithm that labels some pixels as
foreground and some as background. After each iteration, the
foreground GMM and background GMM are re-estimated with
the currently labeled pixels. The iterative process repeats until
convergence. With such a process, we can obtain rough and
compact salient areas that will be used in the subsequent steps.

B. Saliency Map Enhancement

The purpose of the saliency map enhancement step is to
use top returned Google images to enhance the saliency map
of the input image. We consider that the ‘object-of-interest’
should have the following three characters: 1) Distinct - the
object should be of interest and such a property is captured
by the ‘Saliency’ value; 2) Frequently appear in the salient
areas of the top returned Google images, and this can be
described by the ‘Object Frequency’ property; 3) Have some
global similarity to most of the top retrieved images’ salient
parts, which can be estimated by the ‘Foreground Likelihood’

property. Thus, we define our ‘Internet aided Saliency Map’
(ISM) as:
ISM = Saliency×ObjectFrequency×ForegroundLikelihood

(1)
where Saliency is directly obtained through the saliency de-
tection in the first step and the calculation of the Object
Frequency and Foreground Likelihood values are explained
in the following subsections.

1) Object Frequency Estimation: An ‘Object Frequency’
value is computed for each pixel in the input image, which
measures how frequently a pixel appears in salient parts of
the Google retrieved images. This can be done by checking
whether a similar pixel can be found in the salient area
of each retrieved image. However, direct matching pixels in
two images are computationally expensive and can lead to a
lot of false detections. In our work, we measure the Object
Frequency value of a pixel through measuring the Object
Frequency of the region / superpixel a pixel belongs to because
superpixel can reduce matching cost and increase matching
accuracy [14].

To segment the input image and the salient areas of the
retrieved images into superpixels, we choose the method
proposed by Felzenszwalb and Huttenlocher[15] (with pa-
rameters sigma = 0.5,K = 80,min = 50). Other over-
segmentation methods can also be used. The appearance of
each superpixel is described by a codeword histogram which is
generated by clustering the features consisting of dense HOG
descriptors and local colors of all the pixels. In particular,
we choose the HOG descriptor as it can capture the local
gradient field around each pixel which reflects local patch
structure information [16]. The cell, block and window sizes
of the descriptor are all 3x3. To further enhance the feature
description capability, we include the local color information.
The color space we consider includes RGB, HSV , L∗a∗b∗.
In this way, each pixel will be associated with a 18 dimension
feature which consists of 9 HOG descriptors and 9 color
features. Then, K-means is used to quantize the features into
Nc(Nc = 30) codewords. The codeword distribution in each
superpixel can be described by a codeword histogram, which
is normalized to the scale [0,1].

For every super-pixel i in the user input image I0, we
measure the appearance difference against each region j in
the salient area of each searched image Ik, k = 1, 2, ..., L
by computing the chi-square distance of their codeword his-
tograms h0i and hkj :

d(h0i , h
k
j ) = χ2(h0i , h

k
j ) =

Zf∑
z=1

(h0i (z)− hkj (z))2

h0i (z) + hkj (z)

where Zf is the number of codeword bins. The best match
region jk in retrieved image Ik is the one with minimum d
value over all the valid regions in Ik. Then, we define the
Object Frequency of super-pixel i in the input image I0 as

ObjectFrequency(i) =
1

L

L∑
k=1

exp(−
d(h0i , h

k
jk
)

σ
) (2)

where the distance d is transformed to similarity using a Gaus-
sian kernel and σ is a scaling factor. In all the experiments,



σ is empirically fixed to 0.02. Finally, the Object Frequency
value of a pixel is set to be the same as that for its belonging
region.

2) Foreground Likelihood: The ‘Foreground Likelihood’
takes into account some global prior models to measure how
probably a pixel belongs to the common salient areas in
searched images. Considering that color Gaussian Mixture
Models (GMMs) have been very successful in interactive
image segmentation [2], we adopt color GMMs as our global
prior models, which is built by following the method in [2].
First, to find the common parts in the salient areas of the
retrieved images, we use a simple histogram filtering tech-
nique. In particular, for the salient areas extracted in the
preprocessing step, we merge their histograms into a global
histogram. Then we sort the codeword bins according to their
numbers of samples, and threshold the global histogram at the
bin where 80 percent of the samples exist. The remaining 20
percent pixels are discard, as they represent the pixels and
regions which are much less likely to be common in the set
of the images. Second, we use the filtered samples to train
a foreground GMM. Meanwhile, a background GMM is also
trained by using the pixel samples in the input image that are
within a 10-pixel distance to the picture boundary, according
to the conventional photography composition rule.

Let Pr(x|F ) and Pr(x|F ) denote the obtained foreground
and background GMMs, respectively. For each pixel x, we
compute a normalized probability g(x) to indicates its proba-
bility of belonging to the common salient area, where g(x) is
defined as

g(x) =
− log Pr(x|B)

− log Pr(x|F )− log Pr(x|B)
.

To avoid instability, for a region i, we average the probabilities
of all its pixels and use that as the “Foreground Likelihood”
value for all its pixels, i.e.

ForegroundLikelihood(i) =
1

N(i)

∑
x∈i

g(x) (3)

where N(i) is the number of pixels in region i.
After saliency map is enhanced with the foreground likeli-

hood and object frequency prior, the iterative graph cut [2] is
applied to cut out the object-of-interest from the input image.

III. EXPERIMENT RESULTS

To demonstrate the boosting performance of using Google
images in Cheng et al’s region contrast method (RC) [6], we
test our method over the Mcgill dataset [17] which contains
hundreds of images which have sizable salient objects with
cluttered backgrounds. We adopt the precision and recall
metric [18] to compare the segmentation result with the binary
human groundtruth, whereas a method which has a high
precision and recall score is preferred. The F-measure which
can reflect the average segmentation quality over the dataset
is also listed in Fig. 1, a higher F-measure indicates better
across dataset performance. Moreover, the score of our method
which removes ‘Foreground likelihood’ component is listed
for reference. Finally, we also compare some state-of-the-
arts detection methods, SR[4], FT[3] and HC[6] and then

measures their performance gain after using Google images.
Fig. 1 demonstrates that using Google images can help various
methods maintain a comparable recall score after boosting
and meanwhile produce much higher precision score and
better average across dataset segmentation performance, our
method which uses Region Contrast (RC) with Google images
achieves the highest precision and F-measure and a relative
high recall value.

The visual result of some challenge cases are demonstrated
in Fig. 2. In particular, the saliency maps of some state-of-the-
art algorithms [4], [3], [5], [11], [6] are listed from column (c)
to column (g) in Fig. 2. Most of these methods produce low-
resolution saliency maps and can only highlight some salient
contours instead of regions. Among these methods, Cheng
et al’s method [6] denoted as ‘Region Contrast’ produces
relatively the best saliency map. However, directly applying
the iterative graph cut to Cheng et al’s saliency maps cannot
produce clean cutouts, as shown in column (k), where there
exist a lot of noise and errors. This is mainly because the
quality of the saliency maps produced by Region Contrast is
still limited.
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Fig. 1. Precision-recall bars for graph cut algorithm using different saliency
maps as initialization, Our method (RC+Google) shows high precision, recall,
and F-measure values over the Mcgill dataset

On the contrary, our method makes use of the images
returned from Google (column (b) of Fig. 2) to enhance the
saliency map of each input image. Particularly, we use the
Region Contrast method to generate the initial map. We first
show the effectiveness of the Object Frequency component by
multiplying the initial map with the Object Frequency value
computed in (2) and normalizing it to [0, 1]. The enhanced
saliency map is shown in column (h) of Fig. 2, where we
can see that the Object Frequency component is able to
filter out less frequently appearing regions and highlight those
regions that appear frequently. Second, we then evaluate the
effectiveness of the Foreground Likelihood component by
multiplying the initial map with the Foreground Likelihood
value computed in (3) and normalizing it to [0, 1]. The
corresponding enhanced saliency map is shown in column i
of Fig. 2, where we can observe that those regions which
have similar color to the common salient areas of the retrieved
images are enhanced. Combining the Object Frequency and the
Foreground Likelihood components, we achieve a nice balance
of highlighting the foreground and filtering out the background
in the saliency maps, as shown in column (j) of Fig. 2. Finally,
by applying the iterative graph cut to the enhanced saliency
maps in column (j), we are able to produce much cleaner



Fig. 2. The summary of the experimental results. (a): User input images;(b): Top retrieved Google images; (c)-(g):Saliency detection results of various state-
of-the-art algorithms (h) combining Region Contrast with Object Frequency; (i) Combining Region Contrast with Foreground Likelihood; (j) The enhanced
saliency map produced by our proposed method; (k) The graph cut results initialized by (g); (l) The graph cut results initialized by (j).

cutouts in column (l). The average running time on a common
PC to process a 400× 300 image is around 10 ∼ 15 seconds
(including image downloading time).

IV. CONCLUSIONS AND DISCUSSIONS

The major contributions of this paper are twofold: 1) the
idea of using Google Images for automatic single-image
salient object cutout; 2) a lightweight algorithm to learn the
knowledge of the object-of-interest in the retrieved images
to enhance the salient map of the input image. Experimental
results show that with the help of Google Images, the proposed
method is able to quickly boost the object-of-interest’s saliency
and suppress the saliency of the background, which eventually
improve the iterative graph cut results significantly.

Although our method can help highlight the object-of-
interest from ambiguous saliency map in many challenging
cases, the performance of our method is bottle-necked by the
retrieval quality of Google Images. Especially when most of
the top returned images contain no object similar to the one
in the input image or most of the top returned images are
identical to the input image, our method fails in the sense
that it will not outperform the corresponding single-image
segmentation without the help of Google Images. We believe
the performance of our proposed method will be improved
with the development of image retrieval technology.
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