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As sequencing technologies increase in power, determining the functions of unknown proteins encoded

by the DNA sequences so produced becomes a major challenge. Functional annotation is commonly

done on the basis of amino-acid sequence similarity alone. Long after sequence similarity becomes

undetectable by pair-wise comparison, profile-based identification of homologs can often succeed due

to the conservation of position-specific patterns, important for a protein’s three dimensional folding

and function. Nevertheless, prediction of protein function from homology-driven approaches is not

without problems. Homologous proteins might evolve different functions and the power of homology

detection has already started to reach its maximum. Computational methods for inferring protein

function, which exploit the context of a protein in cellular networks, have come to be built on top of

homology-based approaches. These network-based functional inference techniques provide both a first

hand hint into a proteins’ functional role and offer complementary insights to traditional methods for

understanding the function of uncharacterized proteins. Most recent network-based approaches aim to

integrate diverse kinds of functional interactions to boost both coverage and confidence level. These

techniques not only promise to solve the moonlighting aspect of proteins by annotating proteins with

multiple functions, but also increase our understanding on the interplay between different functional

classes in a cell. In this article we review the state of the art in network-based function prediction and

describe some of the underlying difficulties and successes. Given the volume of high-throughput data

that is being reported the time is ripe to employ these network-based approaches, which can be used to

unravel the functions of the uncharacterized proteins accumulating in the genomic databases.

& 2010 Elsevier Inc. All rights reserved.
1. Introduction

Determining the functions of proteins encoded in genome
sequences represents a major challenge in current biology. As of
March 2010, the TrEMBL database (http://www.ebi.ac.uk/uniprot/
TrEMBLstats/) contained 10,618,387 sequences. The Genomes Online
Database (http://www.genomesonline.org/) reported more than 1000
published genomes with over 3700 genome projects underway. The
database also reports more than 100 metagenome projects with the
Venter’s marine microbial communities project (Rusch et al., 2007)
alone contributing more than 6,000,000 proteins to the already
exploding protein repertoire. While the pace at which sequencing
technologies are able to generate the DNA sequence data is
increasing, our ability to unravel the functional roles of the encoded
proteins therein has been rather limited.
ll rights reserved.
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Originally, proteins identified from genome sequencing
projects were mostly annotated through homology, inferred with
the aid of pair-wise alignment tools such as BLAST (Altschul et al.,
1997), followed by manual intervention (Gotoh, 1999; Pearson,
1995; Procter et al., 2010). Researchers would have an idea of the
function of a protein by finding a significant sequence similarity
to another protein whose function had been experimentally
characterized. This homology-based annotation transfer is essen-
tially the most widely used form of computational function
prediction. The rationale behind homology-based annotation is
that, if two sequences have a high degree of similarity, then they
have evolved from a common ancestor, and thus they should have
similar, if not identical, functions. However, with increasing
number of sequences as well as the effects of gene duplications,
which might be followed by divergence of function, the power
of homology-based annotation is being challenged. Adding to
this is the problem of errors in annotation even in human
curated databases, which spread misannotations when homol-
ogy-based approaches are used. In addition, most of the newly
identified proteins do not show significant sequence similarity
with experimentally characterized proteins worsening the

http://www.ebi.ac.uk/uniprot/TrEMBLstats/
http://www.ebi.ac.uk/uniprot/TrEMBLstats/
http://www.genomesonline.org/
www.elsevier.com/locate/ymben
dx.doi.org/10.1016/j.ymben.2010.07.001
mailto:sarath@mrc-lmb.cam.ac.uk
dx.doi.org/10.1016/j.ymben.2010.07.001


Table 1
Resources currently available for protein function prediction grouped according to the predominant method or approach implemented in them. Note that the list may be

incomplete as some resources which are not directly relevant to the methods discussed here might have escaped their mention in this table.

Approach Resource Webpage

Sequence similarity based GOtcha (Martin et al., 2004) http://www.compbio.dundee.ac.uk/gotcha/gotcha.php

PFP (Hawkins et al., 2009) http://dragon.bio.purdue.edu/pfp/

GOsling (Jones et al., 2008) https://www.sapac.edu.au/gosling/

OntoBlast (Zehetner, 2003) http://functionalgenomics.de/ontogate/

GOblet (Groth et al., 2004) http://goblet.molgen.mpg.de

Blast2GO (Conesa et al., 2005) http://www.blast2go.de

Phylogenomics based SIFTER (Engelhardt et al., 2005) http://sifter.berkeley.edu

AFAWE (Jocker et al., 2008) http://bioinfo.mpiz-koeln.mpg.de/afawe/

RIO (Zmasek and Eddy, 2002) http://www.rio.wustl.edu/

OrthoStrapper (Hollich et al., 2002) http://www.cgb.ki.se/OrthoGUI

Domain/pattern/profile based InterProScan (Mulder et al., 2008) http://www.ebi.ac.uk/tools/interproscan/

Pfam (Finn et al., 2008) http://pfam.sanger.ac.uk

SUPERFAMILY (Wilson et al., 2009) http://supfam.cs.bris.ac.uk/superfamily/

PROSITE (Sigrist et al.) http://www.expasy.ch/prosite/

PRINTS (Attwood et al., 2003) http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/

SMART (Letunic et al., 2009) http://smart.embl-heidelberg.de/

Gene3D (Lees et al.) http://gene3d.biochem.ucl.ac.uk/gene3d/

PANTHER (Mi et al.) http://www.pantherdb.org/

TIGRFAMs (Selengut et al., 2007) http://www.tigr.org/TIGRFAMs/

SCOP (Andreeva et al., 2008) http://scop.mrc-lmb.cam.ac.uk/scop/

CATH (Cuff et al., 2009) http://www.cathdb.info/

CatFam (Yu et al., 2009) http://www.bhsai.org/downloads/catfam.tar.gz

PIRSF (Nikolskaya et al., 2006) http://pir.georgetown.edu/pirwww/dbinfo/pirsf.shtml

PRODOM (Bru et al., 2005) http://prodom.prabi.fr/prodom/current/html/home.php

EFICAz (Arakaki et al., 2009) http://cssb.biology.gatech.edu/skolnick/webservice/EIFICAz2/index.html

PRIAM (Claudel-Renard et al., 2003) http://bioinfo.genotoul.fr/priam/REL_JUL06/index_jul06.html

Sequence clustering based ProtoNet (Kaplan et al., 2005) http://www.protonet.cs.huji.ac.il/

CluSTr (Petryszak et al., 2005) http://www.ebi.ac.uk/clustr/

eggNOG (Muller et al., 2010) http://eggnog.embl.de

COGs (Tatusov et al., 2003) http://www.ncbi.nlm.nih.gov/COG/

InParanoid (Berglund et al., 2008) http://inparanoid.sbc.su.se/cgi-bin/index.cgi

MultiParanoid (Alexeyenko et al., 2006) http://multiparanoid.sbe.su.se/index.html

OrthoMCL (Chen et al., 2006) http://www.orthomcl.org/cgi-bin/OrthoMclWeb.cgi

Machine learning based ProtoFun (Jensen et al., 2003) http://www.cbs.dtu.dk/services/ProtFun/

GOPET (Vinayagam et al., 2006) http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar

SVM-Prot (Cai et al., 2003) http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi

ffPred (Lobley et al., 2008) http://bioinf.cs.ucl.ac.uk/ffpred/

EzyPred (Shen and Chou, 2007) http://www.csbio.sjtu.edu.cn/bioinf/EzyPred/

Network based MCODE (Bader and Hogue, 2003) http://baderlab.org/Software/MCODE

MCL (Enright et al., 2002) http://www.micans.org/mcl/

SAMBA (Tanay et al., 2004) http://acgt.cs.tau.ac.il/samba/

RNSC (King et al., 2004) King et al. 2004

PRODISTIN (Brun et al., 2003) http://crfb.univ-mrs.fr/webdistin/

Cytoscape (Yeung et al., 2008) http://www.cytoscape.org/

STRING (Jensen et al., 2009) http://string.embl.de/

VisANT (Hu et al., 2009b) http://visant.bu.edu/

VIRGO (Massjouni et al., 2006) http://whipple.cs.vt.edu/virgo/welcome.cgi
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problem for manual curators to keep up with the influx of
data (Yooseph et al., 2007). All of these factors have contributed
to an increase in a varied number of automated approaches
for functional inference (see Table 1) (Godzik et al., 2007; Han
et al., 2006; Rentzsch and Orengo, 2009; Zhao et al., 2008a).
These automated methods are based on a number of features
(Table 1), starting from nucleotide or amino acid sequence,
sequence patterns/profiles and protein structure patterns to
chromosomal location, phylogenetic information, expression
profiles, molecular interaction data, functional associations and
gene co-evolution.
2. Overview of network-based function prediction

The very definition of biological function is ambiguous with its
exact meaning depending on the context in which it is used and
the classification it is based on (Rison et al., 2000; Whisstock and
Lesk, 2003). It is obvious that biological function has many aspects
associated with it. For instance, the function of a kinase can be
described from very broadly as in ‘‘enzyme,’’ to very precisely as
in ‘‘phosphorylation of the hydroxyl group of a specific substrate.’’
A different way to understand the role of a protein within the cell
is to ask where exactly it occurs in the cell. This aspect is
important especially for entities that can potentially occur in a
number of sub-cellular localizations. In this particular case,
kinases can be identified either in the cytoplasm or in the nucleus
and this information is crucial in gathering their roles and
interactions with other proteins within the cellular environment.
Likewise, a mutation in the kinase can be associated with a
disease phenotype. Therefore, it is clear that when speaking of a
protein’s function, we must always specify the aspect or aspects of
the functional description. In particular, in the process of
developing a function prediction tool one must keep in mind
which functional aspect or aspects are of interest in the prediction
pipeline and use the appropriate vocabulary.
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Fig. 1. Overview of the different steps involved in the prediction of function of a

gene from genomic and network context. Functional assignments start with

protein sequences taken from a genome. Annotation by homology can come from

two sources: pairwise comparison and comparison against protein family profiles.

If the pairwise alignments match a query protein to a previously functionally

characterized protein, the functional annotation might be as simple as assigning

the same function to the query protein. Matching to a functionally annotated

protein family profile, which can detect homologies beyond pairwise alignments,

can provide the same kind of information. However, more particular information

might be possible, for example the query protein might contain an ATP-binding

domain. Information about homologies, whether to annotated or unannotated

proteins, can help determine protein function by complementing the information

with presence and organization of homologs in other genomes (genomic context).

Genomic context might associate a query protein with proteins working in a

common cellular process, such as ‘‘translation’’ or common molecular function

such as a particular metabolic pathway. The predicted interaction can be

visualized as a network, and its involvement in a cellular function be determined

with further scoring using the structure of the network, thus ensuring that the

annotation takes into account the number and consistency of functional role of the

proteins connected to the query. Flow chart shows the keys steps which comprise

of annotating a gene product with function starting from a draft or complete

genome sequences, using genomic approaches in the early stages and integrating

network-based approaches as the number of data sources increase.
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Once functional aspects of a protein are defined, the question
is how function can be interpreted in computational terms. For
instance, protein sequences for a long time have been represented
as character strings that enable their use for many computational
tasks, including pair-wise comparisons and multiple sequence
alignments, motif searching, database searching and several other
tasks, aimed at extracting biological information from the
sequence. In contrast to sequence information, until recently the
annotation of a protein has been written in human language
conveying the complex descriptions and intricacies of its function
as well as the experimental evidence supporting it, in terms of
custom non-standard formats varying across different groups. As
a result, vocabulary went on to be invented and re-invented, with
many terms being synonymous. This synonymy not only raises
confusion among human curators revising the annotations
but also increases the chances of additional errors due to
non-standard formats for annotating function. Therefore, over
the years a need to convey this information in a more controlled
and well-defined fashion has emerged. One of the first groups of
people to appreciate this problem were the biochemists who
came up with the Enzyme Commission (EC) classification (Tipton,
1994). The EC classifies metabolic reactions in a four-level
hierarchy, which are noted by four-position identifiers, going
from the most general in the first position to the most specific
function of the enzyme in the last position. This classification not
only addresses the need for a controlled vocabulary, but also a
well-defined hierarchical relationship between terms allowing
the comparison between annotations. While enzymes form one of
the most commonly occurring protein classes in the cell, they are
definitely not the only kind. Thus, EC numbers are not sufficient
for annotating all protein functions in a cell. As a solution, Monica
Riley and colleagues developed the MultiFunc classification
system for Escherichia coli in 1993 (Riley, 1993; Serres and Riley,
2000). This attempt was followed by multispecies annotation
systems which came later, including the Clusters of Orthologous
Groups (COG) (Tatusov et al., 1997), based on manual annotation
of a group of orthologous proteins by hierarchically organizing
their functional descriptions; Swissprot annotations based on
human curation efforts on well-annotated proteins (Apweiler,
2001; Kretschmann et al., 2001); FunCat, a hierarchically
structured, scalable, controlled classification system enabling
the functional description of proteins in an organism-independent
fashion (Ruepp et al., 2004); and, more recently, the Gene
Ontology (GO) (Ashburner et al., 2000). The common theme
among these schemes is the establishment of a controlled
vocabulary and in many cases a categorization that proceeds
from the general to the specific. The GO is currently the dominant
cross-species approach for machine-legible functional annotation
and covers three major aspects of gene product function, namely
‘‘molecular function,’’ ‘‘biological process’’ and ‘‘cellular compo-
nent.’’ Each GO is implemented as a directed acyclic graph (DAG)
where terms are represented as nodes in the graph and are
arranged from the general to the specific. The DAG arrangement
means that each node can have more than a single parent
enabling the description of functions associated with more than
one biological activity or process. Standardizing annotations and
defining the relationships between terms using a graph, makes
computational analyses easier. For instance, given a GO-anno-
tated genome a researcher can computationally identify the set of
all genes with a given annotation and likewise predict functional
labels of proteins using such a controlled vocabulary. However,
such standardized annotations also limit the flexibility in the
amount of detail an annotation can contain.

Having defined function and the means of describing function, one
can start discussing function prediction. Predicting functions using
network-based approaches, which is the topic of this review,
essentially requires two seed components: (a) a network of functional
associations amenable for graph theoretical analysis and (b) a
network-based function prediction algorithm for predicting func-
tional labels of uncharacterized genes in the graph/network under
study. In what follows, we will first discuss different approaches for
constructing and integrating functional association networks and
then outline currently available computational methods for inferring
function based on them. Fig. 1 provides an overview of the different
major steps involved in the prediction of function from network
context, starting from draft or complete genome sequences.
3. Methods and databases for building functional association
networks

Traditionally, the function of a protein has been experimen-
tally identified using a number of low-throughput approaches,



Table 2
Different approaches for generating functional linkage maps or networks.

Typically, these networks either independently or integrated versions of them

form the input for network-based functional inference algorithms.

Approach Description Data sources

Protein–

protein

interac-

tions

Physical interactions between proteins

identified either by mass spectrometry

or one of the hybrid approaches are

used to generate protein interaction

maps on a large-scale which are used

as input for function prediction

algorithms (Shoemaker and

Panchenko, 2007).

HPRD (http://www.

hprd.org)

IntAct (http://www.

ebi.ac.uk/intact/site/

index.jsf)

MINT (http://cbm.bio.

uniroma2.it/mint/

index.html)

BioGRID (http://www.

thebiogrid.org)

DIP (http://dip.

doe-mbi.ucla.edu/dip/

Main.cgi)

MPPI (http://mips.gsf.

de/proj/ppi)

eNet (http://ecoli.

med.utoronto.ca)

Co-ex-

pression

networks

In these approaches gene co-

expression above a significant

correlation threshold is considered as a

presence of a functional linkage

between genes. Genome-wide

inspection of these gene co-expression

networks provides an intuitive way to

represent complex co-expression

patterns between many genes

providing functional insights into

uncharacterized processes (Aoki et al.,

2007; Huber et al., 2007; Lasko, 2000).

GEO (http://www.

ncbi.nlm.nih.gov/geo)

SMD (http://

genome-www5.

stanford.edu)

ArrayExpress (http://

www.ebi.ac.uk/

arrayexpress)

caArray (http://

caarraydb.nci.nih.gov/

caarray)

M3D (http://m3d.bu.

edu)

Genetic

interaction

networks

In these approaches interactions

between genes are constructed by

linking gene pairs which show

significantly reduced fitness when both

the genes are knocked out compared to

when each gene is knocked out

independently. These lethality assays

are carried out on a high-throughput

scale to construct genome-scale

interactions (Butland et al., 2008;

Costanzo et al., 2010)

BioGRID (http://www.

thebiogrid.org)

DRYGIN (http://

drygin.ccbr.utoronto.

ca)

IM Browser (http://

proteome.wayne.edu/

PIMdb.html)

GC networks These approaches include the gene

fusion, gene cluster or gene order

conservation, phylogenetic profile and

operon rearrangement methods

(Dandekar et al., 1998; Enright et al.,

1999; Janga et al., 2005; Pellegrini

et al., 1999). See text for further

discussion.

STRING (http://string.

embl.de)

ProLinks (http://

prolinks.mbi.ucla.edu)

VisANT (http://visant.

bu.edu)

eNet (http://ecoli.

med.utoronto.ca)

Integration

of data

sources

These approaches integrate different

kinds of functional association data

using bayesian or kernel techniques

and then construct high-confidence

functional linkage networks which are

then used for function prediction

(Bowers et al., 2004; Chen and Xu,

2004; Hu et al., 2009a; Jensen et al.,

2009; Lanckriet et al., 2004; Linghu

et al., 2008; Marcotte et al., 1999;

Massjouni et al., 2006; Myers et al.,

2009; Troyanskaya et al., 2003; Tsuda

et al., 2005; Zhao et al., 2008b)

STRING (http://string.

embl.de)

ProLinks (http://

prolinks.mbi.ucla.edu)

VisANT (http://visant.

bu.edu)

Virgo (http://whipple.

cs.vt.edu:8080/virgo)

eNet (http://ecoli.

med.utoronto.ca)
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such as mutagenesis of residues or of whole genes, which allowed
for the identification of phenotypes to follow up analysis.
However, it is clear that this approach is limited in its ability to
infer the function of proteins, failing for those exhibiting mild
phenotypic effects, or for those not expressed under standard
experimental conditions. In addition, since most proteins associ-
ate dynamically with a number of other cellular entities during
their lifetime, the traditional approach of identifying function of a
protein by isolating it from the rest of the cellular machinery can
be misleading. This problem and the availability of high-
throughput experimentally determined protein–protein interac-
tion maps for diverse model organisms have given rise to the use
of large datasets for delineating the biological processes, path-
ways and complexes where proteins participate (Aranda et al.,
2010; Bader et al., 2003; Breitkreutz et al., 2008). Indeed, there is
now significant overlap and informative variation between differ-
ent types of low- and high-throughput experiments (Shoemaker
and Panchenko, 2007), which provides convincing reasons for
exploiting them as complementary approaches for unraveling the
functions of proteins. Accordingly, there has been an explosion in
the number of methods and databases providing functional
associations (both direct physical and indirect contextual inter-
actions) between proteins using both experimental and computa-
tional means (Table 2).

To summarize, experimental approaches employed for
constructing functional association networks mostly comprise
of data from high-throughput protein–protein interaction
screens (Gavin et al., 2006; Krogan et al., 2006; Shoemaker and
Panchenko, 2007; Tarassov et al., 2008; Yu et al., 2008), followed
by networks built from gene pairs showing significant correlation
of expression across conditions, derived from microarray datasets
(Luo et al., 2007; Ruan et al., 2010; Wang et al., 2009). More
recently, genetic interactions—measuring the fitness defects of
double mutants compared to those of individual mutants—are
also being employed for constructing these functional linkage
networks (Babu et al., 2009; Butland et al., 2008; Costanzo et al.,
2010). These high-throughput experimental approaches not only
increase the confidence of an association but also give a cellular
context to the protein providing a complementary view to the
traditional functional prediction paradigm.

In addition to the experimental methods, several computa-
tional methods have been proposed for constructing protein–
protein associations from sequence data alone. These mainly
consist of the so-called Genomic Context (GC) methods; namely
gene fusion, gene cluster or gene order conservation, phylogenetic
profiles and operon rearrangements. The gene fusion approach
tries to detect the fusion of two genes into a single protein coding
gene in one of the sequenced genomes and thereby links them as
a strong functional association (Enright et al., 1999; Marcotte
et al., 1999). The method of gene order conservation aims to
identify pairs of genes that consistently show a tendency to
cluster in immediate vicinity in a number of genomes, suggesting
a strong functional link in prokaryotic genomes, which are
abundant in operons (Dandekar et al., 1998; Janga and Moreno-
Hagelsieb, 2004; Overbeek et al., 1999). While this method has
been abundantly exploited in prokaryotic function prediction,
recent and mounting evidence supports the utility of this
approach for functional inference in eukaryotes (Davila Lopez
et al., 2010; Hurst et al., 2004; Liu and Han, 2009; Pignatelli et al.,
2009). The method of operon rearrangement tries to identify a
link between any pair of genes on a genome as long as their
orthologs are predicted to be organized in an operon with a high
confidence in at least one sequenced genome (Janga et al., 2005;
Rogozin et al., 2002; Snel et al., 2002). The power of this approach
depends on the predictive quality of operon prediction methods
which have been shown to reach �90% accuracy in most
sequenced genomes (Brouwer et al., 2008; Moreno-Hagelsieb
and Collado-Vides, 2002). Yet another approach not based on
genomic proximity is phylogenetic profiles. In this method a
vector of presence/absence of a gene across all the analyzed
genomes is constructed and compared to identify genes show-
ing correlated profiles, as a measure of functional linkage.

http://www.hprd.org
http://www.hprd.org
http://www.ebi.ac.uk/intact/site/index.jsf
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http://www.thebiogrid.org
http://www.thebiogrid.org
http://dip.doe-mbi.ucla.edu/dip/Main.cgi
http://dip.doe-mbi.ucla.edu/dip/Main.cgi
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http://mips.gsf.de/proj/ppi
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Table 3
Different methods currently available for network-based function prediction.

Method Description References

Direct In simpler versions of these

methods function of a protein is

assigned based on the number of

annotated protein neighbors in

the immediate network

neighborhood which are

associated with a particular

function. Advanced approaches

take into account overall network

topology and are able to give

confidence scores for predictions.

Techniques such as flow

simulation and graph theoretic

based have shown to yield high

accuracies on some model

systems. Other methods in this

category involve the use of

probabilistic markov random

models.

(Chen and Xu, 2004; Chua et al.,

2006; Deng et al., 2003;

Hishigaki et al., 2001; Karaoz

et al., 2004; Letovsky and Kasif,

2003; Nabieva et al., 2005;

Schwikowski et al., 2000;

Vazquez et al., 2003)

Module

based

In these approaches, two major

steps are involved: (1)

Identification of modules which

are functionally coherent using

any clustering technique and (2)

predicting function of

uncharacterized members in a

cluster using any of the direct

methods or by computing

enrichment for characterized

functions in a given module and

then transferring the annotations

to other members. The first step

follows the notion that genes

which work in the same biological

process should be homogenous in

their functional roles and hence

(Altaf-Ul-Amin et al., 2006;

Bader and Hogue, 2003; Brun

et al., 2003; King et al., 2004;

Pereira-Leal et al., 2004; Rives

and Galitski, 2003; Samanta and

Liang, 2003; Spirin and Mirny,

2003; Troyanskaya et al., 2003)
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The rationale is that two proteins showing similar profiles, i.e.
coordinated in their evolutionary gain and loss, are expected to be
functionally related (Gaasterland and Ragan, 1998; Pellegrini
et al., 1999). Modified versions of this approach take into account
the phylogenetic signal of the genomes employed and/or the
redundancy in the genome sequence information (Barker and
Pagel, 2005; Date and Marcotte, 2003; Moreno-Hagelsieb and
Janga, 2008).

The integration of different types of interaction data into
genome-wide functional linkage maps has gained popularity for
functional inference as these maps not only boost coverage, but
also confidence, when assessing protein function. One of the first
studies demonstrating the power of integrating different types of
interaction data was published by Marcotte et al., 1999 who put
together diverse kinds of GC methods. This was followed by a
number of other methods such as those implemented in the
STRING and PROLINKS databases, among other focused studies
and implementations (Bowers et al., 2004; Chen and Xu, 2004; Hu
et al., 2009a; Jensen et al., 2009; Massjouni et al., 2006; Myers
et al., 2009; Troyanskaya et al., 2003). Typically, in these networks
edge weights correspond to the integrated interaction probability
obtained by first scoring each of the methods independently
against a set of gold standard interactions, and then combined
with a Bayesian method that assumes the scores of each method
to be independent of each other. More complex methods take into
account the dependence and correlation between methods to
develop a regression model for scoring the integrated interactome
(Linghu et al., 2008; Zhao et al., 2008a). Kernel methods form the
second group of approaches frequently used for integration of
data from different sources (Lanckriet et al., 2004; Tsuda et al.,
2005). Nevertheless, all of them boil down to constructing a
network with either weighted or unweighted edges, which are
then used for propagating annotations to uncharacterized mem-
bers using approaches discussed in the section below.
plays a crucial role in these

methods. So majority of the

methods in this category differ in

the approach taken to identify

modules.
4. Computational methods for predicting function from
network context

Any set of functional associations, whether experimentally
derived or predicted by computational methods, can be depicted
as a network of nodes connected by edges, with nodes represent-
ing proteins and edges denoting the interactions between such
nodes. Most network-based functional inference algorithms work
under the premise that the closer the two nodes are in the
network the higher is the functional similarity between them
(Sharan et al., 2007). Accordingly, most computational approaches
for predicting function from networks simply exploit the context
of a protein within their local network-neighborhood, analogous
to traditional sequence or GC methods. These approaches also
generally tend to infer a broader kind of function, such as a
biological process, as opposed to the molecular/biochemical
function, which is typically inferred by homology-based
approaches, making network-based approaches complementary
methods for annotating genomes. All of these methods essentially
employ machine-learning techniques and can be grouped into
two major classes: those using direct network-context and those
assisted by module prediction. The former infer function based on
connections (direct or indirect) in the network, while the later
first identify clusters, or modules, of related proteins and then
annotate each protein based on the known functions of the
module’s members (see Table 3 for a summary of the methods
belonging to either class). Since machine learning methods
themselves can be classified into supervised and unsupervised
techniques, direct methods fall into the supervised class, while
module-based methods, which involve clustering of genes to
obtain coherent groups, naturally belong to the unsupervised
class. To recall, supervised techniques utilize known annotations
as training data to first construct a model, and then predict the
functions of unknown proteins using the model, while
unsupervised methods group proteins together without the
need to input any training (gold positive) data. Supervised
methods perform best if there is sufficient training data
available (Sharan et al., 2007). Otherwise, unsupervised
(module-based) methods are regarded as an ultimate choice for
function prediction for scarcely annotated datasets.

Among direct methods, the majority rule, or Guilt-by-Associa-
tion (GBA), method is the simplest, and perhaps the most intuitive
(Schwikowski et al., 2000). This method determines the function
of a protein based on the known functions of proteins lying in the
immediate network neighborhood. Although simple and often
effective for dense networks, the method does not take into
account the overall topology of the network, nor does it provide a
confidence score for the predicted functional label. Therefore, over
the years, researchers have produced more sophisticated methods
to address these limitations (Chua et al., 2006; Hishigaki et al.,
2001). To address the problem of considering the topology beyond
the immediate neighbors, Hishigaki et al. defined the neighbor-
hood of a protein with a radius of n. For an unknown protein, the
functional enrichment in its n-neighborhood was investigated
with a w2 test and the top ranking functions were assigned to the
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unknown proteins. Chua et al. took a different approach by
considering not only the neighborhood of a protein of interest but
also the shared neighborhood of a pair of proteins. This allowed
them to define a functional similarity between a pair of proteins
by taking both the direct and indirect neighbors of the protein
pair into account. Other direct methods involve the use of graph
theoretical principles such as cuts and flow-simulation in order to
take advantage of the global and/or local topology of the network
under consideration (Karaoz et al., 2004; Nabieva et al., 2005;
Vazquez et al., 2003). In doing so, these methods also aim at
maximizing the number of edges (for a protein of interest) which
connect to other proteins assigned with the same function. Some
authors also employed probabilistic approaches to address the
caveats of the original methods and follow the premise that
the function of a protein is independent of all other proteins given
the functions of its immediate neighbors—thereby leading to the
use of Markov random field models for solving the problem of
function prediction (Deng et al., 2003; Letovsky and Kasif, 2003;
Sharan et al., 2007). Nevertheless, there is convincing evidence
from recent studies that functional classes in a cell are not
independent of each other and that their inter-relationships
should be taken into account for improving function prediction
algorithms (Barutcuoglu et al., 2006; Lee et al., 2006; Pandey et al.,
2009).

Biological functional systems are thought to be inherently
modular, with groups of genes being associated with a particular
biological process/pathway (Hartwell et al., 1999). This has
resulted in the development of module-based functional infer-
ence approaches. In these unsupervised approaches clustering
methods identify coherent groups of genes, predicted to work
together to achieve a common biological task. Once modules are
identified, simple methods like GBA and hypergeometric enrich-
ment, computed for every function associated with the module,
are used for transferring annotations to the uncharacterized
members. Therefore, in these approaches the initial clustering
method employed is crucial in determining the quality of the
functional predictions. As a result, different module-assisted
methods mainly differ in the module detection technique
employed. Module finding algorithms typically depend on the
network topology information used as a distance metric. Cluster-
ing techniques can identify either a predefined number of
clusters, as is the case in k-means clustering, or an undefined
number as resulting from hierarchical clustering. Some of the
module detection techniques can also detect overlapping clusters
as a means of revealing the inherent plasticity of function in
biological systems. As such, these techniques allow for the
annotation of multiple functions to a given protein, which is
becoming common for both prokaryotic and eukaryotic proteins
and is referred to as the moonlighting nature of proteins (Gancedo
and Flores, 2008; Jeffery, 2009; Tompa et al., 2005). Table 3
summarizes some of the commonly employed module-assisted
techniques for functional inference [see references (Frades and
Matthiesen, 2010) and (Zhao et al., 2008a) for more elaborate
discussion on different clustering techniques currently available].
5. Network-based prediction of function from genomic
context (GC): enzymes as a case study

Network-based analyses add to the power of computational
prediction of functional categories for non-annotated genes.
High-throughput and computational methods for inference of
functional associations might clearly indicate a link between an
unannotated gene and an annotated one. But that alone might not
be sufficient evidence that they belong to the same category. It is
also evident that a gene may be linked to more than just another
gene, which can complicate the decision to label an unannotated
gene. One way around this problem is to use network-based
measures to assign one or more functional labels to unannotated
genes with some confidence score.

The semantic similarity (SS) (Wang et al., 2007) between two
genes represents the closeness of their functional annotations in
databases such as GO. For instance, using the topology and child-
to-parent relationships of the GO graph, one can determine
whether pairs or sets of genes are closely related to each other in a
functional context. For example, the genes fumC and sdhA are
functionally similar to each other because they participate in the
tricarboxilic-acid-cycle, which is reflected in their high SS (0.942).
In contrast, the gene aspA, which participates in the biosynthesis
of asparagine, is functionally less related with either fumC

(SS¼0.762) or sdhA (SS¼0.704). In principle, one can expect the
same behavior to hold true for non-annotated genes allowing us
to make functional inferences.

To determine whether network-based approaches improve
functional inferences over raw interaction/inference scores we
contrasted two types of scores versus the SS of gene pairs in E. coli.
The first score, called ‘Raw’, represents the integration of four
GC-based methods: gene fusions, conservation of gene order,
phylogenetic profiles and operon rearrangements, restricted to
high confidence inferences (Z0.9) (Hu et al., 2009a). The second
score, called weighted Topological Overlap Matrix (TOM) score
(Ravasz et al., 2002; Zhang and Horvath, 2005), represents the
proportion of ‘raw’ links in common between two nodes (between
two genes in this case) normalized by the total number of links
involving those nodes and their confidence weight.

As can be observed in Fig. 2, the TOM score allows for more
detailed predictions than the Raw score. Compare for example the
cutoffs: RawZ0.99 (�17,300 pairs) versus TOMZ0.4 (�15,200
pairs). Both distributions show two peaks (bimodal) but for the raw
score the highest peak is at an SS score of �0.78, whereas with the
TOM score the dominant peak is at an SS score of �0.95. TOM plots
show a very clear inflection point at TOMZ0.4, where the
dominating population are pairs with high SS (�0.95), whereas
for TOM cutoffs o0.4 the dominating SS is �0.75. This inflection
also occurs in raw scores but is not as striking as in TOM. Also it is
noteworthy to mention that TOM scores allow to continue
distinguishing the similarity between pairs when raw scores
already reach their maximum value, where �9000 pairs all have
raw scores¼1 (thus no more stringent cutoff can be chosen),
whereas TOM still allows to continue distinguishing pairs with
closer SS. These observations show that network-based approaches
provide more detailed information on functional annotations than
their raw seeds and suggest that they are more amenable for gene
function prediction. Additionally, enzymes show slightly higher
peaks at the same cutoff values as the overall network (top versus

bottom panel of Fig. 2), suggesting that metabolic functions might
be predicted with more confidence than non-enzymatic functions.
Further studies are necessary to determine whether these
differences are influenced by the topological properties of the
input network and/or other biological attributes of proteins from a
particular functional class under study.
6. Conclusion and discussion

While the post-genomic era has introduced the genomic
complement of hundreds of microbes, it has also provided us
with several unanswered questions regarding the functional
relevance of the genes discovered therein. It is noteworthy to
mention that even in a model organism like E. coli, which has been
the workhorse for molecular genetics for more than 100 years,
nearly one-third of the genes have no experimental evidence
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supporting their biological role (Hu et al., 2009a; Riley et al., 2006)
with other model systems harboring higher fractions of unan-
notated gene complements in their genomes (Sharan et al., 2007).
Novel approaches are therefore needed not only to complement
existing functional inference techniques but to also enable the
prediction of functional associations of uncharacterized genes
either to already characterized processes, or as new groups with
yet to be known processes. Network-based approaches discussed
here can be a big leap forward in uncovering the functional
complements of genomes in years to come with the number of
uncharacterized genes across the prokaryotic lineage growing at a
considerable rate. Availability of high-throughput data at various
levels from genomic to metagenomic and transcriptomic to
system-wide interaction maps should enable the integration of
data for better functional inferences at least in model systems in
the next decade.
A major issue currently faced in the automated functional
inference field is the lack of a systematic comparison of the
number of different methods, thereby hindering bench scientists
to choose the most appropriate tools for the prediction of function
of a protein of their interest. Since different methods have been
proposed to perform well for different functional schemas,
a comparison of prediction methods with gold standard datasets
may provide insights, or at least advice newcomers, about the
appropriate choice of methods for the specific problem of interest.
One possibility could be to construct user-friendly servers to
automatically direct the user to the best performing method
depending on the input, and/or provide a user with a set of best-
performing methods for a functional schema of interest to the
user.

In addition to the lack of appropriate tools for predicting
function, another evident problem with network-based or more
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generally automated functional inference algorithms is the depth
at which they can predict function. Since these algorithms rely on
existing annotations for transferring labels with certain prob-
ability to unannotated genes, one can not predict the exact
function – for instance, at the level of molecular role – but rather
prediction is limited to the currently available depth in GO
hierarchy. This is especially an issue for processes which are
poorly characterized and are also lower in representation in the
genome, making it hard to identify their role. Nevertheless, in
such cases the grouping of functional related genes into modules
by these methods, can aid in designing more focused experiments
to unravel the phenotypes.

Yet another key issue in predicting function from networks is
the incompleteness of data and the inherent noise in the
interactomes. To address this, several groups are increasingly
using integration of data as a means of reducing noise
(false positives) and to increase coverage. However, integration
of data is in itself a challenging problem in data mining as several
questions come in whenever data needs to be integrated. For
instance, data integration often demands to have individual gold
standards for each type of data being employed, it also requires an
estimate of the dependency between the data types and the
inherent noise in each data type. Add to this the fact that
integration of data does not always increase accuracy. Therefore,
factors like the nature of the data and their compatibility with
existing data sources, availability of benchmarking datasets, and
dependency between the sources, are some of the issues that need
to be considered in developing techniques for integration of data.
Nevertheless, given the volume of high-throughput data that is
being reported for understanding diverse model systems the time
is ripe to employ these network-based approaches to unravel the
functions of the ever-increasing number of uncharacterized
proteins accumulating in sequence databases.
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