Hoang Pham (Editor)

Handbook of Reliability Engineering

Contents

s'

PART I. System Reliability and Optimization

1 M	ulti-state <i>k</i> -out-of- <i>n</i> Systems						
Ming	J. Zuo, Jinsheng Huang and Way Kuo	3					
1.1	Introduction						
1.2	Relevant Concepts in Binary Reliability Theory						
1.3	Binary k-out-of-n Models						
110	1.3.1 The k-out-of-n:G System with Independently and Identically	-					
	Distributed Components	5					
	1.3.2 Reliability Evaluation Using Minimal Path or Cut Sets	5					
	1.3.3 Recursive Algorithms	6					
	1.3.4 Equivalence Between a k-out-of-n:G System and an						
	(n-k+1)-out-of-n:F system	6					
	1.3.5 The Dual Relationship Between the k-out-of-n G and F Systems	7					
1.4	Relevant Concepts in Multi-state Reliability Theory	8					
1.5	A Simple Multi-state k-out-of-n:G Model	10					
1.6	A Generalized Multi-state k-out-of-n:G System Model	11					
1.7	Properties of Generalized Multi-state k-out-of-n:G Systems	13					
1.8	Equivalence and Duality in Generalized Multi-state k-out-of-n Systems	15					
2 R	liability of Systems with Multiple Failure Modes						
Hoan	g Pham	19					
2.1	Introduction	19					
2.2	The Series System	20					
2.3	The Parallel System	21					
	2.3.1 Cost Optimization	21					
2.4	The Parallel-Series System	22					
	2.4.1 The Profit Maximization Problem	23					
	2.4.2 Optimization Problem	24					
2.5	The Series–Parallel System	25					
	2.5.1 Maximizing the Average System Profit	26					
	2.5.2 Consideration of Type I Design Error	27					
2.6	The <i>k</i> -out-of- <i>n</i> Systems	27					
	2.6.1 Minimizing the Average System Cost	29					
2.7	Fault-tolerant Systems	32					
	2.7.1 Reliability Evaluation	33					

XII	Contents	
		24
20	2.7.2 Redundancy Optimization	24
2.8	weighted Systems with Three Fahure Modes	54
3 R	eliabilities of Consecutive-k Systems	
Jen-C	hun Chang and Frank K. Hwang	37
3.1	Introduction	37
	3.1.1 Background	37
	3.1.2 Notation	38
3.2	Computation of Reliability	39
	3.2.1 The Recursive Equation Approach	39
	3.2.2 The Markov Chain Approach	40
	3.2.3 Asymptotic Analysis	41
3.3	Invariant Consecutive Systems	41
	3.3.1 Invariant Consecutive-2 Systems	41
	3.3.2 Invariant Consecutive-k Systems	42
	3.3.3 Invariant Consecutive-k G System	43
3.4	Component Importance and the Component Replacement Problem .	43
	3.4.1 The Birnbaum Importance	44
	3.4.2 Partial Birnbaum Importance	45
	3.4.3 The Optimal Component Replacement	45
3.5	The Weighted-consecutive-k-out-of-n System	47
	3.5.1 The Linear Weighted-consecutive-k-out-of-n System	47
	3.5.2 The Circular Weighted-consecutive-k-out-of-n System	47
3.6	Window Systems	48
	3.6.1 The <i>f</i> -within-consecutive- <i>k</i> -out-of- <i>n</i> System	49
	3.6.2 The 2-within-consecutive-k-out-of-n System	51
	3.6.3 The <i>b</i> -fold-window System	52
3.7	Network Systems	53
	3.7.1 The Linear Consecutive-2 Network System	53
	3.7.2 The Linear Consecutive- <i>k</i> Network System	54
	3.7.3 The Linear Consecutive-k Flow Network System	55
3.8	Conclusion	57
4 N	lulti-state System Reliability Analysis and Optimization	~•
G. Le	viiin ana A. Lisnianski	61
4.1	Introduction	61
	4.1.1 Notation	63
4.2	Multi-state System Reliability Measures	63
4.3	Multi-state System Reliability Indices Evaluation Based on the	
	Universal Generating Function	64
4.4	Determination of u-function of Complex Multi-state System Using	
	Composition Operators	67
4.5	Importance and Sensitivity Analysis of Multi-state Systems	68
4.6	Multi-state System Structure Optimization Problems	72
	4.6.1 Optimization Technique	73
	4.6.1.1 Genetic Algorithm	73

	462	4.6.1.2	Solution Representation and Decoding Procedure .	75
	4.0.2	Canacity.	based Performance Measure	75
		4621	Problem Formulation	75
		4622	Solution Quality Evaluation	76
	4.6.3	Structure	Optimization of Multi-state System with Two Failure	
	1.0.5	Modes	optimization of marie state system with two tanate	77
		4631	Problem Formulation	77
		4632	Solution Quality Evaluation	80
	464	Structure	Optimization for Multi-state System with Fixed	00
	1.0.1	Resource	Requirements and Unreliable Sources	83
		4.6.4.1	Problem Formulation	83
		4642	Solution Quality Evaluation	84
		4643	The Output Performance Distribution of a System	•••
		1.0.1.5	Containing Identical Elements in the Main	
			Producing Subsystem	85
		4644	The Output Performance Distribution of a System	00
		1.0.1.1	Containing Different Elements in the Main	
			Producing Subsystem	85
	465	Other Pro	blems of Multi-state System Ontimization	87
	1.0.5	Ouler I I		07
5 Co	mbinato	rial Reliabi	lity Optimization	
<i>C. S. S</i>	ung, Y. I	K. Cho and	l S. H. Song \ldots	91
5.1	Introdu	iction.		91
5.2	Combi	natorial R	eliability Optimization Problems of Series Structure .	95
	5.2.1	Optimal	Solution Approaches	95
		5.2.1.1	Partial Enumeration Method	95
		5.2.1.2	Branch-and-bound Method	96
		5.2.1.3	Dynamic Programming	98
	5.2.2	Heuristic	Solution Approach	99
5.3	Combi	natorial R	eliability Optimization Problems of a Non-series	
••••	Structu	ire	······································	102
	5.3.1	Mixed Se	ries-Parallel System Optimization Problems	102
	5.3.2	General S	System Optimization Problems	106
5.4	Combi	natorial R	eliability Optimization Problems with	
	Multip	le-choice (Constraints	107
	5.4.1	One-dim	ensional Problems	108
	5.4.2	Multi-dir	nensional Problems	111
5.5	Summa	arv		113
		,		
PART	ii. Sta	atistical R	eliability Theory	
6 Ma	odelina t	he Observe	d Failure Rate	

<i>M</i> . <i>S</i> .	Finkelstein	117
6.1	Introduction	117
6.2	Survival in the Plane	118

	 ~			
1.7	\sim	n tra	inte	
V		HIL.		

	6.2.1	One-dimensional Case	118
	6.2.2	Fixed Obstacles	119
	6.2.3	Failure Rate Process	121
	6.2.4	Moving Obstacles	122
6.3	Multip	le Availability	124
	6.3.1	Statement of the Problem	124
	6.3.2	Ordinary Multiple Availability	125
	6.3.3	Accuracy of a Fast Repair Approximation	126
	6.3.4	Two Non-serviced Demands in a Row	127
	6.3.5	Not More than N Non-serviced Demands	129
	6.3.6	Time Redundancy	130
6.4	Modeli	ing the Mixture Failure Rate	132
	6.4.1	Definitions and Conditional Characteristics	132
	6.4.2	Additive Model	133
	6.4.3	Multiplicative Model	133
	6.4.4	Some Examples	135
	6.4.5	Inverse Problem	136
7 Co	oncepts o	f Stochastic Dependence in Reliability Analysis	
C. D	Lai and	M. Xie	141
71	Introdu	uction	1.4.1
7.1	Imnor	tont Conditions Describing Desitive Dependence	141
1.2	721	Six Basic Conditions	142
	7.2.1	The Balative Stringeners of the Conditions	145
	7.2.2	Desitive Overlagent Dargen dant in Everentetion	145
	7.2.5	Associated Bandom Variables	144
	7.2.4	Associated Random variables	144
	7.2.5	Positively Correlated Distributions	140
7 2	7.2.0	Summary of interretationships	140
7.5		Constructions of Desitive Over dreat Dependent Piveriste	145
	7.5.1	Distributions of Positive Quadrant Dependent Divariate	146
	720	Applications of Desitive Overdrant Dependence Concept to	140
	7.3.2	Applications of Positive Quadrant Dependence Concept to	146
	722	Effect of Desitive Dependence on the Mean Lifetime of a	140
	7.5.5	Effect of Positive Dependence of the Mean Lifetime of a	146
	724	Inconsister Without Any Aging Accumption	140
74	7.5.4 Eamili	inequality without Any Aging Assumption	14/
/.4	Demon	dent	1 4 7
	Depen	Desitive Out down the Demond and Bine with Distributions with	14/
	/.4.1	Simple Structures	140
	740	Desitive Outdrant Daman dant Bingride Distributions with	140
	1.4.2	Nore Complicated Structures	140
	743	More complicated structures	149
	1.4.3	7.4.2.1 Conversional Dependent Bivariate Uniform Distributions	120
		7.4.5.1 Generalized Farme-Gumbel-Morgenstern Family of	151
7 5	Correct 1		121
1.5	some I	Related issues on Positive Dependence	152

	7.5.1	Examples of Bivariate Positive Dependence Stronger than	
		Positive Quadrant Dependent Condition	152
	7.5.2	Examples of Negative Quadrant Dependence	153
7.6	Positiv	ve Dependence Orderings	153
7.7	Conclu	uding Remarks	154
8 51	atistical	Reliability Change-point Estimation Models	
Ming	Zhao		157
0		• ••	
8.1	Introd		157
8.2	Assun	hptions in Reliability Change-point Models	158
8.3	Some	Specific Change-point Models	159
	8.3.1	Jelinski-Moranda De-eutrophication Model with a Change	
		Point	159
		8.3.1.1 Model Review	159
		8.3.1.2 Model with One Change Point	159
	8.3.2	Weibull Change-point Model	160
	8.3.3	Littlewood Model with One Change Point	160
8.4	Maxin	num Likelihood Estimation	160
8.5	Applic	cation	161
8.6	Summ	1ary	162
9 (4	oncents a	and Applications of Stochastic Aging in Reliability	
C. D.	Lai and	M. Xie	165
0. 2.	Durunu		100
9.1	Introd	luction	165
9.2	Basic	Concepts for Univariate Reliability Classes	167
	9.2.1	Some Acronyms and the Notions of Aging	167
	9.2.2	Definitions of Reliability Classes	167
	9.2.3	Interrelationships	169
9.3	Prope	rties of the Basic Concepts	169
	9.3.1	Properties of Increasing and Decreasing Failure Rates	169
	9.3.2	Property of Increasing Failure Rate on Average	169
	9.3.3	Properties of NBU, NBUC, and NBUE	169
9.4	Distri	butions with Bathtub-shaped Failure Rates	169
9.5	Life C	lasses Characterized by the Mean Residual Lifetime	170
9.6	Some	Further Classes of Aging	171
9.7	Partia	l Ordering of Life Distributions	171
	9.7.1	Relative Aging	172
	9.7.2	Applications of Partial Orderings	172
9.8	Bivari	ate Reliability Classes	173
9.9	Tests of	of Stochastic Aging	173
-	9.9.1	A General Sketch of Tests	174
	9.9.2	Summary of Tests of Aging in Univariate Case	177
	9,9.3	Summary of Tests of Bivariate Aging	177
9 10	Concl	uding Remarks on Aging	177
2.10	Conci		.,,

xvi Contents

٠

10 Class of NBU-*t*₀ Life Distribution

Dong	Ho Park		181
10.1	Introdu	uction	181
10.2	Charac	terization of NBU-t ₀ Class	182
	10.2.1	Boundary Members of NBU- t_0 and NWU- t_0	182
	10.2.2	Preservation of NBU- t_0 and NWU- t_0 Properties under	
		Reliability Operations	184
10.3	Estima	tion of NBU-t ₀ Life Distribution	186
	10.3.1	Reneau–Samaniego Estimator	186
	10.3.2	Chang-Rao Estimator	188
		10.3.2.1 Positively Biased Estimator	188
		10.3.2.2 Geometric Mean Estimator	188
10.4	Tests fo	or NBU- t_0 Life Distribution \ldots	189
	10.4.1	Tests for NBU-t ₀ Alternatives Using Complete Data	189
		10.4.1.1 Hollander-Park-Proschan Test	190
		10.4.1.2 Ebrahimi–Habibullah Test	192
		10.4.1.3 Ahmad Test	193
	10.4.2	Tests for NBU-t ₀ Alternatives Using Incomplete Data	195

PART III. Software Reliability

11 So	ftware Reliability Models: A Selective Survey and New Directions	
Siddh	artha R. Dalal	201
11.1	Introduction	201
11.2	Static Models	203
	11.2.1 Phase-based Model: Gaffney and Davis	203
	11.2.2 Predictive Development Life Cycle Model: Dalal and Ho	203
11.3	Dynamic Models: Reliability Growth Models for Testing and	
	Operational Use	205
	11.3.1 A General Class of Models	205
	11.3.2 Assumptions Underlying the Reliability Growth Models	206
	11.3.3 Caution in Using Reliability Growth Models	207
11.4	Reliability Growth Modeling with Covariates	207
11.5	When to Stop Testing Software	208
11.6	Challenges and Conclusions	209
12 So	ftware Reliability Modeling	
James	Ledoux	213
12.1	Introduction	213
12.2	Basic Concepts of Stochastic Modeling	214
	12.2.1 Metrics with Regard to the First Failure	214
	12.2.2 Stochastic Process of Times of Failure	215
12.3	Black-box Software Reliability Models	215
	12.3.1 Self-exciting Point Processes	216
	12.3.1.1 Counting Statistics for a Self-exciting Point Process.	218

		12.3.1.2	Likelihood Function for a Self-exciting Point Process	218
		12.3.1.3	Reliability and Mean Time to Failure Functions	218
	12.3.2	Classific	ation of Software Reliability Models	219
		12.3.2.1	0-Memory Self-exciting Point Process	219
		12.3.2.2	Non-homogeneous Poisson Process Model:	
			$\lambda(t; \mathcal{H}_t, \mathcal{F}_0) = f(t; \mathcal{F}_0)$ and is Deterministic	220
		12.3.2.3	1-Memory Self-exciting Point Process with	
			$\lambda(t; \mathcal{H}_t, \mathcal{F}_0) = f(N(t), t - T_{N(t)}, \mathcal{F}_0) \dots \dots \dots$	221
		12.3.2.4	m > 2-Memory	221
12.4	White-	box Mode	eling	222
12.5	Calibra	ation of M	odel	223
	12.5.1	Frequent	tist Procedures	223
	12.5.2	Bavesian	Procedure	225
12.6	Currer	t Issues .		225
	12.6.1	Black-bo	x Modeling	225
		12.6.1.1	Imperfect Debugging	225
		12.6.1.2	Early Prediction of Software Reliability	226
		12.6.1.2	Environmental Factors	220
		12.0.1.5	Conclusion	229
	1262	White-b	ov Modeling	220
	12.0.2	Statistics		229
	12.0.5	otatistice	11 135425	250
13 So	oftware A	vailabilitv	Theory and Its Applications	
Koich	i Tokun	o and Shig	eru Yamada	235
13.1	Introd	uction		235
13.2	Basic N	Model and	Software Availability Measures	236
13.3	Modifi	ed Model	s	239
	13.3.1	Model w	ith Two Types of Failure	239
	13.3.2	Model w	ith Two Types of Restoration	240
13.4	Applie	d Models		241
	13.4.1	Model w	ith Computation Performance	241
	13.4.2	Model fo	or Hardware–Software System	242
13.5	Conclu	iding Rem	arks	243
1010	0011010			210
14 Sc	oftware R	lejuvenatio	on: Modeling and Applications	
Tadas	hi Dohi,	Katerina	Goševa-Popstojanova, Kalyanaraman Vaidyanathan,	
Kisho	r S. Triv	edi and Sh	unji Osaki	245
141	T 1		•	245
14.1	Introd	uction \ldots	· · · · · · · · · · · · · · · · · · ·	245
14.2	Model	ing-based	Estimation	246
	14.2.1	Example	is in relecommunication Billing Applications	247
	14.2.2	Example	s in a Transaction-Dased Software System	251
	14.2.3	Example	s in a cluster System	255
14.3	Measu	rement-ba	ased Estimation	257
	14.3.1	Time-ba	sed Estimation	258
	14.3.2	l'ime an	d Workload-based Estimation	260
14.4	Conclu	ision and	Future Work	262

60

15 So	ftware R	eliability Management: Techniques and Applications	
Mitsu	hiro Kin	nura and Shigeru Yamada	265
15.1	Introdu	uction	265
15.2	Death 1	Process Model for Software Testing Management	266
	15.2.1	Model Description	267
		15.2.1.1 Mean Number of Remaining Software Faults/Testing	
		Cases	268
		15.2.1.2 Mean Time to Extinction	268
	15.2.2	Estimation Method of Unknown Parameters	268
		15.2.2.1 Case of $0 < \alpha \le 1$	268
		15.2.2.2 Case of $\alpha = 0$	269
	15.2.3	Software Testing Progress Evaluation	269
	15.2.4	Numerical Illustrations	270
	15.2.5	Concluding Remarks	271
15.3	Estima	tion Method of Imperfect Debugging Probability	271
	15.3.1	Hidden-Markov modeling for software reliability growth	
		phenomenon	271
	15.3.2	Estimation Method of Unknown Parameters	272
	15.3.3	Numerical Illustrations	273
	15.3.4	Concluding Remarks	274
15.4	Contin	uous State Space Model for Large-scale Software	274
	15.4.1	Model Description	275
	15.4.2	Nonlinear Characteristics of Software Debugging Speed	277
	15.4.3	Estimation Method of Unknown Parameters	277
	15.4.4	Software Reliability Assessment Measures	279
		15.4.4.1 Expected Number of Remaining Faults and Its	
		Variance	279
		15.4.4.2 Cumulative and Instantaneous Mean Time Between	
		Failures	279
	15.4.5	Concluding Remarks	280
15.5	Develo	pment of a Software Reliability Management Tool	280
	15.5.1	Definition of the Specification Requirement	280
	15.5.2	Object-oriented Design	281
	15.5.3	Examples of Reliability Estimation and Discussion	282
16 Re	cent Stu	dies in Software Reliability Engineering	
Hoang	g Pham	· · · · · · · · · · · · · · · · · · ·	285
16.1	Introdu	uction	285
	16.1.1	Software Reliability Concepts	285
	16.1.2	Software Life Cycle	288
16.2	Softwa	re Reliability Modeling	288
	16.2.1	A Generalized Non-homogeneous Poisson Process Model	289
	16.2.2	Application 1: The Real-time Control System	289
16.3	Genera	alized Models with Environmental Factors	289
	16.3.1	Parameters Estimation	292
	16.3.2	Application 2: The Real-time Monitor Systems	292

*	
Contonte	VIV
Contents	
2011201100	

16.4	Cost Modeling	295
	16.4.1 Generalized Risk-Cost Models	295
16.5	Recent Studies with Considerations of Random Field Environments .	296
	16.5.1 A Reliability Model	297
	16.5.2 A Cost Model	297
1 6.6	Further Reading	300

PART IV. Maintenance Theory and Testing

17 Warranty and Maintenance

D. N.	P. Murthy and N. Jack	305
17.1	Introduction	305
17.2	Product Warranties: An Overview	306
	17.2.1 Role and Concept	306
	17.2.2 Product Categories	306
	17.2.3 Warranty Policies	306
	17.2.3.1 Warranties Policies for Standard Products Sold	
	Individually	306
	17.2.3.2 Warranty Policies for Standard Products Sold in Lots	307
	17.2.3.3 Warranty Policies for Specialized Products	307
	17.2.3.4 Extended Warranties	307
	17.2.3.5 Warranties for Used Products	308
	17.2.4 Issues in Product Warranty	308
	17.2.4.1 Warranty Cost Analysis	308
	17.2.4.2 Warranty Servicing	309
	17.2.5 Review of Warranty Literature	309
17.3	Maintenance: An Overview	309
	17.3.1 Corrective Maintenance	309
	17.3.2 Preventive Maintenance	310
	17.3.3 Review of Maintenance Literature	310
17.4	Warranty and Corrective Maintenance	311
17.5	Warranty and Preventive Maintenance	312
17.6	Extended Warranties and Service Contracts	313
17.7	Conclusions and Topics for Future Research	314
10 44	ashani sal Daliahilisty and Maintonan sa Madala	
10 M	echanical keliadility and maintenance models	217
Gianț	<i>Jaolo Pulcini</i>	517
18.1	Introduction	317
18.2	Stochastic Point Processes	318
18.3	Perfect Maintenance	320
18.4	Minimal Repair	321
	18.4.1 No Trend with Operating Time	323
	18.4.2 Monotonic Trend with Operating Time	323
	18.4.2.1 The Power Law Process	324
	18.4.2.2 The Log-Linear Process	325
	18.4.2.3 Bounded Intensity Processes	326

XX	Cont	ents	
	18.4.3	Bathtub-type Intensity	327
	101110	1843.1 Numerical Example	328
	18.4.4	Non-homogeneous Poisson Process Incorporating Covariate	520
	101111	Information	329
18.5	Imperf	fect or Worse Repair	330
	18.5.1	Proportional Age Reduction Models	330
	18.5.2	Inhomogeneous Gamma Processes	331
	18.5.3	Lawless-Thiagaraiah Models	333
	18.5.4	Proportional Intensity Variation Model	334
18.6	Compl	ex Maintenance Policy	335
10.0	18.6.1	Sequence of Perfect and Minimal Repairs Without Preventive	000
	10.011	Maintenance	336
	18.6.2	Minimal Repairs Interspersed with Perfect Preventive	
		Maintenance	338
	18.6.3	Imperfect Repairs Interspersed with Perfect Preventive	
			339
	18.6.4	Minimal Repairs Interspersed with Imperfect Preventive	
			340
		18.6.4.1 Numerical Example	341
	18.6.5	Corrective Repairs Interspersed with Preventive Maintenance	
		Without Restrictive Assumptions	342
18.7	Reliabi	ility Growth	343
	18.7.1	Continuous Models	344
	18.7.2	Discrete Models	345
19 Pr	eventive	Maintenance Models: Replacement, Repair, Ordering, and Inspection	
Tadas	hi Dohi,	Naoto Kaio and Shunji Osaki	349
19.1	Introd	uction	349
19.2	Block	Replacement Models	350
	19.2.1	Model I	350
	19.2.2	Model II	352
	19.2.3	Model III	352
19.3	Age Re	eplacement Models	354
	19.3.1	Basic Age Replacement Model	354
19.4	Orderi	ng Models	356
	19.4.1	Continuous-time Model	357
	19.4.2	Discrete-time Model	358
	19.4.3	Combined Model with Minimal Repairs	359
19.5	Inspec	tion Models	361
	19.5.1	Nearly Optimal Inspection Policy by Kaio and Osaki (K&O	
		Policy)	362
	19.5.2	Nearly Optimal Inspection Policy by Munford and Shahani	
		(M&S Policy)	363
	19.5.3	Nearly Optimal Inspection Policy by Nakagawa and Yasui	
		(N&Y Policy)	363
19.6	Conclu	Iding Remarks	363

20 Maintenance and Optimum Policy

Section Section

s.

Toshi	o Nakag	awa
20.1	Introd	uction
20.2	Replac	ement Policies
	20.2.1	Age Replacement
	20.2.2	Block Replacement
		20.2.2.1 No Replacement at Failure
		20.2.2.2 Replacement with Two Variables
	20.2.3	Periodic Replacement
		20.2.3.1 Modified Models with Two Variables
		20.2.3.2 Replacement at N Variables
	20.2.4	Other Replacement Models
		20.2.4.1 Replacements with Discounting
		20.2.4.2 Discrete Replacement Models
		20.2.4.3 Replacements with Two Types of Unit
		20.2.4.4 Replacement of a Shock Model
	20.2.5	Remarks
20.3	Preven	tive Maintenance Policies
	20.3.1	One-unit System
		20.3.1.1 Interval Reliability 379
	20.3.2	Two-unit System
	20.3.3	Imperfect Preventive Maintenance
		20.3.3.1 Imperfect with Probability
		20.3.3.2 Reduced Age
	20.3.4	Modified Preventive Maintenance
20.4	Inspec	tion Policies
	20.4.1	Standard Inspection
	20.4.2	Inspection with Preventive Maintenance
	20.4.3	Inspection of a Storage System
21 0	ntimal In	narfact Maintananca Models
Hong	zhou Wa	ang and Hoang Pham
8		
21.1	Introd	uction
21.2	Treatm	ent Methods for Imperfect Maintenance
	21.2.1	Treatment Method 1
	21.2.2	Treatment Method 2
	21.2.3	Treatment Method 3
	21.2.4	Treatment Method 4
	21.2.5	Treatment Method 5
	21.2.6	Treatment Method 6
	21.2.7	Treatment Method 7 403
	21.2.8	Other Methods
21.3	Some	Results on Imperfect Maintenance
	21.3.1	A Quasi-renewal Process and Imperfect Maintenance 404
		21.3.1.1 Imperfect Maintenance Model A 40!
		21.3.1.2 Imperfect Maintenance Model B 405

_XXII	Contents	
	21.3.1.3 Imperfect Maintenance Model C	405
	21.3.1.4 Imperfect Maintenance Model D	407
	21.3.1.5 Imperfect Maintenance Model E	408
	21.3.2 Optimal Imperfect Maintenance of k-out-of-n Systems	409
21.4	Future Research on Imperfect Maintenance	411
21.A	Appendix	412
	21.A.1 Acronyms and Definitions	412
	21.A.2 Exercises	412
22 Ac	celerated Life Testing	415
Lisay	еи А. Еізиуви	415
22.1	Introduction	415
22.2	Design of Accelerated Life Testing Plans	416
	22.2.1 Stress Loadings	416
	22.2.2 Types of Stress	416
22.3	Accelerated Life Testing Models	417
	22.3.1 Parametric Statistics-based Models	418
	22.3.2 Acceleration Model for the Exponential Model	419
	22.3.3 Acceleration Model for the Weibull Model	420
	22.3.4 The Arrhenius Model	422
	22.3.5 Non-parametric Accelerated Life Testing Models: Cox's Model	424
22.4	Extensions of the Proportional Hazards Model	426
23 Ac	celerated Test Models with the Birnbaum–Saunders Distribution	
W. Jas	son Owen and William J. Padgett	429
23.1	Introduction	429
	23.1.1 Accelerated Testing	430
	23.1.2 The Birnbaum-Saunders Distribution	431
23.2	Accelerated Birnbaum-Saunders Models	431
	23.2.1 The Power-law Accelerated Birnbaum-Saunders Model	432
	23.2.2 Cumulative Damage Models	432
	23.2.2.1 Additive Damage Models	433
	23.2.2.2 Multiplicative Damage Models	434
23.3	Inference Procedures with Accelerated Life Models	435
23.4	Estimation from Experimental Data	437
	23.4.1 Fatigue Failure Data	437
	23.4.2 Micro-Composite Strength Data	437
24 M	ultiple-steps Step-stress Accelerated Life Test	
Loon	-Ching Tang	441
24 1	Introduction	441
24.2	Cumulative Exposure Models	443
27.2 71 2	Dianning a Stan_stress Accelerated Life Test	445
44. J	24.3.1 Dianning a Simple Step-stress Accelerated Life Test	446
	24.3.1 Framming a ompte orep-succes Accelerated Life Test	440
		440
	24.3.1.2 Setting a larget Accelerating Factor	447

	24.3.1.3 Maximum Likelihood Estimator and Asymptotic	
	Variance	447
	24.3.1.4 Nonlinear Programming for Joint Optimality in	
	Hold Time and Low Stress	447
	24.3.2 Multiple-steps Step-stress Accelerated Life Test Plans	448
24.4	Data Analysis in the Step-stress Accelerated Life Test	450
	24.4.1 Multiply Censored, Continuously Monitored Step-stress	
	Accelerated Life Test	450
	24.4.1.1 Parameter Estimation for Weibull Distribution	451
	24.4.2 Read-out Data	451
24.5	Implementation in Microsoft Excel TM	453
24.6	Conclusion	454
25 St Cheng	ep-stress Accelerated Life Testing	457
25.1	Introduction	457
25.2	Step-stress Life Testing with Constant Stress-change Times	457
	25.2.1 Cumulative Exposure Model	457
	25.2.2 Estimation with Exponential Data	459
	25.2.3 Estimation with Other Distributions	462
	25.2.4 Optimum Test Plan	463
25.3	Step-stress Life Testing with Random Stress-change Times	463
	25.3.1 Marginal Distribution of Lifetime	463
	25.3.2 Estimation	467
	25.3.3 Optimum Test Plan	467
25.4		
	Bibliographical Notes	468

PART V. Practices and Emerging Applications

j.

26 Statistical Methods for Reliability Data Analysis

Micha	el J. Phillips	475
26.1	Introduction	475
26.2	Nature of Reliability Data	475
26.3	Probability and Random Variables	478
26.4	Principles of Statistical Methods	479
26.5	Censored Data	48 0
26.6	Weibull Regression Model	483
26.7	Accelerated Failure-time Model	485
26.8	Proportional Hazards Model	486
26.9	Residual Plots for the Proportional Hazards Model	489
26.10	Non-proportional Hazards Models	49 0
26.11	Selecting the Model and the Variables	491
26.12	Discussion	491

XXIV	Contents

27 The Application of Capture–Recapture Methods in Reliability Studies

Paul	S. F. Yip,	Yan Wang	and Anne Chao		••	•••	•	• •	•	•	•	•	•	•	•	493
27.1	Introd	uction							•							493
27.2	Formu	lation of t	he Problem		•											495
	27.2.1	Homoger	neous Model with	Recaptu	re.				•		•				•	496
	27.2.2	A Seeded	l Fault Approach	Without I	Reca	oture	2.			•	•			•		498
	27.2.3	Heteroge	neous Model		• •								•			499
		27.2.3.1	Non-parametric	Case: λ_i	(t) =	$\gamma_i \alpha_i$	•		•	•	•		•	•		499
		27.2.3.2	Parametric Case	$:: \lambda_i(t) =$	γi.						•		•	•		501
27.3	A Sequ	ential Pro	cedure										•	•		504
27.4	Real Ex	kamples .									•	•	•	•	•	504
27.5	Simula	tion Studi	es								•	•	•	•	•	505
27.6	Discus	sion														508

28 Reliability of Electric Power Systems: An Overview

Roy B	illinton a	and Ronald N. Allan	511
28.1	Introdu	ction	511
28.2	System	Reliability Performance	512
28.3	System	Reliability Prediction	515
	28.3.1	System Analysis	515
	28.3.2	Predictive Assessment at HLI	516
	28.3.3	Predictive Assessment at HLII	518
	28.3.4	Distribution System Reliability Assessment	519
	28.3.5	Predictive Assessment at HLIII	520
28.4	System	Reliability Data	521
	28.4.1	Canadian Electricity Association Database	522
	28.4.2	Canadian Electricity Association Equipment Reliability	
		Information System Database for HLI Evaluation	523
	28.4.3	Canadian Electricity Association Equipment Reliability	
		Information System Database for HLII Evaluation	523
	28.4.4	Canadian Electricity Association Equipment Reliability	
		Information System Database for HLIII Evaluation	524
28.5	System	Reliability Worth	525
28.6	Guide t	o Further Study	527
29 Hu	ıman and	Medical Device Reliability	
B. S. I	Dhillon .		529
29.1	Introdu	lction	529
29.2	Human	and Medical Device Reliability Terms and Definitions	529
29.3	Human	Stress—Performance Effectiveness, Human Error Types, and	
	Causes	of Human Error	530
29.4	Human	Reliability Analysis Methods	531
	29.4.1	Probability Tree Method	531
	29.4.2	Fault Tree Method	532
	29.4.3	Markov Method	534

		Contents	XXV
	29.5	Human Unreliability Data Sources	535
	29.6	Medical Device Reliability Related Facts and Figures	535
	29.7	Medical Device Recalls and Equipment Classification	536
	29.8	Human Error in Medical Devices	537
	29.9	Tools for Medical Device Beliability Assurance	537
	27.7	2001 General Method	538
		29.9.1 General Method	530
		29.9.2 Failure modes and Effect Analysis	520
		29.9.5 Fault Hee Method	520
	20.10	29.9.4 Markov Method	538
	29.10	Data Sources for Performing Medical Device Reliability Studies	539
	29.11	Guidelines for Reliability Engineers with Respect to Medical Devices .	539
	30 Pr	obabilistic Risk Assessment	
	Rober	t A. Bari	543
	30.1	Introduction	543
	30.2	Historical Comments	544
	30.3	Probabilistic Risk Assessment Methodology	546
	30.4	Engineering Risk Versus Environmental Risk	549
	30.5	Risk Measures and Public Impact	550
	30.6	Transition to Risk-informed Regulation	553
	30.7	Some Successful Probabilistic Risk Assessment Applications	553
	30.8	Comments on Uncertainty	554
	30.0	Deterministic Probabilistic Prescriptive Performance based	554
	30.9	Outlook	555
	50.10		555
	31 To	tal Dependability Management	
	Per Ai	nders Akersten and Bengt Klefsjö	559
	31.1	Introduction	559
	31.2	Background	559
	31.3	Total Dependability Management	560
	31.4	Management System Components	561
	31.5	Conclusions	564
	32 To	tal Quality for Software Engineering Management	
	G. Alt	peanu and Fl. Popentiu Vladicescu	567
	32.1	Introduction	567
		32.1.1 The Meaning of Software Quality	567
		32.1.2 Approaches in Software Quality Assurance	569
	32.2	The Practice of Software Engineering	571
		32.2.1 Software Lifecycle	571
		32.2.2 Software Development Process	574
		32.2.3 Software Measurements	575
	32 3	Software Quality Models	577
•	54.5	32.3.1 Measuring Aspects of Ouglity	577
		32.3.1 Inclosuring respects of Quanty,,	577
		22.3.2 Software Reliability Eligineering	5//
		32.3.3 EHORT and Cost Models	5/9

+		
xxvi	Contents	
324	Total Quality Management for Software Engineering	580
<i>J2</i> .1	32.4.1 Deming's Theory	580
	32.4.1 Continuous Improvement	581
32 5	Conclusions	582
52.5		502
33 So	ftware Fault Tolerance	
Xiaoli	n leng and Hoang Pham	585
33.1	Introduction	585
33.2	Software Fault-tolerant Methodologies	586
	33.2.1 <i>N</i> -version Programming	586
	33.2.2 Recovery Block	586
	33.2.3 Other Fault-tolerance Techniques	587
33.3	<i>N</i> -version Programming Modeling	588
	33.3.1 Basic Analysis	588
	33.3.1.1 Data-domain Modeling	588
	33.3.1.2 Time-domain Modeling	589
	33.3.2 Reliability in the Presence of Failure Correlation	590
	33.3.3 Reliability Analysis and Modeling	591
33.4	Generalized Non-homogeneous Poisson Process Model Formulation .	594
33.5	Non-homogeneous Poisson Process Reliability Model for N-version	
	Programming Systems	595
	33.5.1 Model Assumptions	597
	33.5.2 Model Formulations	599
	33.5.2.1 Mean Value Functions	599
	33.5.2.2 Common Failures	600
	33.5.2.3 Concurrent Independent Failures	601
	33.5.3 <i>N</i> -version Programming System Reliability	601
	33.5.4 Parameter Estimation	602
33.6	N-version programming-Software Reliability Growth	602
	33.6.1 Applications of N-version Programming-Software Reliability	
	Growth Models	602
	33.6.1.1 Testing Data	602
33.7	Conclusion	610
34 Ma	nrkovian Dependability/Performability Modeling of Fault-tolerant Systems	
juan I	A. Carrasco	613
34.1	Introduction	613
34.2	Measures	615
	34.2.1 Expected Steady-state Reward Rate	617
	34.2.2 Expected Cumulative Reward Till Exit of a Subset of States	618
	34.2.3 Expected Cumulative Reward During Stay in a Subset of States	618
	34.2.4 Expected Transient Reward Rate	619
	34.2.5 Expected Averaged Reward Rate	619
	34.2.6 Cumulative Reward Distribution Till Exit of a Subset of States	619
	34.2.7 Cumulative Reward Distribution During Stay in a Subset	
	of States	620

		Contents	xxvii
	34.2.8 Cumulative Reward Distribution		621 621
34.3	Model Specification		622
34.4	Model Solution		625
34.5	The Largeness Problem		630
34.6	A Case Study		632
34.7	Conclusions		640
35 Ra Kang	ndom-request Availability W. Lee		643
35.1	Introduction		643
35.2	System Description and Definition		644
35.3	Mathematical Expression for the Random-request Availabi	lity	645
	35.3.1 Notation		645
	35.3.2 Mathematical Assumptions		645
	35.3.3 Mathematical Expressions		645
35.4	Numerical Examples		647
35.5	Simulation Results		647
35.6	Approximation		651
35.7	Concluding Remarks	••••	652
Index			653

Constant of

ŕ