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Introduction

Combinatorial approaches have led to dramatic changes in

the way lead compounds for the discovery of new drugs are

identified.[1] The approach of creating millions of combi-

natorially synthesized moieties within a single reaction

vessel, followed by the identification of potentially active

compounds in a selective bioassay, is often referred to as

combinatorial drug discovery (‘‘CombiChem’’). For this

approach to be effective, rapid screening assays, as well as

appropriate computational methods for data handling, need

to be available. In spite of the conceptional simplicity of this

approach, substantial technical hurdles had to be overcome

before combinatorial techniques could be used with some

success in drug discovery.[2]

One of the earliest material science applications of the

combinatorial discovery approach was the search for

catalytically active polymers by Menger et al.[3] They

Summary: The advent of high-throughput combinatorial
synthesis techniques in drug discovery has stimulated efforts
to apply these techniques to the discovery of biomaterials. To
be of practical utility, combinatorial approaches to biomater-
ials design require (i) the availability of parallel synthesis
techniques to generate libraries of polymers, (ii) efficient
assays for the rapid characterization of biorelevant material
properties, and (iii) computational methods to efficiently
model different biological responses in the presence of
polymers. Here we report the integration of these methodol-
ogies and illustrate the potential of this approach to accelerate
the development of new biomaterials. The parallel synthesis
of a library of 112 biodegradable polyarylates has been
reported previously. This librarywas used to develop efficient
screening techniques to determine biorelevant polymer pro-
perties (fibrinogen adsorption, gene expression in macro-
phages, growth of fetal rat lung fibroblasts (RLFs)). A
Surrogate (semiempirical) Model was developed (i) to deter-
mine molecular-scale polymer properties that correlate to
various biological responses, and (ii) to predict fibrinogen
adsorption andRLF growth on polymeric surfaces. For 38 out
of 45 polymers, themodel predicted the amount of fibrinogen
adsorbed correctly within the error of the experimental
measurements. The growth of rat lung fibroblasts was
correctly predicted by the model for 41 out of 48 polymers.

The correlation factor between the model’s predicted values
and the experimentally determined data was 0.54� 0.09 and
0.69� 0.12 for fibrinogen adsorption and RLF growth, res-
pectively. The results presented here demonstrate the utility
of combinatorial and computational approaches for the
rational design of polymers for biomedical applications.

Design of the library of polyarylates, which are copolymers
of a diacid and a diphenol. Chemical diversity was created by
variations in the structure of the diacid (marked as ‘‘Y’’) and
the pendent chain (marked as ‘‘R’’).
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created random patterns of pendent chains along a polymer

backbone and identified a number of polymer mixtures that

exhibited phosphatase-like activity. However, the simple

CombiChem approach of generating many different poly-

mers within one single reaction vessel is limited by the

difficulty of separating the mixture into individual poly-

mers. Indeed,Menger was unable to identify which specific

polymer composition in each of his catalytically active

mixtures was associated with the observed phosphatase-

like activity.

The problems associated with the separation of mixtures

of many different materials into discrete compositions were

circumvented by the use of spatially resolved libraries. This

approach was applied for the first time in a combinatorial

search for photoluminescent inorganic phosphor composi-

tions: Schultz et al. created different material compositions

within a two-dimensional X-Y grid. A simple optical

reading of the photoluminescence as function of the X and

Y coordinates within the grid provided the necessary high-

throughput assay and allowed the identification of lead

compositionswith potentially useful photoluminescence.[4]

This concept of spatially resolved libraries was later adap-

ted by Amis and his coworkers at the National Institute for

Standards and Technology (NIST) to explore the properties

of polymer blends within a two-dimensional grid in which

all possible blend compositions were represented by a pair

of X,Y coordinates.[5,6]

For most practical applications in materials science, a

parallel synthesis approach seems to bemore useful than the

creation of many different materials within one single

reaction vessel. Using parallel synthesis, a library of

materials can be created in such a way that each individual

material is obtained inpure form ina separate reactionvessel.

This approach was used in 1997 in Kohn’s laboratory

to prepare the first combinatorially designed polymer

library.[7,8] Their approach consisted of the synthesis of

strictly alternating A–B copolymers. In this approach, first,

structural templates for the A and B monomer are defined

and a polymerization scheme is developed. Next, structural

modifications are introduced in a systematic fashion into the

A and B templates, resulting in the formation of families of

related monomers (A1, A2, A3, etc. and B1, B2, B3, etc.).

Finally, each of the Amonomers is copolymerized with each

of the Bmonomers in separate reaction vessels. Specifically,

Kohn’s group used eight different diacids (the Amonomers)

and 14 different diphenols (the B monomers) to create a

library of 8� 14¼ 112 structurally related polyarylates

(Figure 1).[8] The same approach was later used by Langer

et al. to synthesize a library of copolymers thatwere screened

for use as synthetic transfection vectors.[9]

The term ‘‘biomaterial’’ describes amaterial intended for

use in a medical device or implant.[10] While commonly

used biomaterials include metals, ceramics, and natural

materials (such as collagen),[11] within the framework of

this publication we will focus on the application of com-

binatorial and computational approaches to the identifica-

tion of new, synthetic polymers as potential biomaterials.

While the traditional application of polymers as engineer-

ing plastics is well established and supported by an exten-

sive understanding of structure-performance correlations, a

comprehensive understanding of the interactions between

implanted polymers and the surrounding cells and tissues

has not yet been established,making it impossible to apply a

rigorous, rational design process to the identification of new

biomaterials.[12,13] Therefore, a combinatorial approach to

biomaterials design appears to be particularly promising,

since this approach can be applied successfully when clear

correlations between the basic design variables (e.g.,

biomaterial chemistry and structure) and the performance

of the polymer (e.g., cell-biomaterial interactions) are not

available. Furthermore, combinatorial methods can be the

most effective when a large number of variables make it

impossible to explore the entire range of experimental

variables in an exhaustive fashion.

Computational techniques to build, screen, and mine

libraries of compounds have evolved rapidly in recent years

as an efficient strategy for molecular discovery and

optimization.[14–19] To the best of our knowledge, however,

these powerful computational strategies have not yet been

applied to optimal biomaterial design. Likewise, the use of

semiempirical models, such as Artificial Neural Network

(ANN)models, has been limited. ANNs have been success-

fully applied to a wide range of modeling problems. For

instance, Baluja[20] developed an ANN to control a passen-

ger vehicle on a highway, Chandra and Sudhakar[21]

developed an ANN for printed numeral recognition, and

Yoon et al.[22] developed an ANN (denoted DESKNET) to

diagnose papulosquamous skin diseases. This latter system

is utilized in medical education, achieving a correct

diagnosis for 70% of the skin diseases. In spite of thewides-

pread use of ANNs and similar semiempirical modeling

techniques in many fields, a detailed literature search

revealed only two prior publications that are relevant to the

prediction of a cellular response based on the measurement

of some physical material properties. The first publication

developed a multivariant model that was successful in

establishing a correlation between the surface properties of

common polymeric materials and the amount and retention

of fibrinogen adsorbed from a complex mixture.[23] The

second publication described a similar multivariant model

to investigate the relation between endothelial cell growth

and surface properties of plasma-deposited films.[24,25]

In order to be of practical utility, the previously reported

parallel synthesis of polymer libraries needs to be integrated

with efficient screening assays, as well as appropriate com-

putational methods for data handling and modeling. While

it would be premature to speak in terms of ‘‘high through-

put’’ assays at this point, the development of efficient rapid-

screening assays for biologically relevant material proper-

ties that can facilitate the extensive testing of dozens or
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Figure 1. Design of the library of polyarylates. (A): Polyarylates are copolymers of a
diacid and a diphenol. Chemical diversity was created by variations in the structure of the
diacid (marked as ‘‘Y’’) and the pendent chain (marked as ‘‘R’’). (B): Representative
examples of the pendent chain structures used to modify the diphenol component. (C):
Representative examples of the diacid structures used to modify the polymer backbone.
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hundreds of polymers represents an important research

challenge. A second challenge relates to the need to adapt

commonly used computational techniques to appropriately

account for the experimental uncertainty inherent in

biological data sets. Finally, a third research challenge is

to develop a better understanding of which molecular-scale

polymer properties are the best predictors of biorelevant

polymer performance, such as cell growth, toxicity, or

biocompatibility. Some of these challenges are being

addressed by the work presented here.

Materials and Methods

Polymer Synthesis and Characterization

Polymers from a combinatorial library of tyrosine-derived

polyarylates were synthesized according to published

procedures.[8] The polymers consisted of a series of

commercially available diacids and tyrosine-based diphe-

nols which were synthesized as previously described.[26]

The 112 polymers of the library were subjected to a

characterization protocol consisting of purity and chemical-

structure analysis by proton and carbonNMR spectroscopy,

High-pressure liquid chromatography (HPLC), and ele-

mental analysis, followed by molecular-weight determina-

tion by gel-permeation chromatography, detailed thermal

analysis by differential scanning calorimetry (DSC) and

thermogravimetric analysis (TGA), and air-water contact

angle measurement by goniometry.[8]

Cell Proliferation Studies on Flat Surfaces

Cell proliferation studies were either performed on spin-

coated glass cover slips or on compression-molded disks

that were inserted into the bottom of wells in 96-well

plates.[8,27] The number of cells present on the growth

substrata was estimated using a commercially available

MTS colormetric assay (Promega, Madison, WI).

Surface Protein Adsorption by Immunofluorescence
Assay

384-Wellmicrotiterpolypropyleneplates (Cat.No.264576)

were obtained from Nalge Nunc International (Rochester,

NY, USA), while 96-well polypropylene plates were

obtained from VWR (Bridgeport, NJ). The assay has been

reported previously.[28,29] Briefly, polymers were dissolved

in methylene chloride (5% (w/v)). Next, the polymer solu-

tions were filtered through 0.45 mm PTFE filters (Whatman

Inc., Clifton, NJ, USA). Then, individual microtiter wells

on the plates were filled with test polymer solutions. To

evaporate the solvent, the plates were kept at a temperature

of 50 8C for 3 hours in a drying oven. This process generated

thin, macroscopically smooth polymer films inside the

wells. The wells were then exposed for 90 min to 25 mL of

fibrinogen solution in phosphate buffer, followed by rinsing

with PBS. After blocking of non-specific antibody binding

sites by incubation with bovine serum albumin, the plates

were rinsed with PBS and exposed to fluorescently labeled

polyclonal anti-fibrinogen antibodies. After appropriate

washing steps, the amount of surface-adsorbed fibrinogen

was determined by measuring the fluorescence in each well

in a fluorescence reader (Spectra Max Gemini, Molecular

Devices, Sunnyvale, CA, USA). Human fibrinogen adsorp-

tion to non-coated polypropylene wells was used as an

internal control to normalize the fluorescence signals

against an internal standard.

Gene Expression by Real Time RT-PCR

In Vitro Rat Peritoneal Macrophage Culture

Monocyte-derived macrophages were harvested from the

peritonea of adult Sprague–Dowling rats treated with

50 mL of PBS at 0 8C. Monocytes were plated on poly-

propylene plates in Dulbecco’s Modified Eagle’s Media

(D-MEM) supplemented with 10% fetal bovine serum,

2 mmol/L L-glutamine, 100 U/mL penicillin G (Sigma, St.

Louis, MO), 100 mg/mL streptomycin (Sigma, St. Louis,

MO) and allowed to achieve a quiescent state by incubation

for 48 hours. After this period, themacrophageswere plated

on different, solvent-cast polymer surfaces in 96-well

polypropylene plates as described before.[28,29] Macro-

phages in either quiescent or lipopolysaccharide (LPS)

activated state were assayed by real-time Reverse Tran-

scriptase–Polymerase Chain Reaction (RT-PCR) for the

expression of IL-1b and IL-6.

Real-Time RT-PCR

The PCR reaction was performed on a Rotor-GeneTM Four-

Channel Multiplexing System (Corbett Research,

Mortlake, NSW, Australia). Data was analyzed using the

Rotor-Gene software and the manufacturer’s general pro-

tocol was followed with regard to RNA isolation, reverse

transcription, and amplification. Specifically, total RNA

was isolated from adherent cells six hours post seeding

using TRIzol1 Reagent (Invitrogen, Carlsbad, CA, USA)

according to the manufacturer’s instructions. Briefly, 50 mL
of TRIzol1 Reagent was added to each well. Duplicate

samples were combined to ensure sufficient amounts of

RNA, yielding 100 mL of cell extract per surface per

condition. The extract was allowed to stand for 10 min then

mixed with 50 mL chloroform and inverted repeatedly for

15 s followed by 3 min incubation and centrifugation for

15 min at 10 000 rpm. The resulting aqueous layer was then

combined with 100 mL of isopropanol and mixed

thoroughly. RNA was then pelleted and resuspended in

30 mL of UltraPureTM DNase/RNase-Free Distilled Water

(Invitrogen, Carlsbad, CA) containing 0.5 mL of DNase I
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(Ambion, Austin, TX) according to the manufacturer’s

specification. DNase I was inactivated by incubation at

708C for 5 min. Messenger RNAwas reversibly transcribed

by combining 10 mL of the total RNA with 1 mL of

oligo(dT)12–18 primer (Integrated DNA Technologies,

Coralville, IA) and 1mLof 0.01 M dNTPmix and incubating

for 10 min at 65 8C. A mixture of 4 mL of 5x first-strand

buffer, 2 mL of 0.1 M DTT, and 1 mL of RNaseOUTTM

Recombinant Ribonuclease Inhibitor (40 units/ml) (Invitro-
gen, Carlsbad, CA) was then added to the sample and

incubated for 2min at 42 8C. Reverse transcriptionwas then
initiated by the addition of 0.5 mL (100 units) of Superscript

II1 (Invitrogen, Carlsbad, CA) and the reaction was incu-

bated at 42 8C.After 50min, the reaction was inactivated by

heating the mixture to 70 8C for 15 min. All samples were

diluted to 100 mL total volume using UltraPureTM DNase/

RNase-Free distilled water. The reversibly transcribed pro-

duct was then stored at�20 8Cuntil used for PCR. PCRwas

performed using a Platinum1 Taq DNA Polymerase (5 U/

mL) (Invitrogen, Carlsbad, CA). Five microliters of

reversibly transcribed product was used for each PCR reac-

tion. A mix of 5 mL of 10� PCR buffer, 2.5 mL of 0.05 M

MgCl2, 1 mL of 0.01 M dNTP mix, 0.5 mL of 10� SYBR1

Green I nucleic acid gel stain (10 000X concentrate in

DMSO) (Molecular Probes, Eugene, OR) and 0.25 mL of

Platinum1 Taq DNA Polymerase were used per reaction

tube. UltraPureTM DNase/RNase-Free distilled water was

then used to bring each reaction volume to 50 mL. Primer

pairs (Table 1) were added to a final concentration of

1� 10�6
M. The amplification was then performed for 35

cycles (94 8C for 20 s, 56 8C for 20 s and 72 8C for 20 s per

cycle). After data analysis using the Rotor-Gene software,

expression ratios were determined by dividing the signal

intensity of the product of interest by that of the

corresponding b-2-microtubulin.

in vitro Cell-Growth Measurements

Sample Preparation

Previously published procedures[8] to culture rat lung

fibroblast (RLF) cells on flat surfaces of various test

polymers were modified and adapted from a 24-well

plate format to a more efficient 96-well plate format. In

the 24-well plate format, the polymers were spin coated

onto 15 mm glass. Once dry, the cover slips were loaded

polymer side up into 24-well polystyrene plates. For the 96-

well plate format, polymers were either compression

molded into thin, round disks which could be fitted tightly

into the bottom of each well, or polymers were directly

coated onto the well surface by solvent casting. In this

case, polypropylene plates were used[28,29] and 50 mL of a

7% (w/v) solution of test polymer in methylene chloride

produced the best surface coverage. After extensive drying,

incubation at 37 8C for three days did not dislodge any of

the films from the polypropylene well surface. All three

methods of sample preparation provided similar cell-

growth results.

Cell Culture and Data Collection

Rat lung fibroblast (RFL-6) cells were grown on the test

surfaces for seven days as described before[27,30] and meta-

bolic activity was measured with a commercially available

kit (CellTiter961, Promega, Madison, WI). The measured

value for the metabolic activity was then normalized to

tissue culture polystyrenewhich served as internal standard.

The NormalizedMetabolic Activity (NMA) valuewas used

in the computational models.

Computational Modeling

Overall Strategy

First, polymer descriptors were generated for each polymer.

Then, the significance of each descriptor with respect to the

set of experimental bioresponse data was ascertained.

Finally, the threemost significant descriptors in conjunction

with the experimental data for polymers contained within

the training set, were used as inputs into anArtificial Neural

Network (ANN) to predict protein adsorption and cell

growth for those polymers included in the validation set.

The experimentally determined values were then compared

with the predictions derived from the model.

Software Used

The Molecular Operating Environment platform (MOE

Version 2003.02, software available from Chemical Com-

puting Group Inc., 1010 Sherbrooke StreetWest, Suite 910,

Montreal, Canada H3A 2R7 http://www.chemcomp.com)

Table 1. Forward and reverse primers for RT-PCR.

Gene Primer Sequence

IL-6 Forward primer 50 ATT CTG TCT CGA GCC CAC CA 30

Reverse primer 50 CTG AAG GGC AGATGG AGT TGA 30

IL-1b Forward primer 50 TGC AGG CTT CGA GAT GAA CA 30

Reverse primer 50 ACATGG GTC AGA CAG CAC GA 30

b-2-microglobulin Forward primer 50 CTC ACA CTG AAT TCA CAC CC 30

Reverse primer 50 AAG AAG ATG GTG TGC TCATTG 30
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and Dragon software (http://www.disat.unimib.it/chm/

Dragon.htm) were used to calculate 101 molecular

descriptors for each polymer.

Identification of the Three Most Significant
Descriptors for a Given Bioresponse

Together with two experimentally measured quantities,

glass transition temperature (Tg) and air-water contact angle

(y), and an additional structural descriptor, the Total

Flexibility Index (TFI), a total of 104 individual descriptors

were available for each polymer. A C5 Decision Tree

routine (ID3Algorithm available fromRuleQuest Research

Pty Ltd, 30 Athena Avenue, St Ives NSW 2075, Australia.

http://www.rulequest.com/see5-info.html) was used to cal-

culate a measure of significance, the Information Gain

(IG)[31] of each of the 104 descriptors for a given bio-

response. A Monte Carlo approach was used to account for

experimental uncertainty.A sequence of 500 000 computer-

based (pseudo) experiments was performed varying the

value of bioresponse for each polymer randomly but within

a normal distribution (defined by the experimental standard

deviation) about the mean. Each pseudo-experiment yields

a single ‘‘most relevant’’ descriptor – the descriptor with

the highest Information Gain. The results for all 500 000

pseudo experiments were tallied in a histogram. The three

descriptors with the highest counts in this histogram were

then selected as the input variables for the ANN.

Design of theArtificial NeuralNetwork (ANN)Model

The ANN was a two-layer perceptron. Its inputs are the

three descriptors obtained from the Decision Tree analysis,

and its output is a prediction of a specific bioresponse. ANN

methodology is comprehensively described elsewhere.[32]

Using half of the experimental data set (the training set), the

ANN was trained by minimizing the mean-square differ-

ence between the ANN-predicted values and the experi-

mental values. Training was accomplished using a Genetic

Algorithm.[33] The accuracy of the ANN was assessed by

comparison of the predicted values and experimental values

for the remaining half of the experimental data set (the

validation set). The effect of experimental uncertainty on

ANN predictive capability was assessed via a Monte Carlo

analysis. A sequence of 100 experimental data sets was

generated wherein the mean value of the bioresponse for a

given polymer was perturbed by a random number obtained

from a normal distribution derived from the standard

deviation of the experimental bioresponse values measured

for that polymer. For each experimental data set, an ANN

was built using half of the experimental data set selected at

random to train the ANN. The accuracy of the ANN was

determined by comparison of the predicted and experi-

mental values for the remaining half of the experimental

data (the validation data set).

Results and Discussion

Synthesis

Traditional Materials Development versus
Combinatorial Materials Design

Kohn’sgrouphasused tyrosine-derivedmonomers toprepare

a wide range of polymers. Among those, tyrosine-derived

polycarbonates[34] and tyrosine-derivedpolyarylates[8] are of

particular relevance to highlight the difference between a

traditional polymer development approach and a combina-

torial approach. The polycarbonates were prepared entirely

by conventional polymer synthesis techniques: each of the

four different tyrosine-derived polycarbonates described in

theliterature[34]waspreparedsequentially.Ninemonthswere

requiredtooptimizethesynthesisforeachofthetestpolymers

and to prepare sufficient quantities for testing.

The polymers had identical backbone structures but

differed in the length of an alkyl ester pendent chain attac-

hed to the backbone of each repeat unit. A substantial

amount of data was collected on the effect of increasing

pendent chain-length on selected polymer properties, such

as glass transition temperature, rate of chemical degrada-

tion, surface hydrophobicity, and mechanical properties.

However, while each polymer was carefully characterized,

it was impossible to distill data collected for individual

polymer properties into generally applicable correlations

that would permit extrapolations beyond the four specific

polycarbonates tested. Further, while cell culture data were

reported,[34,35] it was impossible to predict the biologically

relevant performance characteristics of any one polymer

based on its molecular structure and basic biophysical

features.

In contrast to the ‘‘randomwalk’’ throughpolymer design

space taken during the development of polycarbonates, one

of the main goals of modern biomaterials research is to

develop a new generation of functional biomaterials that are

rationally designed to produce a biological response that is

optimal for the intended clinical application. In view of this

challenge, tyrosine-derived polyarylates were designed as a

combinatorial library and all 112 currently available poly-

mers were prepared within one week in a ‘‘home-made’’

parallel synthesis reactor.[8]

Design of the Library of Polyarylates

The basic structure of desaminotyrosyl-tyrosine alkyl esters

(DTR, see Figure 2) consists of a unit of ‘‘desaminotyr-

osine’’ and a unit of L-tyrosine alkyl ester, linked together

by a regular peptide bond. DTR is a derivative of naturally

occurring tyrosine dipeptide with the important structural

modification that the N-terminus of the peptide has been

replaced by a hydrogen atom and the C-terminus of the

peptide is protected by a pendent chain ‘‘R’’ of variable

length and structure (Figure 3). This particular design gives

rise to a versatile diphenolic monomer.
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In polyarylates, a diphenol and a dicarboxylic acid are

copolymerized, forming a strictly alternating A–B copo-

lymer similar to the copolymerization of a dialcohol and a

dicarboxylic acid (leading to a polyester) or the copolymer-

ization of a diamine and a dicarboxylic acid (leading to

polyamides). Thus, if the dicarboxylic acids are regarded as

the A monomer, and the diphenols are the B monomer, a

combinatorial design is obtained when a set of x structural

variations of ‘‘A’’ and y structural variations of ‘‘B’’ are

copolymerized in all possible combinations. Considering

the ultimate applications of the polymers as medical-

implant materials, the specific dicarboxylic acids used were

selected from the constituents of the Krebs Cycle, various

nutrients, and from the FDA’s list of approved food

additives (EAFUS Listing). Overall, eight dicarboxylic

acids and 14 diphenols were used, resulting in 112 indivi-

dual polymer compositions.[8,27] For the initial synthesis of

the library, about 100 to 200 mg of pure polymer was

obtained from a 25 mL reaction vessel.[8]

Polymer Characterization and Development
of Data Sets

Increasing the pace of polymer synthesis is not useful

without a corresponding acceleration in the pace of polymer

characterization and evaluation. To analyze the more than

100 polymers contained in the library of polyarylates,

Kohn et al. developed a series of new assays for the rapid

characterization of large polymer sets.[8,27,36–40] With only

30 mg of polymer sample, glass transition temperature,

melting temperature, decomposition temperature, the

position of low-temperature transitions, an estimate of

the flexural modulus, surface hydrophobicity, surface che-

mical composition (by XPS) and surface topography by

scanning electron microscopy (SEM) and/or atomic force

microscopy (AFM) were obtained. Using miniaturized

compression-molded thin films, an additional 15 mg of

polymer was sufficient to generate disks which were

inserted in 96-well tissue culture plates and used to evaluate

the ability of these polymers to support cell growth.[27]

In the course of the characterization of the 112 polymers,

data sets with hundreds of individual data points were

obtained. The most intuitive way to analyze such large data

sets is by visual inspection of appropriately arranged gra-

phic presentations (Figure 4). By defining a new structural

polymer descriptor, the ‘‘total flexibility index’’, the

graphic presentation of Figure 4 could be transformed into

a correlation between chemical structure and the glass

transition temperature (Figure 5).[27] As this correlationwas

shown to extend beyond the 112 polymers contained

initially in the polyarylate library,[41] measurements perfor-

med on a representative subset of about 40 polymersmade it

possible to predict the glass transition temperature of every

polyarylate that can theoretically be derived from the

copolymerization of structural variants of the particular

templates of ‘‘A’’ and ‘‘B’’ used here.

To facilitate data analysis, it is possible to define a library

space.[41] If n different properties are being measured for

each polymer, the corresponding data set can be mapped in

‘‘n-dimensional space’’ from which any number of two-

dimensional projections can correlate two polymer proper-

ties of interest. For example, using the correlations for glass

transition and air-water contact angle, the ‘‘boundaries’’ of

the library space were determined (Figure 6). For all

combinations of glass transition temperature and air-water

contact angle that fall within the shaded area of the plane, a

polymer structure can be identified that will exhibit the

desired combination of properties.

Figure 4. Bar graph presentation of the glass transition tem-
peratures of 112 polymers in the polyarylate library. When
appropriately sorted, the bar graphs clearly show the progression
from low to high Tg, the upper and lower limits of possible Tg

values, and intuitively illustrate that there may be a correlation
between chemical structure and the glass transition temperature.
Similar presentations were prepared for surface hydrophobicity,
mechanical properties, and various cellular responses (not shown).

Figure 3. Chemical structure of tyrosine-derived polycarbo-
nates. See Figure 2 for corresponding structures of monomers.

Figure 2. Chemical structure of DTR diphenols. Note that the
monomers form an homologous series, differing only in the length
of their respective pendent chain (R). Commonly used pendent
chains are ethyl (E), butyl (B), hexyl (H), octyl (O), and dodecyl
(D) esters.
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Protein Adsorption Assay

Clean material surfaces that come in contact with serum-

containing fluids in vitro or in vivo are rapidly covered by

serum proteins. Numerous studies reveal that different

synthetic, polymeric substrates vary in their ability to ad-

sorb proteins and, therefore, vary in their ability to support

cell attachment and growth.[42–45] In fact, the wide interest

in protein surface adsorption in the biomedical community

is motivated by the hypothesis that cellular responses to

polymeric surfaces are mediated by the protein layer that

adsorbs on the surface.[12,23,46,47] The type and conforma-

tion of the protein layer forming on a polymer surface may

therefore be amajor determinant of the suitability of a given

polymer surface for biomedical applications. For example,

adsorption of fibrinogen, one of the most prevalent proteins

in blood, to a polymer surface reduces the blood compat-

ibility of that surface.[23,48,49]

For the reasons mentioned above, a cost-efficient, rapid

technique for the study of protein-polymer interactions was

critically needed. Previously available assays for the

detection of surface-adsorbed proteins, such as immuno-

blotting[50] or surface plasmon resonance,[51] are accurate

but far too costly or too time consuming to be applied to the

rapid screening of a large number of polymer samples.

Therefore, we designed an immuno-fluorescence assay that

could be conducted in commercially available, large capa-

city microplates using highly sensitive detection of surface-

adsorbed fibrinogen with fluorochrome-labeled antibodies.

Utilization of standard microplates allowed the use of

conventional microplate processing and reading devices.

We screened a selected set of 45 polymers for polymer-

adsorbed human fibrinogen using the immuno-fluorescence

assay described above. The results show a polymer-depen-

dent adsorption of fibrinogen (Figure 7). A group of

polymers with low fibrinogen-binding capacity (left side of

the chart) and a group with high fibrinogen-binding

capacity (right side of the chart) could be identified. The

statistical comparison of each of 10 low fibrinogen-binding

polymers (nos. 1–10, Figure 7) with each of 10 high fib-

rinogen-binding polymers (nos. 36–45, Figure 7) showed

significant differences in the amount of fibrinogen adsorp-

tion between the polymers (p< 0.001). This data set was

used to train an Artificial Neural Network (ANN) model

(see below).

Protein adsorption is strongly influenced by the hydro-

phobicity of the surface, as measured by the air-water

contact angle (y). Several studies therefore explored towhat
extent y correlates with the adsorption of proteins when a

material comes into contact with protein-containing solu-

tions.[13] In turn, the layer of adsorbed proteins affects cell

growth,[52] indicating that a simple measure of surface

hydrophobicity (y) may correlate with many cellular

responses.[53] To test this hypothesis, we plotted the air-

water contact angle (y) versus fibrinogen adsorption for all
45 polymers (Figure 8). From the figure, it can easily be

seen that the relationship between fibrinogen adsorption

and y is not a linear correlation (R2¼ 0.43). While linear

curve fitting failed to shed light on the relevance of y on

fibrinogen adsorption, the ANN provided additional

insights (see below).

Genotypic Expression of Proinflammatory Cytokines
in Macrophages

Macrophages play a critical role in invoking inflammation

and the foreign-body reaction to biomaterials. Upon initial

contact of macrophages with foreign objects, a variety of

cellular reactions are triggered, including the production of

reactive oxygen species, and the release of pro-inflamma-

tory (e.g., IL-1b and IL-6) and anti-inflammatory cytokines

Figure 5. Exponential correlation between the glass transition
temperature of individual polymers contained within the library of
polyarylates and the ‘‘total flexibility index’’ (x), an empirically
derived parameter that describes the chemical structure of the
polymers. Using the equation y¼ 127.48e(�0.11818x), the glass
transition (y) of every one of the thousands of theoretical polymer
structures contained within the library can be predicted.

Figure 6. Illustration of the library space defined by a two-
dimensional projection of the air-water contact angle (y) and glass
transition temperature (Tg). The dark points are the coordinates of
polymers that were synthesized and analyzed. For all combina-
tions of Tg and y that fall within the shaded area, a polymer with
corresponding properties can be found in the existing library of
polyarylates.[39]
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(e.g., IL-10 and TGF-b). The interest in studying macro-

phage interactions with material surfaces is motivated by

the need to better understand the mechanism of this

interaction, and by the need to design biomaterial surfaces

that lead to controllable macrophage-surface interactions.

We are currently addressing these objectives by developing

efficient assays to explore the up- or down-regulation of

gene expression of pro-inflammatory cytokines in macro-

phages that are in contact with different polymer surfaces.

Here, we report preliminary results from the evaluation of

72 polyarylates (Figure 9). This is currently the largest set of

polymers for which gene-expression data have been

obtained within one single experiment. Since the 72 test

polymers were carefully characterized in terms of polymer

structure and material properties, the changes observed in

the gene expression of IL-1b and IL-6 can potentially be

correlated with the wide range of material properties,

protein adsorption data, and cell-growth data obtained in

the course of our studies.

Computational Modeling of Protein Adsorption
and Cell Growth

Computationalmodeling is a necessity if large and complex

data sets like those presented in the previous sections are to

be useful in biomaterials development. In similar cases,

semiempirical, or ‘‘surrogate,’’modeling has been shown to

be an efficient approach.[13] We present the results of our

semiempirical Surrogate Model methodology to predict

fibrinogen adsorption and fetal rat lung fibroblast growth.

Fibrinogen Adsorption

As outlined in Materials and Methods, a large number of

structure-based polymer descriptors were calculated. Next

a Decision Tree routine was used to identify those des-

criptors that were most relevant to fibrinogen adsorption.

The three most significant descriptors obtained from the

Decision Tree analysis are compiled in Table 2. These

descriptors were used as inputs in the ANN, which was then

trained on half of the available data set. The ANN pre-

dictions of fibrinogen adsorption on polyarylate surfaces

are given in Figure 10. Overall, the ANN made correct

predictions for 38 of the 45 test polymers (Figure 10). The

average percentage root mean square (rms) error in

prediction of the validation set was 35%, which compares

favorably with the average percent relative standard devia-

tion of the experimental measurements (i.e., 18%). The

Pearson correlation coefficient for the validation data sets

was 0.54� 0.12, also indicating a high degree of predictive

capability.

Figure 8. No correlation is evident between air-water contact
angle y and human fibrinogen adsorption. Amount of adsorbed
fibrinogen (n¼ 16) is given in percent relative to a polypropylene
surface which served as internal control.

Figure 7. Immuno-fluorescence screening of adsorbed human fibrinogen on 45 polymers
(mean� SD; n¼16).
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Rat Lung Fibroblast (RLF) Proliferation

The results of the Decision Tree analysis relating to RLF

proliferation are compiled in Table 3. Among the threemost

relevant descriptors was log P, an empirical estimate of the

octanol/water partition coefficient of individual polymer

chains. This is a very interesting result as several studies

report an empirical correlation between surface hydro-

phobicity and cell growth. The ANN predictions of RLF

NMA are given in Figure 11.

Overall (using training set and validation set data) the

ANN predicted cell growth correctly for 41 out of 48

polymers to within the average percent experimental error

of 23. Using amore stringent test, and considering the ANN

predictions for the validation set only, the ANN predictions

were within the average percent experimental error for

19 out of 24 polymers. This represents a 79% success rate of

making correct predictions of cell growth on a wide range

of polymer surfaces. The average percentage rms error

of the validation set was 28% (correlation coefficient:

0.54� 0.09). The ANN was less successful in making

correct predictions at both the low and high extremes of cell

growth. Work is currently underway to understand the

limitations of the model and to improve it.

Figure 9. Gene-expression levels of pro-inflammatory cytokines by rat peritoneal
macrophages grown on 72 different polymer films. Bars indicate relative expression values.
Polymers were given a unique identification number (X-axis) and arranged in order of
increasing expression values. The expression values shown represent the average of two
separate experiments. (A): Gene-expression levels for IL-1b. (B): Gene-expression levels
for IL-6.

Table 2. The three most significant polymer descriptors for the prediction of fibrinogen adsorption.

Descriptor Name Definition Significance Gaina)

Tg Experimentally measured glass transition temperature 823
a_nH Number of hydrogen atoms in the molecule 509
log P(o/w) Log of the octanol/water partition coefficient (including implicit

hydrogens) calculated from a linear atom type model
489

a) Decision TreeMonte Carlo descriptor results for fibrinogen adsorption. ‘‘Significance Gain’’ indicates the ratio between the number of
pseudo experiments in which the given descriptor was found to have the highest IG to the number of experiments in which a random
parameter was found to have the highest IG.
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Table 3. The three most significant polymer descriptors for prediction of rat lung fibroblast (RLF) growth.

Descriptor Name Definition Significance Gaina)

Slog P_ VSA9 The sum of the VdW surface area of atoms in the molecule for which the
value of the log P(o/w) descriptor is greater than 0.4.

483

Hydrophilic factor An empirical index obtained as a count of the number of hydrophilic groups. 331
Slog P_ VSA5 The sum of the VdW surface area of atoms in the molecule for which the

value of the log P(o/w) descriptor is greater between 0.15 and 0.20.
316

a) Decision TreeMonteCarlo descriptor results for RLF cell growth on different polymer surfaces. ‘‘SignificanceGain’’ indicates the ratio
between the number of pseudo experiments inwhich the given descriptor was found to have the highest IG to the number of experiments
in which a random parameter was found to have the highest IG.

Figure 10. Comparison between experimental values for fibrinogen adsorption and the
values predicted by the ANN. The experimentally determined amounts of fibrinogen
adsorbed to different polymer surfaces are shown as diamonds. The error bars relate to the
rms error of the experimental measurements. The values predicted by the ANN are shown as
triangles. The ANN used the three descriptors given in Table 2 as inputs. For 38 out of 45
polymers, the ANN correctly predicted the experimental value within the error range of the
measurement. This accuracy of prediction holds for both the training and validation sets.

Figure 11. Comparison between experimental values for the normalized metabolic
activity (NMA) of rat lung fibroblasts (RLF) and the values predicted by the ANN. NMA
values are a measure of the number of cells growing on a polymer surface. The
experimentally determined NMA values for different polymer surfaces are shown as
diamonds. The error bars relate to the rms error of the experimental measurements. The
values predicted by the ANN are shown as triangles. For 41 out of 48 polymers, the ANN
prediction was within the average error range of the measurement. The ANN used the three
descriptors given in Table 3 as inputs.
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Conclusion

New approaches to biomaterials development are driven by

threemajor, recent technological developments: (i) efficient

parallel synthesis of polymers for biomaterials applica-

tions, (ii) rapid screening assays for various cellular res-

ponses (bioresponses) in the presence of polymers, and (iii)

semiempiricalmodeling using techniques ofmachine learn-

ing.While all of these techniques arewell known the field of

drug discovery, they have so far not been applied to the

challenge of biomaterials discovery in an integrated

fashion.

Combinatorial libraries of more than one hundred bio-

materials have now been prepared in sufficient quantities

for in vitro assays. Rapid screening assays for biologically

relevant material properties such as fibrinogen adsorption,

cellular proliferation andmacrophage genotypic expression

have been developed and can be performed at substantially

lower cost and in shorter time than previously possible.

Surrogate (semiempirical)modeling techniques based upon

machine learning technology can be effectively used to

screen polymer libraries for identification of high-perfor-

mance polymers. The successful prediction of protein

adsorption and cell growth on different polymeric surfaces

by a computational model presents a significant break-

through and illustrates that the integration of combinatorial

and computational techniques into a consistent design

approach can reduce the time and cost required to identify

biomaterials with optimum performance characteristics for

specific clinical applications.
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