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General second-order, variable-density, three-step and four-step projection methods are

developed to simulate unsteady incompressible interfacial flows. A high-accuracy, variable-

density RKCN projection method is presented, in which the three-stage, low-storage Runge-

Kutta technique and second-order semi-implicit Crank-Nicholson technique are employed to

temporally update the convective and diffusion terms, respectively. To reduce computation

cost, a simplified version of the projection method is also presented, in which the pressure

Poisson equation (PPE) is solved only at the last substage. The level set approach is em-

ployed to implicitly capture the interface for falling droplet flows. Three-dimensional bubble

rising flows and two-dimensional falling droplet flows in a small closed channel are studied

numerically via the present method. By the definition of the effective pressure, the flow

mechanisms for falling droplet flows with different density ratios, viscosity ratios, Weber

numbers, and Reynolds numbers are discussed.

1. INTRODUCTION

The numerical simulation of interfacial flows is of great importance in inves-
tigating the transport phenomena appearing in environmental, geophysical, and
industrial flows. Interfacial flow involves the study of not only hydrodynamics in a
single phase, but also the interface of two or more immiscible and miscible fluids.
Hence the variable-density, incompressible unsteady Navier-Stokes equation needs
to be simulated. As for the numerical methods for unsteady, variable-density
incompressible Navier-Stokes equations, the variable-density BCG method [1, 18] is
often employed for the simulation of interfacial flows, in which the Godunov scheme
is used to update the convective term. Kothe and Mjolsness [10] conducted the
computation of interfacial flows by the MAC method, in which the explicit updating
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of the convective and diffusion terms is not stable with a big time-step size. Chen
et al. [4] employed the SIMPLE method [25] for the numerical simulation of bubble
rising flows. Son and Dhir [19] employed the projection method to do numerical
simulation of boiling heat transfer, which incorporates the level set approach for
capturing the interface. The first-order fully explicit and full implicit schemes are
employed to update the convective and diffusion terms, respectively. The temporal
accuracy of the schemes in [4] and [19] has only first order. Ni et al. [14] developed a
general four-step or three-step projection method for unsteady incompressible single-
phase flows. Also, a RKCN four-step projection method was presented in [14], in
which the three-stage, low-storage Runge-Kutta and second-order semi-implicit
Crank-Nicholson techniques are employed to update the convective and diffusion
terms, respectively. In this article, the general projection method and RKCN pro-
jection method for single-phase unsteady incompressible flows will be extended to
solve variable-density incompressible interfacial flows. The variable-density RKCN
projection method will be simplified further. In the simplified version, the pressure
Poisson equation (PPE) will be solved only at the last substage, which will save
greatly on computational cost.

Employing the variable-density projection method and the level set method to
simulate immiscible interfacial flows in this article, the physical models and
numerical algorithms are presented in Section 2. The 3-D rising bubble flows, 2-D
falling droplet flows in a small size channel, with different density ratios, viscosity
ratios, Reynolds numbers, and Weber numbers are studied numerically in Section 3.
Also studied are the mechanisms involved in the deformation and motion of droplets
and bubbles. Conclusions are presented in Section 4.

2. PHYSICAL MODELS AND NUMERICAL ALGORITHMS

2.1. Governing Equations

The level set method [16] is employed to capture the interface implicitly by
introducing a smooth level set function f, with the zero level set as the interface and
positive value outside the interface and negative value inside the interface. Con-
sidering the following equation:

qf
qt

þ v � Hf ¼ 0 ð1Þ

which will evolve the zero level of f ¼ 0 exactly as the actual interface moves. The
physical variants can be expressed as

r ¼

r1 if f > 0

r2 if f < 0

0:5ðr2 þ r1Þ if f ¼ 0

8><
>: m ¼

m1 if f > 0

m2 if f < 0

0:5ðm2 þ m1Þ if f ¼ 0

8><
>: ð2Þ

To keep the level set function as a distance function from the front, an approach
based on solving the hyperbolic partial differential equation has been presented in
[23]. The reinitialization equation is

ft ¼ signeðf0Þð1� jHfjÞ ð3Þ
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fð�x; 0Þ ¼ f0ð�xÞ ð4Þ

where jHfj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2
x þ f2

y þ f2
z

q
, and the sign function signeðf0Þ ¼ 2 Heðf0Þ � 1

2

� �
with

the Heaviside function HeðfÞ defined as

HeðfÞ ¼

0 if f < �e

1

2
1þ f

e
� 1

p
sin

pf
e

� �� �
if jfj � e

1 if f > e

8>>><
>>>:

Since the level set function is a smooth function, Eq. (1) can be easily solved
numerically by employing a high-resolution discretization scheme for the convective
term.

A continuum surface force (CSF) model [2, 3] is used to reformulate the surface
tension as a volume force �Fsv. For the level set approach, we have the formulation of
the CSF model as �FSV ¼ kðfÞ deðfÞHf with the surface tension delta function
deðfÞ ¼ qHeðfÞ=qf and the front curvature kðfÞ ¼ H � ðHf=jHfjÞ. By employing the
CSF model for the surface tension force and a level set approach to capture the
interface, we have the governing equations for an incompressible interfacial flow as

H � v ¼ 0 ð5Þ

qv
qt

þ H � ðvvÞ ¼ � 1

�r
Hpþ 1

�rRe
H � ð�mHvÞ þ s ð6Þ

qf
qt

þ v � Hf ¼ 0 ð7Þ

s ¼ � g

Fr
� kðfÞ deðfÞHf

�rWe
þ 1

�rRe
H � �mðHvÞT

h i
ð8Þ

with dimensionless groups of Reynolds, Froude, and Weber numbers as
Re ¼ r1LU=m1, Fr ¼ U2=gL;We ¼ r1LU

2=s, respectively; �m ¼ m=m1 and �r ¼ r=r1
are the dimensionless ratios of the viscosity and density, respectively. Here U;L are
characteristic velocity and length, respectively, s is the surface tension coefficient,
while mi; ri ði ¼ 1; 2Þ are viscosity coefficients and densities of fluid 1 and fluid 2,
respectively. For simplicity, hereafter we will instead use �m and �r with m and r,
respectively. To prevent instability, it is necessary to smooth the values of the density
r and viscosity m as

reðfÞ ¼ lr þ ð1� lrÞHeðfÞ ð9Þ

meðfÞ ¼ lm þ ð1� lmÞHeðfÞ ð10Þ

where lr ¼ r2=r1 and lm ¼ m2=m1.

2.2. Time-Integration–Variable-Density Projection Method

A general second-order projection method has been presented in [14]
for incompressible Navier-Stokes equations. Considering the variable-density,
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incompressible Navier-Stokes eqautions (5) and (6), we have the following general
second-order, variable, four-step projection method as

Av̂ ¼ r� Hpn

rnþ1=2
ð11Þ

~v ¼ v̂þ aDt
Hpn

rnþ1=2
ð12Þ

aDtH � Hpnþ1

rnþ1=2

� �
¼ H � ~v ð13Þ

vnþ1 ¼ ~v� aDt
Hpnþ1

rnþ1=2
ð14Þ

and three-step projection method as

Av̂ ¼ r� Hpn

rnþ1=2
ð15Þ

aDtH �
H pnþ1 � pn
� 	
rnþ1=2

� �
¼ H � v̂ ð16Þ

vnþ1 ¼ v̂� aDt
Hðpnþ1 � pnÞ

rnþ1=2
ð17Þ

For the trapezoidal method, we have a ¼ 1
2. Here A is a submatrix, and the right-

hand-side r vector contains all those quantities that are already known. Different
updating techniques for the convective and diffusion terms will produce different
formulations of A or r. For example, when Crank-Nicholson and explicit techniques
are employed for the updating of the diffusion term and the convective term
respectively, we have A and r as follows:

A ¼ 1

Dt
I� Dt

2Re

1

rnþ1=2
H � ðmnþ1=2HÞ

� �
ð18Þ

r ¼ 1

Dt
Iþ Dt

2Re

1

rnþ1=2
H � ðmnþ1=2HÞ

� �
vn � H � ðvvÞnþ1=2 ð19Þ

where I is the unit identity matrix operator. It is apparent that Eqs. (11)–(14) and
Eqs. (15)–(17) are second-order approximations to Eqs. (5) and (6) with error term as

ðDt2Þ
2Re

H � mnþ1=2H
1

rnþ1=2
H

pnþ1 � pn

Dt

� �� �
 �

Usually, we can employ an explicit updating technique for the convective
term for simplicity. However, due to the weak stability of the Adams-Bashforth
scheme, Choi and Moin [5] employed the semi-implicit Crank-Nicholson technique
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to update both the convective and the diffusion terms. The general four-step
projection method (11)–(14) will form the variable-density Choi-Moin method with
a ¼ 1 by employing the Crank-Nicholson scheme for the convective and diffusion
terms. It should be noted that the implicit updating of the convective term does
not favor the implementation of higher-order spatial schemes. The second-order
central difference scheme is utilized to conduct the spatial discretization of the
convective term in the original Choi-Moin method for incompressible Navier-
Stokes equation.

The second-order-accuracy Dukowicz-Dvinsky method [6] is often employed
to do the direct numerical simulation (DNS) of incompressible turbulent flows. It
needs to solve the Poisson equation of pressure difference. In fact, the general three-
step projection method of (15)–(17) with a ¼ 1

2 forms the variable-density Dukowicz-
Dvinsky projection method for the variable-density incompressible Navier-Stokes
equation. The original second-order Dukowicz-Dvinsky method was designed for
solving the Stokes flow, in which the Crank-Nicholson scheme was employed to
update the diffusion term with good stability. The projection method (15)–(17) with
a ¼ 1 was also employed to simulate the boiling heat transfer [19] incorporated with
the level set approach, in which the first-order fully implicit scheme and the explicit
scheme were employed to update the diffusion and convective terms respectively.

The Bell-Marcus method [1] can also be written in the form of Eqs. (15)–(17),
with Godunov updating and Crank-Nicholson updating for the convective and
diffusion terms, respectively. Usually, the Godunov scheme has only second-order
spatial accuracy. The variable-density Bell-Colella-Glaz has been employed by many
researchers [1, 18] to do multifluid flows, since the robust Godunov scheme is
employed for the updating of the convective term.

The RKCN high-accuracy projection method developed in [14] for single-
phase incompressible flow has second-order temporal accuracy, in which three-stage
Runge-Kutta technique and second-order semi-implicit Crank-Nicholson technique
have been employed to update the convective and diffusion terms, respectively. Here
we extend the method to the variable-density unsteady incompressible Navier-Stokes
equations, incorporating with a level set equation for the interfacial flows. The
variable-density RKCN projection method can be expressed as

Amv̂m ¼ rm � amHpm�1 þ bmHpm�2

rnþ1=2
ð20Þ

~vm ¼ v̂m þ Dt
amHpm�1 þ bmHpm�2

rnþ1=2
ð21Þ

amH � Hpm

rnþ1=2

� �
¼ 1

Dt
H � ~vm � bmH � Hpm�1

rnþ1=2

� �
ð22Þ

vm ¼ ~vm � Dt
amHpm þ bmHpm�1

rnþ1=2

� �
ð23Þ

fmþ1 ¼ fm � Dtðamþ1vm � Hfm þ bmþ1vm�1 � Hfm�1Þ ð24Þ
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where

Am ¼ 1

Dt
1� gm Dt

rnþ1=2 Re
H � ðmnþ1=2HÞ

� �
ð25Þ

rm ¼ 1

Dt
1þ gm Dt

Re rnþ1=2
H � ðmnþ1=2HÞ

� �
vm�1 � am½S�m�1 � bm½S�m�2 ð26Þ

S ¼ s� H � ðvvÞ and am ¼ 8
15 ;

5
12 ;

3
4

� 

, bm ¼ 0;� 17

60 ;� 5
12

� 

and gm ¼ 4

15 ;
1
15 ;

1
6

� 

. The

velocity components and pressure in the intermediate velocities equation at the first
substep are u�1

i ¼ 0, p�1 ¼ 0 (m� 2 ¼ �1) and u0i ¼ uni , p
0 ¼ pn (m� 1 ¼ 0). At the

third step, they are u3i ¼ unþ1
i and p3 ¼ pnþ1, which are the updated velocities and

pressure for the next time level, nþ 1. The density and viscosity are updated using
fnþ1, which will be the rnþ1=2, mnþ1=2 at the next time step.

In the above variable-density RKCN projection method, the Crank-Nicholson
implicit technique is employed to update the diffusion term for stability and the low-
storage three-stage Runge-Kutta technique is employed to update the convective
term for simplicity and stability. The projection method also has second-order
temporal accuracy for variable-density unsteady incompressible flows. The diffusion
term can be spatially discretized using standard central difference schemes. The
convective term in the momentum equation can be conveniently updated using the
second-order CD scheme or high-order compact schemes [11] or fully conservative
high-order accuracy schemes as developed in [13]. To improve the stability and
resolution, we discretize the convective term in Eq. (24) for the level set function by
employing the second-order TVD scheme and higher-order ENO scheme. For the
discretized equations of Eqs. (20)–(26), we employ the following formulas for the
density and viscosity at the central points of the control volumes and the inter-
polation values at the cell surfaces as

ri ¼ lr þ ð1� lrÞHeðfiÞmi ¼ lm þ ð1� lmÞHeðfiÞ ð27Þ

1

riþ1
2

¼ 0:5
1

ri
þ 1

riþ1

� �
1

miþ1=2

¼ 0:5
1

mi
þ 1

miþ1

� �
ð28Þ

For the variable-density RKCN projection method, the PPE needs to be solved
at every stage, which will consume much more time. To save computing time, Le and
Moin [11] presented a simplified version for a Runge-Kutta–type fractional-step
method. Here we also present the simplified version for the above variable-density
RKCN projection method as

Amv̂m ¼ rm � ðam þ bmÞHpn
rnþ1=2

ð29Þ

~vm ¼ v̂m þ Dt
ðam þ bmÞHpn

rnþ1=2
ð30Þ

vm ¼ ~vm � Dt
ðam þ bmÞ

Pm
l¼1

ðal þ blÞHpn

rnþ1=2
for m ¼ 1; 2 ð31Þ
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v3 ¼ ~v3 � Dt

P3
l¼1

ðal þ blÞHpnþ1

rnþ1=2
for m ¼ 3 ð32Þ

H �

P3
l¼1

ðal þ blÞHpnþ1

rnþ1=2

2
6664

3
7775 ¼ 1

Dt
H � ~v3 ð33Þ

Figure 1. Regions of TVD discretization for the convective term.
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fmþ1 ¼ fm � Dtðamþ1vm � Hfm þ bmþ1vm�1 � Hfm�1Þ ð34Þ

where Am
i and rmi have the same formulas as in Eqs. (25) and (26). For the simplified

version of the variable-density RKCN projection method, the PPE needs to be
solved only at the last substage. This will save considerable computation time.
Usually the simplified version has second-order temporal accuracy, like the original
one. To accelerate the convergence and to enforce the divergence-free velocity, the
four-level multigrid technique has been employed to solve the discretized PPE for
both the variable-density RKCN projection method and its simplified version.

2.3. Reinitialization for Level Set Function

In general, even if the level set function f is initialized as a signed distance from
the interface front, it will not remain a distance function at later time. For large time
computations, keeping the level set function as a distance function will be advan-
tageous in the computation of surface tension, which is difficult to compute near a
steep gradient in the distance function. In the meantime, the distance function of f
will ensure that the front has a finite thickness for all time, and the values for rðfÞ
will not be greatly distorted with Hf equal to one. Sussman et al. [22] presented the
reinitialization equation as Eqs. (3) and (4), which can be reformulated as

ft þ w � Hf ¼ signeðf0Þ ð35Þ

where

w ¼ signeðf0Þ
Hf
jHfj ð36Þ

For level set approaches, another important issue is mass conservation. We
know the total mass is conserved in time for an incompressible flow. Theoretically,
the solution f of Eqs. (35) and (36) will have the same sign and the same zero level set
as f0, which means the interface will not move with time marching for the solution of
Eqs. (35) and (36). Away from the interface, f will converge to jHfj ¼ 1. Therefore it
will converge to the actual distance. The unmoved interface with jHfj ¼ 1 will ensure
total mass conservation. However, the numerical discretization of the reinitialization
equation of the level set function will not preserve the property in general. Hou et al.
[9] have found that a considerable amount of total mass is lost in time by the above
reinitialization of the level set function. To ensure mass conservation, a method
similar to that in [22] has been employed to ensure mass conservation.

2.4. TVD and ENO Schemes for the Convective Term of the Interfacial
Evolving Equation

To improve stability and resolution, we discretize the convective terms for the
level set function and its reinitialization equation by employing the SMART [7] and
ENO schemes [20]. The SMART scheme is in fact a second-order TVD scheme [15],
although it is not included in the TVD region of Sweby [23]. In [15], the extended
TVD region is presented, which is shown in Figure 1b, while Sweby’s region is shown
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in Figure 1a. In the figure, j is a function of r with ri ¼ Dfi�1=Dfi, which is a limiter
to construct the TVD scheme. When j ¼ r and j ¼ 1, we have the second-order
upwind difference scheme and the central difference scheme, respectively. The
SMART scheme is also shown on the Figure 1b.

Figure 2. Evolving 3-D shape of rising bubble for Re¼ 100, We¼ 500, density ratio¼ 0.0125, viscosity

ratio¼ 0.0125.

Figure 3. Effect of surface tension on the rising bubble for Re¼ 100, density ratio¼ 0.0125, viscosity

ratio¼ 0.0125.
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3. SIMULATION OF RISING BUBBLE AND FALLING DROPLET FLOWS

3.1. Rising Bubble Flows and Code Validation

The rise and deformation of 3-D bubbles in a liquid with initial bubble radius
R0 are simulated by the above-developed methods. The nondimensional governing
equation is formulated as in Eqs. (5)–(8) with dimensionless groups of Reynolds,
Froude, and Weber numbers as Re ¼ r1g

1=2R
3=2
0 =m1, Fr ¼ 1, and We ¼ r1gR

2
0=s

Figure 4. Effect of viscous force on the rising bubble for We¼ 50, density ratio¼ 0.0125, viscosity

ratio¼ 0.0125.

Figure 5. Effect of density ratio on the rising bubble for Re¼ 100, We¼ 50, viscosity ratio¼ 0.0125.
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after defining the characteristic velocity and length as U ¼ ðgR0Þ1=2 and L ¼ R0,
respectively. Driven by the buoyancy force, the bubble rises.

In a 3-D rectangle channel with free-surface boundary on the top and nonslip
walls on the other sides, an initially stationary spherical bubble is considered with the
initial condition uiðt ¼ 0Þ ¼ 0 and boundary conditions u3 ¼ 0, qui=qx ¼ 0 ði ¼ 1; 2Þ
on the top surface, and ui ¼ 0 on the solid walls. The computation is performed
using the simplified variable-density RKCN projection method and the level set
method. The reinitialization equation has been solved with the variable time-step size
method to keep the total mass conservative for this method. The 65� 65� 97
meshes are utilized for the rising bubble flow in a rectangular channel with 4R0

width, 4R0 length, and 6R0 depth. Here R0 is the initial sphere bubble radius. The
four-level multigrid technique is employed for the solution of the PPE to enforce
divergence-free velocity. For this computation, the maximum residue of the velocity
divergence in every computational cell is kept less than 10�6.

The numerical results in a 3-D rectangular channel are similar to the results in
a cylindrical channel [4]. The shape development of the bubble rising in a liquid with
a density ratio of lr ¼ rg=rl ¼ 0:0125 is shown as a set of superimposed calculations
in Figure 2.

The effects of surface tension and viscous force on the bubble dynamics can be
investigated by changing the values of the Weber number and Reynolds number,
respectively. Here the role of surface tension in the formation of a toroidal bubble
has been studied with Weber numbers 5, 50, and 500, while the Reynolds number,
density ratio, and viscosity ratio are kept as constants (Re¼ 100, lr ¼ rg=rl ¼
0:0125, lm ¼ mg=ml ¼ 0:0125). For the case of the lowest Weber number (We ¼ 5) in
Figure 3c, the water jet formed below the bubble is unable to penetrating the upper
surface and an elliptical bubble forms owing to the high surface tension. With a
decrease of the surface tension for the cases of We¼ 50 and 500 in Figure 3b and

Figure 6. Effect of viscosity ratio on the rising bubble for Re¼ 100, We¼ 50, density ratio¼ 0.0125.
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Figure 3a, the toroidal bubble does form eventually. Near the upper boundary the
bubble velocity will be reduced due to the restriction of the boundary condition of
u3 ¼ 0:0, which can be regarded as the wall repulsion effect.

Figure 4 illustrates the effect of the viscous force on the motion of the bubble.
For the low Reynolds number flow of Re¼ 10, due to the big effect of the viscous
force, the liquid jet below the bubble is very weak and the bubble rises as a cap. At
increased Reynolds number Re¼ 50, the effect of the buoyancy is much greater than
the effect of the viscous force, and the jet motion drives the lower surface to pierce
the upper surface, forming a toroid.

An increase in the density ratio leads to an increase of the net force of the
difference between the buoyancy force and gravity, which will result in a higher
upward bubble velocity. The effect of density ratio and viscosity ratio on the bubble
deformation and motion are also shown in Figures 5 and 6. All of the above results
are consistent with the results in [4]. It is reasonable to believe that the present code
and methods can be applied to study the droplet deformation and motion
mechanisms in a liquid.

3.2. Falling Droplet Flows in a Small Closed Channel

The falling and deformation of a droplet in a liquid with initial droplet radius
R0 are simulated. The droplet falls driven by the gravity. In a 2-D rectangle closed
channel, an initially stationary circle droplet is considered with initial central at point
(4.0, 6.5) and radius 1.0. The initial velocity condition is set as uiðt ¼ 0Þ ¼ 0, and
boundary condition ui ¼ 0 is set on the solid walls. The computation is finished using
the simplified variable-density RKCN projection method incorporating the level set
method. The reinitialization equation has been solved by the variable time-step size
method to keep the level set function as a distance function from the front and to
ensure overall mass conservation. A collocated grid system with the meshes of
65� 65 is utilized to do the numerical simulation of falling droplet flows in a liquid.
The four-level V-type multigrid technique is employed to enforce the divergence-free
velocity. For this computation, the maximum residue of the velocity divergence in
every computational cell is kept less than 10�6.

3.2.1. The falling and deformation mechanisms of a droplet in a
liquid. For the 1.125 density ratio flow, Figure 7 illustrates that the droplet begins
to fall owing to gravity force. For the sake of analysis, the velocity vector and con-
tours of the effective pressure p0 ¼ p� rgh (h is the distance from the top wall) have
been shown in Figure 7. The static hydropressure rgh has been deduced from the ori-
ginal pressure p. In fact, the static hydropressure will produce an upward buoyancy.
However, due to the 1.125 density ratio (which is greater than 1), the net force of the
gravity force and the static buoyancy on the droplet is downward. In Figure 7, the
black row line shows the velocity vector distribution, while the red filling color shows
the high-effective-pressure region and the blue filling color shows the low-effective-
pressure region. When the droplet begins to fall, the effective pressure on the lower
surface of the droplet is higher than that on its upper surface. The difference between
the effective pressure on the lower and upper surfaces will develop a vortex on the
both sides of the droplet, which has a sense of rotation (Figure 7 at t¼ 5.0).
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The vortex induces the motion of a jet, which pushes the liquid into the droplet from
above, as may be seen in Figure 7 at t¼ 5.0 and t¼ 10.0. The vortex center is also the
lowest-effective-pressure region.

Due to the effect of the jet, a velocity difference is formed between the top
surface and the lower surface. The velocity difference results in the top surface
approaching the lower surface, as may be seen at t¼ 15.0 and t¼ 20.0 in Figure 7.
When the droplet is close to the wall, a high effective pressure is formed between the
lower surface of the droplet and the wall, which will block the movement of the
droplet toward to the bottom wall, as shown at t¼ 25.0 in Figure 7. The two horns of
the deformed droplet move toward the two sides owing to the rotation of the two
low-pressure vortexes, which will increase the effect of wall repulsion as shown at
t¼ 35.0, and the falling velocity of the droplet will be reduced.

3.2.2. The role of surface tension in the deformation of a falling
droplet. From Eqs. (4) and (6), the effect of surface tension on the droplet dynamics
can be investigated by changing the value of the Weber number. Here the role of sur-
face tension in the deformation of a droplet has been studied with Weber numbers 5,
50, and 500, while the Reynolds number and the ratios of density and viscosity are
kept constant (Re¼ 100, viscosity ratio¼ 1.0125, density ratio¼ 1.125). Figure 8
illustrates the effect of surface tension on the development of the droplet. For the
lowest Weber number (Figure 8c, We¼ 5), owing to the high surface tension, a
higher-effective-pressure region is formed inside the droplet. The water jet formed
above the droplet is unable to penetrate the lower surface and an elliptical droplet
forms. As the droplet approaches the wall, due to the wall repulsion (high effective
pressure formed between the lower surface of the droplet and the wall), the ratio of
the long axis to the short axis becomes larger. We cannot see the two horns on the
sides of the droplet which are formed for the case of We¼ 50 in Figure 8b. For
We¼ 500, the large effective pressure difference between the lower surface and the
top surface will form a strong jet, which induces a large velocity difference between
the top and lower surfaces (Figure 9 at t¼ 5.0 and t¼ 10.0). Due to the large velocity
difference, the top surface approaches the lower surface (Figure 9 at t¼ 10.0,
t¼ 15.0, and t¼ 25.0), and it finally pierces the lower surface and several droplets
are formed (Figure 9 at t¼ 30.0). This is the result for 2-D case. For the 3-D case,
high Weber number flow will produce a toroidal droplet. The droplet shape evolu-
tion for We¼ 5, 50, and 500 is shown in Figure 8. It shows clearly that the primary
effect of surface tension is to resist the deformation of the falling droplets.

3.2.3. The role of Reynolds number in the deformation of a falling
droplet. The effect of viscous force on the motion of the droplet can also be inves-
tigated by varying the Reynolds number while the other flow parameters are kept
constant. Here we do the computation for the cases of We¼ 50, viscosity
ratio¼ 1.0125, density ratio¼ 1.125, with Reynolds numbers 5, 25, and 100. For
the lowest Reynolds number flow of Re¼ 5, due to the large effect of the viscous
force, the liquid jet formed on the droplet is very weak and the droplet falls down
as an elliptical shape (as shown in Figure 10c). With increase of the Reynolds num-
ber to Re¼ 100, the effect of the net force of gravity force and buoyancy is much
greater than the effect of the viscous force. The strong jet formed on the droplet
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surface drives the upper surface to approach the lower surface and form the horn
shapes at t¼ 15.0 in Figure 10a. At t¼ 35.0, due to the wall repulsion, the horn shape
becomes flat. It is expected that the stronger jet will induce a much larger velocity
difference between the top and low surfaces of the droplet when the Reynolds num-
ber is much higher, and the droplet will be split into several small droplets.

3.2.4. The role of viscosity ratio in the deformation of a falling droplet.
To study the effect of the viscosity ratio on the deformation and movement of the
falling droplets in a closed channel, values of the viscosity ratio 1.0125, 5.0, and
50.0 have been employed, while Reynolds number, Webers number, and density
ratio are kept constant, with Re¼ 100, We¼ 50, and density ratio¼ 1.125, respec-
tively. The computation results are shown in Figure 11.

For the case of low viscosity ratio (1.0125 in Figure 11a), we find the droplet
deformation is much larger than the deformation for the case of large viscosity ratio
(50 in Figure 11c). In fact, due to the high viscosity ratio, the effective pressure inside
the droplet is much larger than that outside the droplet, which will resist the
deformation of the droplet. The deformation for the case of 5.0 viscosity ratio in
Figure 11b is in the middle of the deformation of 1.0125 and 50 viscosity ratios.

3.2.5. The role of density ratio in the deformation of a falling droplet.
An increase in the density ratio leads to an increase of the net force of the difference
between the gravity and buoyancy force, which will result in a higher falling velocity
for the droplet, which can be seen in Figure 12. The falling velocity of droplet for
density ratio 1.250 (Figure 12a) is apparently larger than that for density ratio
1.050 (Figure 12c). Also, we find the deformation in Figure 12a is larger than the
deformation in Figure 12b, since a greater net force will form a stronger jet upper
the top surface of the droplet.

4. SUMMARY AND CONCLUSION

General second-order, four-step and three-step, variable-density projection
methods have been presented to simulate the unsteady, variable-density incom-
pressible Navier-Stokes equations, and a high-order, variable-density RKCN pro-
jection method has been presented based on the general four-step, variable-density
projection method, in which the three-stage, low-storage Runge-Kutta and second-
order semi-implicit Crank-Nicholson techniques are employed to update the con-
vective and diffusion terms for simplicity and stability, respectively. Especially, a
simplified version of the projection method has also been developed for variable-
density interfacial flows. In the simplified version, the PPE needs to be solved only at
the last substage, which saves much computational cost. The four-level multigrid
technique has been employed to enforce divergence-free velocity for incompressible
flows. The hyperbolic equation for the level set function has been incorporated to
capture the interface automatically with high accuracy. The 3-D rising bubble flows
and 2-D falling droplet flows with a variation of density ratio, Weber and Reynolds
numbers, and viscosity ratios have been simulated. The effective pressure distribu-
tion, velocity vector distribution, and vortex are shown to analyze the droplet falling
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and deformation mechanisms for the flow in a closed channel. It has been shown that
the Weber number, Reynolds number, viscosity, and density ratios have a big effect
on droplet deformation.
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