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Abstract. In this contribution, we formulate a heterogeneous multiscale finite ele-
ment method (HMM) for monotone elliptic operators. This is done in the general
concept of HMM, which was initially introduced by E and Engquist [E, Engquist,
The heterogeneous multiscale methods, Commun. Math. Sci., 1(1):87–132, 2003].
Since the straightforward formulation is not suitable for a direct implementation
in the nonlinear setting, we present a corresponding algorithm, which involves the
computation of additional cell problems. The algorithm is validated by numerical
experiments and can be used to effectively determine homogenized solutions.

1 Introduction

In this work, we are concerned with monotone elliptic multiscale problems of the
following structure:

−∇ ·Aε (x,∇uε) = f in Ω , (1)

uε = 0 on ∂Ω .

Here, Aε describes a rapidly oscillating, nonlinear diffusion operator, where the pa-
rameter ε represents the size of the microscale. For instance, if the oscillations are
periodic, then ε denotes the period. These types of equations describe a large variety
of engineering problems, such as transport of pollutants in groundwater or the con-
ductivity of compositional materials. Resolving the entire microstructure, in order to
perform a highly expensive fine-scale computation, typically results in an intractable
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computational demand. To reduce the complexity of the problem significantly, equa-
tions such as (1) are often treated by so called multiscale methods, which include
a large range of different approaches. In this work, we restrict ourselves to a real-
ization of the heterogeneous multiscale finite element method (HMM). The concept
of HMM was initially introduced by E and Engquist in 2003 [5] and extended by
several contributions. A good overview on this can be found in the work of Abdulle
[1]. A HMM realization with near optimal computational complexity is given by
Abdulle and Engquist [2], a version for the treatment of advection-diffusion prob-
lems with large drift by Henning and Ohlberger [9]. A-posteriori error estimates are
derived in the work of Henning and Ohlberger [11, 7, 8]. In the framework of Mul-
tiscale finite element methods (MsFEM) Efendiev, Hou and Ginting [6] introduce
a multiscale finite element method for nonlinear problems. The HMM for mono-
tone operators, that we present in this contribution, is formulated in analogy to the
linear case as presented in [5]. However, if we are interested in implementing the
method, we face the problem, that the formulation is not yet suitable for program-
ming purposes since it is not clear how to efficiently compute the Jacobian matrix
in a Newton scheme. In the last part of Section 3 we discuss this issue in detail. In
fact, we figure out that the usage of an accessory Newton method results in the as-
sembling of additional cell problems. Considering these new problems, we present
a general algorithm for solving the discrete HMM problem for monotone operators.
This algorithm is implemented using the software toolbox DUNE, which is for in-
stance introduced in [3]. In particular, we employ the DUNE module DUNE-FEM

(see [4]).

2 Analytical and Discrete Setting

Let Ω ⊂R
N denote a polygonal bounded domain with dimension N ≤ 3. By H̊1(Ω)

we define the space of H1(Ω)-functions with compact support in Ω . In the follow-
ing, we are concerned with solving the following elliptic multiscale problem:

Problem 0.1 (Nonlinear elliptic equation with fast oscillations). Find uε∈H̊1(Ω):
∫

Ω
Aε (x,∇uε) ·∇Φ(x) dx =

∫

Ω
f (x)Φ(x) dx ∀Φ ∈ H̊1(Ω). (2)

Here, Aε :Ω×(L2(Ω))N → (L2(Ω))N denotes a nonlinear diffusion operator, which
meets the subsequent monotonicity and continuity conditions: there exist two con-
stants 0 < α ≤ β < ∞ such that for all x ∈Ω and all ξ1,ξ2 ∈ R

N :

< Aε(x,ξ1)−Aε(x,ξ2),ξ1 − ξ2 > ≥ α|ξ1 − ξ2|2,
|Aε(x,ξ1)−Aε(x,ξ2)| ≤ β |ξ1 − ξ2| and

Aε(x,0) = 0.

With these assumptions, we have a unique solution of problem (2) (see e.g. [10]).
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In order to create a suitable discrete setting, in which we can formulate the het-
erogeneous multiscale method, we denote by TH a regular simplicial partition of
Ω with elements T . xT is the barycenter of T ∈ TH . By Y = (− 1

2 ,
1
2 )

N we define
the 0-centered unit cube. Scaling Y with κ ∈ R>0 and shifting it by xT ∈ T , we in-
troduce the notation YT,κ := {x+κy| y ∈ Y}. By Th, we denote a regular, periodic
partition of Y . yK is the barycenter of K ∈ Th. The mapping xκT : Y → YT,κ is given
by xκT (y) := xT +κy. Moreover, we introduce the following discrete spaces, where
P

1 is the space of polynomials of degree 1:

VH(Ω) := {ΦH ∈ H̊1(Ω)∩C0(Ω) |ΦH|T ∈ P
1(T ) ∀T ∈ TH};

Wh(Y ) := {φh ∈C0(Y )| φh is Y -periodic,
∫

Y
φh = 0 and φh|K ∈ P

1(K) ∀K ∈ Th};

Wh(YT,κ) := {φh ∈C0(YT,κ )| (φh ◦ xκT ) ∈Wh(Y )}.

Definition 0.1 (Reconstruction operator). In order to locally reconstruct informa-
tion of the fine-scale behavior of uε , we introduce the local reconstruction operator
RT

h : VH(Ω)→ VH(Ω)+Wh(YT,δ ). For δ > 0 and ΦH ∈ VH(Ω), the corresponding
reconstruction RT

h (ΦH) ∈ΦH +Wh(YT,δ ) is defined as the solution of

∫

YT,δ
Aε (x,∇x RT

h (ΦH)(x)
) ·∇xφh(x) dx = 0 ∀φh ∈Wh(YT,δ ). (3)

Note that RT
h is well defined since (3) always has a unique solution, if YT,δ ⊂ T . We

also point out that (3) is the discrete analog to the well-posed so-called cell problems
known from standard homogenization theory (cf. [12]).

3 The Heterogeneous Multiscale Finite Element Method for
Monotone Operators

The general idea behind the concept of HMM is based on a scale separation of the
solution of problem (2). If we assume, that uε can be separated into its coarse- and
fine-scale part, we can artificially separate the test functions in the same way and
postulate Φ = Φcoarse + φ f ine, where φ f ine remains very small in the L2-norm, but
produces large gradients due to fast oscillations. Together with (2) and choosing
φ f ine = 0 we obtain

∫

Ω
Aε (·,∇uε) ·∇Φcoarse =

∫

Ω
fΦcoarse. (4)

On the other hand, with Φcoarse = 0 we get:
∫

Ω
Aε (·,∇uε) ·∇φ f ine =

∫

Ω
fφ f ine ≈ 0. (5)
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Discretizing (4) and (5), restricting the fine-scale computations on representative
cells xT +δY and reconstructing the macroscopic test function in order to guarantee
uniqueness and existence, gives us the canonical formulation of HMM, as initially
suggested by E and Engquist [5] for linear elliptic equations. In analogy, we can
state the heterogeneous multiscale method for monotone operators:

Definition 0.2 (Heterogeneous Multiscale Method for monotone operators).
We define the HMM approximation uH of uε by: uH ∈VH(Ω) solves

( fH ,ΦH)L2(Ω) = AH(uH ,ΦH) ∀ΦH ∈VH(Ω), (6)

with

AH(uH ,ΦH) := ∑
T∈TH

|T |
∫

YT,ε
− Aε (x,∇x RT

h (uH)(x)
) ·∇x RT

h (ΦH)(x) dx. (7)

Here, RT
h denotes the local reconstruction operator, as it has been is defined in (3).

For the oversampling parameter δ , we assume δ ≥ ε . An expedient choice for the
periodic case could be δ = ε , for the non-periodic case δ = 2ε .

Note, for every δ ≥ ε , the HMM produces a unique solution uH ∈VH(Ω). This is a
direct effect of the monotonicity of Aε(x, ·). For the case that Aε(x, ·) is a linear op-
erator, (7) results in a linear system of equations, which is symmetric and therefore
cheap to solve.

If we assume, that the nonlinear diffusion operator Aε only contains periodic
oscillations, the homogenization of problem (2) is well known. However, even in
this scenario, it is not immediately clear, how to carry over the analytical results
to a suitable discretization. That is why the heterogeneous multiscale finite element
method above becomes an effective scheme to determine the homogenized solution
of elliptic multiscale problems with a periodically oscillating, monotone diffusion
operator. In fact, with slight modifications, we can show, that the HMM is equivalent
to a straightforward discretization of the standard homogenized equation of (2).

Problems Concerning the Implementation

In order to determine the effect of the reconstruction operator RT
h on a function ΦH ,

we need to solve the problems given by (3). Each of these so-called cell problems is
a standard nonlinear elliptic problem, which can be solved easily by common meth-
ods. However, the situation is completely different for the HMM macro problem. In
order to solve (6) numerically, we might face difficulties, depending on the structure
of the nonlinearity. This is due to the fact that we do not only have one nonlinearity
produced by Aε , but an additional nonlinearity within, produced by the reconstruc-
tion operator RT

h . In contrast to Aε , an evaluation of RT
h is not cheap, which is why

we require a special treatment for this equation. This claim will be emphasized, if we
have a closer look at (6). Let Φ1, ...,ΦM denote the Lagrange base of VH . Defining
G : RM → R

M by
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(G(α))i := ∑
T∈TH

|T |
∫

YT,ε
− Aε(x,∇x RT

h (
M

∑
j
α jΦ j)(x)) ·∇x RT

h (Φi)(x) dx

−
∫

Ω
f (x)Φi(x) dx,

we are looking for ᾱ with G(ᾱ) = 0. Solving this numerically (with an iterative
scheme) requires either the computation of the Jacobian matrix DαG or a corre-
sponding approximation. There are two possibilities:

1. If we want to make direct use of DαG, we require the effect of the Fréchet
derivative of the reconstruction operator, i.e. DRT

h , which we can not determine
explicitly.

2. If we approximate DαG by difference quotients
(G(α+he j)−G(α))i

h , we do not only
need to determine RT

h (∑
M
j α jΦ j), but also RT

h (∑
M
j (α j +σ jih)Φ j) for any relevant

i. Each of this involves solving a nonlinear elliptic problem for every T ∈ TH .
Moreover this has to be done for every iteration step carried out for finding the
solution of G(ᾱ) = 0. Therefore, a very high computational demand is implied.

In any case, we are dealing with accessory problems. In the next section we present
a corresponding solution.

4 Implementation

In this section we want to state an algorithm in order to compute the solution of
the HMM macro problem given by equation (6). This algorithm is a combination
of HMM and Newton Method, which in particular can be used for solving the non-
linear elliptic multiscale problem (2). It is derived and stated in Subsection 4.1. In
Subsection 4.2 we comment on its implementation in the DUNE framework.

4.1 HM Newton Method

We now consider a general treatment of the HMM macro problem, given by equation
(6). First of all we emphasize that this treatment strongly depends on the structure
of Aε and should be modified according to problem specific characteristics. For
instance, if we are dealing with a linear diffusion operator, i.e. Aε(x,ξ ) = Āε(x)ξ
with a matrix Āε , the implementation of (6) is straightforward, since (6) directly
yields a linear system of equations. For the case that the nonlinearity is of the form
Aε(x,ξ ) = Āε(x,ξ )ξ , with uniformly coercive Āε , the exact problem (2) can be
linearized by means of the iteration

∫
Ω Āε(x,∇un−1)∇un∇Φ =

∫
Ω fΦ , where un

converges to uε under appropriate assumptions. Again, solving the HMM macro
problem is uncomplicated, since we can use the linearized form above.
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In the situation of a very general nonlinearity, we are facing problems which we
described at the end of Section 3. Therefore, it is necessary to derive a method,
which explicitly incorporates a general way for solving the macro problem (6). In
the following we present an approach, where we combine the HMM with a Newton
method. This procedure results in additional cell problems to solve.

First of all, we want to introduce a new representation of equation (6), which is
more convenient with regard to applying the Newton method. For this purpose, we
define the local correction operator QT

h .

Definition 0.3 (Correction operator). With the local reconstruction operator RT
h

defined in (3), we introduce a corresponding correction operator QT
h , which only

yields (scaled) microscopic contributions. The operator QT
h : VH(Ω) → Wh(Y ) is

defined by QT
h (ΦH)(y) := 1

δ
(
RT

h (ΦH)−ΦH
)◦ xδT (y) for ΦH ∈VH(Ω).

With this definition, we obtain the subsequent representation of equation (6):

Lemma 0.1 (Reformulation of the HMM operators). For T ∈ TH, ΦH ∈ VH(Ω)
and QT

h given by Definition 0.3, we have that QT
h (ΦH) is the solution of the following

cell problem:
∫

Y
Aε (xT + δy,∇xΦH(xT )+∇y QT

h (ΦH)(y)
) ·∇yφh(y) dy = 0 ∀φh ∈Wh(Y ). (8)

Moreover, forΨH ,ΦH ∈VH(Ω), we can rewrite AH (given by (7)) as:

AH(ΨH ,ΦH) = ∑
T∈TH

|T |
∫

Y ε
δ

− Aε(xT + δy,ΨH(xT )+∇y QT
h (ΨH)(y))

·(∇xΦH(xT )+∇y QT
h (ΦH)(y)

)
dy. (9)

Proof. The results are directly obtained by using the transformation formula and the
following equation, which holds for every ΦH ∈VH :

∇y QT
h (ΦH)(y) =

1
δ
∇y
(
RT

h (ΦH)(xT + δy)−ΦH(xT + δy)
)

=
(
∇RT

h (ΦH)
)
(xT + δy)−∇ΦH(xT ). ��

Now, we are prepared to derive the HM Newton algorithm. By {Φi| 1 ≤ i ≤ M}
we denote the Lagrange base of the discrete space VH(Ω). In particular M defines
the number of macroscopic base functions. If we want to solve the HMM macro
problem, i.e. find uH ∈VH with

AH(uH ,Φi)− ( f ,Φi)L2(Ω) = 0 ∀Φi, 1 ≤ i ≤ M,

we can use the reformulation (9), so that we can equivalently look for ᾱ ∈ R
M with

G(ᾱ) = 0. Here, G : RM →R
M is defined by
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(G(α))i := ∑
T∈TH

|T |
∫

Y ε
δ

− Aε(xT + δy,
M

∑
j=1

α j∇xΦ j(xT )+∇y QT
h (

M

∑
j=1

α jΦ j)(y))

·(∇xΦi(xT )+∇y QT
h (Φi)(y)

)
dy−

∫

Ω
f (x)Φi(x) dx.

If ᾱ is computed, so is uH , where we have the relation uH(x) = ∑N
j=1 ᾱ jΦ j(x).

In order to solve the nonlinear algebraic equation G(ᾱ) = 0, we want to use the
Newton method, with which we get the following iteration scheme:

α(n+1) = α(n)−
(
(DαG)(α(n))

)−1
G(α(n)).

Here, DαG is the Jacobian matrix of G. With �α(n) := α(n+1)−α(n) we obtain:

DαG(α(n))�α(n) =−G(α(n)).

This implies, that we need to compute the components of DαG. To determine
d

dαk
(G(α))i for any α ∈ R

M , we calculate:

Dαk Aε(xT + δy,
M

∑
j=1

α j∇xΦ j(xT )+∇y QT
h (

M

∑
j=1

α jΦ j)(y))

= DξAε(xT + δy,
M

∑
j=1

α j∇xΦ j(xT )+∇y QT
h (

M

∑
j=1

α jΦ j)(y))

(∇xΦk(xT )+∇y (Dαk(Q
T
h (

M

∑
j=1

α jΦ j)))(y))

It remains to determine (Dαk (Q
T
h (∑

M
j=1α jΦ j)))(y), which depends on the effect of

the Fréchet derivative of the correction operator. Here, we need to use the reformu-
lated cell problem (8) to obtain

0 = Dαk

∫

Y
Aε(xT + δy,

M

∑
j=1

α j∇xΦ j(xT )+∇y QT
h (

M

∑
j=1

α jΦ j)(y)) ·∇yφh(y) dy

=

∫

Y
(DξAε)(xT + δy,

M

∑
j=1

α j∇Φ j(xT )+∇y QT
h (

M

∑
j=1

α jΦ j)(y))

(∇xΦk(xT )+∇y (Dαk(Q
T
h (

M

∑
j=1

α jΦ j)))(y)) ·∇yφh(y) dy.

Since this equation holds for every φh ∈ Wh(Y ), we have a characterization of
Dαk(Q

T
h (∑

M
j=1α jΦ j)). Combining the results, we can compute DαG(α(n)) by first

solving (8) to obtain QT
h (u

(n)
H ) and using this to determine Dαk(Q

T
h (u

(n)
H )) afterwards.
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The remaining strategy is straightforward: we assemble G(α(n)) and solve the lin-
ear system DαG(α(n))�α(n) = −G(α(n)). The subsequent HM Newton algorithm
is a detailed summary of the whole procedure above.

Let u(0)H ∈ VH(Ω) denote a suitable initial value for the HM Newton iterations.
From now on, we use the following discretization Aε

h :
⋃

T∈TH
YT,δ ×R

N → R
N of

the monotone elliptic diffusion operator Aε . For T ∈ TH , K ∈ Th and ξ ∈ R
N we

define:

Aε
h(·,ξ )|xδT (K)

:= Aε(xδT (yK),ξ ) and

(DξAε)h(·,ξ )|xδT (K)
:= (DξAε)(xδT (yK),ξ ),

where DξAε denotes Jacobian matrix of Aε with respect to the second variable. Now,
for a given tolerance TOL > 0, we present our algorithm for solving the nonlinear
elliptic HMM macro problem (6). It is in Petrov Galerkin formulation, which means
that we do not reconstruct the test functions to save computational demand.

Algorithm [HM Newton Method]
Let u(n)H ∈VH(Ω) name the solution of the last HM Newton iteration step.

1. For T ∈ TH , determine the local corrector QT
h (u

(n)
H ) ∈Wh(Y ) defined by

∫

Y
Aε

h

(
xT + δy,∇x u(n)H (xT )+∇y QT

h (u
(n)
H )(y)

)
·∇yφh(y) dy = 0,

for all φh ∈Wh(Y ). Determine QT
h (u

(n)
H ) for any T ∈ TH .

2. For any T ∈ TH and for any macroscopic base function Φi (1 ≤ i ≤ M)

with (suppΦi)∩T �= /0, determine DQT
h
(Φi,u

(n)
H ) ∈Wh(Y ) defined by:

∫

Y
(DξAε)h

(
xT + δy,∇x u(n)H (xT )+∇y QT

h (u
(n)
H )(xT )

)

(
∇xΦi(xT )+∇y DQT

h
(Φi,u

(n)
H )(y)

)
·∇yφh(y) dy = 0,

for all φh ∈Wh(Y ).
3. Define the entries of the HMM stiffness matrix M(n) by:

M(n)
i j := ∑

T∈TH

|T |
∫

ε
δ Y

−
(
(DξAε)h(xT + δy,∇x u(n)H (xT )+∇y QT

h (u
(n)
H )(y))

(∇xΦ j(xT )+∇y DQT
h
(Φ j,u

(n)
H )(y))

)
·∇xΦi(xT ) dy

and the entries of the right hand side by:
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F(n)
i :=

∫

Ω
f (x)Φi(x) dx

− ∑
T∈TH

|T |
∫

ε
δ Y

− Aε
h(xT + δy,∇x u(n)H (xT )+∇y QT

h (u
(n)
H )(y)) ·∇xΦi(xT ) dy.

Now, find (�α)(n+1) ∈ R
M , with

M(n)(�α)(n+1) = F(n).

4. Define

u(n+1)
H := u(n)H +

M

∑
k=1

(�α)(n+1)
k Φk.

If (‖(�α)(n+1)‖< TOL) stop the algorithm (uH ≈ u(n+1)
H ),

else start again with step 1, where n �→ n+ 1.

This algorithm is capable of treating any nonlinearity of the diffusion operator,
which meets the assumption, stated in Section 2. In that way, we can say that it is
an algorithm for the worst case scenario. Note, since we are in the setting of strictly
monotone operators, we have convergence for any initial value. In our computations

we chose u(0)H = 0.

4.2 Realization Using DUNE-FEM

Having a look at HM Newton algorithm, we see that it purely consists of
solving a large number of linear elliptic problems. Due to limiting memory ca-
pacities, these data is stored in files for later use. Since DUNE-FEM (see [4])
provides us with a lot of tools to handle standard linear elliptic equations, the im-
plementation becomes rather easy. We need two different discrete function space
objects of the LagrangeDiscreteFunctionSpace-type, with a template ar-
gument describing the specific grid partition. For the macroscopic space, we use the
AdaptiveLeafGridPart-object and for the microscopic space with periodic
boundary condition, we use the PeriodicLeafGridPart-object. The stiffness
matrix in our linear system of equations is of the SparseRowMatrixOperator-
type. In order to assemble the stiffness matrix, we implemented and constructed
a DiscreteEllipticOperator-object, which fits into the general concept
of DUNE-FEM and that simply adds values to the entries of an initially empty
sparse matrix. The DiscreteEllipticOperator-class requires a template ar-
gument, which describes the realization of the diffusion operator. Here we used a
DiffusionOperator-object inheriting from the existing FunctionSpace-
class. The DiffusionOperator that we implemented provides two methods:
the diffusiveFlux evaluates the diffusion in a certain point x and in a cer-
tain direction ξ and returns the current flux afterwards (i.e. f lux = Aε(x,ξ )).
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On the other hand, the jacobianDiffusiveFlux-method evaluates the Jaco-
bian matrix of the diffusion operator with respect to the second variable (i.e. re-
turn f lux = DξAε(x,ξ )direction). By means of these methods we assemble the
stiffness matrix and the right hand side in our non-symmetric algebraic system
of equations. For solving it, we make use of the OEMBICGSQOp-class, which
provides us with a Bi-CG squared method. The OEMBICGSQOp-class takes two
template arguments: our discrete function space class and our realization of the
SparseRowMatrixOperator-class. An overview on the essential classes for
solving a cell problem might look like this:
using namespace Dune;
typedef FunctionSpace< double , double , DIM , POLORDER > FuncSpace;
typedef LagrangeDiscreteFunctionSpace< FuncSpace, PeriodicGridPart, 1 > DiscFuncSpace;
typedef AdaptiveDiscreteFunction< DiscFuncSpace > DiscFunction;
typedef SparseRowMatrixOperator< DiscFunction, DiscFunction, MatrixTraits > FEMMatrix;
typedef OEMBICGSQOp< DiscFunction, FEMMatrix > InverseFEMMatrix;
typedef DiffusionOperator< FuncSpace > Diffusion;
typedef DiscreteEllipticOperator< DiscFunction, Diffusion > DiscreteEllipticOperator;

Finally, we assemble and solve all the required cell problems in the order in which
they are stated in the algorithm. For instance:
DiscFuncSpace discFuncSpace( periodicGridPart );
Diffusion A;
DiscreteEllipticOperator discreteEllipticOp( discFuncSpace, A );
DiscFunction solutionCellProblem("solution cell problem", discFuncSpace );
DiscFunction rhs("right hand side cell problem", discFuncSpace );
FEMMatrix stiffnessMatrix("FEM stiffness matrix", discFuncSpace, discFuncSpace );
discreteEllipticOp.assembleMatrix( stiffnessMatrix );
InverseFEMMatrix biCGStab( stiffnessMatrix, 1e-8, 1e-8, 20000, VERBOSE );
rhsassembler.assemble < QUADORDER >( G , rhs);
biCGStab( rhs, solutionCellProblem );

Saving the results to a file and using them to assemble the final macroscopic system
of equations ends the required code.

5 Numerical Experiment

In the following we present the results of a numerical experiment, which we used to
validate our HM Newton algorithm and the corresponding implementation. We are
dealing with a nonlinear model problem, where the diffusion operator Aε is period-
ically oscillating with period ε = 0.05. In this scenario we are able to determine the
corresponding homogenized solution u0, as well as we can perform an expensive
fine scale computation to determine the exact solution uε . The equation is:

Problem 0.2 (Nonlinear elliptic model equation). Find uε ∈ H̊1([0,2]2) with:

−∇ ·Aε(x,∇uε) = 1 in [0,2]2,

uε = 0 on ∂ [0,2]2.

The nonlinear diffusion operator Aε is given by:

Aε(x,ξ ) =
(

(0.1+ cos(2π x1
ε )

2) · (ξ1 +
1
3ξ

3
1 )

(0.101+(0.1sin(2π x2
ε ))) · (ξ2 +

1
3ξ

3
2 )

)
.
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Table 1 Evaluation of the error between HMM-approximation uH and homogenized solution
u0. We can see a second order convergence of uH to u0 in the L2-norm.

H h ‖uH −u0‖L2(Ω)

2−1 2−2 2.62·10−1

2−2 2−3 8.06·10−2

2−3 2−4 2.34·10−2

2−4 2−5 5.47·10−3

2−5 2−6 9.91·10−4

(H,h)→ (H
2 ,

h
2 ) EOC(eH)

(2−1,2−2)→ (2−2,2−3) 1.7018
(2−2,2−3)→ (2−3,2−4) 1.7864
(2−3,2−4)→ (2−4,2−5) 2.0941
(2−4,2−5)→ (2−5,2−6) 2.4645

Table 2 Evaluation of the error between HMM-approximation uH and exact solution uε .
We observe convergence, but only up to an accuracy of order ε , which is due to ‖u0 −
uε‖L2(Ω) =O(ε).

H h ‖uH −uε‖L2(Ω)

2−1 2−2 2.62 ·10−1

2−2 2−3 8.14 ·10−2

2−3 2−4 2.74 ·10−2

2−4 2−5 1.61 ·10−2

2−5 2−6 1.55 ·10−2

(H,h)→ (H
2 ,

h
2 ) EOC(eεH )

(2−1,2−2)→ (2−2,2−3) 1.6868
(2−2,2−3)→ (2−3,2−4) 1.5697
(2−3,2−4)→ (2−4,2−5) 0.7625
(2−4,2−5)→ (2−5,2−6) 0.0645

Fig. 1 Left figure: comparison between the isolines of HMM approximation uH and homog-
enized solution u0. There is no difference perceptible. Right figure: comparison between the
isolines of uH and solution uε . We can see only small difference, resulting from the fine scale
oscillations of uε .
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Below, H denotes the macro mesh size, given by H :=sup{diam(T)|T ∈TH} and
h denotes the micro mesh size, defined by h :=sup{diam(K)|K ∈ Th}. Moreover,
the experimental order of convergence (EOC) for two errors eH and e H

2
(i.e. for

(H,h)→ (H
2 ,

h
2)) is defined by the ratio

log

( ‖eH‖L2(Ω)

‖e H
2
‖L2(Ω)

)

log(2)
.

Since heterogeneous multiscale finite elements methods are constructed to approx-
imate the coarse scale (or homogenized) part u0 of the exact solution uε , we start
with evaluating the error eH := ‖u0 − uH‖L2(Ω). The results are shown in Table 1,
where we can see that uH converges to u0 with second order. This is just the behav-
ior that we expected. If we have a look at the error eεH := ‖uε − uH‖L2(Ω) we only
expect convergence up to a certain accuracy. This is reasonable, if we consider that
uε contains fine scale oscillations, which can not be captured by the coarse function
uH . Analytically, it is well known that ‖uε −u0‖L2(Ω) =O(ε). Again, having a look
at Table 2, this prediction can be confirmed. However, since ε is very small, uH can
be used as an accurate approximation of uε itself. That is also what we see, by look-
ing at Figure 1. The isolines of HMM approximation and homogenized solution are
almost identical, whereas the isolines of uH and uε only differ in microscale con-
tributions. We conclude that the HM Newton algorithm is an accurate and effective
tool to determine the HMM approximation uH , given by equation (6).
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