
IEEE Expert, 10, no. 5. pp. 68-76

Inducing Logic Programs With Genetic Algorithms:
The Genetic Logic Programming System

Man Leung Wong
Department of Computing and Decision
Sciences
Lingnan University
Tuen Mun
Hong Kong

mlwong@ln.edu.hk

Kwong Sak Leung
Department of Computer Science
The Chinese University of Hong Kong
Hong Kong

ksleung@cs.cuhk.edu.hk

Abstract

Inductive Logic Programming (ILP) integrates the techniques from traditional
machine learning and logic programming to construct logic programs from training
examples. Most existing systems employ greedy search strategies which may trap the
systems in a local maxima. This paper describes a system, called the Genetic Logic
Programming System (GLPS), that uses Genetic Algorithms (GA) to search for the
best program. This novel framework combines the learning power of GA and
knowledge representation power of logic programming to overcome the shortcomings
of existing paradigms.

A new method is used to represent a logic program as a number of tree
structures. This representation facilitates the generation of initial logic programs and
other genetic operators. Four applications are used to demonstrate the ability of this
approach in inducing various logic programs including the recursive factorial
program. Recursive programs are difficult to learn in Genetic Programming (GP).
This experiment shows the advantage of Genetic Logic Programming (GLP) over
GP.

Only a few existing learning systems can handle noisy training examples, by

avoiding overfitting the training examples. However, some important patterns will be
ignored. The performance of GLPS on learning from noisy examples is evaluated on
the chess endgame domain. A systematic method is used to introduce different
amounts of noise into the training examples. A detailed comparison with FOIL has
been performed and the performance of GLPS is significantly better than that of
FOIL by at least 5% at the 99.995% confidence interval at all noise levels. The
largest difference even reaches 24%. This encouraging result demonstrates the
advantages of our approach over existing ones.

Page 2

1. Introduction

Currently, there have been increasing interests in systems that induce first order logic
programs. Inductive Logic Programming (ILP) is the combinations of techniques and
interests in inductive concept learning and logic programming. ILP is more powerful
than traditional inductive learning methods because it uses an expressive first-order
logic framework and facilitates the application of background knowledge.
Furthermore, ILP has a strong theoretical foundation from logic programming and
computational learning theory. It also has very impressive applications in knowledge
discovery in databases (Lavrac and Dzeroski 1994) and logic program synthesis.
However, ILP is limited in performing concept learning. Other learning paradigms
such as reinforcement learning and strategy learning cannot be achieved by ILP.

FOIL (Quinlan 1990) efficiently learns function free Horn clauses, a useful
subset of first order predicate logic. It uses a top-down, divide and conquer approach
guided by information-based heuristics to produce a concept description that covers
all positive examples and excludes all negative examples. FOCL (Pazzani and Kibler
1992) extends FOIL by integrating inductive and analytic learning in a uniform
framework and by allowing different forms of background knowledge to be used in
generating function free Horn clauses. GOLEM (Muggleton and Feng 1990) learn
logic programs by employing inverse resolution. Despite the efficiency of FOIL,
FOCL and GOLEM, they are highly dependent on the given vocabulary and the
forms of training examples. They cannot extend their vocabulary. In logic
programming, inventing new predicates can be treated as creating useful subroutines.

The task of inducing logic programs can be formulated as a search problem

(Mitchell 1982) in a concept space of logic programs. Various approaches differ
mainly in the search strategies and heuristics used to guide the search. Since the
search space is extremely large in logic programming, strong heuristics are required to
manage the problem. Most systems are based on a greedy search strategy. The
systems generate a sequence of logic programs from general to specific ones (or from
specific to general) until a consistent target program is found. Each program in the
sequence is obtained by specializing or generalizing the previous one. For example,
FOIL applies the hill climbing search strategy guided by an information-gain
heuristics to search programs from general to specific ones. However, these strategies
and heuristics are not always applicable because they may trap the systems in local
maxima. In order to overcome this problem, non greedy strategies should be adopted.

An alternate search strategy is Genetic Algorithm (GA) which performs

parallel searches. Genetic Algorithm performs both exploitation of the most
promising solutions and exploration of the search space. It is featured to tackle hard
search problems and thus it may be applicable to logic program induction. Since its
invention (Holland 1975), GA has proven successful in finding an optimal point in a
search space for a wide variety of problems (Goldberg 1989).

A Genetic Programming paradigm (GP) extends traditional GA to learn

computer programs represented as S-expressions of LISP (Koza 1992; 1994). GP is a
very general and domain-independent search method. It has impressive applications in
symbolic regression, learning of control and game playing strategies, evolution of
emergent behavior, evolution of subsumption, automatic programming, concept
learning, induction of subroutines and hierarchy of a program, and meta-level learning
(Koza 1992; 1994, Kinnear 1994, Wong and Leung 1994a; 1994b; 1995). Although it

Page 3

is very general, it has little theoretical foundation. The shortcomings of GP are
summarized as follows:

• The semantics of the program created are unclear because (a) the
semantics of some primitive functions such as LEFT, RIGHT and
MOVE (Koza 1992) are difficult to define. (b) various execution
models can be used to execute the programs generated. Thus the
semantics of the programs depends on the underlying execution model.
It is possible to create two identical programs with different semantics
because the underlying execution models are different.

• The underlying execution model must be defined before programs can
be created. It means that users must have some ideas of the solutions.

• It is difficult if not impossible to generate recursive programs
• The sub-functions inventing mechanism is restrictive (Koza 1994). In

GP, the user must decide how many sub-functions (called ADF in the
GP) can be created, the number of formal arguments in each sub-
function and whether these sub-functions can invoke one another.

• A special execution model must be used to run programs with iteration.
This model imposes a restriction on where iterations can be introduced
in the final programs. This requirement implies that the user must
know in advance that the programs being found have iteration.

Since ILP and GP have their own pros and cons, this observation motivates

the integration of the two approaches. In this paper, a system called the Genetic Logic
Programming System (GLPS) is presented. It is a novel framework for combining the
search power of Genetic Algorithms and knowledge representation power of first
order logic. The shortcomings mentioned above could also be alleviated or
eliminated. Currently, GLPS can learn function free first order logic programs with
constants. Section 2 presents a description of the mechanism used to generate the
initial population of programs. One of the genetic operators, crossover, is detailed in
section 3. Section 4 presents a high level description of GLPS. The results of some
sample applications are presented in the section 5. Discussion and conclusion appear
in the last section.

2. Reprsentations of logic programs

GLPS uses first order logic and logic programming to represent knowledge and
algorithms and can induce logic programs by GA. In this section, we present the
representation method of logic programs. Let us start by introducing some definitions.
A variable is represented by a question mark ? followed by a string of letters and
digits. For example ?x is a variable. A function symbol is a letter followed by a string
of letters and digits. A predicate symbol is a letter followed by a string of letters and
digits. The negation symbol is ~. A term is either a variable, a function or a constant.
A function is represented by a function symbol followed by a bracketed n-tuple of
terms. A constant is simply a function symbol without any arguments. For example,
father(mother(John)) is a function and John is a constant when father, mother and
John are function symbols. A predicate symbol immediately followed by a bracketed
n-tuple of terms is called an atomic formula. The Genetic Logic Programming System
(GLPS) allows atomic formula with variables and constants but does not allow them
to contain funcaaation symbols.

Page 4

If A is an atomic formula, A and ~A are both literals. A is called a positive
literal and ~A is a negative literal. A clause is a finite set of literals, it represents the
disjunction of its literals. The clause {L1, L2, ..., ~Li, ~Li+1, ...} can be represented
as L1, L2, ... ← Li, Li+1, A Horn clause is a clause which contains exactly one
positive literal. The positive literal in a Horn clause is called the head of the clause
while the negative literals are called the body of the clause. A set of clauses
represents the conjunction of its clauses. A logic program P is a set of Horn clauses. A
rule in a logic program P for the atomic formula L is a collection of Horn clauses each
with the head L.

In GLPS, populations of logic programs are genetically bred using the

Darwinian principle of survival and reproduction of the fittest along with a genetic
crossover operation appropriate for mating logic programs. The fundamental
difficulty in GLPS is to represent logic programs appropriately so that initial
population can be generated easily and the genetic operators such as crossover and
reproduction can be performed effectively. A logic program can be represented as a
forest of AND-OR trees. The leaves of an AND-OR tree are positive or negative
literals generated using the predicate symbols and terms of the problem domain. For
example, consider the following logic program:

C1: cup(?x) :- insulate_heat(?x), stable(?x), liftable(?x).
C2: cup(?x) :- paper_cup(?x).

C3: stable(?x) :- bottom(?x, ?b), flat(?b).
C4: stable(?x) :- bottom(?x, ?b), concave(?b).
C5: stable(?x) :- has_support(?x).

C6: liftable(?x) :- has(?x, ?y), handle(?y).
C7: liftable(?x) :- small(?x), made_from(?x, ?y),
 low_density(?y).

The predicate symbols are {cup, insulate_heat, stable, liftable, paper_cup, bottom,
flat, concave, has_support, has, handle, small, made_from, low_density} and the
terms are {?x, ?y, ?b}. This program can be represented as a forest of AND-OR trees
(figure 1).

Page 5

AND

OR

cup(?x)

AND

paper-cup(?x)

c1

insulate-heat(?x)

stable(?x) liftable(?x)

c2

OR

OR

AND AND

stable(?x)

has-support(?x) c5

bottom(?x, ?b) flat(?b) bottom(?x, ?b) concave(?b)

c3 c4

OR

AND AND

AND

has(?x, ?y) handle(?y)

small(?x) made-from(?x, ?y)

low-density(?y)

liftable(?x)

c6 c7

Figure 1: A representation of a program

Since a logic program can be represented as a forest of AND-OR trees, we can

randomly generate a forest of AND-OR trees for the program and randomly fill the
leaves of these trees with literals of the problem. The high level description of the
algorithm used to generate an initial population is depicted in figure 2. For the above
example, if the target concept is cup, the sub-concepts are stable and liftable and the
terms are {?x, ?y, ?b}, the algorithm generates the following logic programs
randomly:

Page 6

C1': cup(?x) :- bottom(?y), handle(?b).
C2': cup(?x) :- small(?x), insulate_heat(?y).

C3': stable(?b) :- cup(?b), paper_cup(?x), flat(?y), flat(?x).

C4': liftable(?x) :- liftable(?y).
C5': liftable(?y) :- concave(?y).

Alternatively, an initial population of logic programs can be induced by other

learning systems, such as a variation of FOIL (Quinlan 1990), using a portion of the
training examples. Then a forest of AND-OR trees can be generated for each logic
program learned. If there are more than one representation for a logic program, one of
them will be selected randomly.

Assume the predicate symbols Pred is {p1, p2,, pn} and the terms
are { t1, t2, ..., tm}. A special symbol in Pred is the target
concept (Target) and some other symbols in Pred are the sub-concepts
(Sub) to be learned. If there is no sub-concepts in the target logic
programs, Sub is empty. All other predicate symbols represent
operational concepts and must be defined by either extensional tuples
or built-in operations.

Let Depth be an input parameter that specifies the maximum depth of
 the AND-OR trees created.
Let Balance be an input parameter that controls whether balance or
 unbalance AND-OR trees will be generated.
Let All-concepts be the union of Target and Sub.

For all concepts in All-concepts do
 1. Create an AND-OR tree for the current concept.
 2. The leaves of the AND-OR tree are selected from literals in the

domain.
 3. Store the AND-OR tree as a rule in the logic program.

Figure 2: Algorithm for generating an initial population randomly

3. Crossover of logic programs

We can apply crossover to the omponents of a logic program including the whole
logic program, the rules, the clauses and the antecedent literals. In GLPS, the terms of
literals cannot be exchanged. Thus crossover components are referred to by a list of
numbers. The list can have at most three elements:

1. {} refers to the whole logic program.
2. {m} refers to the mth rule in the program. A rule has one or more

clauses.
3. {m, n'} refers to a clause or a number of clauses of the mth rule in the

program where n' is a node number of the corresponding sub-tree. For
instance, let the mth rule has Nm clauses which are arranged in an OR-
tree as follows:

Page 7

OR

OR OR

OR

OR

• • •

• •

•

0

1

2

3 4

5 6

7 9 10

8

Each leaf in the tree represents a clause. In the example, the tree has
six clauses, i.e. Nm = 6. There are 11 nodes in the tree, and the number
of nodes is denoted by N'm. n' in the list {m, n'} is between 0 and N'm-
1. Thus, { m, n'} represents a clause if n' corresponds to a leaf node. It
refers to a set of clauses if n' corresponds to an internal node in the
tree.

4. {m, n, l'} refers to a literal or a set of literals of the nth clause of the

mth rule where l' is also a node number of the corresponding sub-tree.
For example, let the clause has Lm,n antecedent literals. These literals
are arranged in an AND-tree as follows:

AND

AND

AND AND

•

• • • •

0

1

2 5

3 4 6 7

8

Each leaf in the tree represents an antecedent literal and there are 5
antecedent literals, i.e. Lm, n = 5. Let the number of nodes in an AND
tree be L'm,n which is 9 for the above tree. The third number in {m, n,
l'} can have value between 0 and L'm, n-1. {m, n, l'} represents a literal
if l' refers to a leaf node. It is a set of literals if l' refers to an internal
node.

Page 8

There are four kinds of crossover points represented by the above lists of
numbers. Two crossover points are compatible if their representations (i.e. lists) have
the same number of elements. In GLPS, crossover between two parental programs
can only occur at compatible crossover points. Consider the following logic program,
Prog1, represented in Horn clauses:

C1: cup(?x) :- insulate_heat(?x), stable(?x), liftable(?x)
C2: cup(?x) :- paper_cup(?x)

C3: stable(?x) :- bottom(?x, ?b), flat(?b)
C4: stable(?x) :- bottom(?x, ?b), concave(?b)
C5: stable(?x) :- has_support(?x)

C6: liftable(?x) :- has(?x, ?y), handle(?y)
C7: liftable(?x) :- small(?x), made_from(?x, ?y),

 low_density(?y)

and the following logic program, Prog2:

C1': cup(?x) :- insulate_heat(?x), stable(?x)

C2': stable(?x) :- bottom(?x, ?b), flat(?b), concave(?b),

 has_support(?x)

The AND-OR trees of Prog1 and Prog2 are depicted respectively in figures 3
and 4.

Page 9

Rule for stable(?x) - The second rule of the program

AND

• •

c3

0

1 2
bottom(?x,?b) flat(?b)

•
c5

0
has-support(?x)

AND

• •1 2

0

c4

bottom(?x, ?b) concave(?b)

OR

OR •

• •

stable(?x)

0

1

2 3

4

c3 c4

c5

Rule for liftable(?) - The third rule of the program

OR

• •

liftable(?x)

0

1 2
c7c6

AND

• •

c6

has(?x, ?y)
1 2

handle(?y)

0 AND

AND

• •

•

c7

0

1

2 3

4

low-density(?y)

small(?x) made-from(?x, ?y)

OR

• •1

0

2
c1 c2

cup(?x)

•0
c2

paper-cup(?x)

Rule for cup(?x) - The first rule of the program

•

• •

0

1
2

3 4

c1

stable(?x)

insulate-heat(?x) AND

AND

Figure 3: The And-Or tree of program Prog1

Page 10

Rule for stable(?x) - The second rule of the program

•
stable(?x)

0
c2’ AND

AND AND

• • • •

c2'

0

1

2 3

4

5 6
bottom(?x, ?b) flat(?b) concave(?b) has-support(?x)

Rule for cup(?x) - The first rule of the program

•
cup(?x)

0
c1'

• •

AND

c1'

0

1 2
insulate-heat(?x) stable(?x)

Figure 4: The And-Or tree of program Prog2

If the crossover points are empty lists {}, the offspring are identical to their
parents and the crossover operation degenerates into reproduction. Thus, GLPS has
no independent reproduction operation. Reproduction is emulated by crossover at
node 0. There is a parameter P0 which controls the probability of reproduction.

The parameter P1 controls the probability of a list with only one element being

generated. For instance, if the crossover points are {2} and {2}, the offspring are:

C1: cup(?x) :- insulate_heat(?x), stable(?x), liftable(?x)
C2: cup(?x) :- paper_cup(?x)

C2': stable(?x) :- bottom(?x, ?b), flat(?b),

 concave(?b), has_support(?x)

C6: liftable(?x) :- has(?x, ?y), handle(?y)
C7: liftable(?x) :- small(?x), made_from(?x, ?y),

 low_density(?y)

and

Page 11

C1': cup(?x) :- insulate_heat(?x), stable(?x)

C3: stable(?x) :- bottom(?x, ?b), flat(?b)
C4: stable(?x) :- bottom(?x, ?b), concave(?b)
C5: stable(?x) :- has_support(?x)

The parameter P2 determines the probability that a list of two elements is

generated. If the crossover points are {2, 1} for Prog1 and {2, 0} for Prog2, the
offspring are:

C1: cup(?x) :- insulate_heat(?x), stable(?x), liftable(?x)
C2: cup(?x) :- paper_cup(?x)

C2': stable(?x) :- bottom(?x, ?b), flat(?b),

 concave(?b), has_support(?x)
C5: stable(?x) :- has_support(?x)

C6: liftable(?x) :- has(?x, ?y), handle(?y)
C7: liftable(?x) :- small(?x), made_from(?x, ?y),

 low_density(?y)

and

C1': cup(?x) :- insulate_heat(?x), stable(?x)

C3: stable(?x) :- bottom(?x, ?b), flat(?b)
C4: stable(?x) :- bottom(?x, ?b), concave(?b)

The parameter P3 determines the probability that a list of three elements is

created. If the crossover points are {2, 3, 0} for Prog1 and {2, 0, 1} for Prog2, the
offspring are:

C1: cup(?x) :- insulate_heat(?x), stable(?x), liftable(?x)
C2: cup(?x) :- paper_cup(?x)

C3: stable(?x) :- bottom(?x, ?b), flat(?b)
C4: stable(?x) :- bottom(?x, ?b), flat(?b)
C5: stable(?x) :- has_support(?x)

C6: liftable(?x) :- has(?x, ?y), handle(?y)
C7: liftable(?x) :- small(?x), made_from(?x, ?y),

 low_density(?y)

and

C1': cup(?x) :- insulate_heat(?x), stable(?x)

C2': stable(?x) :- bottom(?x, ?b), concave(?b),

 concave(?b), has_support(?x)

Hence, the crossover operation has many effects depending on the crossover

points and only generates syntically valid logic programs.

Page 12

4. The Genetic Logic Programming System (GLPS)

This section presents the evolutionary process performed by GLPS. It starts with an
initial population of first-order concepts generated randomly, induced by other
learning systems, or provided by the user. The initial logic programs are composed of
the predicate symbols, the terms and the atomic formulas of the problem domain. An
atomic formula can be defined extensionally as a list of tuples for which the formula
is true or intensionally as a set of Horn clauses that can compute whether the formula
is true. Intensional atomic formulas can also be standard built-in formulas that
perform arithmetic, input/output and logical functions etc.

For concept learning (De Jong et al 1993), each individual logic program in

the population is measured in terms of how well it covers positive examples and
excludes negative examples. This measure is the fitness function of GLPS. Typically,
each logic program is run over a number of training examples so that its fitness is
measured as the total number of misclassified positive and negative examples.
Sometimes, if the distribution of positive and negative examples is extremely uneven,
this fitness function is not good enough to focus the search. For example, assume that
there are 2 positive and 10000 negative examples, if the number of misclassified
examples is used as the fitness function, a logic program that deduces everything are
negative will have very good fitness. Thus, in this case, the fitness function should be
a weighted sum of the total numbers of misclassified positive and negative examples.
GLPS can also learn logic programs computing arithmetic functions such as square
root or factorial. In this case, the fitness function calculates the difference between the
outputs found by the logic program and the results of the target arithmetic function.

The initial logic programs in generation 0 are normally incorrect and have

poor performances. However, some individuals in the population will be fitter than
others. The Darwinian principle of reproduction and survival of the fittest and the
genetic operation of sexual crossover are used to create new offspring population of
programs from the current population. The reproduction operation involves selecting
a program from the current population of programs and allowing it to survive by
copying it into the new population. The selection is based on either fitness (fitness
proportionate selection) or tournament (tournament selection).

The genetic process of crossover is used to create two offspring programs

from the parental programs selected by either fitness proportionate or tournament
selection. The parental programs are usually of different sizes and structures and the
offspring programs are composed of the clauses and the literals from their parents.
These offspring programs are typically of different sizes and structures from their
parents. The new generation replaces the old generation after the reproduction and
crossover operations are performed on the old generation. The fitness of each program
in the new generation is estimated and the above process is iterated over many
generations until the termination criterion is satisfied.

The algorithm will produce populations of programs which tend to exhibit
increasing average fitness in producing correct answers for the training examples.
GLPS returns the best logic program found in any generation of a run as the result. A
high level description of GLPS is presented in figure 5.

Page 13

Assume that the problem domain has a set of n predicate symbols Pred
= {p1, p2, ..., pn} and a set of m terms Terms = {t1, t2, ..., tm}.
These predicate symbols and terms can be used to generate various
positive and negative literals.

1. Generate an initial population of logic programs that is

composed of the predicate symbols Pred, the terms Terms and
atomic formulas of the domain.

2. Execute each logic program in the population and assign it a
fitness value according to how well it covers positive
examples and excludes negative examples.

3. Create a new population of logic programs by applying the two
primary genetic operations: reproduction and crossover. The
operations are applied to logic programs in the population
selected by fitness proportionate or tournament selections.

4. If the termination criterion is not satisfied, go to step 2.
5. The single best program in the population produced during the

run is designated as the result of the run of genetic
programming.

Figure 5: High level description of GLPS

5. Applications

A preliminary implementation of GLPS is completed. It is implemented in CLOS
(Common Lisp Object System). It has been tested on various CLOS implementations
and different hardware platforms including CMU Common Lisp on a SparcStation,
Lucid Common Lisp on a DecStation and MCL on a Macintosh.

Four applications of GLPS on learning are given below as demonstrations,
namely, the Winston's arch problem, the modified Quinlan's network reachability
problem, the factorial problem and the chess-endgame problem. Five runs are
performed for the first three problems and fifty runs are preformed for the last
problem. The parameters P0, P1, P2 and P3 are 0.0, 0.1, 0.3 and 0.6 respectively. The
maximum number of generations of each run is 50 for the first two problems, 20 for
the third problem and 50 for the last problem.

5.1. The Winston's arch problem

In this learning task, the objective is to learn the nature of arches from examples
(Winston 1975). The domain has several operational relations as follows:

1) supports(?A, ?B) -- ?A supports ?B
2) left-of(?A, ?B) -- ?A is on the left of ?B
3) touches(?A, ?B) -- ?A touches ?B
4) brick(?A) -- ?A is a brick
5) wedge(?A) -- ?A is a wedge
6) parallel-piped(?A) -- ?A is a brick or a wedge.

The non-operational relation arch(?A, ?B, ?C) contains all tuples <?A, ?B,

?C> that form an arch with lintel ?A. There are 2 positive and 1726 negative training
examples. Since the number of negative examples is much larger than that of positive
examples, the standardized fitness is the weighted number of misclassified examples.
Each misclassified positive example has a weight of 863 while the negative one has a

Page 14

weight of 1. The predicate symbols are the operational and non-operational predicates
described. The terms are {?A, ?B, ?C} and the population size is 1000. The maximum
number of generations is 50. GLPS can find a near correct program within 2
generations. One of the best programs induced is:

arch(?A, ?B, ?C) :- left-of(?C, ?B), wedge(?C)
arch(?A, ?B, ?C) :- left-of(?B, ?C), supports(?B, ?A)

The standard solution of this problem is:

arch(?A, ?B, ?C) :- left-of(?B, ?C), supports(?B, ?A),
 ~touches(?B, ?C)

and it is similar to the second clause of the program induced. Figure 6 delineates the
best, average and worst standardized fitnesses for increasing generations.

0 10 20 30
Generation

1

10

100

1000

10000

Best
Average
Worst

Winston's Arch Problem
Population size 1000

Figure 6: Performance for the Winston's Arch problem

Page 15

5.2. The modified Quinlan's network reachability problem

The network reachability problem is originally proposed by Quinlan (Quinlan 1990),
the domain involves a directional network such as the one depicted as follows:

0 1 2 3 4

The structural information of the network is the literal linked-to(?x, ?y)

denoting that node ?x is directly linked to node ?y. The extension of linked-to(?x, ?y)
is {<0, 1>, <1, 2>, <2, 3>, <3, 4>}. Here, the learning task is to induce a logic
program that determines whether a node ?x can reach another node ?y. This problem
can also be formulated as finding the intensional definition of the relation can-
reach(?x, ?y) given its extension. Its extensional definition is {<0, 1>, <0, 2>, <0, 3>,
<0, 4>, <1, 2>, <1, 3>, <1, 4>, <2, 3>, <2, 4>, <3, 4>}. The tuples of this relation are
the positive training examples and {<0, 0>, <1, 0>, <1, 1>, <2, 0>, <2, 1>, <2, 2>, <3,
0>, <3, 1>, <3, 2>, <3, 3>, <4, 0>, <4, 1>, <4, 2>, <4, 3>, <4, 4>} are the negative
examples.

In this experiment, the predicate symbols are can-reach and linked-to. The

symbol can-reach represents the target concept while linked-to is an operational
concept. The terms are {?x, ?y, ?z}. The population size is 1000. The standardized
fitness is the total number of misclassified training examples. The maximum number
of generations is 50. GLPS can find a perfect program that covers all positive
examples while excludes all negative ones within a few generations. One program
found is:

can-reach(?x, ?y) :- linked-to(?z, ?y), linked-to(?x, ?z)
can-reach(?x, ?y) :- linked-to(?x, ?y), linked-to(?x, ?z)
can-reach(?x, ?y) :- can-reach(?x, ?z), can-reach(?z, ?y)

This program can be simplified to

can-reach(?x, ?y) :- linked-to(?x, ?z), linked-to(?z, ?y)
can-reach(?x, ?y) :- linked-to(?x, ?y)
can-reach(?x, ?y) :- can-reach(?x, ?z), can-reach(?z, ?y)

The first clause of this program declares that a node ?x can reach a node ?y if

there is another node ?z that directly connects them. The second clause declares that a
node ?x can reach a node ?y if they are directly connected. The third clause is
recursive. It expresses that a node ?x can reach a node ?y if there is another node ?z,
such that ?z is reachable from ?x and ?y is reachable from ?z. In fact, this program is
semantically equivalent to the standard solution

can-reach(?x, ?y) :- linked-to(?x, ?y)
can-reach(?x, ?y) :- linked-to(?x, ?z), can-reach(?z, ?y)

This experiment demonstrates that GLPS can learn recursive program

naturally and effectively. Recursive functions are difficult to learn in Koza's GP
(Koza, 1992), this experiment shows the advantage of Genetic Logic Programming
(GLP) over GP. Figure 7 depicts the best, average and worst standardized fitnesses
for increasing generations.

Page 16

0 10 20 30 40 50
Generation

0

5

10

15

20

Best
Average
Worst

Simplified network problem
Population size 1000

Figure 7: Performance for the modified network reachability problem

5.3. The factorial problem

This experiment learns the relation factorial(?A, ?B) where ?B is the factorial of ?A.
The predicate symbols are factorial, plus and multiplication. The symbol factorial
represents the target concept while plus and multiplication are built-in predicates used
to perform arithmetic operations. The literal plus(?x, ?y, ?z) finds the sum of ?x and
?y and assigns the output to ?z if ?x and ?y are instantiated and ?z is not instantiated.
It finds the difference of ?z and ?x and assigns the result to ?y if ?x and ?z are
instantiated and ?y is not instantiated. It calculated the difference of ?z and ?y and
assigns the output to ?x if ?z and ?y are instantiated and ?x is not instantiated. If ?x, ?y
and ?z are all instantiated, the literal plus(?x, ?y, ?z) is satisfied if the sum of ?x and
?y is equal to ?z. The literal is not satisfied if more than one variable is not
instantiated.

The literal multiplication(?x, ?y, ?z) finds the product of ?x and ?y and assigns

the output to ?z if ?x and ?y are instantiated and ?z is not instantiated. It divides ?z by
?x and assigns the result to ?y if ?x and ?z are instantiated and ?y is not instantiated. It
divides ?z by ?y and assigns the output to ?x if ?z and ?y are instantiated and ?x is not
instantiated. If ?x, ?y and ?z are all instantiated, the literal multiplication(?x, ?y, ?z) is
satisfied if the product of ?x and ?y is equal to ?z. The literal is not satisfied if more
than one variable is not instantiated.

 The terms are {0, 1, 2, ?w, ?x, ?y, ?z}. The population size is 1000 and the

maximum number of generations is 20. The standardized fitness of a program is
defined as follows:

Page 17

 min[1,
i

∑ abs (
prog_ factorial(i) − factorial(i)

factorial(i)
)]

where i is the input value;

 factorial(i) returns the correct result for the input i;
and
 prog_factorial(i) returns the result of the logic program
 for the input i

 In this experiment, we use five fitness cases for i from 0 to 4. Since the search

space of this problem is extremely large, a number of incorrect initial clauses are used
to create the initial population of programs. An individual program contains a random
subset of clauses from these incorrect initial clauses. The clauses are as follows:

factorial(0, 1) :- plus(1, 1, 2).
factorial(1, 1) :- plus(1, 1, 2).
factorial(?x, ?y) :- plus(?z, 1, ?x), plus(?x, ?y ?z).
factorial(?x, ?y) :- plus(?z, ?x, ?y) factorial(?z, ?w),

 multiplication(?w, ?x, ?y).
factorial(1, 1) :- plus(1, 1, 2), multiplication(?x, ?x, ?y).
factorial(?x, ?y) :- plus(?z, 1, ?x),

 multiplication(?z, ?z, ?w),
 multiplication(?w, ?x, ?y).

factorial(?x, ?y) :- factorial(?z, ?w),
 multiplication(?w, ?x, ?y),
 multiplication(?x, ?y, ?z).

factorial(?x, ?y) :- plus(?x, ?x, ?w),
 multiplication(?w, ?w, ?z),
 multiplication(?z, ?x, ?y).

factorial(?x, ?y) :- multiplication(?x, ?x, ?w),
 factorial(?w, ?z), plus(?z, ?x, ?y).

During one of the runs, the correct logic program is induced in the eighth

generation. The program is

 factorial(0, 1) :- plus(1, 1, 2).
 factorial(?x, ?y) :- factorial(?z, ?w),
 multiplication(?w, ?x, ?y),
 multiplication(?x, ?y, ?z).
 factorial(?x, ?y) :- plus(?z, ?x, ?y), factorial(?z, ?w),
 multiplication(?w, ?x, ?y).
 factorial(0, 1) :- multiplication(?w, 0, 1).
 factorial(?x, ?y) :- multiplication(?w, ?x, ?y),
 multiplication(?w, ?x, ?y),
 multiplication(?x, ?y, ?z).
 factorial(1, 1) :- plus(1, 1, 2), multiplication(?x, ?x, ?y).
 factorial(?x, ?y) :- plus(?z, 1, ?x), factorial(?z, ?w),
 multiplication(?w, ?x, ?y).
 factorial(?x, ?y) :- plus(?z, 1, ?x), plus(?x, ?y, ?z).

In this program, the first term of the factorial literal should be an instantiated
input value and the second term should be the output result. Some clauses in this
program can be eliminated because they contain arithmetic literals with more than one
un-instantiated variable. For example, the third clause can be removed. Thus, the
program is simplified to

Page 18

 factorial(0, 1) :- plus(1, 1, 2).
 factorial(0, 1) :- multiplication(?w, 0, 1).
 factorial(?x, ?y) :- plus(?z, 1, ?x), factorial(?z, ?w),
 multiplication(?w, ?x, ?y).
 factorial(?x, ?y) :- plus(?z, 1, ?x), plus(?x, ?y, ?z).

Since the second clause in the simplified program cannot be satisfied in every
situation, it is removed from the program too. Although the last clause is incorrect, it
will not be used during execution, so it is eliminated too. The final program is

 factorial(0, 1) :- plus(1, 1, 2).
 factorial(?x, ?y) :- plus(?z, 1, ?x), factorial(?z, ?w),
 multiplication(?w, ?x, ?y).

which is a correct logic program to find the factorial of a number. Figure 8 depicts the
best, average and worst standardized fitnesses against increasing generations.

0 5 10 15 20

Generation

0

1

2

3

4

5

6

S
ta

nd
ar

di
ze

d
fit

ne
ss

Avg. Best
Avg. Average
Avg. Worst

Factorial Problem
Population size 1000

Figure 8: Performance for the factorial problem

5.4. Learning program from imperfect data

In knowledge discovery from databases, we emphasize the need for learning from
huge, incomplete and imperfect data sets (Piatetsky-Shapiro and Frawley 1991).
Existing inductive learning systems employ noise-handling mechanisms to cope with
different kinds of data imperfections such as noise, insufficiently covered example
space, inappropriate description language and missing values in the training examples
(Lavrac and Dzeroski 1994). These mechanisms include tree pruning, rule truncation,
and significant test.

However, most existing learning systems use attribute-value language for
representing the training examples and induced knowledge and allow a finite number
of objects in the universe of discourse. This representation limits them to learn only
propositional descriptions in which concepts are described in terms of values of a
fixed number of attributes. Currently, only a few relation learning systems such as
FOIL address the issue of learning from imperfect data. This experiment describes

Page 19

the application of GLPS to learn logic programs from noisy examples. An empirical
comparison of GLPS and FOIL6 (a version of FOIL) in the domain of learning
illegal chess endgame positions from noisy examples is conducted.

In FOIL, the noise handling mechanism is the encoding length restriction. The

idea is that the number of bits required to encode the clause should never exceed the
total number of bits needed to indicate explicitly the positive training examples
covered by the clause. Thus, if a clause covers r positive examples out of n examples
in the training set, the number of bits available to encode the clause is

log2 (n) + log2(
n
r

⎛
⎝
⎜ ⎞

⎠
). If there are no bits available for adding another literal, but the

clause has more than 85% accuracy, it is retained in the induced set of clauses,
otherwise it is deleted. This heuristic avoids overfitting the training examples because
insignificant literals are excluded from clauses of the inducing concept. The acquired
concept description is thus smaller, simpler, more accurate and more comprehensible.
Lavrac and Dzeroski (Lavrac and Dzeroski 1994) argued that the encoding length
restriction has two deficiencies. In exact domains, it sometimes prevent FOIL from
learning complete description. In noisy domains, it generates very specific clauses. In
this experiment, GLPS employs a variation of FOIL to find the initial population of
logic programs. Thus, it uses the same noise handling mechanism of FOIL.

In the chess-endgame, the setup is white king and rook versus black king
(Quinlan 1990). The target concept illegal(?WKf, ?WKr, ?WRf, ?WRr, ?BKf, ?BKr)
states whether the positions where the white king at (?WKf, ?WKr), the white rook at
(?WRf, ?WRf) and the black king at (?BKf, ?BKr) are not a legal white-to-move
position. The background knowledge is represented by two predicates, adjacent(?X,
?Y) and less_than(?W, ?Z), indicating that rank/file ?X is adjacent to rank/file ?Y and
rank/file ?W is less than rank/file ?Z respectively. The training set contains 1000
examples (336 positive and 664 negative examples). The testing set has 10000
examples (3240 positive and 6760 negative examples).

Different amounts of noise are introduced into the training examples in order

to study the performances of both systems in learning concepts from noisy
environment. To introduce n% of noise into argument ?X of the examples, the value
of argument ?X is replaced by a random value of the same type from a uniform
distribution, independent to noise in other arguments. For the class variable, n%
positive examples are labeled as negative ones while n% negatives examples are
labeled as positive ones. Noise in an argument is not necessarily incorrect because it
is chosen randomly, it is possible that the correct argument value is selected. In
contrast, noise in classification implies that this example is incorrect. Thus, the

probability for an example to be incorrect is 1 −{[(1 − n%) + n% *
1
8

]6 * (1 − n%)}. In

this experiment, the percentages of introduced noise are 5%, 10%, 15%, 20%, 30%
and 40%. Thus, the probabilities for an example to be noisy are respectively 27.36%,
48.04%, 63.46%, 74.78%, 88.74% and 95.47%. Background knowledge and testing
examples are not corrupted with noise.

A chosen level of noise is first introduced in the training set. First-order logic

programs are then induced from the training set using GLPS and FOIL6. Finally, the
classification accuracy of the learned logic programs is estimated on the testing set.
For GLPS, the parameters P0, P1, P2 and P3 are 0.0, 0.1, 0.3 and 0.6 respectively. The

Page 20

population size is 10 and the maximum number of generations for each experiment is
50. In fact, different population sizes (e.g. 100 and 500) have been tried and the
results are still satisfactory even for a very small population. This observation is
interesting and it demonstrates the advantage of combining inductive logic
programming and genetic programming using the proposed framework. The fitness
function evaluates the number of training examples misclassified by each individual
in the population. Fifty runs of the above experiments are performed on different
training examples. The results of the two systems are summarized in figure 9.

0 0.05 0.1 0.15 0.2 0.3 0.4

Noise level

0.5

0.6

0.7

0.8

0.9

1

1.1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

FOIL6
GLPS

Figure 9: Comparison between GLPS and FOIL6

From this experiment, the classification accuracy of both systems degrades
seriously as the noise level increases. The results were statistically evaluated using a
paired t-test. For each noise level, they are compared to determine if their difference
in accuracy is statistically significant at the 99.995% confidence interval. The
classification accuracy of GLPS is better than that of FOIL6. The differences are
significant at the 99.995% confidence interval at all noise levels (except the noise
level of 0%). The largest difference reaches 24% at the 20% noise level. This result is
surprising because both systems use the same noise handling mechanism. One
possible explanation of the better performance of GLPS is that the Darwinian
principle of survival and reproduction of the fittest is a good noise handling method. It
avoids overfitting noisy examples, but at the same time, it can finds interesting and
useful patterns from these noisy examples.

6. Conclusion

We have proposed a framework for inducing logic programs using genetic algorithms.
A preliminary implementation of the framework has been developed and it has been
tested on the following learning tasks: the Winston's arch problem, the modified
Quinlan's network reachability problem, the factorial problem and the chess-endgame

Page 21

problem. The experiments demonstrate that GLPS is a promising alternative to other
famous inductive logic programming systems.

Since GLPS uses the same representation of other inductive logic
programming systems, it is possible to combine GLPS with these systems. One
approach is to incorporate their search operators into GLPS. These operators are
information guided hill-climbing, explanation-based generation, explanation-based
specialization and inverse resolution. GLPS can also invoke these systems as front-
ends to generates the initial population. The advantage is that they can quickly find
important and meaningful components (genetic materials) and embody these
components into the initial population. Moreover, it has been found that GLPS, when
combined with other learning systems, has superior performance in learning logic
programs from imperfect data as demonstrated in the chess-endgame problem. The
Darwinian principle of survival and selection of the fittest is a plausible noise
handling method which can avoid overfitting and identify important patterns
simultaneously. This superior noise handling ability is intrinsically embedded in
GLPS because it uses genetic algorithms as its primary learning mechanism.

We have described how to combine GLPS and FOIL in learning first-order concepts.
The initial population of logic programs is provided by a variation of FOIL. The
performance of GLPS in a noisy domain has been evaluated by using the chess
endgame problem. A detailed comparison to FOIL6 (a version of FOIL) has been
performed. It is found that GLPS outperforms FOIL6 significantly in this domain.
This result is very encouraging and we plan to combine GLPS with other learning
systems such as GOLEM (Muggletion and Feng 1990) and LINUS (Lavrax and
Dzeroski 1994). Another important future work is to study how to induce new literals
or subroutines automatically.

Page 22

Reference

De Jong, K. A., Spears, W. M. and Gordon, D. F. (1993). Using Genetic Algorithms
for Concept Learning, Machine Learning, 13, pp. 161-188.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI:
The University of Michigan Press.

Kinnear, K. E. Jr., editor (1994). Advances in Genetic Programming. Cambridge,
MA: MIT Press.

Koza, J. R. (1992). Genetic Programming: on the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press.

Lavrac, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and
Applications. London: Ellis Horword.

Mitchell, T. M. (1982). Generalization as Search; Artificial Intelligence, 18, pp. 203-
226.

Muggleton, S. and Feng, C. (1990). Efficient induction of logic programs. In
Proceedings of the First Conference on Algorithmic Learning Theory, pp. 1-14.

Pazzani, M. and Kibler, D. (1992). The utility of knowledge in Inductive learning.
Machine Learning, 9, pp. 57-94.

Piatetsky-Shapiro, G. and Frawley, W. J. (1991). Knowledge Discovery in Databases.
Menlo Park, CA: AAAI Press.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning,
5, pp. 239-266.

Winston, P. H. (1975). Learning structural descriptions from examples. In P. H.
Winston (ed.), The psychology of computer vision. New York: McGraw-Hill.

Wong, M. L. and Leung, K. S. (1994a). Inductive Logic Programming Using Genetic
Algorithms. In J. W. Brahan and G. E. Lasker (Eds.), Advances in Artificial
Intelligence - Theory and Application II, 119-124. I.I.A.S., Ontario.

Wong, M. L. and Leung, K. S. (1994b). Learning First-order Relations from Noisy
Databases using Genetic Algorithms. In Proceedings of the Second Singapore
International Conference on Intelligent Systems, B159-164.

Page 23

Wong, M. L. and Leung, K. S. (1995). An adaptive Inductive Logic Programming
system using Genetic Programming. In Proceedings of the Fourth Annual Conference
on Evolutionary Programming. MA: MIT Press.

