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Abstract

Analysis of software fault trees exposes hardware and
software failure events that lead to unsafe system states,
and provides insight on improving safety throughout
each phase of the software lifecycle. Software product
lines have emerged as an effort to achieve reuse, en-
hance quality, and reduce development costs of safety-
critical systems. Safety-critical product lines amplify
the need for improved analysis techniques and metrics
for evaluating safety-critical systems since design flaws
can be carried forward though product line generations.
This paper presents a key node safety metric for mea-
suring the inherent safety modeled by software fault
trees. Definitions related to fault tree structure that
impact the metric’s composition are provided, and the
mathematical basis for the metric is examined. The
metric is applied to an embedded control system as well
as to a collection of software fault tree product lines
that include mutations expected to improve or degrade
the safety of the system. The effectiveness of the metric
is analyzed, and observations made during the experi-
ments are discussed.

1 Introduction

Safety-critical software systems are capable of en-
tering hazardous states with the potential of causing
the loss or damage of life, property, information, mis-
sion or environment [1]. Fault Tree Analysis [2, 3, 4]
supports examination of safety-critical systems by as-
sessing failure statistics to examine probable effects of
contributory system component failures. Such analysis
focuses on a hazard event or condition which serves as
the root of a fault tree. Fault trees are expanded from
the root downward in an effort to identify the system
component failures at the leaves of the tree that need

to exist in order to allow entry into the root’s haz-
ardous state. Fault tree analysis has been applied to
software [5, 6, 7, 8, 9, 10], including UML-based tech-
niques [11, 12, 13] for using software fault tree analy-
sis (SFTA) in the requirements and design phases of a
system’s development. Support for analysis of software
safety at design time using knowledge of the system de-
rived from software fault trees has also been the focus
of recent work with software product lines [10, 14, 15].

Clements and Northrop identify software product
lines as systems that share features developed from
a common set of core assets to meet specific needs
within a market segment [16]. Safety-critical prod-
uct line systems, such as the Ariane 4 control soft-
ware catastrophically reused in the European Space
Agency’s Ariane 5 rocket [17], provide a rich field in
which to apply SFTA. Recent work in this area by
Lutz and Dehlinger applies SFTA to product lines in
an effort to improve software reuse within such safety-
critical systems, leading to the development of analysis
tools such as PLFaultCAT [10, 14, 15]. The PLFault-
CAT tool derives reusable fault trees from the safety
analysis of a product line’s members for use with future
systems.

This paper provides a metric for objectively compar-
ing the safety represented by the structure and compo-
sition of fault trees with the same root hazard, such as
those found in product lines. Section 2 discusses back-
ground information including software fault tree con-
struction, software metrics, product lines and related
work. Section 3 presents the basis and mathematical
foundation for a software fault tree key node safety
metric. Section 4 examines an application of the met-
ric to an embedded, safety-critical system. Section 5
applies the metric to a collection of product lines. Sec-
tion 6 provides an analysis of the metric, and finally,
Section 7 presents conclusions and considers areas of
future work.
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Figure 1. Basic software fault tree symbols.

2 Background and related work

This section reviews software fault tree construction,
examines the role of metrics in measuring internal and
external software qualities, and discusses product lines
and other related work.

2.1 Fault trees

The root of a fault tree specifies a hazard event
which can be analyzed from the perspective of risk re-
duction. A hazard event is any event in a safety-critical
system that has the potential of causing a variety of
undesirable results such as loss of life, equipment, un-
acceptable loss of functionality, or undesirable operat-
ing conditions. Symbols found in typical software fault
trees are shown in Figure 1. The leaves of a fault tree
represent the fundamental events (inputs) of the sys-
tem. The root and leaves are connected by a series of
intermediate events through boolean operators such as
AND and OR as shown in Figure 2.

Intermediate events are themselves boolean expres-
sions, thereby allowing an entire tree to be expressed
as a composite boolean expression. When probabilities
for the leaf elements are inserted into the composite
boolean expression describing the system, a probability
of occurrence can be determined for the hazard speci-
fied at the root of the tree.

In Figure 2, the leaf nodes are labeled d, e, f, and
g and the internal nodes are a, b, and c with node a
also being the root of the tree. In order for node b to
enter a failure state, both nodes d and e must fail since
they are connected to node b via an AND gate. For

Figure 2. Sample fault tree.

node c, since it is connected to nodes f and g with an
OR gate, the failure of either node f or g causes node c
to enter a failure state. Node a is similar to node c in
that either nodes b or c can fail thus creating a failure
condition. When node a is in a failure condition, the
hazard described by the fault tree occurs.

If the probability of occurrence of the leaf node events
are either known or can be estimated, a composite
boolean expression can be constructed to determine the
probability that the system will enter the hazard state
represented by the root of the tree. For example, con-
sider the left sub-tree of Figure 2 involving the AND
gate connecting nodes b, d, and e. Equation 1 rep-
resents the boolean expression for the sub-tree rooted
at b since the event specified by node b occurs only if
both the node d event and the node e event occur. In
(1), the failure probability of the two children, d and
e, are multiplied together because the probability of
an AND system entering the state at its root requires
both nodes to fail.

Pb(d, e) = PdPe (1)
Pc(f, g) = 1 − (1 − Pf )(1 − Pg) (2)
Pa(b, c) = 1 − (1 − Pb(d, e))(1 − Pc(f, g)) (3)

The right sub-tree of Figure 2 shows an OR gate
connecting nodes c, f, and g, and is modeled by (2)
since the event specified by node c occurs if either, or
both, of the events in nodes f or g occur. Since an
OR system has the opposite probability relation of an
AND system, the minus terms are required for input
probability consistency [2]. The left and right sub-trees
of Figure 2 are joined by another OR gate, therefore
the probability of the root event occurring can be con-
structed as the composite boolean expression modeled
by (3).
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2.2 Software metrics

Software engineers use metrics to evaluate internal
software qualities, such as size or structural complex-
ity, as well as to measure external traits like reliability.
Early 1960s software metrics, such as Lines of Code,
were based on the concept of program length, and in-
cluded variations such as thousands of lines of source
code, object code, and assembly code [18, 19]. In the
1970s, several major advances in the area of software
metrics were made, including McCabe’s Cyclomatic
Complexity Metric, focusing on a program’s control
flow, and Halstead’s Software Volume Metric, focus-
ing on the number of operands and operators [20, 21].
In the 1980s, software engineers began to focus on two
diverse areas: dynamic methods of verification such as
software fault injection in which incorrect source code
is intentionally inserted into a program [22], and for-
mal methods such as program proving. Metrics are
more closely aligned with formal methods because they
calculate a value based on the intrinsic characteristics
of a program rather than the trial and error methods
typical of dynamic testing.

2.3 Related work

For safety-critical systems, the hazard at the root
of the fault tree typically represents a known, system-
wide, catastrophic event often taken from either a pre-
existing [1] or constructible [23] list of hazards. When
the specific hazardous state at the root of the tree is not
known, techniques such as Failure Modes and Effects
Analysis [24] for hardware and Software Failure Modes
and Effects Analysis [25] for software can be used in a
bottom up fashion to identify the set of possible haz-
ardous states for a system. Leveson emphasizes using
the results of software fault tree safety analysis as a
technique for identifying safety constraints that must
be met by the software’s requirements [8]. Hansen pro-
vides a dynamic linking model allowing software safety
requirements to be derived from a system’s safety re-
quirements [26]. The metric presented in this paper as-
sumes that fault trees have already been constructed,
and provides a technique for evaluating the safety level
represented by a fault tree’s internal structure without
regard for leaf node failure probabilities.

Lutz and Dehlinger argue that software fault trees,
gained from the initial engineering of a new product
line, can be partially applied to any new product line
member since product lines share their underlying ar-
chitecture, requirements, and safety analyses [16, 10,
14]. Their work on safety-critical product lines anal-
ysis includes the PLFaultCAT tool [15] used to derive

reusable fault trees from safety analyses of product line
members for use in future systems. The metric pre-
sented in this paper adds a technique for comparing
fault trees within such product lines since the metric
requires that the fault trees being compared share a
common root hazard.

Scotto’s work on relational software metrics provides
an abstraction layer to aid in decoupling the informa-
tion extraction process from the use of the informa-
tion [27], and is similar to the metric presented in this
paper. Both approaches use intuitive relations to de-
scribe the structure of the software system, however,
Scotto’s approach relies on the structure of source code.
This paper’s approach can be applied at design time
whenever a fault tree has been derived from a prod-
uct line [10, 14, 15] or UML representation of a sys-
tem [11, 12, 13], and is similar to Nagappan’s work on
estimating potential software field quality during the
early development phases [28].

3 A key node safety metric

The Key Node Safety Metric is based on identifying
“key nodes” within a fault tree and considers the im-
pact of these nodes on the safety of the system as per
the following definition:

Definition 3.1 A key node is a node in a fault tree
that allows a failure to propagate towards the tree root
if and only if multiple failure conditions exist in the
node.

Analysis of typical boolean relationship types, such
as AND, XOR, and OR, shows that the AND relation-
ship meets the key node requirement since all inputs
must fail in order for the hazard to propagate when
nodes are connected by an AND gate. The XOR rela-
tionship conditionally meets the key node requirement
since a single failure condition causes the failure to
propagate, while multiple simultaneous failures block
the hazard’s propagation. Unlike the XOR or AND
relationships, the OR relationship fails to meet the re-
quirements of a key node since if any one or more inputs
enter a failure state, the hazard propagates to the next
level. The AND relationship always qualifies as a key
node, and is the relationship type focused on as a key
node in this paper.

3.1 Metric basis

This section discusses the basis for determining the
safety level, S, produced by the Key Node Safety Met-
ric’s application to a software fault tree. The following
definitions are used to create the metric equation:
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Definition 3.2 A simple path is a path between two
nodes of a fault tree that contains no cycles.

Definition 3.3 The height of a tree, h, is defined as
the number of edges on the longest simple path from the
root to a leaf.

Definition 3.4 The depth of a node, di, is defined as
the number of edges from the root to node i.

Definition 3.5 The size of sub-tree, ci, is defined as
the number of nodes in the tree rooted at node i, not
including node i

Definition 3.6 The size of the sub-tree of a leaf, cleaf ,
is defined to be 0

Definition 3.7 The size of the sub-tree of the root,
croot, is defined to be n − 1, where n is the number of
nodes in the tree

Definition 3.8 The depth of the root of a tree is de-
fined as droot = 0

The following definitions are given to prevent possi-
ble divisions by zero:

Definition 3.9 d′i = di + 1

Definition 3.10 h′ = h + 1

The Key Node Safety Metric is divided into two seg-
ments. The first, the overall tree segment, ts, considers
the number of key nodes. The second, the collection
of individual key node segments, nsi, factors in the
properties of each key node. The properties of a key
node include its depth from the tree root, and the size
of the sub-tree rooted locally to the key node. A key
node that has a smaller depth is expected to provide
a greater amount of fault tolerance because it requires
a greater number of failure events to occur before the
hazard at the key node can occur. This is similar to the
effect derived from the size of the sub-tree rooted at a
key node. Both the depth and size of the local sub-tree
rooted at a key node are included in the metric since
it is possible that a fault tree will be unbalanced, and
a node with a lesser depth will not necessarily have a
larger sub-tree.

The tree segment, ts, of the metric compares the
number of key nodes (k) and the total number of nodes
in the tree (n):

ts =
k

n
(4)

The individual node segment, nsi, accounts for the re-
lationship between the relative depth of a key node,

(n)(d′i), and the relative size of the sub-tree rooted at
that key node, h′ci. The value for nsi is given as:

nsi =
h′ci

(n)(d′i)
(5)

The compilation of the individual node segments cre-
ates the total node segment, ns:

ns =
k−1∑

i=0

h′ci

nd′
i

(6)

Combining ts and ns yields the initial form of the met-
ric:

S =
k

n

k−1∑

i=0

h′ci

nd′
i

(7)

Simplifying gives the final form of the metric:

S =
kh′

n2

k−1∑

i=0

ci

d′i
(8)

Equation 8 is the form of the Key Node Safety Met-
ric used to compute the S values for software fault trees
throughout the remainder of this paper.

3.2 The role of key nodes

Design changes within product lines impacts a sys-
tem’s safety. The Key Node Safety Metric provides a
design tool for comparing fault trees without requiring
a priori knowledge of component reliability. The met-
ric allows designers to evaluate aspects of system safety
before final component selection, or completion of com-
ponent reliability studies, by evaluating key nodes within
a fault tree’s structure. The ability to improve system
safety without knowledge of component reliabilities is
useful when “typical” component reliability values for
a component are unavailable or unpredictable.

3.3 Metric boundaries

The lower and upper bounds of the Key Node Safety
Metric are dependent on the internal structure of the
fault tree being evaluated. The metric’s lower bound
occurs in fault trees in which the failure of any sin-
gle component causes the root hazard to occur as is
the case with fault trees composed entirely of OR rela-
tionships. The upper bound of the metric is found in
systems which fail if and only if every component fails,
as in fault trees containing only AND relationships.
Evaluating the metric between its minimum and max-
imum values requires examining the impact of adding
or removing key nodes within a fault tree as discussed
in Section 4.2.
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4 Applying the metric

This section applies the Key Node Safety Metric to
a safety critical software system. The software fault
tree for an embedded system hazard is developed, and
the metric is applied to determine the system’s initial
safety value for the hazard. The hazard is then used as
the initial fault tree within a series of tree mutations
representing a product line in Section 4.2.

4.1 An autonomous underwater vehicle controller

To promote undergraduate interest in autonomous
underwater vehicle (AUV) systems, the Association for
Unmanned Vehicle Systems International and the Of-
fice of Naval Research jointly sponsor an annual AUV
competition [29]. The competition varies from year to
year, and typically includes tasks such as measuring
and mapping the bathymetry of the seafloor, identify-
ing the shallowest item in an array of man-made ob-
jects, or searching for and navigating towards acous-
tic signatures. Each year, a team starts out by either
modifying its previous year’s entry, or by building a
newly designed AUV system from scratch. This paper
considers software product line families developed by
computer science students as control software variants
for the Naval Academy’s AUV.

The AUV’s control software provides navigational
commands by invoking control sequences based on sen-
sor device driver data and sending motor commands to
the motor device drivers. A UML class diagram giv-
ing a portion of the AUV controller software hierarchy
is shown in Figure 3. The AUV Controller class pro-
vides communication for the control logic of the sys-
tem, and launches user-level threads for querying sen-
sor data and motor control settings and logging sensor
data.

Figure 3. AUV controller UML class diagram.

Figure 4. Fault tree for AUV surfacing hazard.

4.2 Applying the metric to an AUV hazard

For our example, we consider the hazard of the AUV
failing to surface as represented by the software fault
tree in Figure 4. Calculating the Key Node Safety Met-
ric’s S value for the fault tree is straightforward. The
three key nodes of the fault tree in Figure 4 are labeled
k0, k1, and k2 to aid in the following discussion. The
values for the variables in (8) for this fault tree are:

k = 3 The number of key nodes in the fault tree shown
in Figure 4.

h′ = 5 The height of the fault tree + 1.

n = 18 The number of nodes in the fault tree.

c0 = 2 The number of nodes in the sub-tree rooted at
keynode k0

d′0 = 4 The depth of keynode k0 + 1

c1 = 6 The number of nodes in the sub-tree rooted at
keynode k1

d′1 = 2 The depth of keynode k1 + 1

c2 = 2 The number of nodes in the sub-tree rooted at
keynode k2

d′2 = 3 The depth of keynode k2 + 1

Using these values, (8) applied to Figure 4’s initial
fault tree becomes:

Sinitial =
3 ∗ 5
182

3−1∑

i=0

2
4

+
6
2

+
2
3

= 0.19 (9)

The Key Node Safety Metric’s Sinitial value of 0.19
for the fault tree shown in Figure 4 gives a comparison
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Figure 5. AUV fault tree after mutation.

point from which to examine the impact of subsequent
fault tree variations for the AUV’s failure to surface
hazard. The S value computed by the metric for an
initial tree can be compared with the S value computed
for a mutation of the initial tree. As an example, Fig-
ure 5 shows the same fault tree from Figure 4 except
that the shaded node has been mutated from an OR
node into an AND node. Such a mutation is expected
to result in a tree with an increased S value, since the
mutated node was converted into a key node. Applying
(8) to the fault tree mutation in Figure 5 results in:

Smutated =
4 ∗ 5
182

3−1∑

i=0

2
4

+
6
2

+
2
3

+
4
3

= 0.34 (10)

As shown in (10), applying the Key Node Safety
Metric to the mutated tree results in an Smutated value
= 0.34. As compared with Sinitial, Smutated’s increased
value confirms that the mutated tree has a higher safety
prediction than the initial tree as a result of changing
the OR gate to an AND gate.

5 Product lines

The effectiveness of the Key Node Safety Metric was
evaluated by comparing 70 fault trees organized into
ten sets. Each of these sets contains seven trees as
summarized in Table 1. Each set is similar to a product
line [16, 15] and consists of an initial fault tree, serving
as the set baseline, and six mutations of the set’s initial
tree. The AUV hazard’s fault tree shown in Figure 4
is the initial tree of Set 8.

Within each set, three of the mutations are designed
to improve the safety of the system represented by the
set’s initial fault tree by randomly converting an OR

Table 1. Summary of initial trees.
Set Total Key Internal Max Min

Nodes Nodes Nodes Depth Depth

1 12 2 5 3 2
2 14 3 6 3 2
3 14 3 6 3 2
4 19 4 8 5 2
5 24 3 10 4 3
6 22 5 9 4 2
7 19 3 8 3 2
8 18 3 7 4 2
9 27 4 12 5 2
10 37 5 16 5 2

Figure 6. Representative tree mutations.

node into an AND node. The remaining three mu-
tations within each set focus on degrading safety by
converting an AND node into an OR node. For all mu-
tations within a set, the root node was left unchanged.

The exchange of an OR node with an AND node is
expected to increase system safety, as measured by the
mutated fault tree’s Smutated value relative to the set’s
initial tree’s Sinitial value, since AND nodes represent
points of fault tolerance or redundancy. Conversely,
the exchange of an AND node with an OR node is
expected to decrease system safety, realized as a lower
Smutated value. The product lines sets consisting of the
70 fault trees considered in the experiments, and the
specific mutations within each set, are given in [30].
Figure 6 shows the initial fault tree, Set 5 from Table
1, and both a degraded and an improved mutation of
the set’s initial tree. Part (a) of Figure 6 is the initial
fault tree, part (b) is a degraded tree, and part (c) is
an improved tree.

Key nodes are represented as shaded nodes for each
tree in Figure 6. The number of key nodes, k, in the
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Table 2. Improving/degrading mutations.
tree k h c0

d0

c1
d1

c2
d2

c3
d3

S ΔS

a 3 5 2/4 6/2 5/2 - 0.23 -
b 2 5 2/4 6/2 - - 0.09 -61%
c 4 5 5/2 2/4 6/2 5/2 0.43 43%

initial tree is 3, the height+1 value for the tree is 5, and
the total number of nodes in the tree is 20. The ratios
of sub-tree size to the depth+1 value for each of the
three key nodes are, using a post-order tree traversal,
2/4, 6/2, and 5/2. Using the Key Node Safety Metric,
(8), Sinitial for the tree is 0.23. It is important to
note that the tree mutations shown in parts (b) and
(c) of Figure 6 do not alter the root node of the initial
tree, thereby keeping the initial tree and its mutations
within the same product family. The degraded tree,
part (b), is the result of randomly mutating one of
the initial trees AND nodes, pointed to by the arrow,
into an OR node, thereby adding a key node to the
tree. Likewise, the improved tree, (c), results from
randomly mutating one of the initial trees OR nodes,
pointed to by the arrow, into an AND node, thereby
removing a key node from the tree. Once the trees have
been mutated, the metric is run on all 3 trees and the
resulting S values are compared.

Table 2 shows the result of applying the safety met-
ric to the trees in Figure 6. In this example, the size
of the subtrees of each mutated node is the same (5
nodes). The mutation in part (b) of Figure 6 was ex-
pected to degrade the safety of the system, and results
in a 61% reduction in safety as measured by the metric,
while the improvement mutation, part (c), results in a
43% increase in safety.

For each of the ten sets, the Key Node Safety Metric
was first run on the initial tree and then on the remain-
ing mutated trees in the set. After the metric was run
on each set, the results were compiled and analyzed to
see if the metric was able to determine which trees were
the improved trees and which were the degraded trees.
A valid key node safety metric should properly classify
each tree as improved or degraded when compared to
the initial tree. The characteristics of the initial fault
trees selected for each set, summarized in Table 5, in-
cluded lack of balance in the trees, ratio of key nodes
to total number of nodes, and ratio of key nodes to
internal nodes.

6 Analysis

The Key Node Safety Metric exhibited a 100% suc-
cess rate in differentiating between the improvement

Table 3. Product line mutations’ S-values.
Set Degradations Initial Improvements

1 0.07 0.02 0.00 0.18 0.43 0.35 0.69
2 0.07 0.11 0.12 0.22 0.46 0.35 1.36
3 0.17 0.05 0.17 0.30 0.45 0.56 0.77
4 0.14 0.22 0.24 0.38 0.93 0.53 0.56
5 0.18 0.09 0.12 0.23 0.43 0.41 0.45
6 0.13 0.34 0.33 0.47 0.69 0.60 0.67
7 0.06 0.04 0.07 0.12 0.30 0.21 0.19
8 0.04 0.11 0.11 0.19 0.41 0.35 0.34
9 0.05 0.12 0.10 0.17 0.48 0.25 0.37
10 0.16 0.19 0.19 0.31 0.55 0.43 0.40

tree mutations and the degradation tree mutations. In
each case, the metric was able to determine which mu-
tations resulted in a fault tree with improved safety,
and which resulted in a degradation of safety. As shown
in Table 3, each degrading mutation resulted in a lower
S-value, and each improving mutation resulted in a
higher S-value relative to the set’s initial tree.

There are, however, several anomalies in the data.
The largest S value is from the improvement mutation
resulting in the final tree of set 2, which has an S value
of 1.36. Since this was the only tree with an S value
over 1, the tree was investigated further and found to
be unique in that it is the only test tree in which the
root is also a key node. Upon examination of the met-
ric equation, it is apparent that the only way to attain
an S value greater than 1 is to have the root of the fault
tree also be a key node. While the range of S is theoret-
ically from 0 to ∞, any value over 1 suggests that the
fault tree hazard can only be caused one way and that
one way requires multiple components to fail simulta-
neously. While it is possible to have such a system, it
would not be expected that a complex system would
have one and only one possible way for a hazard to
occur, especially if the fault tree represented the com-
bination of several subsystems. However, it appears
that further analysis of the upper bound of the metric
is in order.

Figures 7 and 8 compare the change in S value be-
tween a mutation and its initial tree, as ordered by the
ratio of the size of the key node sub-tree being mutated
as compared to the overall tree size. In both figures,
the solid lines represent the ratio of the number of key
nodes in a subtree versus the number of nodes in the
tree, and the dashed lines represent the change in the
S value observed after a tree mutation. Figure 7 shows
that as the ratio of a degrading mutation’s key node
subtree size to the overall tree size increases, there is
a corresponding decrease in S value as a result of the
key node mutation.
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Figure 7. ΔS for degradation mutations.

Figure 8. ΔS for improvement mutations.

Similarly, as shown in Figure 8, as the ratio of an im-
proving mutation’s key node subtree size as compared
to overall tree size increases, there is a corresponding
increase in S value for the tree mutation. The trend
lines of both Figures 7 and 8 indicate that the impact
of the size of the subtree rooted at a key node plays
a major role in determining the impact of a key node
mutation on the mutated tree’s S value, regardless of
whether the mutation is a degradation or an improve-
ment.

Finally, three of the data sets used in the exper-
iments contained relatively small numbers of internal
nodes. As shown in Table 5, the fault trees from sets 1,
2, and 3 each contained fewer than 15 internal nodes.
Due to the insufficient number of internal nodes in
these sets, it was not possible to perform six mutations
yielding unique trees without resorting to double muta-
tions (in which two nodes are simultaneously changed
from ORs to ANDs or vice versa). However, these small
sets served the purpose of allowing the testing of special
cases, including the case in which a mutation results in

a tree with no key nodes, and cases involving trees with
a key node at the root.

7 Summary and future work

This paper presented a Key Node Safety Metric for
comparing software fault trees within product lines,
and provides a method of predicting relative safety be-
tween different versions of safety-critical software sys-
tem hazards. The metric was developed from a heuris-
tical analysis of fault tree structure, and calculates a
safety value based on inherent fault tree properties in-
cluding key node height, size of key node sub-trees,
and number of key nodes. The metric centers on the
identification of key nodes that require multiple inputs
to fail before the failure propagates towards the root
hazard of the fault tree. Several definitions related to
a fault tree’s structure that impact the metric’s com-
position were provided, as well as an evaluation of the
mathematical basis for the metric. A example applica-
tion of the metric to an embedded system’s fault tree
was conducted, including both the initial tree and a
tree mutation expected to improve the safety of the
system. Results of applying the metric to collections
of software product line fault trees were reviewed, in-
cluding mutations intended to both degrade and im-
prove safety. The experiments used to evaluate the
metric demonstrated that the metric can correctly pre-
dict which of several design variants is preferable from
a safety-critical standpoint. The effectiveness of the
metric was analyzed, and anomalies observed during
the experiments were examined.

Areas of future work include integrating the Key
Node Safety Metric within a software safety analysis
tool such as Lutz’s Product-Line Fault Tree Creation
and Analysis Tool (PLFaultCAT) as a means of au-
tomating the process of applying the metric to soft-
ware fault trees. Further work is needed in the area
of product lines to determine whether the root hazard
is impacted only by hazards propagating up from the
leaves of a fault tree, as is assumed here. Additional
research is needed in determining which relationships
beyond the AND and OR nodes used in software fault
trees should be incorporated into the metric, as well
as how interdependencies between sub-trees within a
software fault tree can be modeled within the metric.
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