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ABSTRACT

Existing storage systems using hierarchical directorg tte not
meet scalability and functionality requirements for expuatially
growing datasets and increasingly complex queries in Bxaleyel
systems with billions of files. This paper proposes semaatiare
organization, called SmartStore, which exploits metadataan-
tics of files to judiciously aggregate correlated files inbongntic-
aware groups by using information retrieval tools. Decdizted
design improves system scalability and reduces querydgatén
complex queries (range and top-k queries), which is coneuiti
constructing semantic-aware caching, and conventioreidihe-
based query. SmartStore limits search scope of complexy doer
a single or a minimal number of semantically related groupd a
avoids or alleviates brute-force search in entire systerterisive
experiments using real-world traces show that SmartStapedves
system scalability and reduces query latency over basabdae
approaches by one thousand times. To the best of our knogyledg
this is the first study implementing complex queries in lasgale
file systems.

1. INTRODUCTION

Fast and flexible metadata retrieving is a critical requégtrin
the next-generation data storage systems serving higreemd
puting [1]. As the storage capacity is approaching Exabgtes
the number of files stored is reaching billions, directasetbased
metadata management widely deployed in conventional fide sy
tems [2, 3] can no longer meet the requirements of scakalailit
functionality. For the next-generation large-scale gjeraystems,
new metadata organization schemes are desired to meetitwo cr
cal goals: (1) to serve a large number of concurrent accegsies
low latency and (2) to provide flexible 1/O interfaces to allosers
to perform advanced metadata queries, such as range ard top-
queries, to further decrease query latency.

In the next-generation file systems, metadata accessegenmyll
likely become a severe performance bottleneck as methdatd
transactions not only account for ov&% of all file system op-
erations [4, 5] but also result in billions of pieces of metizdin
directories. Given the sheer scale and complexity of tha dat
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metadata in such systems, we must seriously ponder a feaatrit
research problems [6, 7] such addw to efficiently extract useful
knowledge from an ocean of data? How to manage the enor-
mous number of files that have multi-dimensional or increglgi
higher dimensional attribute§?and “How to effectively and expe-
ditiously extract small but relevant subsets from largeadats to
construct accurate and efficient data caches to facilitagd+end
and complex application$? We approach the above problems by
first postulating the following.

e First, while a high-end or next-generation storage syst@m c
provide a Petabyte-scale or even Exabyte-scale storage ca-
pacity containing an ocean of data, what the users really wan
for their applications is some knowledge about the data’s be
havioral and structural properties. Thus, we need to deploy
and organize these files according to semantic correlatibns
file metadata in a way that would easily expose such proper-
ties.

Second, in real-world applications, cache-based strestur
have proven to be very useful in dealing with indexing among
massive amounts of data. However, traditional temporal or
spatial (or both) locality-aware methods alone will not be e
fective to construct and maintain caches in large-scale sys
tems to contain the working datasets of complex data-intens
applications. Itis thus our belief that semantic-awaréoay;
which leverages metadata semantic correlation and cosbine
pre-processing and prefetching that is based on rangesgueri
(that identify files whose attributes values are within give
ranges) and top-k Nearest Neighbor (NN) quérigsat lo-
catek files whose attributes are closest to given values), will
be sufficiently effective in reducing the working sets and in
creasing cache hit rates.

Although state-of-the-art research, such as Spyglassq@als
that around 33% of searches can be localized into a subspaoe b
ploiting the namespace property (e.g., home or projecttiirg),
it clearly indicates that a larger portion of queries muits¢ an-
swered by potentially searching the entire file system inesauay.
The lack of effectiveness of exploiting spatial and templureali-
ties alone in metadata queries lies in the fact that such ddnd-
calities, while generally effective in representing sortatis prop-
erties (e.g., directory and namespace) and access patifeites,
fail to capture higher dimensions of localities and cotielss that
are essential for complex queries. For example, afterllimgaor
updating software, a system administrator may hope to taack

'Given a clear context in the paper, we will simply use top-k
queries in place of top-k NN queries.



find the changed files, which exist in both system and usectire
ries, to ward off malicious operations. In this case, sint@feporal
(e.g., access history) or spatial locality (e.g., director names-
pace) alone may not efficiently help identify all affecte@sil be-
cause such requests for a complex query (range or top-k gurery
turn need to check multi-dimensional attributes.

In a small-scale storage system, conventional directerytased
design and I/O interfaces may support these complex quériesgh
exhaustive or brute-force searches. However, in an Exafngke
storage system, complex queries need to be judiciouslyocstgmp
in a scalable way since exhaustive searches can resulthibiicely
high overheads. Bigtable [9] uses a static three-leveltie-like
hierarchy to store tablet location information, but is ueab carry
out and optimize complex queries as it relies on user seleatnd
does not consider multiple replicas of the same data. Fumibre,
the inherent performance bottleneck imposed by the dingdtee
structure in conventional file system design can becomecepic
ably severe in an Exabyte-scale system. Thus, we proposeds |
age semantic correlation of file metadata, which exploitgéi-
dimensional static and dynamic attributes, or higher-disianal
localities than the simple temporal or spatial localityizéd in ex-
isting approaches.

Semantic correlation [10] comes from the exploitation affi
dimensional attributes of metadata. To put things in pertsge
linear brute-force approach uses 0-dimensional coroglatihile
spatial/temporal locality approaches, such as Nexus [4d]3py-
glass [8], use 1-dimensional correlation, which can be idened
as special cases of our proposed approach that considées liig
mensional correlation. The main benefit of using semanticeeo
lation is the ability to significantly narrow the search spand
improve system performance.

1.1 Semantic Correlation

Semantic correlation extends conventional temporal aatiadp
locality and can be defined within a multi-dimensional atite
space as a quantitative measure. Assuming that a geo(p <
1 < t) fromt > 1 groups contains a fil¢;, semantic correlation
can be measured by the minimum »f;_, Z‘fjeci(fj — ;)3
whereC; is the centroid of groug~;, i.e., the average values of
D-dimensional attributes. The value of; — C;)? represents the

Euclidean distance in thB-dimensional attribute space. Since the

computational costs for all attributes are unacceptalgi m prac-
tice, we use a simple but effective semantic tool, i.e., hiate-
mantic Indexing (LSI) [12, 13] to generate semanticallyretated
groups as shown in Section 3.

The notion of semantic correlation has been used in many sys-

tems designs, optimizations and real-world applicatiomswhat

follows we list some examples from recent studies by other re

searchers and by our group, as well as our preliminary exyesrtal
results, to evidence the strong presence and effectivefsssan-
tic correlation of file metadata.

The semantic correlation widely existing in real systensshieen

observed and studied by a sizeable body of published wori: Sp

glass [8] reports that the locality ratios are below 1% in yngimen
traces, meaning that correlated files are contained in fess 1%
of the directory space. Filecules [14] reveals the existesfdile
grouping by examining a large set of real traces where 454estq
from all 11,568,086 requests visit only 6.5% files from al| 55
files that are sorted by file popularity. Measurement of laggle
network file system workloads [15] further verifies that fewen
1% clients issue 50% file requests and over 60% re-open dpesat
take place within one minute.

Semantic correlation can be exploited to optimize systerfope

mance. Our research group has proposed metadata prefptthin
gorithms, Nexus [11] and FARMER [16], in which both file acees
sequences and semantic attributes are considered in thatwva
of the correlation among files to improve file metadata posiieg
performance. The probability of inter-file access is foumdbe up
to 80% when considering four typical file system traces. Qar p
liminary results based on these and the [17], MSN [18], and
EECS[19] traces further show that exploiting semantic coriefat
of multi-dimensional attributes can help prune up to 99.9%rsh
space [20].

Therefore, in this paper we proposed a novel decentrale@dstic-
aware metadata organization, cal®wmhartStord21], to effectively
exploit semantic correlation to enable efficient complegripgs for
users and to improve system performance in real-world eppli
tions. Examples of the SmartStore applications includdahew-
ing.

From a user’s viewpoint, range queries can help answer ques-
tions like “Which experiments did | run yesterday that took less
than 30 minutes and generated files larger than 2.6GB/Pereas
top-k queries may answer questions likec&n not accurately re-
member a previously created file but | know that its file size is
around 300MB and it was last visited around Jan.1, 2008. Can
the system show 10 files that are closest to this description?

From a system’s point of view, SmartStore may help optimize
storage system designs such as de-duplication, cachirg efedch-
ing. Data de-duplication [22, 23] aims to effectively anficéntly
remove redundant data and compress data into a highly ceampac
form for the purpose of data backup and archiving. One of gye k
problems is how to identify multiple copies of the same cotge
while avoiding linear brute-force search within the enfite sys-
tem. SmartStore can help identify the duplicate copies dftan
exhibit similar or approximate multi-dimensional attribg, such
as file size and created time. SmartStore exploits the séremt
relations existing in the multi-dimensional attributesfiéé meta-
data and efficiently organizes them into the same or adjagrenps
where duplicate copies can be placed together with highgitty
to narrow the search space and further facilitate fast ifieation.

On the other hand, caching [24] and prefetching [25] are kyide
used in storage systems to improve 1/O performance by ekpioi
spatial or temporal access locality. However, their penfomce in
terms of hit rate varies largely from application to appiica and
heavily depends on the analysis of access history. SmaetSam
help quickly identify correlated files that may be visitedfie near
future and can be prefetched in advance to improve hit ratieng
top-k query as an example, when a file is visited, we can egexut
top-k query to find itst most correlated files to be prefetched. In
SmartStore, both top-k and range queries can be completathwi
zero or a minimal number of hops since correlated files aresagg
gated within the same or adjacent groups to improve cache acc
racy as shown in Section 5.3.

1.2 SmartStore’s Contributions
This paper makes the following key contributions.

e Decentralized semantic-aware organization scheme of file
system metadata SmartStore is designed to support com-
plex query services and improve system performance by ju-
diciously exploiting semantic correlation of file metadatel
effectively utilizing semantic analysis tools, i.e., Liat&Se-
mantic Indexing (LSI) [13]. The new design is different
from the conventional hierarchical architecture of file-sys
tems based on a directory-tree data structure in that it re-
moves the latter’'s inherent performance bottleneck ansgl thu
can avoid its disadvantages in terms of file organization and



query efficiency. Additionally and importantly, SmartStds
able to provide the existing services of conventional filg-sy
tems while supporting new complex query services with high
reliability and scalability. Our experimental results éd®n

a SmartStore prototype implementation show that its com-

2.1 Overview

A semantic R-tree as shown on the right of Figure 1 is evolved
from classical R-tree [26] and consists of index units (nen-leaf
nodes) containing location and mapping information andast®
units (i.e., leaf nodes) containing file metadata, both ofctvlare

plex query performance is more than one thousand times hosted on a collection of storage servers. One or more R-inegy

higher and its space overhea@(stimes smaller than current
database methods with a very small false probability.

e Multi-query services: To the best of our knowledge, this
is the first study to design and implement a storage archi-

tecture to support complex queries, such as range and top-k

queries, within the context of ultra-large-scale distr#ulfile
systems. More specifically, our SmartStore can supporethre
query interfaces for point, range and top-k queries. Con-

ventional query schemes in small-scale file systems are of-
ten concerned with filename-based queries that will soon be

rendered inefficient and ineffective in next-generatiagéa
scale distributed file systems. The complex queries willeser

as an important portal or browser, like the web or web browser

for Internet and city map for a tourist, for query services in
an ocean of files. Our study is a first attempt at providing
support for complex queries directly at the file system level

The rest of the paper is organized as follows. Section 2 dhescr
the SmartStore system design. Section 3 presents details-of
sigh and implementation. Section 4 discusses some keysissue
Section 5 presents the extensive experimental resultstioBe®
presents related work. Section 7 concludes the paper.

2. SMARTSTORE SYSTEM

be used to represent the same set of metadata to match qaery pa
terns effectively. SmartStore supports complex querreduding
range and top-k queries, in addition to simple point queiyufe 2
shows a logical diagram of SmartStore that provides mulérg
services for users while organizes metadata to enhancnsysr-
formance by using decentralized semantic R-tree strugture
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Figure 2: SmartStore system diagram.

SmartStore has three key functional components: 1) thepgrou
ing component that classifies metadata into storage ana undées

The basic idea behind SmartStore is that files are grouped andpssed on the LS| semantic analysis; 2) the construction cemp

stored according to their metadata semantics, instead@ftdry

namespace, as shown in Figure 1 that compares the two schemes

——  Mapping
--- Grouping

————————

A
|

1 S
3 ¥
219 80 098¢

NN __ __
8 8858 S5 S5 878589 S0 S Sz

@\\ storage units
.,

Semantic R-tree

Conventional directory tree

Figure 1: Comparisons with conventional file system.

This is motivated by the observation that metadata senscdic
guide the aggregation of highly correlated files into grothz in
turn have higher probability of satisfying complex querguests,
judiciously matching the access pattern of locality. Thyuery and
other relevant operations can be completed within one orallsm
number of such groups, where one group may include several st
age nodes, other than linearly searching via brute-forcalimost
all storage nodes in a directory namespace approach. Orhée o
hand, the semantic grouping can also improve system stgjabi
and avoid access bottlenecks and single-point failuresstrren-
ders the metadata organization fully decentralized wherabst
operations, such as insertion/deletion and queries, candmuted
within a given group.

We further present the overview of the proposed SmartSyere s
tem and its main components respectively from user and myste
views with automatic configuration to match query patterns.

nent that iteratively builds semantic R-trees in a distalduenvi-
ronment; 3) the service component that supports insedieletion
in R-trees and multi-query services. Details of these ahdratom-
ponents of SmartStore are given in Section 3.

2.2 User View

A query in SmartStore works as follows. Initially, a userden
a query randomly to a storage unit, i.e., a leaf node of semBnt
tree. The chosen storage unit, calleosimeunit for this request,
then retrieves semantic R-tree nodes by using either armnen-I
multicast-based approach or an off-line pre-computatiased ap-
proach to locating the corresponding R-tree node. Speltyfitar
a point query, the home unit checks Bloom filters [27] stored |
cally in a way similar to the group-based hierarchical Blefilter
array approach [28] and, for a complex query, the home umitich
the Minimum Bounding Rectangles (MBR) [26] to determine the
membership of queried file within checked servers. An MBR rep
resents the minimal approximation of the enclosed dataysath
ing multi-dimensional intervals of the attribute spacegwgimg the
lower and the upper bounds of each dimension. After obtginin
query results, the home unit returns them to the user.

2.3 System View

The most critical component in SmartStore is semantic gngup
which efficiently exploits metadata semantics, such as filgsp
ical and behavioral attributes, to classify files into greufera-
tively. These attributes exhibit different charactedsti For ex-
ample, attributes such as access frequency, file size, wolfm
“read" and “write" operations are changed frequently, @/lsibme
other attributes, such as filename and creation time, o&éarain
unchanged. SmartStore identifies the correlations betwifsm-



ent files by examining these and other attributes, and thacepl
strongly correlated files into groups. All groups are thegaoized
into a semantic R-tree. These groups may reside in multiet@am
data servers. By grouping correlated metadata, Smart&tpteits
their affinity to boost the performance of both point quergt aam-
plex queries.

Figure 3 shows the basic steps in constructing a semantiedRr-t
Each metadata server is a leaf node in our semantic R-treesand
also potentially hold multiple non-leaf nodes of the R-tréethe
rest of the paper, we refer to the semantic R-tree leaf naigtor
age unitsand the non-leaf nodes awlex units
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Figure 3: Storage and index units.

2.4 Automatic Configuration to Match Query
Patterns

The objective of the semantic R-tree constructed by examini
the semantic correlation of metadata attributes is to méuelpat-
terns of complex queries from users. Unfortunately, in-veaidld
applications, the queried attributes will likely exhibih anpre-
dictable characteristics, meaning that a query request pnalye
an arbitraryd-dimensionall < d < D) subset ofD-dimensional
metadata attributes. For example, we can construct a senfrnt
tree by leveraging three attributes, i.fe size, creation time and
last modification timeand then queries may search files according
to their file sizg, (file size & creation timg or other combina-
tions of these three attributes. Although using a singleasdim
R-tree can eventually lead to the queried files, the systafiorpe
mance can be greatly reduced as a result of more frequemtig-in
ing the brute-force-like approach after each failed R-search.
The main reason is that a single semantic R-tree repregehtiee
attributes may not work efficiently if queries are generatedn
unpredictable way.

In order to efficiently support complex queries with unpotalble
attributes, we develop automatic configuratiotechnique to adap-
tively construct one or more semantic R-trees to improveryque
accuracy and efficiency. More R-trees with each being associ
ated with a different combination of multi-dimensionalritites
provide much better query performance, but require monagé
space. The automatic configuration technique thus musnogeti
the tradeoff between storage space and query performanae. O

units between the two semantic R-treg§O(Ip) — NO(I4)|, is
larger than some pre-determined threshold, we conjediatéttese
two semantic R-trees are sufficiently different, and thessaved
to serve future queries. Otherwise, the R-tree constructed d
attributes will be deleted. We repeat the above operationallo
subsets of available attributes to configure one or more sécrR-
trees to accurately cover future query patterns. For aéujuery,
SmartStore will obtain query results from the semanticde-that
has the same or similar attributes. Although the cost ofraat
configuration seems to be relatively high, we use the number o
index units as an indicator to constrain the costs. Someetsibs
of available attributes may produce the same or approxiriate
checking their difference) semantic R-trees and redunRatnées
can be deleted. In addition, the configuration operatiomiecrel-
atively infrequently on the entire file system.

These multiple R-trees covering different common subsfetdi o
attributes will thus be able to serve the vast majority ofrgese For
the unlikely queries with attributes beyond these commdisets,
the semantic R-tree constructed frdvadimensional attributes will
be used to produce a superset of the queried results. Théypena
is to further refine these results by either brute-force imgiror
utilizing extra attributes that, however, are generallknown in
advance.

3. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of
SmartStore, including semantic grouping, system recordtgns
such as node insertion and deletion, and point and complenxesu

3.1 Semantic Grouping
3.1.1 Statement and Tool

STATEMENT 1 (SEMANTIC GROUPING OF METADATA ). Given
file metadata withD attributes, find a subset af attributes(1 <
d < D), representing special interests, and use the correlation
measured in this subset to partition similar file metadata imul-
tiple groups so that:

e Afile in a group has a higher correlation with other files in
this group than with any file outside of the group;

e Group sizes are approximately equal.

Semantic grouping is an iterative process. In the first tina
we compute the correlation between files and cluster alliilesse
correlations are larger than a predetermined admissiostaoia
(0 < &1 < 1) into groups. All groups generated in the first iter-
ation are used as leaf nodes to construct a semantic R-tilee. T
composition of the selected-dimensional attributes produces a
groupi ng predi cat e, which serves as grouping criteria. The
semantic grouping process can be recursively executed dmg-ag
gating groups in thé: — 1)th-level into theith-level nodes of the
semantic R-tree with the correlation valgg0 <e; < 1,1 <i <

basic idea is to configure one or more semantic R-trees to-adap H ), until reaching the root, whet# is the depth of the constructed

tively satisfy complex queries associated with an arbjtsarbset
of attributes.

Assume thatD is the maximum number of attributes in a given
file system. The automatic configuration first constructaaeseic
R-tree according to the availahi2-dimensional attributes to group
file metadata, and counts the number of index utt®),(Ip ), gen-
erated in this R-tree. It then constructs another semantie®us-
ing a subset (i.ed attributes) and records the number of generated
index units,NO(I). When the difference in the number of index

R-tree.

More than one predicate may be used to construct semantipgro
Thus, multiple semantic R-trees can be obtained and maedai
concurrently in a distributed manner in a large-scale ithisted
file system where most files are of interests to arguably on/ o
or a small number of applications or application environteein
other words, each of these semantic R-trees may possilrysent
a different application environment or scenario. Our otbjeds to
identify a set of predicates that optimize the query pertomoe.



File metadata wittD attributes can be represented as a D-dimensidn#d a new group if their correlation value is larger thanedafined

semantic vectorS, = [S1, S2,- -+, Sp]. Similarly, a point query
can also be abstracted 8g = [S1, 52, - ,S4] (1 <d < D). In
the semantic R-tree, each node represents all metadatzatihae
accessed through its children nodes. Each node can be siradhar
by a geometric centroid of all metadata it represents. Tiibates
used to form semantic vectors can be either physical oneh,asi
creation time and file size, or behavioral ones, such as psdée
and access sequence. Our previous work [16] shows that nembi
ing physical and behavioral attributes improves the idieation
of file correlations to help improve cache hit rate and puifiety
accuracy.

We propose to use Latent Semantic Indexing (LSI) [12, 13] as
a tool to measure semantic correlation. LSl is a techniqeeda
on the Singular Value Decomposition (SVD) [29] to measure se
mantic correlation. SVD reduces a high-dimensional veictiar a
low-dimensional one by projecting the large vector into maetic
subspace. Specifically, SVD decomposes an attribute-fikebma
A, whose rank ig-, into the product of three matrices, i.el, =
UxvT whereU = (u1,...,u.) € R>*"andV = (v1,...,v,) €
R*™" are orthogonaly. = diag(o1,...,0,) € R"*" is diagonal,
ando; is thei-th singular value ofd. V7 is the transpose of ma-
trix V. LSI utilizes an approximate solution by representifig
with a rankp matrix to delete all bup largest singular values, i.e.,
Ap = UpS, V).

A metadata query for attributecan also be represented as a se-
mantic vector of size, i.e., thei-th row of U, € R**?. In this
way, LS| projects a query vectgre R**! onto thep-dimensional
semantic space in the form ¢f= Ul g or g = ¥,'Ulq. The
inverse of the singular values is used to scale the vecta.sirhi-
larity between semantic vectors is measured as their imoelupt.
Due to space limitation, this paper only gives basic intatidun to
LSl and more details can be found in [12, 13].

While there are other tools available for grouping, suchikas

admission threshold;. When a node has correlation values larger
thane; with more than one node, the one with the largest correla-
tion value will be chosen. These groups are recursivelyegded
until all of them form a single one, the root of R-tree. In tlee s
mantic R-tree, each tree node uses Minimum Bounding Relesing
(MBR) to represent all metadata that can be accessed thiitgigh
children nodes.

The above procedures aggregate all metadata into a serRantic
tree. For complex queries, the query traffic is very likelyihded
within one or a small number of tree nodes due to metadata se-
mantic correlations and similarities. If each tree noddasesl on
a single metadata server, such query traffic is then boundbcw
one or a small number of metadata servers. Therefore, tippped
SmartStore can effectively avoid or minimize brute-forearshes
that must be used in conventional directory-based file myster
point and complex queries.

3.2 System Reconfigurations

3.2.1 Insertion

When a storage unit is inserted into a semantic group of stor-
age units, the semantic R-tree is adaptively adjusted anbalthe
workload among all storage units within this group. An itiser
operation involves two steps: group location and threshdjdst-
ment. Both steps only access a small fraction of the semBrtiee
in order to avoid message flooding in the entire system.

When inserting a storage unit as a leaf node of the semantic R-
tree, we need to first identify a group that is the most closslbted
to this unit. Semantic correlation value between this nedenand
a randomly chosen group is computed by using LSI analysis ove
their semantic vectors. If the value is larger than certaimia-
sion threshold, the group accepts the storage unit as a nevbere
Otherwise, the new unit will be forwarded to adjacent grofgrs

means [30], we choose LSI because of its high efficiency asg ea  admission checking. After a storage unit is inserted intocaig,
implementation. Thé<-means [30] algorithm exploits multi-dimensiofgé MBR will be updated to cover the new unit.

attributes ofn items to cluster them intd{(K < n) partitions.
While the process of iterative refinement can minimize thalto
intra-cluster variance that is assumed to approximatelysme the
cluster, the final results’ heavy dependence on the disiibwf
the initial set of clusters and the input parametemay potentially
lead to poor quality of the results.

The semantic grouping approach is scalable to support aggre
gation operations on multiple types of inputs, suctuag vector
andfile vector Although the following sections mainly show how
to insert/delete units and aggregate correlated unitgimops, the
approach is also applicable to aggregating files based omibéi-
dimensional attributes that construct file vectors.

3.1.2 Basic Grouping

We first use LSI to determine semantic correlation of file meta
data and group them accordingly. Next we present how to fermu
late and organize the groups into a semantic R-tree.

First, we calculate the correlations among these servexd) e
of which is represented as a leaf node (i.e., storage uniternGv
metadata nodes storidg-dimensional metadata, a semantic vector
with d attributes(1 < d < D) is constructed by using LSI to
represent each of th¥ metadata nodes. Then using the semantic
vectors of theseV nodes as input to the LSI tool, we obtain the
semantic correlation value between any two nodesmdy, among
theseN nodes.

Next, we build parent nodes, i.e., the first-level non-leadla
(index unit), in the semantic R-tree. Nodesndy are aggregated

The admission threshold is one of the key design parameter to
balance load among multiple storage units within a groupdi-It
rectly determines the semantic correlation, membershig, size
of a semantic group. The initial value of this threshold isede
mined by a sampling analysis. After inserting a new storage u
into a semantic group, the threshold is dynamically adilisi&eep
the semantic R-tree balanced.

3.2.2 Deletion

The deletion operation in the semantic R-tree is similardela-
tion in a conventional R-tree [26]. Deleting a given nodeaédsiad-
justing the semantic correlation of that group, including talue of
group vector and the multi-dimensional MBR of each groupenod
If a group contains too few storage units, the remainingsusfithis
group are merged into its sibling group. When a group becanes
child node of its former grandparent in the semantic R-teea ee-
sult of becoming the only child of its father due to group niregg
its height adjustment is propagated upwardly .

3.3 On-line Query Approach

We first present on-line approaches to satisfying rangek teqpd
point query requests and then accelerate query operatiopseb
processing.

3.3.1 Range Query

A range query is to find files satisfying multi-dimensionatge
constraints. A range query can be easily supported in theusin



R-tree that contains an MBR on each tree node with a time com-

plexity of O(log N) for N storage units. A range query request can
be initially sent to any storage unit that then multicastsrgunes-
sages to its father and sibling nodes in a semantic R-treketuify
correlated target nodes that contain results with high givdiby.

3.3.2 Top-K Query

A top-k query aims to identifyt files with attribute values that
are closest to the desired query pajntThe main operations are

query request, it first checks its father node, i.e., an wrdrde to
identify a target node in the semantic R-tree that is mostatio
associated with the query poigt After checking the target node,

we obtain aM ax D that is used to measure the maximum distance

between the query point and all obtained resultsMaxz D also
serves as a threshold to improve the query results. Its valup-
dated if a better result is obtained. By multicasting queegsages,
the sibling nodes of the target node are further checked tifyve

whether the currend/ ax D represents the smallest distance to the

query point. This is to determine whether there are stiltdrate-
sults. The top-k query results are returned when the pazte of
the target node cannot find files with smaller distance tWarx: D.

3.3.3 Point Query

Filename-based indexing is very popular in existing file¢eys
and will likely remain popular in future file systems. A poiuery
for filenames is to find some specific file, if it exists, amorgage
units. A simple but bandwidth-inefficient solution is to detie
query request to a sequence of storage units to ascerta@xite
tence and location of the queried file following the semaRtitee
directly. This method suffers from long delays and high lveidth
overheads.

In SmartStore, we deployed a different approach to supyprti
point query. Specifically, Bloom filters [27], which are spafficient
data structures for membership queries, are embeddedtaname
and index units to support fast filename-based query sexvige
Bloom filter is built for each leaf node to represent the filees of
all files whose metadata are stored locally. The Bloom filfearo
index unit is obtained by the logical union operations ofBf@om
filters of its child nodes, as shown in Figure 4. A filenameelohs
query will be routed along the path on which the correspandin
Bloom filters report positive hits, thus significantly rethg the
search space.

A possible drawback of the above multi-query operationbas t
they may suffer from potentially heavy message traffic nemgsto
locate the most correlated nodes that contain queried fitehigh
probabilities, since a query request is randomly direcieddtorage
unit that may not be correlated with the request. This drakisan
be overcome by the following proposed off-line pre-progegs

3.4 Query Acceleration by Pre-processing

To further accelerate queries, we utilize a duplicationrapph
to performing off-line pre-processing. Specifically, eatbrage
unit locally maintains a replica of the semantic vectorsIbihaex
units to speed up the queries. Our motivation is to strikeadet
off between accuracy and maintenance costs, as shown ireFigu
We deploy the replicas of first-level index units, ey, F, I, in
storage units to obtain a good tradeoff, which is verified by o
experiments presented in Section 5.5. After formulatinchear-
rival request into a request vector based on its multi-dsiweral
attributes, we use the LSI tool over the request vector amésgc
vectors of existing index units to check which index unitie tnost
closely correlated with the request. In this way we can discthe
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target index unit that has the highest probability of susfiély
serving the request. The request is then forwarded dirézttiie
target index unit, in which a local search is performed.

Off-line pre-processing utilizes lazy updating to dealhwitfor-
mation staleness occurring among storage units that stenepli-
cas of the first-level index units. When inserting or delgtiites
in a storage unit, its associated first-level index unit ekes local
update to maintain up-to-date information of storage uthitg it
covers. When the number of changes is larger than some thdesh
the index unit multicasts its latest replicas to other geranits.

4. KEY DESIGN ISSUES

This section discusses key design issues in SmartStotadinc
ing node split/merge, unit mapping and attribute updatiaggelol on
versioning.

4.1 Node Split and Merge

The operations of splitting and merging nodes in semantieR-
follow the classical algorithms in R-tree [26]. A node wik lsplit
when the number of child nodes of a parent node is larger than a
predetermined thresholt/. On the other hand, a node is merged
with its adjacent neighbor when the number of child nodes of a
parent node is smaller than another predetermined thigzsholn
our design, the parameter and M can be defined as < % and
m can be tuned depending on the workload.

4.2 Mapping of Index Units

Since index units are stored in storage units, it is necessat
important to map the former to the latter in a way that balance
the load among storage units while enhancing system rktiabi
Our mapping is based on a simple bottom-up approach that iter
tively applies random selection and labeling operatiosssheown



in Figure 6 with an example of the process that maps index unit
to storage units. An index unit in the first level can be first-ra
domly mapped to one of its child nodes in the R-tree (i.e.oeage
unit from the covered semantic group). Each storage unithths.
been mapped by an index node is labeled to avoid being mapped b
another index node. After all the first-level index units é&deen
mapped to storage units, the same mapping process is applied
the second-level index units that are mapped to the rentagtor-
age units. This mapping process repeats iteratively umgilrbot
node of the semantic R-tree is mapped. In practice, the nuafbe
storage units is generally much larger than that of indexsyiais
evidenced by experiments in Section 5.5, and thus each ungiéx
can be mapped to a different storage unit.

_— Mapping
The second-level index unit < _____ Grouping
e e \ o~ ~
The first-level - ! ~ Ind .
index units ndex units
| He e = 1 :
i 1 !
L ‘ 1
P /’/ Y ‘\|\‘ S N s .
(\\. . }__._:.//‘ \\. :_,_:/° " :_’_:. . ) |1 ) Storage units

Figure 6: Mapping operations for index units.

Our semantic grouping scheme aggregates correlated neetada
into semantic-aware groups that can satisfy query requesis
high probability. The experimental results in Section Svglibat
most of requests can obtain query results by visiting onewvara
small number of groups. The root node hence will not likely be
come a performance bottleneck.

4.3 Multi-mapping of The Root Node

The potential single point of failure posed by the root node c
be a serious threat to system reliability. Thus, we utilizewti-
mapping approach to enhancing system reliability throwegtun-
dancy, by allowing the root node to be mapped to multipleagjer
units. In this multi-mapping of the root node, the root is peg
to a storage unit in each group of the storage units that cod#r
ferent subtree of the semantic R-tree, so that the root cédouinel
within each of the subtrees.

Since each parent node in the semantic R-tree maintains & MB
to cover all child nodes while the root keeps the attributertats of
files of the entire system (or application environment), ange on
a file or metadata will not necessarily lead to an update ondtie
node representation, unless it results in a new attributee\hat
falls outside of any attribute bound maintained by the rddtus,
most changes to metadata in a storage unit will not likely lea
an update on the root node, which significantly reduces tisé co
of maintaining consistency among the multiple replicashefroot
node that needs to multicast changes to the replicas in ntuks.

Mapping the root node to all semantic groups at a certain téve
the semantic R-tree facilitates fast query services andivgs sys-
tem reliability. It can help speed up the query services Hgkdy
answering query requests for non-existing files througtcking
the root to determine if the query range falls outside of et r
range.

4.4 Consistency Guarantee via Versioning

SmartStore uses a multi-replica technique to support leaeadd
distributed indexing, which can potentially lead to infation stal-
eness and inconsistency between the original and repdidafer-

mation for lack of immediately updating. SmartStore pregidon-
sistency guarantee among multiple replicas by utilizingesion-
ing technique that can efficiently aggregate incrementggxrup-
dates. A newly created version attached to its correlatplicee
temporarily contains aggregated real-time changes that hat
been directly updated in the original replicas. This methkbh-
inates many small, random and frequent visits to the indeiXas
been widely used in most versioning file systems [8, 9, 31].

In order to maintain semantic correlation and locality, &ma
Store creates versions for every group, represented asdtiefiel
index unit that has been replicated to other index unitsimdéto,
SmartStore sends the replicas of the original index unitghers
and fromt¢,;_; to ¢;, updates are aggregated into theh version
that is attached to its correlated index unit. These updathsde
insertion, deletion and modification of file metadata, wtach ap-
propriately labeled in the versions. In order to adapt tostystem
changes, SmartStore allows the groups to have differenbatsn
and sizes of attached versions.

Versioning may introduce extra overhead due to the needettkch
on the attached versions in addition to the original infaioma
when executing a query. However, since the versions only-mai
tain changes that require small storage overheads and dailybe
stored in memory, the extra latency of searching is usuailglls In
practice, we propose to roll the version changes backwaatiser
than forwards as in Spyglass [8], and a query first checksribe o
nal information and then its versions framto ¢,. The direct ben-
efit of checking backwards is to timely obtain most recennges
since versiort; usually contains newer information than version
tifl.

SmartStore removes attached versions when reconfiguritex in
units. The frequency of reconfiguration depends on the weser r
quirements and environment constraints. Removing vessem
tails two operations. We first apply the changes of a versitm i
its attached original index unit that will be updated acawgdo
these changes in the attached versions, such as insergiegind
or modifying file metadata. On the other hand, the versionsg a
multicast to other remote index units that have stored tpécae
of original index unit, and then these remote index unitsycaut
the similar operations for local updating. Since the atacher-
sions only need to maintain changes of file metadata and aaint
small size, SmartStore may multicast them as replicas ter ath
mote servers to guarantee information consistency whijeinag
not too much bandwidth to transmit small-size changes asrsho
in Section 5.6.

5. PERFORMANCE EVALUATION

This section evaluates SmartStore through its prototypashy
ing representative large file system-level traces, inclgéiP [17],
MSN [18], andEECS[19]. We compare SmartStore against two
baseline systems that use database techniques. The maluat-
rics considered are query accuracy, query latency and carirmu
cation overhead. Due to space limitation, additional penmce
evaluation results are omitted but can be found in our tectme-
port [20] and work-in-progress report [21].

5.1 Prototype Implementation

The SmartStore prototype is implemented in Linux and our ex-
periments are conducted on a cluster of 60 storage unit$ &ac
age unit has an Intel Core 2 Duo CPU, 2GB memory, and high-
speed network connections. We carry out the experiment8Cor
runs each to validate the results according to the evalugtiide-
lines of file and storage systems [5]. The used attributgdalisac-
cess locality and skewed distribution especially for mdithensional



Table 1: Scaled-up HP .

Table 2: Scaled-up MSN .

Table 3: Scaled-up EECS .

| | Original | TIF=80 | Original | TIF=100 Original | TIF=150
request(million) 94.7 7576 # of files (million) 1.25 125 total READ (million) 0.46 69
active users 32 2560 total READ (million) 3.30 330 READ size(GB) 5.1 765
user accounts 207 16560 total WRITE (million) 1.17 117 total WRITE (million) 0.667 100.05
active files(million) 0.969 77.52 duration (hours) 6 600 WRITE size (GB) 9.1 1365
total files (million) 4 320 total I/0 (million) 4.47 447 total operations (million) 4.44 666

attributes.

In order to emulate the I/O behaviors of the next-generattor:
age systems for which no realistic traces exist, we scalethep
existing I/O traces of current storage systems both spatiald
temporally. Specifically, a trace is decomposed into sabets. We
add a unique sub-trace ID to all files to intentionally inceghe
working set. The start time of all sub-traces is set to zerthao
they are replayed concurrently. The chronological ordeoragrall
requests within a sub-trace is faithfully preserved. Theltioed
trace contains the same histogram of file system calls agsitjiaa
one but presents a heavier workload (higher intensity).ntmber
of sub-traces replayed concurrently is denoted a3taee Intensi-
fying Factor(TIF) as shown in Table 1, 2 and 3. Similar workload
scale-up approaches have also been used in other studigg2]28

We compare SmartStore with two baseline systems. The first
one is a popular database approach that uggs #&ree [33] to in-
dex each metadata attribute, denoted as DBMS that here dbes n
take into account database optimization. The second oneiis-a
ple, non-semantic R-tree-based database approach treatizeg
each file based on its multi-dimensional attributes withewer-
aging metadata semantics, denoted as R-tree. On the othér ha
each Bloom filter embedded within an R-tree node for poinrygue
is assigned 1024 bits with = 7 hash functions to fit memory con-
straints. We select MD5 [34] as the hash function for itstieddy
fast implementation. The value of an attribute is hashea 1r28
bits by calculating its MD5 signature, which is then dividetb
four 32-bit values. We set the thresholds of 10% and 5%, espe
tively for the automatic configuration described in Sec2of and
lazy updating of off-line pre-processing of Section 3.4.

While filename-based point query is very popular in most file
system workloads, no file system 1/O traces representingestq
for complex queries are publically available. In this paper use a
synthetic approach to generating complex queries witlemthlti-
dimensional attribute space. The key idea of synthesizom-c
plex quires is to statistically generate random queries mudti-
dimensional space. The file static attributes and beha\atiributes
are derived from the available I/O traces. More specificallange
query is formed by points along multiple attribute dimensiand
a top-k query must specify the multi-dimensional coordénat a
given point and thé: value. For example, a range query aiming
to find all the files that were revised between time 10:00 t@06:
with the amount of “read" data ranging from 30MB to 50MB, and
the amount of “write" data ranging from 5MB to 8MB, can be
represented by two points in a 3-dimensional attribute spiae.,
(10:00, 30, 5) and (16:20, 50, 8). Similarly, a top-k quenthe
form of (11:20, 26.8, 65.7, 6) represents a search for thebtop
files that are closest to the description of a file that is lagtsed
at time11:20, with the amounts of “read" and “write" datanogi
approximately 26.8MB and 65.7MB, respectively. Therefdte
is reasonable and justifiable for us to utilize random numizer
the coordinates of queried points that are assumed to faltver
the Uniform, Gauss, or Zipf distribution to comprehensjvelal-
uate the complex query performance. Due to space limitatien
mainly present the results of the Zipf distribution.

5.2 Performance Comparisons between Smart-
Store and Baseline Systems

We compare the query latency between SmartStore and the two
baseline systems described earlier in Section 5.1, lalieBdS
and R-tree respectively. Table 4 shows the latency compegief
point, range and top-k queries using MENandEECStraces. Itis
clear that SmartStore not only significantly outperformsibalso
much more scalable than the two database-based schemes. The
reason behind this is that the former's semantic groupiraple
to significantly narrow the search scope, while DBMS mustkhe
eachB™-tree index for each attribute, resulting in linear brutece
search costs. Although the non-semantic R-tree approgutouas
over DBMS in query performance by using a multi-dimensional
structure to allow parallel indexing on all attributes, disery la-
tency is still much higher than SmartStore as it completghores
semantic correlations.

Table 4: Query latency (in second) comparisons of SmartStey,
R-tree and DBMS usingMSN and EECS traces.

Query TypesTIF |- 5ams |N||?S-t’\rleTer|%CrﬁartStora DBMSFRE-E;F rsarggrtStora
Point Queny\ Tei37s s s st T79 || 1680 2.1 013%5
Range Queryreniteo'a 7 7 g a1 {ITB5- 1203287
Top-k QuentTos T d e 4407 oS To g5 7T 347

We also examined the space overhead per node when using Smart
Store, R-tree and DBMS, as shown in Figure 7. SmartStore con-
sumes much less space than the R-tree and DBMS approackes, du
to its decentralized scheme and multi-dimensional reptasien.
SmartStore stores the index structure, i.e., semantie®-across
multiple nodes, while R-tree is a centralized structure difidn-
ally, SmartStore utilizes the multi-dimensional attridstructure,

i.e., semantic R-tree, while DBMS builds 2" -tree for each at-
tribute. As a result, DBMS has a large storage overhead. eSinc
SmartStore has a small space overhead and can be stored in mem
ory on most servers, it allows the query to be served at thedspe
memory access.

5.3 Grouping Efficiency

The grouping efficiency determines how effectively Smamté&t
can bound a query within a small set of semantic groups todugpr
the overall system scalability. Figure 8 shows that mostatfmns,
between 87.3% and 90.6%, can be served by one group, i.e., a 0-
hop routing distance. This confirms the effectiveness ofeuanan-
tic grouping. In addition, since the semantic vector of onsup,
i.e., the first-level index unit in the semantic R-tree, cacusately
represent the aggregated metadata, these vectors acateglio
other storage units in order to perform fast and accuratdegim-
cally as mentioned in Section 3.4. The observed resultsepttoy
feasibility of the off-line pre-processing scheme, whieln quickly
direct a query request to the most correlated index units.
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the field of information retrieval [35]. Given a query we de-
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Figure 7: Space overheads of SmartStore, R-tree and DBMS. fooo am w0 w0 s fw ww s e s
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2 60
g 0 Figure 10 shows recall values of complex queries, includamge
9 4 and top-k (k=8) queries, for thdP trace. We observe that a top-k
S_‘) 30 query generally achieves higher recall than a range quémynTain
20 reason is that top-k query in essence is a similarity se#ncis,tar-
10 geting a relatively smaller number of files. We also noticat tle-
° T 1 2 s 4 5 & 7 quests following a Zipf or Gauss distribution obtain muchhsr
Number of Hops recall values than those following a uniform distributiofhis is
because under a Zipf or Gauss distribution, files are mytaako-
Figure 8: The number of hops of routing distance. ciated with a higher degree than under uniform distribution
5.5 System Scalability
5.4 Query Accuracy | 1
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We evaluate the accuracy of complex queries by using the “Re- ¢ os S o8
call" measure and of point query by the false probability twfdsn 8 g; 8 ol
filters. E o5 F os
. E 0.4 .E g;
5.4.1 Point Query 2o g0,
SmartStore can support point query, i.e., filename-basdekin o1 o
ing, through multiple Bloom filters stored in index units asd 0 30 4 50 60 ! ZLeveI ;equen‘;e 5
scribed in Section 3.3.3. Although Bloom filter-based seanay NLgbert"fanata Nocl’es b Tree levels for 60 nod
lead to false positives and false negatives due to hasisicolt and (a) System scale. (b) Tree levels fo odes.
information staleness, the false probability is genenadigy small. ) _
In addition, these false positives and false negativesdenetified Figure 11: Optimal thresholds.
when the target metadata is accessed. Figure 9 shows traehit r
for point query. It is observed that over 88.2% query recgieah We study the impact of system size on the optimal threshakls,
be served accurately by Bloom filters. shown in Figure 11. Recall that Section 1.1 defines a quénéta
measure of semantic correlation, denotedBy._, EijQ (f; —
1o - C;)*, that, when minimized using LSI-based computation, result

in the corresponding optimal threshold. Figure 11(a) shtives
optimal threshold as a function of the number of storagesufiig-

ure 11(b) shows the optimal thresholds at different levélthe
semantic R-tree. We examine the query accuracy by meagheng
recall measure when executing 2000 requests composed 6f 100
range and 1000 top-k queries, as show in Figures 12. These re-
quests are generated based on the Gauss and Zipf distnilvatio
spectively. Experimental results show that SmartStorentaais

a high query accuracy as the number of storage units inggease
demonstrating the scalability of SmartStore.

We compare on-line and off-line query performance in terfns o
query latency and number of messages as a function of the sys-
tem scale as shown in Figure 13. Figure 13(a) compares thg que
. latency between two methods, as described in Section 3d&run
5.4.2 Complex Queries a Zipf distribution. The on-line method identifies the most-c

We adopt “Recall" as a measure for complex query quality from related storage unit for the query requests by multicastires-

Hit Rate (%)

1000 2000 3000 1000 5000
Number of Queries

Figure 9: Average hit rate for point query.
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Figure 12: Recall as a function of system scale.

sages; whereas, the off-line method stores semantic geatdhe
first-level index units in advance to execute off-line L3isbd pre-
processing to quickly locate the most correlated index. uRig-
ure 13(b) compares the number of internal network messages p
duced by the on-line and off-line approaches when perfogroam-
plex queries. We observe that the off-line approach canifsign
cantly reduce the total number of network messages.
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Figure 13: Performance comparisons using on-line and offihe.

5.6 Overhead and Efficiency of Versioning

Using versioning to maintain consistency among multipf@i+e
cas of the root and index nodes of the semantic R-tree, asledc
in Section 4.4, introduces some extra costs, i.e., extreespad la-
tency, since SmartStore needs to store versions that ackezhéor
quickly locating query results.

Similar to evaluating the versioning file systems [31], wguat
the version ratio, i.e., file modification-to-version ratto exam-
ine the overhead introduced by versioning. Figure 14 shiwes t
versioning overhead in terms of required space and latefanw

checking the versions. Due to space limit, this paper onbg@nts
the performances under the MSN and EECS traces.
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Figure 14: Versioning overhead in space and access latency.

Figure 14(a) shows the average required space in each initex u
The space overhead is tightly associated with the versitm rd
the ratio is 1, it is called a comprehensive versioning, arehe
change results in a version, thus requiring the largesagéospace.
When the ratio is increased, changes usually are aggretpaped-
duce a version to reduce space overhead. The extra spateader
on the whole is acceptable since most existing computerdean
expected to provide at least 2GB memory that is sufficientvéor
sions.

Figure 14(b) shows the extra latency incurred verifyingrgue-
sults in the versions. Compared with the entire query |atethe
additional versioning latency is no more than 10%. The nedso
that all versions only need to record small changes storeueim-
ory and we use rolling backward to reduce unnecessary atgcki
on stale information.

SmartStore uses versioning and updates aggregated changes
maintain consistency and improve query accuracy. Tablesl%a
show the recalls of range and top-k queries with and witheut v
sioning, as a function of the number of queries, for k8N and
EECStraces. Experimental results confirm that SmartStore with
versioning can significantly improve query accuracy.

Table 5: Recall of range and top-k queries usingISN.

[ | | 1000 [ 2000 | 3000 | 4000 [ 5000 |
Range Query| 86.2 | 85.7 | 84.5 | 83.2 | 82.8
Uniform \ersioning 935 | 927 | 922 | 916 | 91.1
K=8 905 [ 89.7| 874 | 86.2 | 858
Versioning | 96.7 | 96.4 | 96.2 | 95.8 | 95.6
Range Query| 90.5 | 89.3 | 88.6 | 87.7 | 86.4
Gauss Versioning | 96.8 [ 95.9 | 95.2 | 94.8 | 94.3
K=8 958 [ 942 935 924 ] 916
Versioning 100 | 99.6 | 99.3 | 99.1 | 98.8
Range Query| 91.2 [ 90.5 | 89.3 | 88.7 | 87.3
Zipf Versioning 100 | 99.2 | 98.8 | 98.6 | 985
K=8 965 [ 951 943 ] 936 | 92.6
Versioning 100 | 100 | 100 | 99.8 | 99.6

6. RELATED WORK

We compare SmartStore with state-of-the-art approachemirent-
based search, directory subtree partitioning and datadwhsgon.

6.1 Content-based Search

One of the most prevalent metadata queries is content-loasey
by examining the contents and pathnames of files, such #suetr
based naming in the Semantic file system [36] and conterebas
search tool in Google Desktop [37]. However, the efficienty o



Table 6: Recall of range and top-k queries usindEECS.

| | | 1000 [ 2000 | 3000 | 4000 [ 5000 |
Range Query| 87.3 | 865 | 84.6 | 83.2 | 815
Uniform Versioning 954 | 95.2 | 948 | 946 | 94.3
K=8 915 902 898 874 | 85.6
Versioning 97.6 | 97.3 | 97.1 | 96.6 | 96.2
Range Query| 89.7 | 88.2 | 87.5 | 855 | 83.1
Gauss Versioning 96.6 | 96.3 | 96.1 | 95.7 | 95.5
K=8 96.7 | 95.1 | 942 | 923 | 91.1
Versioning 100 | 100 | 99.8 | 99.5 | 99.1
Range Query| 90.2 | 89.6 | 87.5 | 86.7 | 84.8
Zipf Versioning 100 | 99.7 | 99.4 | 98.9 | 98.6
K=8 973 96.2 | 948 935 [ 92.7
Versioning 100 | 100 | 100 | 100 | 99.7

content-based search heavily depends on files that corntglit-e
itly understandable contents, while ignoring file contésetttis uti-
lized by most users in organizing and searching their datd). [3
Furthermore, typical techniques successful for the wettheauch
as HITS algorithm [39] and Google search engine [40], leyera
tagged and contextual links that do not inherently, let @lexplic-
itly, exist in large-scale file systems.

6.2 Directory-based Subtree Partitioning

Subtree-partitioning based approaches have been widetyins
recent studies, such as Ceph [3], GIGA+ [41], Farsite [2] 8pg-
glass [8]. Ceph [3] maximizes the separation between dada an
metadata management by using a pseudo-random data distmibu
function to support a scalable and decentralized placeofeapli-
cated data. Farsite [2] makes the improvement on distribdie
rectory service by utilizing tree-structured file identifi¢hat sup-
port dynamically partitioning on metadata at arbitraryrgrdarity.
GIGA+ [41] extends classic hash-tables to build file systémod
tories and uses bitmap encoding to allow hash partitionplit s
independently, thus obtaining high update concurrencypeméll-
lelism. Spyglass [8] exploits the locality of file namespauoel
skewed distribution of metadata to map the namespace tigrar
into a multi-dimensional K-D tree and uses multi-level vening
and partitioning to maintain consistency. However, in itsrent
form, Spyglass focuses on the indexing on a single servecamd
not support distributed indexing on multiple servers.

In contrast, SmartStore uses bottom-up semantic groupidg a
configures a file organization scheme from scratch, whicmis i
essence different from the above subtree-partitioningagmihes
that often exploit semantics of already-existing file systdo or-
ganize files. Specifically, SmartStore leverages semaotticsilti-
dimensional attributes, of which namespace is only a pagdap-
tively construct distributed semantic R-trees based oadah se-
mantics and support complex queries with high reliabilitg fault
tolerance. The self-configuration benefit allows SmartStorflex-
ibly construct one or more semantic R-trees to accuratelichma
query patterns.

6.3 Database Solution

Researchers in the database field aim to bring databaseitgapac
to Petabyte scales with billions of records. Some databaiséors
developed parallel databases to support large-scale datage-
ment, such as Oracle’s Real Application Cluster databaZjeajdd
IBM’s DB2 Parallel Edition [43], by using a complete relatal
model with transactions. Although successful for manageig-
tional databases, existing database management syst&S)D
do not fully satisfy the requirements of metadata searclatige-

scale file systems.

e Application Environments: DBMS often assumes dedicated
high-performance hardware devices, such as CPU, memory,
disk and high-speed networks. Unfortunately, real-wopd a
plications, such as portable storage and personal deyiaes,
vide limited capacity to support complex queries for manag-
ing metadata.

e Attribute Distribution : DBMS treats file attributes equally
and assumes uniform distribution of their values, ignoring
skewed distribution of file metadata. A case in point is that
DBMS considers file pathnames as a flat string attribute and
ignores the locality of namespace.

e Access Locality Database techniques generally cannot take
full advantage of important characteristics of file systems
such as access locality and “hot spot" data, to enhancensyste
performance.

Database research community has argued that existing DBMS
for general-purpose applications would not be a “one sizallfit
solution [44] and improvements may result from semantisebla
designs [45].

7. CONCLUSION

The paper presents a new paradigm for organizing file metadat
for next-generation file systems, called SmartStore, byoéimg
file semantic information to provide efficient and scalabdene
plex queries while enhancing system scalability and fumétiity.
The novelty of SmartStore lies in it matches actual datailigion
and physical layout with their logical semantic correlatgp that
a complex query can be successfully served within one or # sma
number of storage units. Specifically, this paper has thram m
contributions. (1) A semantic grouping method is proposedft
fectively identify files that are correlated in their phyaiattributes
or behavioral attributes. (2) SmartStore can very effityesupport
complex queries, such as range and top-k queries, whiclikely
become increasingly important in the next-generation fitesns.
(3) Our prototype implementation proves that SmartStohéghkly
scalable, and can be deployed in a large-scale distribtitedge
system with a large number of storage units.
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