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Abstract

Efficient coding has been proposed to play an essential role in early visual processing. While several approaches
used an objective function to optimize a particular aspect of efficient coding, such as the minimization of
mutual information or the maximization of sparseness, we here explore how different estimates of efficient coding in
a model with nonlinear dynamics and Hebbian learning determine the similarity of model receptive fields to V1
data with respect to spatial tuning. Our simulation results indicate that most measures of efficient coding correlate with
the similarity of model receptive field data to V1 data, that is, optimizing the estimate of efficient coding increases
the similarity of the model data to experimental data. However, the degree of the correlation varies with the different
estimates of efficient coding, and in particular, the variance in the firing pattern of each cell does not predict
a similarity of model and experimental data.
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Introduction

Since the early studies of receptive field properties in primary
visual cortex (Hubel & Wiesel, 1962; Valois et al., 1982; DeAn-
gelis et al., 1993), a major issue in neural coding has emerged,
dealing with the question of why neurons have a particular re-
ceptive field structure. Since V1 neurons respond well to edges,
edge detection has been considered as a useful operation of early
vision emphasizing the important structural properties of a visual
scene (Marr & Hildreth, 1980). However, this does not answer the
questions about optimal edge detectors and particularly why edge
detectors should emerge and not any other potentially useful
detector. Important progress has arisen from the efficient coding
hypothesis which states that stimuli should be represented in the
least redundant code (Attneave, 1954; Barlow, 1961; Laughlin,
1981; Atick & Redlich, 1990; Hateren, 1993; Field, 1994).
Formally, measures of efficient coding are used as optimization
objective. Most models following the efficient coding hypothesis
attempt to describe the image in the form of a linear superposition
of basis functions (linear generative models) with the additional
constraint of a super-Gaussian density distribution of the neural
responses. Particularly, recent contributions in this respect have
shown that algorithms seeking for a statistical independence of the
neural responses converge to localized, oriented, band-pass filters
(Olshausen & Field, 1996; Bell & Sejnowski, 1997; van Hateren &

van der Schaaf, 1998). However, despite this great success, a more
close comparison with neural data revealed that the learned
receptive fields do not capture the full frequency distribution as
observed in experimental data (van Hateren & van der Schaaf,
1998; Ringach et al., 2002) but refer to Rehn and Sommer (2007)
and Weber and Triesch (2008) for improvements.

With respect to coding, linear models of neural coding have
been criticized since the type of image structure they can represent
is quite limited, and natural scenes are probably not well described
by a linear set of filters (Karklin & Lewicki, 2003; Bethge, 2006).
Thus, recently, nonlinear models of coding have been developed
(Schwartz & Simoncelli, 2001; Karklin & Lewicki, 2003). Schwartz
and Simoncelli (2001) proposed a model that combines linear filters
with a nonlinear gain control by divisive inhibition and showed that
the second nonlinear stage leads to more independent responses.

While many studies have demonstrated some relationship be-
tween neural receptive field properties and aspects of efficient
coding by using measures of efficient coding as optimization ob-
jective, we here develop a neural network model from biologically
plausible elements, such as Hebbian and anti-Hebbian learning, and
use measures of efficient coding together with biological data to
investigate if the similarity between model and experimental data
correlates with different measures of efficient coding.

From an information-theoretic viewpoint, the goal of efficient
coding can be formalized into maximizing the mutual information
between input and neuronal responses. First of all, this requires
that the output codes the properties of the input with minimal loss.
While generative models achieve this by minimizing the reconstruc-
tion error using an appropriate global optimization function, we here
use Hebbian learning. Hebbian learning only ensures a local optimal
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solution, since this type of learning does not have access to a global
error signal to ensure no information loss. Thus, we will estimate the
quality of coding by two measures: the ability to reconstruct the input
and the ability to discriminate between different inputs. Moreover,
efficiency asks for a number of other criteria. The most common one
is independency. Additionally, we consider the sparseness of the
neural response distribution and the linear correlation between pairs
of cell responses. Finally, we also looked at the property of ‘‘cell
contribution,’’ that means, cells in an efficient code ought to con-
tribute equally to the overall encoded pattern.

We systematically varied critical model parameters and mea-
sured information-theoretic properties of efficient coding in these
different instances after learning. We then analyzed if these
measurements of efficient coding correlate with the similarity
between model and biological data, here, the distribution of spatial
frequency tuning (Ringach et al., 2002). We observe in most but
not all cases that making the code more efficient enhances the
similarity between model and experimental data. However, with
respect to the coding quality (e.g., reconstruction error), we observe
a saturation, enforcing a highly independent and sparse code does
not further improve or even diminish coding quality. We compare
these model results to those of independent component analysis
(ICA), a particular linear generative model.

A model of Hebbian learning within a network for
attentional processing

Architecture

Our model consists of two layers, of which neurons are bi-
directionally connected with each other by feedforward (W) and
feedback (A) weights (Fig. 1). The activity rOn=Offi is obtained from
images that have been whitened/lowpass filtered (see Materials and
methods) and separated into ON–OFF channels (depending on the
sign of the pixel value after filtering).

Layer II gets activated from Layer I neurons but is dependent
on the activity of other Layer II cells. The Layer II cells feedback
to Layer I cells and increase their gain. Due to the learning of the
feedback weights, this feedback is predictive. Unlike generative
models where the difference between feedforward and feedback is
computed, the feedback signal enhances the sensitivity of specific
neurons in the previous layer and thus leads to an attentional tun-
ing, as proposed by models of attention (Hamker, 2005).

Neural dynamics

We simulate the change in the firing rate of the cells with
differential equations. The activity of model units is restricted to
nonnegative values.

Layer I
The neurons in Layer I are driven by the ON- and OFF-cells

(Fig. 1). Feedback from Layer II implements a gain modulation
(Bayerl & Neumann, 2004; Hamker, 2004, 2005). There is no
lateral competition among the neurons in Layer I, but they can
receive a selective reentrant signal due to the competitive dynamics
in Layer II. The firing rate rL1i of Layer I cells is simulated by:
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where
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i 5 1þ sL1 !
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x ð2Þ

gives the gain enhancement via the feedback signal and

sL1 5 ðAL1 "maxnr
L1
n Þþ ð3Þ

constrains the gain enhancement (Hamker, 2005).

Fig. 1. The network consists of two layers. The first layer (Layer I) represents the simulated input modulated by the ‘‘attentional’’
feedback signal (a). The cells of Layer II represent the simulated V1 cells. Each cell of Layer I gains feedback from all cells of Layer II
(according to the feedback weight connection), and each Layer II cell obtains its main input from all Layer I cells [dependent on the
feedforward weights (w), respectively, their receptive field]. This input is linear, but it is further processed nonlinearly. Each cell uses its
current activation state to self-enhance its firing rate, but it is also inhibited by other cells, dependent on the current lateral inhibition
connection weights (c).
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i refers to the position of the neurons in the image space, !L1 5
10 ms is the time constant of the temporal dynamics, aji denotes the
feedback weight from neuron j of Layer II to neuron i of the first
layer and (x)+ 5 max(x, 0). rL1i and rL2j denote the strength of the
firing rate for the corresponding neuron. The parameter AL15 1
determines the influence of the feedback signal with respect to the
activity in the postsynaptic layer.

Layer II
Layer II neurons learn a combination of specific input features.

Their firing rates are determined by a linear input signal (the
weighted sum of the activity in Layer I), nonlinear self-excitation,
and nonlinear lateral inhibition to induce competition among cells
(Fig. 2):
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gives the nonlinear processing and

sL2 5 ðAL2 "maxyr
L2
y Þþ ð6Þ

ensures that self-excitation saturates. The factor " 5 2 determines
the degree of self-excitation, and AL2 5 0.9 constrains the self-
excitation. !L2 5 10 is the time constant of the Layer II cells. The
connection wij denotes the strength of the feedforward weight from
neuron i of Layer I to neuron j of Layer II. Lateral inhibition can
differ across the cells due to anti-Hebbian learning.

Learning rules

The learning of the connections between neurons is implemented
via a Hebbian principle. Long-term potentiation requires an above-
mean activation of both pre- and postsynaptic activities, which is
well known as the covariance learning rule (Sejnowski, 1977;
Willshaw & Dayan, 1990). Long-term depression occurs by

the constraint to limit the overall weight resource and, only for
the feedforward connections, if the presynaptic activity is below the
population mean. Specifically, we used
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~r is the mean of the activation in a particular layer (e.g.,

~rL151
N

PN

i51
rL1i ) and ! l 5 5000 ms is the time constant for learning.

The feedback weights are prevented from getting negative because
the gain enhancing attentional signal is supposed to be only excit-
atory. #w 5 3.5 and #a 5 1.67 enforce a limitation of the weight
resources. An appropriate value can be easily estimated from the
stable solution of the ordinary differential equation (ODE) and the
desired activation rL2j given rL1i .

Lateral connections within Layer II cells were learned by anti-
Hebbian learning. The name anti-Hebbian implies that this strategy
is the opposite of the Hebbian learning rule. Similar to the learning
of the synaptic connection weights, where the connection between
two cells is increased when both fire simultaneously, in the anti-
Hebbian case the inhibition between two cells is strengthened. The
more frequently two cells are activated at the same time, the
stronger they inhibit each other, increasing the competition among
the two cells:
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@cij
@t

5 rL2j ! rL2i " #cr
L2
j ! cij; ð9Þ

where !c5 5000 ms is the learning rate of the anti-Hebbian weights.
Anti-Hebbian learning leads to decorrelated responses and to a sparse
code (Földiàk, 1990). Falconbridge et al. (2006) have shown that
a model with anti-Hebbian learning of lateral weights develops
Gabor-like receptive fields when trained with natural scenes. Our
particular learning rule differs from the anti-Hebbian learning rule
used by Földiàk (1990) and Falconbridge et al. (2006). They used
a fixed parameter (referring to a desired firing activity) to constrain
the synaptic strength, while our constraint is dependent on the actual
synaptic strength and the postsynaptic activity. Previous control
simulations proved this anti-Hebbian learning rule to be superior in
our framework.

Materials and methods

We applied the model to learn receptive fields from ON–OFF
channel responses to natural scenes. In order to obtain the image
data, we used the software package ‘‘nnscpack’’ from Patrik Hoyer
(http://www.cs.helsinki.fi/u/phoyer/code/nnscpack.tar.gz), which in
turn took the natural scenes from Bruno Olshausen’s ‘‘Sparsenet’’
software package (http://redwood.berkeley.edu/bruno/sparsenet).
The image data consist of 10 images (512 3 512 pixels). To
roughly simulate the characteristics of retinal ganglion cells, each
image has been filtered with a zero-phase whitening/lowpass filter
R( f )5 f!exp("( f/f0)

4) with f0 5 200 cycles per picture (Olshausen
& Field, 1996). This filter attenuates low frequencies and boosts
high frequencies to obtain a roughly flat amplitude spectrum across
spatial frequencies. In image space, this filter has a circularly
symmetric, center-surround (Mexican hat) shape. For every image,

Fig. 2. Each input stimulus is first processed linearly and forms the
feedforward signal for the cells’ activation. The following processing
modulates the firing rate nonlinearly due to self-excitation and lateral
competition. The plot shows the change in the firing distribution along this
processing using the average conditional histograms of all cell firing
patterns. The nonlinear processing enforces the signal to be largely
uncorrelated and independent.
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the same number of randomly selected patches has been taken and
used for learning. We did not define a training set with a fixed
number of patches but randomly chose a patch for each trial. Each
patch is divided in two different channels (ON–OFF), and each
channel is normalized to unit mean-squared activation.

We used a 12 3 12 patch size. Thus, 288 cells were required in
the first layer, that is, 144 neurons receive input from the ON- and
the others from the OFF-cells. We used 288 cells in Layer II to
represent the input combinations. The feedforward weights wij

were initialized randomly with a mean !w50:1. The feedback and
the lateral inhibition weights were initialized to zero. An image
patch is presented for 50 ms to let the dynamics of the system
converge to a stable state. After each trial, the feedback and
feedforward synapses as well as the lateral inhibition connections
are updated according to the final firing rates of the cells.

We controlled the competition in Layer II by two parameters,
#c and dnl. The factor #c (eqn. 9) constrains the absolute strength of
the anti-Hebbian weights. The factor dnl determines the degree of
nonlinearity in the function f (see eqn. 5). Table 1 shows all com-
binations of parameters we used to modify the competition among
the cells.

Fitting the learned receptive fields to a Gabor-filter

To compare the learned weight kernels or the receptive fields with
Gabor functions, we estimated the parameters of the following
equation using a nonlinear least-square data fitting approach:

Gðx; y; x0; y0; $x;$y; f ; %;  Þ5 cosð2& ! f ! x̂"  Þ!

exp " x̂2

2$2
x

" ŷ2
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 !
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with x̂5ððx" x0Þ cosð%Þ þ ðy" y0Þ sinð%ÞÞ and ŷ5" ððx" x0Þ
sinð%Þ þ ðy" y0Þ cosð%ÞÞ.

The parameters are as follows: x0 and y0 are the pixel
coordinates of the Gabor-filter center, $x and $y refer to the width
of the corresponding underlying Gaussian filters, f gives the
frequency, % gives the orientation, and  gives the phase of the
Gabor-filter. The filter was fitted using a large-scale algorithm
provided by MATLAB. This algorithm is a subspace trust-region
method and is based on the interior-reflective Newton method
described in Coleman and Li (1994, 1996).

Efficient coding

Since efficient coding has been suggested to play a fundamental
role in the principle of V1 processing, a good measure to evaluate

this property must be found. To summarize, efficient coding means
that an input stimulus is encoded with the least resources possible.
Here we will introduce several measures, all capturing some as-
pects of the properties that constitute efficient coding. All mea-
surements were calculated from Layer II cell responses to 50,000
randomly chosen image patches or combinations thereof. All
following measurements for the efficiency of the codes (except
sparseness) are best when they are small, thus for better clarity, the
correlation with those measurements and the properties of the
learned features are calculated with reversed axis.

Sparseness
The concept of sparse coding refers to a neural representation

where only a few cells (out of a large population of cells) are
effectively used to represent typical data vectors. There is strong
theoretical evidence that natural scenes can be efficiently repre-
sented by a sparse code based on filters that resemble neurons
found in area V1 (Barlow, 1989; Daugman, 1989; Field, 1984,
1994; Olshausen & Field, 1997). Sparse codes represent informa-
tion with minimal redundancy and relatively few spikes. Regarding
the cells’ metabolism and information processing, it is much more
efficient than dense coding (Levy & Baxter, 1996; Laughlin et al.,
1998), where information is represented by the whole cell pop-
ulation. Vinje and Gallant (2000) argued that the shape of the
receptive fields is responsible for forming a sparse code of the
visual world and that the sparseness depends also on the size of
presented natural image patches. However, evaluating sparseness in
the activity of the brain is very difficult. Typically, the kurtosis of
the firing distribution of the cells is used to measure the sparseness
of the cell population. However, we decided to use the sparseness
measure of a cell population r introduced by Hoyer (2004), which is
gained from the following equation based on the relationship
between the L1 norm and the L2 norm.

sðrÞ5
ffiffiffi
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i rij j
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=
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i r
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p
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n

p
" 1

; ð11Þ

where r 2Rn. The value is 1 if and only if r contains one single cell
that is nonzero, and the value is 0 if all components respond equally
(Fig. 3a). Fig. 3b–3d shows examples of cell populations’ responses
with different sparseness values. The proposed measure shows the
same tendency than using the kurtosis but is more gradual and due
to its boundaries easier to compare.

Correlation
Efficient coding means that the activation of neurons ought to

be uncorrelated. The easiest way to measure correlation is to
directly calculate the linear correlation between two neurons in
response to multiple image patches.

Independence
In order to encode data even more efficiently, the neural responses

ought to be independent from one another. This means that the
information coding should make equal use of all possible combina-
tions of activation patterns (Simoncelli & Olshausen, 2001). A statis-
tical independence between two signals means that the knowledge
of one signal provides no information about the other signal.

d Mutual information: To measure independence, it is common to
consider the mutual information of the activation distributions.
Mutual information of two variables can be understood as the
amount of information that the knowledge of either variable

Table 1. Parameters for the variation of competition

#c 5 0.01 #c 5 0.1 #c 5 0.5 #c 5 2.0

dnl 5 0.2 AH.1.1 AH.1.2 AH.1.3 AH.1.4
dnl 5 0.4 AH.2.1 AH.2.2 AH.2.3 AH.2.4
dnl 5 0.6 AH.3.1 AH.3.2 AH.3.3 AH.3.4
dnl 5 0.8 AH.4.1 AH.4.2 AH.4.3 AH.4.4
dnl 5 1.0 AH.5.1 AH.5.2 AH.5.3 AH.5.4

Twenty different parameter sets of our algorithm were tested, each with
a different combination of the factor #c (controlling the strength of the anti-
Hebbian weight connections) and dnl (controlling the nonlinear impact of
the inhibition and the self-excitation). The parameter set AH.1.4 was
excluded due to its bad performance.
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provides about the other. Formally, the mutual information of
two continuous random variables (X and Y) can be defined as
follows:

IðX; YÞ5
Z

X

Z

Y

pðx; yÞ ! log pðx; yÞ
p1ðxÞp2ðyÞ

! "
dxdy; ð12Þ

where p(x, y) is the joint probability density function of X and Y,
and p1(x) and p2(y) are the marginal probability density
functions of X and Y, respectively. To assess the mutual
information of a model, we estimated the mean mutual in-
formation between all possible responses of two cells using
50,000 image patches. Please refer to Kraskov et al. (2004) for
further details on the approximation of eqn. (12). This particular
approximation has also been applied for the analysis of the
natural statistics of optic flow generated on the retina during
locomotion through natural environments (Calow & Lappe,
2007).

d Variance of the conditional distributions: Another way to
examine independence is via a conditional histogram (Fig. 4);
S1 and S2 refer to responses of two different Layer II cells to the
50,000 image patches. If the variance of the distribution of S2
varies with the amplitude of S1, then S2 depends on S1. No change
in the variance across the distributions indicates independent
signals. For each pair of neurons, we used the variance of the S2
variances as a measure for the variance dependency. The mean
of this variance over all cell combinations describes the degree
of independent coding of a particular model.

Variance in the firing rate distributions
Willmore et al. (2000) argued that the variance of a cell’s firing

rate to different stimuli is an indication of how ‘‘useful’’ this cell
would be in the average coding process. A cell with high variance
would respond much stronger and more frequent and thus having
a greater impact encoding the stimuli.

d Variance-distribution: For an algorithm to code efficiently,
Willmore et al. (2000) argued that it would mean that all cells
are equally taking part in the coding process and thus, the cells
ought to have a similar variance. To assess this, they introduced
a so-called scree plot: The variance in the firing rate of each cell
to different stimuli is computed, normalized, and then ordered
in rank. They used the resulting plane as a measure of
‘‘dispersal.’’ An efficient code (with similar variance through-
out all cells) would have a large plane (Willmore et al., 2000).
Another way to measure the dispersal is to take the gradient of

the best linear fit. There, a small gradient would be expected in
efficient codes (Watters, 2004). We decided to use the gradient
(further called the ‘‘Variance-distribution’’ measurement) be-
cause it is less delicate to outliers.

d Variance-mean: We also used a slightly different measurement
to assess the property in how far each cell contributes to the
overall coding in natural scenes. We looked at the variance of
the average firing rate across all cells to the same image patches.
The mean firing rate of each cell over the image patches is
calculated, and the variance of all these means is used as the
final measurement. The smaller the variance, the more similar is
the average firing rate across all cells. This measure (further
called ‘‘Variance-mean’’ measurement) gives information
about the probability of the cells’ firing with the same strength
on average. This might sound very similar to the Variance-
distribution measurement, but we will show later that those two
values do capture different aspects.

Properties of V1 receptive fields
The data from Ringach et al. (2002) were used as a ground truth

of V1 receptive field properties. In this study, the cells of the
macaques were stimulated by drifting sinusoidal gratings, and
a spatiotemporal receptive field of simple cells was measured using
subspace reverse correlation. For a comparison to these data, we
only considered receptive fields fromourmodels thatwere adequately
fitted by Gabor-filters (i.e., sum-of-squares difference,3). To assess
the receptive field properties, we determined the following two
measurements:

d Average frequency: We took the average frequency of the
Gabor-fitted receptive fields to roughly describe the frequency
tuning of the receptive fields.

d Fit to the macaque data: To directly compare the results of our
algorithm with the electrophysiological data, we determined
the average distance of each data point from the macaque
data to its nearest corresponding data point of the model data
and vice versa. A small average distance would therefore
indicate that the learned receptive fields match the macaque
data well.

Coding quality

To assess the quality of coding, we used two different measurements:

d Reconstruction of the original image: As the cell responses are
coding the input image patches according to the learned

Fig. 3. (Color online) Illustration of sparseness. (a) The sparseness level is dependent on the number of active cells. On thex-axis, the number of
active cells is plotted (for demonstration purposes, we used a binary code). They-axis shows the corresponding sparseness value using eqn. (11).
(b–d) The firing response for all Layer II cells to an image patch for three different trials with different lateral competition (and thus different
levels of sparseness). According to this sparseness measure, the plotted examples had a sparseness of b: 0.9816, c: 0.8613, and d: 0.6758.
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feedforward matrices, we assessed the quality of this code by
comparing the linear reconstruction of the image with the
original image patch in a least square manner. Our models do
not optimize their weights to reduce the error between the
original and the reconstructed image but learn correlations
between the input and nonlinear responses, thus we had to
estimate how our model would reconstruct the image. The
reconstructed image is estimated as follows:

IRC 5Wonr
L2
on "Woffr

L2
off ; ð13Þ

where rL2on is the vector of the nonlinear ON-cell responses to
the original image patch I and Won the corresponding weights
to the ON-cells (rL2off and Woff, respectively). To capture the
amount of reconstructed information correctly, we normalized
the constructed image to the same mean as I before calculating
the image reconstruction error. As the weightsW and Amostly
learn the same correlations, the reconstructed image is nearly
identical when using W compared to A after normalization.
The smaller the reconstruction error, the better is the algo-

rithm. The correlation between this measurement and efficient
coding measurements is therefore calculated with a reversed
axis.

d Similarity of the cell populations: Object recognition requires
to discriminate between different population responses. At the
level of V1, a simple measure of the discrimination ability is to
assess the similarity of the population responses (r and s) to
two randomly chosen image patches by computing the angle
between the vectors:

dTMðr; sÞ5
r; sh i
rj j sj j

ð14Þ

with dimðrÞ5dimðsÞ. The statistical probability for overlapping
cell responses increases with the number of active cells, thus, the
sparser the population codes, the higher is the bias for a good
discrimination. In order to diminish this effect, we normalized
each discrimination value with the expected discrimination
given the corresponding distribution of firing rates. For each
model, we created 100,000 pairs of random cell responses

Fig. 4. (Color online) Average joint statistics of the response of linear filter pairs to randomly chosen natural image patches (results from
model AH.1.2). Top: The response distribution of the filter S2 subject to two different values of the filter S1. Bottom: The two-dimensional
conditional histogram as a gray-scale image. The intensity of the pixels is proportional to the bin counts with the exception that every
column is rescaled to a maximum of 1. The upper histograms are slices of the conditional histogram. Different widths of these histograms
indicate that the signals are not statistically independent.
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according to the distribution of the firing rates and calculated
their discrimination to obtain the expected discrimination.

Results

Fig. 5 shows the learned weight kernels for our algorithm with
a particular set of parameters (AH.5.1) after 400,000 image patch
presentations. Although the shapes of the weight connections are
visible after about 30,000–100,000 presentations (dependent on the
algorithm parameters), the detailed learned ‘‘feature’’ can vary over
time due to the lateral inhibition. The bottom-up and top-down
weights converged to similar profiles (median of the sum-of-squares
differences for the models vary from 0.067 to 0.343). In all
parameter sets of our algorithm, most of the kernels are localized,
oriented, and band-pass, similar to several earlier approaches. We
also obtain blob-like kernels which appear absent in the classical
sparse coding model (Olshausen & Field, 1996) and in ICA (Bell &
Sejnowski, 1997; van Hateren & van der Schaaf, 1998).

To estimate the receptive field profile, including the whitening/
lowpass filtering stage, we convolved the whitening/lowpass filter
with the learned weights, which basically slightly reduces the
frequency but does not change the overall shape. The receptive
fields are well fitted with Gabor functions. In our algorithm with
a particular parameter set leading to the receptive field kernels
shown in Fig. 5 (AH.5.1), the median of the sum-of-squares
difference is 1.93 (with 0.9-Quantile 5 6.05 and 0.1-Quantile 5
0.60). The resulting receptive fields using other parameter sets are
similarly well fitted. However, there are large differences in the
properties of the weight kernels across the parameter sets of our
algorithm (Fig. 6). In the following, we systematically compared
the model receptive field properties with V1 data with respect to
measures of efficient coding (see Materials and methods). The
parameter set AH.1.4 is excluded from further evaluation due to its
extraordinary weak fit.

As we affected the inhibition among the Layer II cells, the
resulting instances show different levels of sparseness. The range
of sparseness reaches from 0.72 up to 0.92 across the parameter
sets (for comparison, the kurtosis values vary between 21 and
196). Fig. 7a shows the correlation between the average sparseness
of the models and the properties of the learned receptive fields, that
is, the median frequency (F), the difference between model and
data (Diff), and the reconstruction error (RC). All these three
measures show a strong correlation with sparseness (rF 5 0.91,
rDiff 5 0.94, and rRC 5 0.63). In other words, with increasing
sparseness of the Layer II cell population, the properties of the
model receptive fields become more similar to the V1 data. Note
that the image reconstruction error saturates and slightly drops with
increasing levels of sparseness.

The average mutual information of the Layer II responses
shows a similar correlation with the receptive field properties
(rF 5 0.94, rDiff 5 0.92, and rRC 5 0.72) as sparseness (Fig. 7b).

The conditional histograms contain information about the
independence and the correlation of the corresponding cell
responses. Fig. 8 shows examples of the average conditional
histogram of the linear part and the nonlinear response of the
particular parameter set shown in Fig. 6c (AH.5.1). The non-
linear stage effectively removes the redundancy in the linear
responses. Since this effect is found in all parameter sets of our
algorithm, the variance of the conditional distributions is always
very low but a bit noisy and therefore, the correlation between the
variance of the conditional distributions and the properties of
the receptive fields is much smaller compared to the mutual
information and sparseness (rF 5 0.47, rDiff 5 0.41, and rRC 5
0.60) (Fig. 7c).

The linear correlation among the cell responses (Fig. 7d) shows
a strong correlation similar to sparseness and mutual information
(rF 5 0.95, rDiff 5 0.88, and rRC 5 0.80).

Until now, we have only considered the properties of the cell
population codes in terms of sparseness, dependency, and corre-
lation. As described earlier, efficient coding can also be defined
such that each cell participates to a similar degree in the
probability of encoding natural scenes. Fig. 7e shows the results
of the Variance-distribution measurement proposed by Watters
(2004). The correlations are opposite to the results one would have
expected. Following the lead of the previous measurements of
efficient coding, one would expect that if the gradient of the fitted
linear function becomes more flat (and thus the variance in the
firing rates would become similar), the similarity of the model with
the V1 data increases. Obviously, the correlation points in the
opposite direction (rF 5 "0.71, rDiff 5 "0.72, and rRC 5 "0.34).
Thus, the similarity of model and data is not increased with a more
similar variance in the firing rates across all cells. To complement
this observation, we also tested the linear part of the firing rates. The
correlation for the linear part also shows negative correlations.

If we use the mean-distribution as a measurement of the
contribution of each cell to the neural code, we find a weak
correlation (rF 5 0.48, rDiff 5 0.71, and rRC 5 0.25). Thus, with
similar mean firing rates across the cells, the properties of the model
receptive fields become more similar to the V1 data (Fig. 7f). The
image reconstruction error does hardly correlate with the variance
of the average firing rates.

The influence of the different efficient coding estimates can be
seen in Fig. 9. For each estimate, the best and worst five methods
were picked out, and the average difference of the model to the V1
data is plotted. For all estimates of efficient coding (except the
Variance-distribution measurement), the parameter sets that best

Fig. 5. 100 randomly chosen feedforward weights of the parameter set
AH.5.1 (Table 1) after learning for 400,000 trials. Pixels brighter than gray
indicate excitatory and darker than gray indicate inhibitory weight con-
nections. Theweights often converge to localized, oriented band-pass filters.
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implement efficient coding lead to a better fit of the model with V1
data. Only the Variance-distribution measurement shows complete
converse results. Thus, equal variance of the cell responses appears
not to be a good measurement for efficient coding since it does not

only deviate from other estimates, but achieving a more equal
variance results in a weaker fit to the data.

We now compare our results to ICA, a standard linear method
for learning receptive fields from natural scenes. Here, we use the

Fig. 6. (Color online) The properties of the Gabor-fitted receptive fields of the model for four different parameter sets. (a) Model with the
lowest nonlinearity and a high constraint of the inhibition weights (AH.1.3). (b) Model with the lowest nonlinearity and the lowest
inhibition constraint (AH.1.1). (c) Model with the highest nonlinearity and the lowest inhibition constraint (AH.5.1). This model shows
the highest sparseness. (d) Model with the highest nonlinearity and the highest inhibition constraint (AH.5.4). The upper panels show the
distribution of the dimensional preference of the fitted Gabor-filters model data in blue and electrophysiological data by Ringach et al.
(2002) in gray. The vertical dimension ny refers to the product of frequency and $ of the underlyingGaussian in the vertical direction (f!$y)
and the horizontal dimension accordingly nx 5 f!$x. The lower panels show the distribution of the frequency of the fitted Gabor-filters
with respect to their orientation. The results of those models are as follows: average frequency: (a) 1.07, (b) 0.80, (c) 1.11, and (d) 0.93;
and distance to the biological data plot: (a) 0.054, (b) 0.095, (c) 0.051, and (d) 0.082.
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fast fix-point algorithm (Hyvärinen et al., 2001). Hoyer and
Hyvärinen (2000) have shown that this algorithm can produce
orientated band-pass filters similar to those in V1. Fig. 10 shows the
results of their algorithm applied to the same natural scenes we used
for our algorithm. The results show similar deficits than the results
fromLewicki et al. (1999) andmoremild deficits compared to those
Ringach et al. (2002) have shown for Bell and Sejnowski’s (1997)
ICA and the Olshausen and Field (1996) sparse coding algorithm.
ICA does not show receptive fields near the origin.

We evaluated the ICA results in terms of efficient coding and
properties of the learned receptive fields and population codes.
Fig. 11 shows those results in direct comparison to our results.
Nearly all measurements for the efficiency of the code showweaker
values compared to our algorithm across all parameter variations.
The ICA code is much less sparse than our algorithm, the same
holds for the mutual information which is much higher, the variance
of the conditional distributions and the Variance-mean measure-
ment where the ICA algorithm shows much higher values and thus
a weaker efficiency of the code. The variances in the responses are
also less equal to each other across the neurons although this
measurement does not predict a similarity to biological data in our
algorithm. Looking at the properties of the receptive fields, the ICA
algorithm shows a higher average frequency. The distance to the
electrophysiological monkey data is near the mean performance of
the parameter sets of our algorithm but worse than the results from
the better parameter sets. The population responses of the ICA
algorithm are much more similar across different patches as
compared to our algorithm whereas the reconstruction error of
the ICA is negligible, as expected since the ICA tunes theweights to
minimize the difference between the input and reconstructed
image.

To visualize the image reconstruction performance in our
model, we reconstructed one of the images that was used during
the learning process with the receptive fields weighted by the
firing rates of the corresponding cells (Fig. 12). The reconstructed
image is close to the original but with slight impairments. The
corresponding frequency planes show that the reconstructed image
misses particular higher frequencies and thus smaller details.

Discussion

It has been proposed that efficient coding is one of the goals of
sensory processing in the brain (Attneave, 1954; Barlow, 1961).
According to that, most models have been created to optimize the
efficiency using an objective function. The basic idea is that there
exists an ‘‘optimal’’ state, and the algorithms try to minimize the
difference between the actual network state and this optimal state.
Using this approach, Olshausen and Field (1997) were one of the
first to show that by enforcing a certain level of sparseness, their
algorithm was able to learn oriented, Gabor-like filters. However,
Ringach et al. (2002) have shown that the results of Sparsenet as
well as typical ICA learned filters do not fit well with the whole
population of V1 macaque data. Those models were only able to
capture a part of the variety of V1 receptive fields, and lower
frequencies were completely missing. Since then, some researchers
tried to overcome the limitations the early generative models
showed. Recently, Rehn and Sommer (2007) as well as Weber
and Triesch (2008) introduced models that converge to receptive
fields more similar to those of V1. Rehn and Sommer (2007) used
a hard-sparseness model which optimizes the sparse selection of
active neurons. Compared to a soft-sparseness example algorithm,
namely the Sparsenet model of Olshausen and Field (1996), the

competition among cells now involves nonlinear operations,
a threshold function, and multiplicative gating. Weber and Triesch
(2008) have expanded the generative approach with a nonlinear
output function. The output activity is rescaled according to
a sigmoid function. The transfer function depends on certain
parameters that are adjusted to keep the neural output of each
neuron in an approximately exponential regime. Nevertheless,
these algorithms still show some weaknesses. The algorithm of
Rehn and Sommer (2007) leads to filters with a blob-like shape, but
inconsistent with the macaque data, there is a gap between filters
near the origin and those further out. Similarly, the model of Weber
and Triesch (2008) leads to filters near the origin, but the
distribution close to the origin differs from the macaque data.
Additionally, both models show several filters in the middle
frequency range that have also not been observed in the electro-
physiological data. However, both models show more filters with
higher frequencies than our model. The model of Weber and
Triesch (2008) might potentially overrepresent the higher frequen-
cies, but clearly ourmodel sightly underrepresents higher frequencies.
The underrepresentation of higher frequencies could have several
reasons. One might be the local definition of Hebbian learning.
Each output unit produces its own ‘‘reconstructed’’ image. A gener-
ative model, however, uses an objective function to minimize the
error between the original image and the reconstructed image, that
is, the sum of all units. This function enforces a global reconstruc-
tion of the image, which is not enforced by local Hebbian learning.
Thus, without this enforcement, higher frequencies that are less
common in the image than lower frequencies (Fig. 12) are less likely
to be learned. The underrepresentation of higher frequencies could
have been compensated by emphasizing higher frequencies in the
filtering of the input image (LGN model), but to compare our data
to other models, we decided to use identical parameters as in
Olshausen and Field (1996). Concluding, the macaque data
obtained by Ringach et al. (2002) were very well fitted by
a Hebbian/anti-Hebbian learning principle with a nonlinear neural
dynamic.

So far, we have compared our model to others with respect to
experimental data. We now discuss how our approach relates to
the efficient coding hypothesis. The common procedure to in-
vestigate efficient coding is by means of an objective function that,
if optimized, allows to reveal insights about the underlying
principles of coding by comparing the result to data. We here
take a different approach to investigate efficient coding. Instead of
optimizing a particular objective function, we have designed
a simple V1 model composed of biologically plausible elements.
We measure coding efficiency in this model while changing
critical model parameters and relate this measure to the similarity
between model and experimentally obtained receptive field data.
Our model strongly relies on lateral inhibitory connections as
determined by anti-Hebbian learning. A recent study emphasized
the importance of lateral inhibitory connections. Ren et al. (2007)
observed in layer-2/3 of the mouse visual cortex axo-axonic
inhibition to nearby pyramidal cells bypassing the classical route
via inhibitory interneurons. Schwartz and Simoncelli (2001) have
also shown that lateral inhibition can improve the coding efficiency
regarding the independence of the neural responses. We have
identified parameters of our model (namely the lateral competition
among the Layer II cells) that allow us to control the level of
efficiency.

We have recently proposed a similar Hebbian learning model
that learns Gabor-like receptive fields even with a less sparse
distribution of the output firing rate (Hamker & Wiltschut, 2007).
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This model relied on presynaptic inhibition to decorrelate the
responses, where the lateral weights are not independently learned
but determined by the feedforward weights. However, presynaptic
inhibition implements only a weak competition and thus leading to
output activations that are not very sparse. The anti-Hebbian
approach proposed here more effectively decorrelates the neural
responses compared to presynaptic inhibition and leads to a signif-
icantly improved fit to V1 data.

Falconbridge et al. (2006) have modified the Hebbian/anti-
Hebbian model of Földiàk (1990) with a nonlinear function that
reflects biological data more closely, but the model does not capture
the full range of the distribution. In particular, they missed the low
frequency range almost completely. Their Hebbian learning rule is
very similar to the original learning rule of Oja (1982); our learning
rules (eqns. 7 and 8), on the other hand, are covariance learning
rules (i.e., adapting the firing rates according to the correspond-
ing population means). Their output activation is directly modified
by a nonlinear function, whereas the nonlinearity in our model only
regulates the lateral competition. Our model always produces low-
frequency Gabor-filters, and only with an increase in the efficiency
of the codes, also higher frequencies can be obtained. This allows
the assumption that nonlinear competition is particularly effective
for learning biologically plausible receptive fields from natural scenes.

With increasing competition (respectively with increasing
sparseness of the Layer II cell populations), the properties of the
algorithm become closer to the electrophysiological macaque
data. Other efficient coding properties like independence, as
estimated by mutual information or the linear correlation of the
cell responses, lead to the same result, namely an increase in

the similarity of the receptive fields to V1 data. However, the
correlations using the variance of the conditional distributions and
the variance across the mean firing rate are lower than the one with
sparseness or mutual information. While for the chosen parameters
the model converges always to relatively similar receptive fields,
a too weak competition impairs convergence (e.g., AH.1.4 showed
such a bad performance that we excluded it from further
evaluation). The goal to achieve an equal variance across all cell
responses as a measure of efficient coding does not correlate with
the similarity of model and experimental data. Thus, equal
variance appears as a problematic measurement of efficient coding.

We have shown not only that the properties of the receptive
fields do depend on measurements of efficient coding but also that
the similarity of the model data with the V1 macaque data
increases with higher efficiency. Models with higher sparseness
show a higher average frequency of the receptive fields and
a better fit to the macaque data compared to those with low
sparseness (e.g., cf. Fig. 6). As far as the coding quality is
concerned, we found that models whose codes are too sparse, too

Fig. 7. (Color online) Correlation between efficient code measurements and receptive field properties. The efficient code measurements
of our algorithm (abscissa) are plotted against the different properties (ordinates) of the algorithm. The average frequency of the receptive
fields, the difference to the electrophysiological data, and the image reconstruction error. The blue lines are the best linear fit in a least
squared error manner. (a) Sparseness strongly correlates with the similarity between the model and the biological data. The image
reconstruction error decreases with stronger sparseness. (b) Mutual information is similarly strong correlated, and the reconstruction error
saturates with low levels of mutual information. (c) The variance of the conditional distributions is moreweakly correlated. (d) The linear
correlation of the cell responses shows a similar profile as sparseness and mutual information. (e) The Variance-distribution measurement
shows a completely opposite correlation as expected. With a ‘‘better’’ Variance-distribution measurement, the similarity between model
and biological data decreases. There is no correlation with the reconstruction error. (f) The Variance-mean measurement only shows
a very low correlation with the similarity between model and biological data and no correlation at all with the reconstruction error.

Fig. 8. (Color online) Conditional distribution examples (AH.5.1). The
conditional distribution of the linear part of our algorithm and the nonlinear
response is shown for three different pairs of cells.While the linear part of the
cell responses shows a dependency and a correlation, the nonlinear responses
are often completely decorrelated and independent as shown in this example.

Fig. 9. (Color online) For all efficient coding measurements, the best five
(red cross) and the worst five (black dots) models were evaluated with
respect to the average distance of the model data to the electrophysiological
data. Note that the outlying model (AH.1.4) was excluded in this analysis. On
the y-axis, the difference to the data is plotted. The bars refer to the standard
deviation of the corresponding five averaged models. All measurements
(except the Variance-distribution measurement) show the same effect, that
the models with a more efficient code (according to the measurement) also
fit the macaque data better. Sparseness 5 sparseness measurement; MI 5
mutual information; Var_CD 5 variance of the conditional distributions;
linCorr5 linear correlation; Var_distr5Variance-distributionmeasurement;
and Var_mean 5 Variance-mean measurements.

Efficient coding correlates with spatial frequency tuning 31



independent, or too decorrelated show a decrease in image re-
construction. However, image reconstruction might not be the
ultimate goal of vision. Visual perception is probably more
concerned with object discrimination. Thus, the quality of a code
lies rather in the ability to be further processed by higher order
modules that need to discriminate one population from one another.
The ICA algorithm is laid out to reconstruct the original in-
formation perfectly, whereas our algorithm shows a weaker image
reconstruction but leads to code vectors that are much better
discriminable. This result appears somewhat surprising. Although
the ICA allows for a perfect reconstruction, the code vectors
associated with different image patches are much more similar to
each other (in terms of the normalized angle between the vectors)
than as observed in our model. Of course, the reconstruction ability
demonstrates that all information is encoded in the ICA code
vectors, but the usefulness of ICA for pattern discrimination
critically depends if this information can be used in later stages.

As has been pointed out earlier, linear ICA does not ensure that
the resulting codes are largely independent and decorrelated

Fig. 10. (Color online) The properties of the Gabor-fitted receptive fields
obtained by the ICA algorithm. The upper panel shows the distribution of the
dimensional preference of the fitted Gabor-filters model data in blue and
electrophysiological data by Ringach et al. (2002) in gray. The vertical
dimension ny refers to the product of frequency and $ of the underlying
Gaussian in the vertical direction (f!$y) and the horizontal dimension
accordingly nx5 f!$x. The lower panel shows the distribution of the frequency
of the fitted Gabor-filters with respect to their orientation. Note that small
frequencies and thus data points near the origin are completely missing.

Fig. 11. (Color online) The results of the ICA in comparison to the
parameter sets of our algorithm. The dotted line indicates the mean of the
measurements over all parameter sets. The upper, respectively, lower error
bar indicates the parameter sets with the highest, respectively, the lowest
distance to the mean. The red dots show the results of the ICA algorithm also
with respect to the mean of our algorithm. The lower the value, the better the
result. (*This measurement is better with higher values; **since the mean of
our algorithm is negative, values above the mean indicate a better perfor-
mance; ***the frequency is better when higher in average but too high values
are not plausible compared to electrophysiological data.) Sparseness 5
sparseness measurement; MI5mutual information; Var_CD5 variance of
the conditional distributions; linCorr 5 linear correlation; Var_distr 5
Variance-distribution measurement; Var_mean 5 Variance-mean measure-
ment; F 5 frequency; Diff5 difference of the data plot to the electrophys-
iological data; TM5 template match; and RC5 image reconstruction error.

Fig. 12. Linear reconstruction of the image. The image was divided in 633
63 image patches, and the Layer II responses for each of these patches were
computed. An image patch was then reconstructed by summing all 288
filters (weighted by their corresponding Layer II cell activation). The whole
reconstructed image consists of the reconstructed image patches (averaged
when overlapping). (a) Left: The original input image (whitened). Right:
The reconstructed image. The reconstructed image shows the same features
as the original image, but it appears slightly blurred. (b) The Fourier
transformations of the corresponding images. The low frequencies are
located in the center of the image. The reconstructed image misses higher
frequencies.
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(Karklin & Lewicki, 2003; Bethge, 2006), see also Fig. 13. If
independence ought to be a guiding principle of efficient coding for
vision, linear ICA is probably not the ideal solution. Schwartz and
Simoncelli (2001) provided evidence that nonlinear lateral inhibition
for gain normalization eliminates a number of dependencies. We
have shown that this concept can be generalized to an anti-Hebbian
learning of lateral weights. Our code vectors are largely decorre-
lated and independent (cf. Fig. 8).

We conclude that Hebbian/anti-Hebbian learning is consistent
with the framework of efficient coding. Particularly, nonlinear
lateral interactions lead to more independence which also increases
the similarity between the model and experimental data. Too strong
lateral inhibitory connections, however, impair the coding quality.
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