Virtualizing Hardware with Multi-Context
Reconfigurable Arrays

Rolf Enzler, Christian Plessl, and Marco Platzner

Swiss Federal Institute of Technology (ETH) Zurich*, Switzerland
E-mail: enzler@ife.ee.ethz.ch

Abstract. In contrast to processors, current reconfigurable devices to-
tally lack programming models that would allow for device independent
compilation and forward compatibility. The key to overcome this limi-
tations is hardware virtualization. In this paper, we resort to a macro-
pipelined execution model to achieve hardware virtualization for data
streaming applications. As a hardware implementation we present a hy-
brid multi-context architecture that attaches a coarse-grained reconfig-
urable array to a host CPU. A co-simulation framework enables cycle-
accurate simulation of the complete architecture. As a case study we map
an FIR filter to our virtualized hardware model and evaluate different
designs. We discuss the impact of the number of contexts and the feature
of context state on the speedup and the CPU load.

1 Introduction

Reconfigurable computing fabrics have shown great potential in many high-per-
formance applications that benefit from hardware customization while still re-
lying on some amount of programmability. A major drawback of current recon-
figurable devices, in particular field-programmable gate arrays (FPGAs), is the
lack of programming models. Applications are compiled (synthesized) to given
fixed-size hardware. The resulting configuration bitstream cannot be reused to
program a device of different type or size. Thus, to leverage advances in VLSI
technology, i.e. increased transistor count and higher clock rates, a complete
recompilation is required.

The key to overcome this limitation is hardware virtualization [1-3]. In order
to achieve hardware virtualization, we have to define a set of basic operators a
hardware can execute. Together with a description of the data flow (communi-
cation paths between operators) and the control flow (sequencing of operators)
a hardware programming model is defined that compilers can target. Processors
use a well-established form of hardware virtualization and define an instruction
set architecture that decouples the compiler from the actual hardware orga-
nization. Achieving virtualization of reconfigurable hardware is more complex.
Reconfigurable hardware excels when computations are organized spatially. The

* This work is supported by ETH Zurich under the ZIPPY project and the Wearable
Computing Polyproject.

[1]] FrFo

array - e array -
active context] i stored context

() -

logical context

(2)

(b)

o) m

Fig. 1. Models for virtualized macro-pipelining

© I

basic operators will thus have greater complexities than processor instructions
and the number of possible operators is very large. Further, the reconfigurability
allows to implement many basic operators with just one type of hardware block.

In this paper, we consider data streaming applications that map well to
(macro-)pipelines, where one pipeline stage is implemented by one basic hard-
ware block. Our basic hardware block is a 4 x 4 coarse-grained reconfigurable
array. The inputs and outputs of the array connect to FIFO buffers to facili-
tate data streaming. One set of configuration data for the array is denoted as a
context. Applications are organized by pipelining several logical context execu-
tions. Although this model is rather restrictive, it is amenable to true hardware
virtualization and targets an important application domain.

Figure 1(a) shows our model with one physical array that is reconfigured to
implement logical contexts as needed. To minimize or even hide the reconfigu-
ration time the array stores multiple physical contexts. Figure 1(b) displays an
alternative implementation with several single-context physical arrays arranged
in a pipelined fashion. The arrays are still reconfigured to execute different logical
contexts. However, as several contexts run in parallel the throughput increases.
Both multiple contexts and physical pipelining can be combined which is shown
in Fig. 1(c). All these architectures achieve virtualization as they provide the
logical pipeline of array executions as programming model, but differ in their
performance and hardware cost.

While there exists already a substantial body of work on coarse-grained
arrays, macro-pipelining of stream computations and multi-context devices, a
system-level evaluation of the performance and the various features of multi-
context devices is missing. To this end, we form a reconfigurable hybrid system
by coupling our multi-context array to a CPU. The CPU takes care of data I/0O,
context loading, and control of the multi-context array. We develop a system-
wide, cycle-accurate architecture model and investigate the following issues by
means of a co-simulation environment: First, we determine the performance gains
for the hybrid over the CPU only, depending on the number of physical contexts.

Second, we try to identify whether and when the capability to resume the state
of a previous context is advantageous. Third, we measure the CPU load for the
different designs.

Section 2 summarizes related work. The hybrid architecture model and our
co-simulation environment are discussed in Section 3. Section 4 presents an FIR
filter case study, while Section 5 discusses the results. Finally, Section 6 summa-
rizes our findings and points to further work.

2 Related Work

PipeRench [1,4] is a reconfigurable architecture that supports hardware virtu-
alization. The device is organized into a physical pipeline of stripes, which rep-
resent the minimal reconfigurable hardware blocks. A stripe’s output is strictly
pipelined and connects to the next stripe via an interconnection network. Thus,
PipeRench is similar to the model in Fig. 1(b). Fast reconfiguration of stripes
is supported by 256 contexts held on-chip. Each stripe comprises 16 processing
elements, which implement addition/subtraction or a programmable logic func-
tion. Application kernels are mapped to virtual pipeline stages. During runtime,
the virtual stages are configured to the physical stripes that are available on the
device. The implementation described in [4] features 16 physical stripes.

Multi-context techniques for both fine-grained and coarse-grained reconfig-
urable devices have been investigated by several researchers. DeHon [5] demon-
strated that adding multi-context support to FPGAs can increase computational
density. Due to the moderate contribution of the configuration memory to the
total chip area, a small number of contexts can be added with reasonable im-
pact on cost. Trimberger et al. [2] introduce a multi-context extension of the
Xilinx XC4000 architecture. The proposed device holds eight contexts on-chip.
The flip-flops of the device are eight times replicated and each logic cell can
write to any of these flip-flops. The authors propose to use the multi-context
feature for emulation of arrays of arbitrary size. The fine-grained, memory-poor
architecture prefers logic emulation rather than macro-pipelining.

PACT’s XPP device [6] uses cells with a functionality similar to our model,
but targets a different execution model. Data is transfered between the cells
using a handshake protocol. This ensures that dataflow dependencies are met
and makes the computation self-timed. Configurations are loaded on demand
using a hierarchical configuration management. A configuration context is not
necessarily activated for the whole device at the same point in time. For each cell,
the new configuration is activated as soon as the current configuration is not used
anymore. MorphoSys [7] integrates a CPU with a coarse-grained, multi-context
ALU array. The device holds 32 contexts on-chip.

Our work targets a coarse-grained, multi-context reconfigurable hybrid. The
main differences to related approaches are that we focus on macro-pipelining
of contexts that execute for a longer time period, use FIFOs to transfer data
between contexts, and couple the reconfigurable array with a CPU to form a
hybrid device.

3 Architecture Model and Co-simulation

3.1 System Model

We investigate a hybrid reconfigurable device, which couples a coarse-grained
reconfigurable unit closely to a CPU core. Figure 2 outlines the basic system
model, which comprises the CPU core, instruction and data caches, and the
reconfigurable unit (RU). The reconfigurable unit is attached to the CPU via a
dedicated coprocessor interface and provides a number of coprocessor registers.

Ctrl

cPU Addr ’ FIFO }<+ RU coproc. registers CPU
Data . RU reset w

FIFO F* Computation FIFO 1 R/W
} Engine FIFO 1 fill level R

’\C/Iontext L, FIFO 2 R/W
emory FIFO 2 fill level R

Caches . N Cycle count register R/W
Reconfigurable Unit Context memory [1...n] W
t Context select register W

Main Memory R: read access, W: write access

Fig. 2. System model outline

We have developed a co-simulation framework that combines a cycle-accurate
CPU model with an RU model specified in VHDL and allows for cycle-accurate
simulation of the whole system. Details on the design and implementation of the
co-simulation framework have been published in [8].

Currently the RU does not have its own memory access port, but all data
communicated to and from the RU is passed via the CPU’s register file. On the
RU side, data transfers are performed via the FIFO buffers. Both FIFOs are
readable and writable by the CPU as well as the RU.

The synchronization mechanism between CPU and RU is similar to the one
proposed in the Garp processor [9]. The execution of the RU is started by writing
the number of clock cycles the RU shall perform to the cycle count register. In
every clock cycle, the cycle count register is decremented by one and stops the
execution of the RU when reaching zero. By reading the cycle count register the
remaining execution cycles can be determined.

3.2 CPU Model

For CPU simulation, we leverage on the SimpleScalar processor simulator [10].
SimpleScalar’s CPU model is based on a 32-bit RISC processor architecture and
has a MIPS-like instruction set. The CPU core’s data and control path as well as
the memory hierarchy are widely parameterizable. Thus, the CPU model can be
configured to resemble a broad range of CPU architectures, from small embedded
CPUs to powerful high-end CPUs.

In order to couple the RU to the CPU, we have extended SimpleScalar with a
coprocessor interface. To this end, coprocessor read and write instructions have
been added to the instruction set, which allow the CPU to access the coprocessor
registers of the RU.

3.3 Model of the Reconfigurable Unit

The RU model comprises two FIFO buffers, the context memory, and the com-
putation engine. Some RU characteristics are parameterizable: the data path
width, the depth of the FIFO buffers, and the number of configurations the
context memory holds. Another RU parameter determines whether the contexts
contain state or not. An RU with context states replicates the registers in the
data path in a way that each context is assigned a separate set of registers. An
RU without context states provides only one register set that all contexts must
share.

The context memory holds a set of configurations for the computation engine.
The configuration data is written from the CPU to the RU via the configuration
interface. The RU supports the download of full and partial configurations for
any of the contexts. The CPU selects a context on the RU for execution by
writing the number of the context to the context selection register. The context
is immediately switched and the CPU can trigger the RU to run by writing the
desired number of cycles to the cycle count register.

The computation engine is a 4x4 array of homogeneous, coarse-grained cells,
which are connected by a 2-level network: direct interconnects between certain
adjacent cells, Fig. 3(a), and horizontal buses between cell rows, Fig. 3(b). The
computation engine has two input and two output ports, which are connected
to the two FIFOs of the RU. Inside the computation engine, they are routed via
the horizontal buses.

Figure 4 outlines the data path of a cell consisting of a fixed-point arithmetic
logic unit (ALU), several multiplexers and registers. Figure 4(a) shows a cell
without context state; all contexts have to share the same registers which are
reset on context switches. Figure 4(b) displays a cell supporting context state. All
the registers are replicated according to the number of physical contexts. This
allows to preserve register values over several context switches. Alternatively,
the register can also be reset on a context switch. The ALU implements the
common arithmetic and logic operations (addition, subtraction, shift, OR, NOR,
NOT, etc.) as well as multiplication. The control signals for the ALU and the
multiplexers are part of the RU’s configuration. The configuration contains also
a constant operator, which can be routed to both ALU inputs.

The configuration of the computation engine is responsible for the functional-
ity of the cells and the routing of the data path between the cells, from the input
ports to the cells, and from the cells to the output ports. Since the configuration
incorporates constant cell operators, the amount of required configuration bits
depends on the datapath width. Given a datapath width of 16 bit, the configu-
ration data results in 918 bits.

Fig. 3. 2-level interconnect scheme of the computation engine: (a) direct interconnects
(highlighted connections of one cell), and (b) horizontal buses and 1/O ports (IPz, OPx)

4 Case Study and Experimental Setup

4.1 FIR Filter Partitioning and Mapping

As a case study, we have implemented a 56th-order FIR filter on our virtualized
hardware. The filter is implemented as a cascade of eight subfilters of 7th-order.
The input samples are processed in data blocks. An FIR filter implementation
requires delay registers. These registers form the state of the context, which
must be saved between two executions of the same context. Depending on the
capabilities of the reconfigurable array, there are two ways to achieve this:

— If all contexts of the RU share the same register set, the state must be
explicitly saved and later on restored. For the filter implementation this is
achieved by overlapping subsequent data blocks, which forms an execution
overhead.

— If the RU provides dedicated register sets for each context the state is kept
automatically. For the filter implementation, no extra cycles are needed for
state handling if we can hold all logical contexts on the array.

4.2 System Model Setups

We have set up our system model to study the following cases: CPU only (no
RU present), CPU with attached single-context RU, CPU with attached multi-
context RU having 2, 4 and 8 contexts, and finally a CPU with attached 8-context
RU incorporating a dedicated register set for each context.

Context
Select
T 11 T
ALU/MULT, ALU/MULT
out out
(a) (b)

Fig. 4. Data path of a cell: (a) with a single register set for all contexts, and (b)
with a dedicated register set for each context. The shaded parts are controlled by the
configuration

The SimpleScalar CPU model is configured such that it resembles an embed-
ded CPU. Table 1 lists the most important CPU parameters. In each experiment,
64K samples organized in data blocks are processed. The size of the data blocks
depends on the FIFO depth available on the RU (cf. Fig. 2). We vary the depth
of the FIFO buffers between 128 and 1k words.

For the coprocessor cases, a data block is written to the RU, processed se-
quentially by the eight FIR filter stages (the eight logical contexts), and finally
read back. At the beginning, a controller task running on the CPU downloads
as many contexts as fit onto the RU. If not all logical contexts fit, the contexts
are loaded on demand. Each time a filter context is required that is not present,

Table 1. CPU model resembling an embedded CPU

Parameter Class

Setup

Computation units
Caches

Memory interface
Queue sizes!
Bandwidths?
Execution order
Branch prediction

1 int. ALU, 1 int. multiplier 1 FP ALU, 1 FP multiplier
32-way 16K L1 I-cache, 32-way 16K L1 D-cache, no L2 cache
32-bit memory bus, 1 memory port

instruction fetch: 1, register update unit: 4, load/store: 4
decode width: 1, issue width: 2, commit width: 2

in-order

always not-taken

1 in number of instructions

the controller performs the download by overriding always the same physical
context. This is done to hold as many contexts as possible unchanged on the
array with the goal to reduce the amount of reconfiguration data that has to be
downloaded onto the RU.

5 Results and Discussion

Figure 5 illustrates the results of the experiments as functions of the device archi-
tecture (shown on the horizontal axis) and the FIFO buffer size. The execution
time of the filter for the CPU only is 110.65 million cycles. Figure 5(a) shows
the speedups relative to this computation time and Fig. 5(b) presents the CPU
load. We assume a real-time system that filters blocks of data samples at a given
rate. When the filter computation is moved from the CPU to the reconfigurable
array, the CPU is relieved from these operations and can use this capacity for
running other tasks. However, the CPU still has to transfer data to and from the
FIFOs, write contexts to the RU on demand, and control the context switches.
The load given in Fig. 5(b) determines the spent CPU cycles normalized to the
CPU only system. We point out the following observations:

— Hardware virtualization is an extremely useful concept. We were able to run
the same filter implementation on reconfigurable array models with different
features without resynthesizing the application.

— Using an RU we achieve significant speedups, ranging from a factor of 2.4 for
a 128 word FIFO single-context device up to a factor of 8.9 for an 8-context
RU that restores context state.

— The performance of the system in terms of speedup and CPU load depends
on the length of the FIFO buffers. Enlarging the FIFOs increases the per-
formance and at the same time the filter delay. Practical applications could
limit these potential gains by imposing delay constraints. For instance, a
2-context RU using a FIFO with 1k words instead of 128 words improves
the speedup by a factor of 2.7, while increasing the latency by a factor of 8.

— Figure 5 shows that a multi-context array storing the context states greatly
benefits our application if we can store all logical contexts. In this case,
we can avoid the overlapping of data blocks. For an 8-context array with a
128 word FIFO the speedup increases by factor of 2.0. In addition, as no
reconfiguration is required, the speedup becomes almost independent of the
FIFO size.

— Employing a reconfigurable coprocessor not only speeds up the computation
but also lowers the CPU load significantly. As Figure 5(b) displays, for a
single-context RU the CPU load drops from 100% to 28.4% for a 128 word
FIFO and to 6.4% for a 1k word FIFO. Increasing the number of physical
contexts the load approaches the asymptotic value of 4.8%, because the CPU
task reduces to data transfer and context switches.

10

Speedup compared to CPU only
ol

al]
3l]
2 ® CPUonly
—©~- FIFO depth 128
1k —&— FIFO depth 256 ||
—— FIFO depth 512
—— FIFO depth 1k
0 I ;
N N Q N N 5
© o o* o o o B
o o o o O
3 v ¥ & ot
BN o
&
(a) Speedup
30 T T
—©— FIFO depth 128
—A~ FIFO depth 256
—&- FIFO depth 512
251 —— FIFO depth 1k

201

10

CPU load compared to CPU only [%)]
&
T

51 |
o
xS
A A 3 Xy
et Qe ©* @ o®
\B/o" o ° & A%
BN o
o

(b) CPU load

Fig. 5. Performance figures in comparison to the CPU only case

6 Summary and Future Work

In this paper, we have discussed the concept of hardware virtualization and
the use of multi-context architectures to achieve it. We have presented a co-
simulation framework based on a hybrid system model consisting of a recon-
figurable unit attached to a CPU. As a case study, we have mapped an FIR
filter to our virtualized hardware and run it on various architectures by cycle-
accurate simulation. The results show that hardware virtualization is a valuable
concept and that multi-context features can be successfully employed. Further
work includes:

— Implementation of application types that require more complex context se-
quences (control flow).

— Integration of a dedicated RU memory port.

— Investigation of context prediction and prefetching techniques.

— Development of an area model for the reconfigurable unit in order to quantify
the hardware overhead introduced by the multi-context features.

References

1. Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., Taylor, R.R.:
PipeRench: A reconfigurable architecture and compiler. IEEE Computer 33 (2000)
70-77

2. Trimberger, S., Carberry, D., Johnson, A., Wong, J.: A time-multiplexed FPGA.
In: Proc. 5th IEEE Symp. on Field-Programmable Custom Computing Machines
(FCCM). (1997) 22-28

3. Caspi, E., Chu, M., Huang, R., Yeh, J., Wawrzynek, J., DeHon, A.: Stream compu-
tations organized for reconfigurable execution (SCORE). In: Field-Programmable
Logic and Applications (Proc. FPL), LNCS 1896, Springer-Verlag (2000) 605-614

4. Schmit, H., Whelihan, D., Moe, M., Levine, B., Taylor, R.R.: PipeRench: A vir-
tualized programmable datapath in 0.18 micron technology. In: Proc. 24th IEEE
Custom Integrated Circuits Conf. (CICC). (2002) 63-66

5. DeHon, A.: DPGA utilization and application. In: Proc. 4th ACM Int. Symp. on
Field-Programmable Gate Arrays (FPGA). (1996) 115-121

6. Baumgartne, V., May, F., Niickel, A., Vorbach, M., Weinhardt, M.: PACT XPP
— a self-reconfigurable data processing architecture. In: Proc. 1st Int. Conf. on
Engineering of Reconfigurable Systems and Algorithms (ERSA). (2001) 64-70

7. Singh, H., Lee, M.H., Lu, G., Kurdahi, F.J., Bagherzadeh, N., Chaves Filho, E.M.:
MorphoSys: An integrated reconfigurable system for data-parallel and computa-
tion-intensive applications. IEEE Trans. on Computers 49 (2000) 465-481

8. Enzler, R., Plessl, C., Platzner, M.: Co-simulation of a hybrid multi-context ar-
chitecture. In: Proc. 3rd Int. Conf. on Engineering of Reconfigurable Systems and
Algorithms (ERSA). (2003)

9. Hauser, J.R., Wawrzynek, J.: Garp: A MIPS processor with a reconfigurable co-
processor. In: Proc. 5th IEEE Symp. on Field-Programmable Custom Computing
Machines (FCCM). (1997) 12-21

10. Austin, T., Larson, E., Ernst, D.: SimpleScalar: An infrastructure for computer
system modeling. IEEE Computer 35 (2002) 59-67

