Bank Leverage Cycles

Galo Nuño and Carlos Thomas

Banco de España

ESSIM, May 23 2012

Introduction

- The 2007-2009 financial crisis has spurred research on the role played by financial intermediaries in its origin and propagation
- An influential line of research has focused on the collapse of the 'shadow banking' sector:
 - no access to central bank liquidity or deposit insurance
 - debt with very short maturity (repo, ABCP, etc.) backed by securitized assets
 - losses in subprime-related assets + uncertainty about risk exposure → collapse
 of funding (rise in margins/haircuts) → sharp deleveraging of 'shadow'
 institutions
- Gorton & Metrick (2010), Brunnermeier (2009), Geanakoplos (2010), Krishnamurthy et al. (2012), etc.

The importance of bank leverage

- Sharp changes in intermediary leverage not particular to this financial crisis
- Large swings in leverage of some types of intermediaries since 1960s (Adrian & Shin, 2010, 2011b)
- By definition,

 $\mathsf{assets} = \mathsf{leverage} \ \times \ \mathsf{equity} \ \mathsf{capital}.$

 Given equity, market-driven changes in leverage affect the financial sector's ability to finance the real economy

This paper

Goals:

- Empirical: document the cyclical comovement of leverage and assets of financial intermediaries and GDP in the United States
- Theoretical: build a general equilibrium model with financial intermediation and endogenous leverage, and assess its ability to match the data

Contribution to the literature

- Most work on leverage cycles/margin spirals is qualitative, aimed at illustrating theoretical mechanisms (two/three periods, partial equilibrium)
 - Adrian and Shin (2011a), Brunnermeier and Pedersen (2009), Dang, Gorton & Holmström (2011), Geanakoplos (2010), etc.
 - We construct a fully dynamic, general equilibrium model than can be confronted with aggregate data
- DSGE models with financial intermediaries have thus far neglected the role of bank leverage:
 - Christiano, Motto & Rostagno (2010): no role for bank leverage, focus on entrepreneurial leverage
 - Gertler & Karadi (2011), Gertler & Kiyotaki (2011): leverage is endogenous, but its role in the propagation of shocks is left unexplained; focus on bank capital channel

Total assets and leverage of US financial intermediaries

Source: Flow of Funds; all series logged and BP(6,32)-filtered

Leverage and GDP

Source: Flow of Funds and BEA; all series logged and BP(6,32)-filtered

Business cycle statistics: US, 1984-2011

	Standard deviations (%)			
	Total assets	Leverage	GDP	
			1.03	
Regulated intermediaries				
US-chartered commercial banks	1.30	3.12		
Savings institutions	4.59	8.61		
Credit unions	2.34	2.75		
Unregulated intermediaries				
Security brokers and dealers	7.57	7.62		
Finance companies	3.05	5.34		
GSEs	3.85	2.90		

Source: Flow of Funds and BEA; total assets are divided by GDP deflator; all series logged and BP(6,32)-filtered

Business cycle statistics: US, 1984-2011

	Correlation	Correlation with GDP	
	assets & leverage	Total assets	Leverage
US-chartered commercial banks	0.21	0.46 **	-0.06
	(0.0518)	(0.0000)	(0.5942)
Savings institutions	0.32 **	0.73 **	0.34 **
	(0.0023)	(0.0000)	(0.0014)
Credit unions	0.70 **	-0.36 **	-0.57 **
	(0.0000)	(0.0007)	(0.0000)
Security brokers and dealers	0.76 **	0.47 **	0.22 *
	(0.0000)	(0.0000)	(0.0444)
Finance companies	0.52 ** (0.0000)	0.41** (0.0001)	0.24 * (0.0252)
GSEs	0.32 ** (0.0048)	0.33 ** (0.0045)	-0.14 (0.2376)

Source: Flow of Funds and BEA; total assets are divided by GDP deflator; all series logged and BP(6,32)-filtered. P-values of test of no correlation reported in parenthesis. Asterisks denote statistical significance of non-zero correlation at 1% (**) and 5% (*) confidence level

Total assets of leveraged financial subsectors

Note: All series from the US Flow of Funds,

Summary of empirical analysis

- Leverage and total assets are several times more volatile than GDP (all subsectors)
- Regulated intermediaries (mostly commercial banks): leverage is rather acyclical with respect to total assets and GDP
- Unregulated intermediaries (mostly security broker/dealers & finance companies): leverage is strongly procyclical with respect to total assets, and marginally procyclical with respect to GDP

Model structure

• End of period t-1: unregulated bank in island j borrows B_{t-1}^j from institutional investors, commits to repay \bar{B}_{t-1}^j in period t

- End of period t-1: unregulated bank in island j borrows B_{t-1}^j from institutional investors, commits to repay \bar{B}_{t-1}^j in period t
- \bullet Bank purchases A_{t-1}^j state-contingent claims issued by island-j's firm, which are used as collateral

- End of period t-1: unregulated bank in island j borrows B_{t-1}^j from institutional investors, commits to repay \bar{B}_{t-1}^j in period t
- \bullet Bank purchases A_{t-1}^j state-contingent claims issued by island-j's firm, which are used as collateral
- Beginning of t: bank collects gross return $R_t^A \omega^j$ on its assets, where

- End of period t-1: unregulated bank in island j borrows B_{t-1}^j from institutional investors, commits to repay \bar{B}_{t-1}^j in period t
- \bullet Bank purchases A_{t-1}^j state-contingent claims issued by island-j's firm, which are used as collateral
- Beginning of t: bank collects gross return $R_t^A \omega^j$ on its assets, where
 - R_t^A : aggregate return on capital

- End of period t-1: unregulated bank in island j borrows B_{t-1}^j from institutional investors, commits to repay \bar{B}_{t-1}^j in period t
- \bullet Bank purchases A_{t-1}^j state-contingent claims issued by island-j's firm, which are used as collateral
- Beginning of t: bank collects gross return $R_t^A \omega^j$ on its assets, where
 - R_t^A: aggregate return on capital
 - $\omega^{j} \geq$ 0: island-specific return on capital \sim iid $F\left(\omega^{j}; \sigma_{t-1}\right) \equiv F_{t-1}\left(\omega^{j}\right)$

- End of period t-1: unregulated bank in island j borrows B^j_{t-1} from institutional investors, commits to repay \bar{B}^j_{t-1} in period t
- \bullet Bank purchases A_{t-1}^j state-contingent claims issued by island-j's firm, which are used as collateral
- Beginning of t: bank collects gross return $R_t^A \omega^j$ on its assets, where
 - R_t^A : aggregate return on capital
 - $\omega^{j} \geq$ 0: island-specific return on capital \sim iid $F\left(\omega^{j};\sigma_{t-1}\right) \equiv F_{t-1}\left(\omega^{j}\right)$
- ullet Dispersion of time-t island-specific shocks, σ_{t-1} , is known in t-1 and follows a stochastic process

Unregulated bank repays debt only if

$$R_t^A \omega^j A_{t-1}^j \ge \bar{B}_{t-1}^j \Leftrightarrow \omega^j \ge \frac{\bar{B}_{t-1}^j}{R_t^A A_{t-1}^j} \equiv \bar{\omega}^j.$$

Unregulated bank repays debt only if

$$R_t^A \omega^j A_{t-1}^j \ge \bar{B}_{t-1}^j \Leftrightarrow \omega^j \ge \frac{\bar{B}_{t-1}^j}{R_t^A A_{t-1}^j} \equiv \bar{\omega}^j.$$

• If $\omega^j<\bar{\omega}^j$, bank defaults and institutional investors receives return on collateral, $R^A_t\omega^jA^j_{t-1}$.

Unregulated bank repays debt only if

$$R_t^A \omega^j A_{t-1}^j \ge \bar{B}_{t-1}^j \Leftrightarrow \omega^j \ge \frac{\bar{B}_{t-1}^j}{R_t^A A_{t-1}^j} \equiv \bar{\omega}^j.$$

- If $\omega^j < \bar{\omega}^j$, bank defaults and institutional investors receives return on collateral, $R^A_t \omega^j A^j_{t-1}$.
- If $\omega^j \geq \bar{\omega}^j$, net earnings, $R^A_t \omega^j A^j_{t-1} \bar{B}^j_{t-1}$, are distributed as dividends (Π^j_t) or retained as net worth (N^j_t) . Non-negativity constraint on dividends: $\Pi^j_t \geq 0$ (Gertler & Kiyotaki, 2010).

Unregulated bank repays debt only if

$$R_t^A \omega^j A_{t-1}^j \ge \bar{B}_{t-1}^j \Leftrightarrow \omega^j \ge \frac{\bar{B}_{t-1}^j}{R_t^A A_{t-1}^j} \equiv \bar{\omega}^j.$$

- If $\omega^j < \bar{\omega}^j$, bank defaults and institutional investors receives return on collateral, $R^A_t \omega^j A^j_{t-1}$.
- If $\omega^j \geq \bar{\omega}^j$, net earnings, $R^A_t \omega^j A^j_{t-1} \bar{B}^j_{t-1}$, are distributed as dividends (Π^j_t) or retained as net worth (N^j_t) . Non-negativity constraint on dividends: $\Pi^j_t \geq 0$ (Gertler & Kiyotaki, 2010).
- Bank uses net worth and borrowed funds to finance new asset purchases,

$$A_t^j = B_t^j + N_t^j.$$

Participation constraint

- Institutional investors have access to a riskless return R_t .
- For them to be willing to finance the bank, the following participation constraint must hold

$$\begin{split} & E_{t}\Lambda_{t,t+1}\left\{R_{t+1}^{A}A_{t}^{j}\int^{\bar{\omega}_{t+1}^{j}}\omega dF_{t}\left(\omega\right)+\bar{B}_{t}^{j}\left[1-F_{t}\left(\bar{\omega}_{t+1}^{j}\right)\right]\right\} \\ & \geq & E_{t}\Lambda_{t,t+1}R_{t}B_{t}=B_{t}=A_{t}^{j}-N_{t}^{j}, \end{split}$$

 $\Lambda_{t,t+1} \equiv \beta u'\left(C_{t+1}\right)/u'\left(C_{t}\right)$: stochastic discount factor

Incentive compatibility constraint

- Banks are subject to a moral hazard problem à la Adrian & Shin (2011)
- They can invest in either of two firm segments: 'standard' and 'substandard'
- Both differ only in the distribution of island-specific returns: $F_t\left(\omega\right)$ and $\tilde{F}_t\left(\omega\right)$
- Substandard segment has higher downside risk in the FOSD sense,

$$\tilde{F}_{t}\left(\omega\right) > F_{t}\left(\omega\right)$$

for all $\omega \Rightarrow$ lower mean return,

$$\int \omega d\tilde{F}_{t}\left(\omega\right) \equiv \tilde{E}\left(\omega\right) < E\left(\omega\right) = 1.$$

Incentive compatibility constraint (2)

 To induce the bank to invest efficiently, investors impose an incentive compatibility (IC) constraint,

$$\begin{split} & E_{t}\Lambda_{t,t+1}\int_{\tilde{\omega}_{t+1}^{j}}\left\{\theta V_{t+1}^{j}+\left(1-\theta\right)\left[R_{t+1}^{k}A_{t}^{j}\omega-\bar{B}_{t}^{j}\right]\right\}dF_{t}\left(\omega\right)\\ \geq & E_{t}\Lambda_{t,t+1}\int_{\tilde{\omega}_{t+1}^{j}}\left\{\theta V_{t+1}^{j}+\left(1-\theta\right)\left[R_{t+1}^{k}A_{t}^{j}\omega-\bar{B}_{t}^{j}\right]\right\}d\tilde{F}_{t}\left(\omega\right), \end{split}$$

where

- $1-\theta$: exogenous bank exit probability (Gertler & Karadi, 2011)
- ullet V_{t+1}^j : continuation value of non-defaulting, non-exiting bank j

Incentive compatibility constraint (3)

• Bank's net return proportional to value of call option on island risk,

$$\int_{\bar{\omega}_{t+1}^{j}}\left(\omega-\bar{\omega}_{t+1}^{j}\right)\mathrm{d}F_{t}\left(\omega\right)=E\left(\omega\right)+\pi_{t}\left(\bar{\omega}_{t+1}^{j}\right)-\bar{\omega}_{t+1}^{j},$$

where

$$\pi_{t}\left(\bar{\omega}_{t+1}^{j}\right) \equiv \int^{\bar{\omega}_{t+1}^{j}} \left(\bar{\omega}_{t+1}^{j} - \omega\right) dF_{t}\left(\omega\right)$$

is the value of $\mathit{put\ option}$ with strike price $\bar{\omega}_{t+1}^{j};$ same for $\tilde{\mathit{F}}_{t}\left(\omega\right)$

Incentive compatibility constraint (3)

• Bank's net return proportional to value of call option on island risk,

$$\int_{\bar{\omega}_{t+1}^{j}}\left(\omega-\bar{\omega}_{t+1}^{j}\right)\mathrm{d}F_{t}\left(\omega\right)=E\left(\omega\right)+\pi_{t}\left(\bar{\omega}_{t+1}^{j}\right)-\bar{\omega}_{t+1}^{j},$$

where

$$\pi_{t}\left(\bar{\omega}_{t+1}^{j}\right) \equiv \int^{\bar{\omega}_{t+1}^{j}} \left(\bar{\omega}_{t+1}^{j} - \omega\right) dF_{t}\left(\omega\right)$$

is the value of put~option with strike price $\bar{\omega}_{t+1}^{j};$ same for $\tilde{\mathit{F}}_{t}\left(\omega\right)$

• FOSD of F over \tilde{F} implies

$$\tilde{\pi}_t \left(\bar{\omega}_{t+1} \right) > \pi_t \left(\bar{\omega}_{t+1} \right)$$

for all $\bar{\omega}_{t+1}$. Bank trades off lower mean return against higher option value

Incentive compatibility constraint (3)

• Bank's net return proportional to value of call option on island risk,

$$\int_{\bar{\omega}_{t+1}^{j}}\left(\omega-\bar{\omega}_{t+1}^{j}\right)\mathrm{d}F_{t}\left(\omega\right)=E\left(\omega\right)+\pi_{t}\left(\bar{\omega}_{t+1}^{j}\right)-\bar{\omega}_{t+1}^{j},$$

where

$$\pi_{t}\left(\bar{\omega}_{t+1}^{j}\right) \equiv \int^{\bar{\omega}_{t+1}^{j}} \left(\bar{\omega}_{t+1}^{j} - \omega\right) dF_{t}\left(\omega\right)$$

is the value of *put option* with strike price $\bar{\omega}_{t+1}^{j}$; same for $\tilde{\mathit{F}}_{t}\left(\omega\right)$

• FOSD of F over \tilde{F} implies

$$\tilde{\pi}_t \left(\bar{\omega}_{t+1} \right) > \pi_t \left(\bar{\omega}_{t+1} \right)$$

for all $\bar{\omega}_{t+1}$. Bank trades off lower mean return against higher option value

• Furthermore, $\Delta\pi\left(\bar{\omega}\right) \equiv \tilde{\pi}\left(\bar{\omega}\right) - \pi\left(\bar{\omega}\right)$ is increasing in $\bar{\omega} = \bar{B}^{j}/R_{+1}^{A}A^{j}$: incentive to invest in \tilde{F} increases with (normalized) debt commitment

Bank maximizes stream of dividends s.t. above constraints[max] . Solution:

Bank retains all earnings (pays dividends only at exogenous exit)

Bank maximizes stream of dividends s.t. above constraints[max] . Solution:

- Bank retains all earnings (pays dividends only at exogenous exit)
- Participation and IC constraints both hold with equality,

$$\mathcal{A}_{t}^{j} = \frac{1}{1 - \mathcal{E}_{t} \Lambda_{t,t+1} \mathcal{R}_{t+1}^{A} \left[\bar{\omega}_{t+1} - \pi \left(\bar{\omega}_{t+1}; \sigma_{t} \right) \right]} \mathcal{N}_{t}^{j} \equiv \phi_{t} \mathcal{N}_{t}^{j},$$

$$1 - \tilde{E}\left(\omega\right) = E_{t} \left\{ \frac{\Lambda_{t,t+1} R_{t+1}^{A} \left(\theta \lambda_{t+1} + 1 - \theta\right)}{E_{t} \Lambda_{t,t+1} R_{t+1}^{A} \left(\theta \lambda_{t+1} + 1 - \theta\right)} \Delta \pi \left(\bar{\omega}_{t+1}; \sigma_{t}\right) \right\},\,$$

where $\bar{\omega}_{t+1} = \bar{b}_t/R_{t+1}^A$, $\bar{b}_t \equiv \bar{B}_t^j/A_t^j$. Leverage ratio ϕ_t and normalized debt repayment \bar{b}_t equalized across islands

Bank maximizes stream of dividends s.t. above constraints[max] . Solution:

- Bank retains all earnings (pays dividends only at exogenous exit)
- Participation and IC constraints both hold with equality,

$$\mathcal{A}_{t}^{j} = \frac{1}{1 - \mathcal{E}_{t}\Lambda_{t,t+1}\mathcal{R}_{t+1}^{A}\left[\bar{\omega}_{t+1} - \pi\left(\bar{\omega}_{t+1};\sigma_{t}\right)\right]}\mathcal{N}_{t}^{j} \equiv \phi_{t}\mathcal{N}_{t}^{j},$$

$$1 - \tilde{E}\left(\omega\right) = E_{t} \left\{ \frac{\Lambda_{t,t+1} R_{t+1}^{A} \left(\theta \lambda_{t+1} + 1 - \theta\right)}{E_{t} \Lambda_{t,t+1} R_{t+1}^{A} \left(\theta \lambda_{t+1} + 1 - \theta\right)} \Delta \pi \left(\bar{\omega}_{t+1}; \sigma_{t}\right) \right\},\,$$

where $\bar{\omega}_{t+1} = \bar{b}_t/R_{t+1}^A$, $\bar{b}_t \equiv \bar{B}_t^j/A_t^j$. Leverage ratio ϕ_t and normalized debt repayment \bar{b}_t equalized across islands

ullet Given ϕ_t and $ar{b}_t$, we can calculate

Bank maximizes stream of dividends s.t. above constraints[max] . Solution:

- Bank retains all earnings (pays dividends only at exogenous exit)
- Participation and IC constraints both hold with equality,

$$\mathcal{A}_{t}^{j} = \frac{1}{1 - E_{t}\Lambda_{t,t+1}R_{t+1}^{A}\left[\bar{\omega}_{t+1} - \pi\left(\bar{\omega}_{t+1};\sigma_{t}\right)\right]}N_{t}^{j} \equiv \phi_{t}N_{t}^{j},$$

$$1 - \tilde{E}\left(\omega\right) = E_{t} \left\{ \frac{\Lambda_{t,t+1} R_{t+1}^{A} \left(\theta \lambda_{t+1} + 1 - \theta\right)}{E_{t} \Lambda_{t,t+1} R_{t+1}^{A} \left(\theta \lambda_{t+1} + 1 - \theta\right)} \Delta \pi \left(\bar{\omega}_{t+1}; \sigma_{t}\right) \right\},\,$$

where $\bar{\omega}_{t+1} = \bar{b}_t/R_{t+1}^A$, $\bar{b}_t \equiv \bar{B}_t^j/A_t^j$. Leverage ratio ϕ_t and normalized debt repayment \bar{b}_t equalized across islands

- ullet Given ϕ_t and $ar{b}_t$, we can calculate
 - ullet Loan size: $B_t^j = (\phi_t 1) \, N_t^j \Rightarrow {\sf LTV} \; {\sf ratio} = B_t^j / A_t^j = rac{\phi_t 1}{\phi_t} = 1 \; {\sf haircut}$

Bank maximizes stream of dividends s.t. above constraints[max] . Solution:

- Bank retains all earnings (pays dividends only at exogenous exit)
- Participation and IC constraints both hold with equality,

$$\mathcal{A}_{t}^{j} = \frac{1}{1 - \mathcal{E}_{t} \Lambda_{t,t+1} \mathcal{R}_{t+1}^{A} \left[\bar{\omega}_{t+1} - \pi \left(\bar{\omega}_{t+1}; \sigma_{t} \right) \right]} \mathcal{N}_{t}^{j} \equiv \phi_{t} \mathcal{N}_{t}^{j},$$

$$1 - \tilde{E}\left(\omega\right) = E_{t} \left\{ \frac{\Lambda_{t,t+1} R_{t+1}^{A} \left(\theta \lambda_{t+1} + 1 - \theta\right)}{E_{t} \Lambda_{t,t+1} R_{t+1}^{A} \left(\theta \lambda_{t+1} + 1 - \theta\right)} \Delta \pi \left(\bar{\omega}_{t+1}; \sigma_{t}\right) \right\},\,$$

where $\bar{\omega}_{t+1} = \bar{b}_t / R_{t+1}^A$, $\bar{b}_t \equiv \bar{B}_t^j / A_t^j$. Leverage ratio ϕ_t and normalized debt repayment \bar{b}_t equalized across islands

- Given ϕ_t and \bar{b}_t , we can calculate
 - ullet Loan size: $B_t^j=(\phi_t-1)\,N_t^j\Rightarrow {\sf LTV}$ ratio $=B_t^j/A_t^j=rac{\phi_t-1}{\phi_t}=1-$ haircut
 - ullet 'Repo' rate: $ar{B}_t^j/B_t^j=ar{b}_t/(B_t^j/A_t^j)=ar{b}_t\phi_t/\left(\phi_t-1
 ight)$

Regulated banks

- Contrary to unregulated banks,
 - regulated banks' liabilities (deposits) are guaranteed (⇒ no participation constraint)
 - they are subject to capital ratio regulation \Leftrightarrow constraint on leverage: $A_t^{rJ}/N_t^{rJ} \leq \phi^r$
 - to simplify, no access to substandard technology (⇒ no IC constraint)
- Solution to bank's problem,

$$A_t^{r,j} = \phi^r N_t^{r,j},$$

$$R_{t-1} D_t^j = R_{t-1} A_t^{r,j}$$

$$\bar{\omega}_t^r \equiv \frac{R_{t-1}D_{t-1}^J}{R_t^A A_{t-1}^{r,j}} = \frac{R_{t-1}}{R_t^A} \frac{\phi^r - 1}{\phi^r}.$$

ullet Lower ϕ^r reduces default probability of regulated banks, $F_{t-1}\left(ar{\omega}_t^r
ight)$

Aggregation & market clearing

Bank credit,

$$A_t = \phi_t N_t A_t^r = \phi^r N_t^r,$$

• For each bank that closes down (defaults or exogenous exits), household opens a new bank with starting net worth = fraction τ of last period's assets (Gertler & Karadi, 2011). Aggregate net worth,

$$\begin{split} \textit{N}_{t} &= \theta \left[1 - \textit{F}_{t-1} \left(\bar{\omega}_{t} \right) \right] \left[\textit{E}_{t-1} \left(\omega \mid \omega^{j} \geq \bar{\omega}_{t} \right) - \bar{\omega}_{t} \right] \textit{R}_{t}^{\textit{A}} \phi_{t-1} \textit{N}_{t-1} \\ &+ \left\{ 1 - \theta \left[1 - \textit{F}_{t-1} \left(\bar{\omega}_{t} \right) \right] \right\} \tau \textit{A}_{t-1}^{\textit{j}}, \end{split}$$

analogously for N_t^r .

Physical capital,

$$K_{t+1} = A_t + A_t^r,$$

• Market clearing for final good, etc.

Calibration

Parameter	Value	Description	Source/Target	
RBC param	neters			
β	0.99	discount factor	$R^4 = 1.04$	
α	0.36	capital share	WL/Y = 0.64	
δ	0.025	depreciation rate	I/K = 0.025	
φ	1	inverse labor supply elasticity	macro literature	
$rac{arphi}{ar{Z}}$	0.5080	steady-state TFP	Y = 1	
ρ_z	0.9297	autocorrelation TFP	FRB San Francisco-CSIP TFP series	
σ_z	0.0067	standard deviation TFP	FRB San Francisco-CSIP TFP series	
Non-standa	rd param	eters		
ϕ^r	10.66	leverage of regulated banks	leverage commercial banks	
σ	0.0272	steady-state island-specific volatility	leverage security broker/dealers (ϕ =29.30)	
ρ_{σ}	0.9457	autocorr. island-specific volatility	NBER-CES manufacturing industry TFP	
σ_{σ}	0.0465	standard dev. island-specific volatility	NBER-CES manufacturing industry TFP	
η	3.1442	variance substandard technology	$(\bar{R}/R)^4 - 1 = 0.25\%$	
ψ	0.01	mean substandard technology	illustrative	
au	0.0015	equity injections new unreg. banks	$A = A^r$, law of motion N	
τ^r	0.030	equity injections new regulated banks	$A = A^r$, law of motion N^r	
θ	0.75	continuation prob. unregulated banks	au > 0	
θ^r	0.75	continuation prob. regulated banks	$\theta^r = \theta$	

Impulse responses: TFP & cross-sectional volatility

The volatility-leverage channel

Business cycle statistics

	Model			
	Data	TFP	Volatility	Both
Standard deviations (%)				
GDP	1.03	1.02	0.27	1.06
Assets regulated banks	1.30	0.26	2.40	2.46
Assets unregulated banks	7.57	0.50	2.98	3.02
Leverage unregulated banks	7.62	0.40	9.27	9.12
Correlations				
Assets regulated - GDP	0.46	0.46	-0.89	-0.19
Assets unregulated - GDP	0.47	0.36	0.87	0.29
Leverage unregulated - GDP	0.22	-0.04	0.90	0.25
Assets -leverage (unregulated)	0.76	0.64	0.91	0.89
Correlations (unfiltered)				
Assets regulated - GDP		0.79	-0.86	-0.03
Assets unregulated - GDP		0.82	0.96	0.54
Leverage unregulated - GDP		-0.14	0.86	0.31
Assets -leverage (unregulated)		0.08	0.92	0.90

Note: Model statistics are obtained by simulating the model for 5,000 periods and discarding the first 500 observations. The model is solved using a first-order perturbation method. Both data and model-simulated series have been logged and detrended with a band-pass filter that preserves cycles of 6 to 32 quarters (lag length K=12), except indicated otherwise.

The 'risk diversification paradox'

• Lower steady-state cross-sectional volatility $(\sigma) \Rightarrow \mathsf{GDP}$ is higher on average but more volatile

Conclusions

- Stylized facts of the US financial intermediation sector
 - Leverage and total assets are several times more volatile than GDP
 - For unregulated intermediaries, leverage is strongly procyclical wrt to assets and marginally procyclical wrt GDP
 - For regulated intermediaries, leverage is rather acyclical wrt to both assets GDP
- A general equilibrium model with a two-tier financial intermediation sector and endogenous leverage (moral hazard)
 - TFP shocks are unable to replicate the stylized facts
 - Shocks to cross-sectional volatility ('risk shocks', 'uncertainty shocks') do help the model replicate the facts
 - Mechanism: following an increase in uncertainty, investors force unregulated banks to deleverage
- Model trade-off between output level and volatility. Reminiscent of Minsky's financial instability hypothesis.

Unregulated bank's maximization problem

Bank j solves

$$V_{t}\left(\omega^{j},A_{t-1}^{j},ar{B}_{t-1}^{j}
ight)=\max_{N_{t}^{j}}\left\{\Pi_{t}^{j}+ar{V}_{t}\left(N_{t}^{j}
ight)
ight\}, \tag{max}$$

$$\bar{V}_{t}(\textit{N}_{t}^{j}) = \max_{\textit{A}_{t}^{j}, \textit{B}_{t}^{j}} \textit{E}_{t} \Lambda_{t,t+1} \int_{\bar{\omega}_{t+1}^{j}} \left[\theta \textit{V}_{t+1}(\omega, \textit{A}_{t}^{j}, \bar{\textit{B}}_{t}^{j}) + (1 - \theta) \left(\textit{R}_{t+1}^{\textit{A}} \textit{A}_{t}^{j} \omega - \bar{\textit{B}}_{t}^{j} \right) \right] \textit{dF}_{t}\left(\omega\right),$$

subject to (1) resource constraint, (2) non-negativity constraint on dividends, (3) definition of $\bar{\omega}_t^j$, (4) participation constraint and (5) IC constraint