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Abstract 

There is already a sizable body of proposals on OODB query 
optimization. One of the most challenging problems in this 
area is query unnesting, where the embedded query can 
take any form, including aggregation and universal quan- 
tification. Although there is already a number of proposed 
techniques for query unnesting, most of these techniques are 
applicable to only few cases. We believe that the lack of a 
general and simple solution to the query unnesting problem 
is due to the lack of a uniform algebra that treats all opera- 
tions (including aggregation and quantification) in the same 
way. 

This paper presents a new query unnesting algorithm 
that generalizes many unnesting techniques proposed re- 
cently in the literature. Our system is capable of removing 
any form of query nesting using a very simple and efficient al- 
gorithm. The simplicity of the system is due to the use of the 
monoid comprehension calculus as an intermediate form for 
OODB queries. The monoid comprehension calculus treats 
operations over multiple collection types, aggregates, and 
quantifiers in a similar way, resulting in a uniform way of 
unnesting queries, regardless of their type of nesting. 

1 Introduction 

There are many recent proposals on OODB query optimiza- 
tion that are focused on unnesting nested queries [9, 8, 6, 
7, 201. Query nesting appears more often in OODB queries 
than in relational queries, because OODB query languages 
allow complex expressions at any point in a query. Cur- 
rent OODB systems typically evaluate nested queries in a 
nested-loop fashion, which does not leave many opportuni- 
ties for optimization. Most unnesting techniques for OODB 
queries are actually based on similar techniques for rela- 
tional queries [16, 15, 181. For all but the trivial nested 
queries, these techniques require the use of outer-joins, to 
prevent loss of data, and grouping, to accumulate the data 
and to remove the null values introduced by the outer-joins. 

If considered in isolation, query unnesting itself does not 
result in performance improvement. Instead, it makes pos- 
sible other optimizations, which would not be possible oth- 
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erwise. More specifically, without unnesting, the only choice 
of evaluating nested queries is a naive nested-loop method: 
for each step of the outer query, all the steps of the inner 
query need to be executed. Query unnesting promotes all 
the operators of the inner query into the operators of the 
outer query. This operator mixing allows other optimiza- 
tion techniques to take place, such as the rearrangement of 
operators to minimize cost and the free movement of selec- 
tion predicates between inner and outer operators, which 
enables operators to be more selective. 

All early unnesting techniques were actually source-to- 
source transformations over SQL code, mostly due to the 
lack of a group-by operator in the relational algebra to ex- 
press grouping. The absence of a formal theory in a form 
of an algebra to express these transformations resulted in 
a number of bugs (such as the infamous count bug [15]) 
that were eventually detected and corrected. Since OODB 
queries are far more complex than relational queries, it is 
more crucial to express the unnesting transformations in a 
formal algebra that will allow us to prove the soundness and 
completeness of these transformations. The first work with 
that goal in mind was by Cluet and Moerkotte [9, 81, which 
covered many cases of nesting, including nested aggregate 
queries, and validated all the transformations. Their work 
was extended by Claussen et al [7] to include universal quan- 
tification. 

Our work extends previous work in two ways. First, our 
unnesting algorithm is not only sound, but it is also com- 
plete. That is, our system is capable of removing any form 
of nesting. Second, our unnesting algorithm is easier to un- 
derstand and implement than earlier work, mostly due to 
the use of the monoid comprehension calculus [13] as an 
intermediate form for OODB queries. The monoid compre- 
hension calculus treats operations over multiple collection 
types, aggregates, and quantifiers in a similar way, resulting 
in a uniform way of unnesting queries, regardless of their 
type of nesting. In fact, many forms of nested queries can 
be unnested by a simple normalization algorithm for monoid 
comprehensions [12]. All other forms require the introduc- 
tion of outer-joins and grouping. Our algorithm unnests 
the queries that cannot be normalized by the normalization 
algorithm using two rewrite rules only. 

Queries in our framework are translated into monoid 
comprehensions, which serve as an intermediate form, and 
then are translated into a version of the nested relational al- 
gebra that supports aggregation, quantification, outer-joins, 
and outer-unnestings. Query unnesting is performed dur- 
ing the translation of monoid comprehensions into algebraic 
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forms. We decided to use both a calculus and an algebra as 
intermediate forms because the calculus closely resembles 
current OODB languages and is easy to normalize, while 
the algebra is lower-level and can be directly translated into 
the execution algorithms supported by database systems. 

Finally, we report on an implementation of our ideas 
using a powerful optimizer specification framework, called 
OPTGEN [lo]. Since the merit of query unnesting cannot 
be judged in isolation from other optimizations, we com- 
bined unnesting with other optimization techniques, such as 
materialization of path expressions into joins [l], perform- 
ing selections as early as possible, rearranging join orders, 
choosing access paths, assigning evaluation algorithms to 
operators, etc. Our preliminary results suggest that these 
opi,imization techniques improve performance considerably 
when combined with query unnesting. 

1.1 Motivating Examples 

All the examples given in this paper are expressed in ODMG 
OQL [4]. Our unnesting algorithm, though, can be applied 
to any OODB language that resembles OQL and can be 
easily adapted to handle object-relational and relational lan- 
guages. 

As an example of how OODB queries are translated into 
algebraic forms, consider the following OQL query: 

select distinct struct( E: e.name, C: c.name ) 
from e in Employees, c in e.children 

which is translated as follows in the monoid comprehension 
calculus: 

QIJERY A: U{ ( E = e.name, C = c.name ) 
l e + Employees, c + exhildren } 

This form constructs one tuple for every employee e and 
for every child c of the employee e. All these tuples are 
lifted to singleton sets and the sets are merged using U. 

The operation U is called the comprehension accumulator 
because it is used to accumulate the values in the head of the 
comprehension (the tuples ( E = e.name, C = c.name )). 

Figure l.A presents the algebraic form of QUERY A. Al- 
gebraic forms are displayed as trees in which the tree leaves 
are sets of objects (class extents) and the output of the tree 
root is the output of the algebraic form. The functional- 
ity of an algebraic form can be better understood if we use 
a stream-based interpretation in which a stream of tuples 
flows from the leaves to the root of the tree. Under this 
interpretation, the algebraic form in Figure l.A generates 
a stream of tuples of type set(( e: Employee )) from the ex- 
tent Employees. Variable e ranges over employees (i.e. it is of 
type Employee). The unnest operator, pFle,chi,drcn, accepts the 
stream of tuples of type set( ( e: Employee )) and constructs 
a stream of tuples of type set(( e: Employee, c: Person )), 
connectins each employee with one of his/her children. The 

reduce operator, 
dUi<E=e...,.,C=cna,.>,’ 

at the top of this 
algebraic-form, is a generalization of the relational operator, 
project: it evaluates the expression ( E=e.name, C=c.name ) 
for every input element and constructs a set from these tu- 
ples using U (i.e. the tuples are lifted to singleton sets and 
the sets are merged toget,her using set union). The reduce 
operator can also be used to compute aggregations (if we 
use an aggregation function, such as +, as an accumulator 
instead of U), and universal or existential quantifications (if 
we use A or V instead of U). 

As an example of how OODB queries are unnested in 
our model, consider the following nested OQL query: 

select distinct struct( D: d, E: ( select distinct e 
from e in Employees 

where e.dno = d.dno ) ) 
from d in Departments 

This query has a straightforward translation in the monoid 
comprehension calculus: 

QUERY B: U{ ( D=d, E=U( e I e + Employees, 
e.dno = d.dno } ) 

l d +- Departments } 

The nesting inherent in this query can be avoided by using 
an outer-join combined with groupierie [18], as it is shown 

in Figure 1.B. The nest operator, ri , combines the func- 
tionality of the nested-relational operator, nest, with the 
functionality of reduce. It groups the input by the range 
variable d, constructing a set of all e’s that are associated 
with the value of d. This set becomes the value of the range 
variable m. That is, this nest operator reads a stream of 
tuples of type set(( d: Department, e: Employee )) and gen- 
erates a stream of tuples of type: 

set(( d: Department, m: set(( e: Employee )) )) 

Like the reduce operator, the nest operator can perform ag- 
gregation after grouping instead of constructing a set. 

The join before the nesting in Figure l.B is a left outer- 
join: if there are no employees or the predicate e.dno=d.dno 
is false for all employees in a department d, then the result of 
the join is d associated with a null value, i.e. the value of the 
range variable e becomes null. The nest operator converts 
this null value into the empty set (the zero element of U, if U 

is handled as a monoid). That is, the outer-join introduces 
nulls and the nest operator converts nulls into zeros. 

Another interesting example is the expression A 2 B, 
which is equivalent to Va E A : 3b E B : a = b. It can be 
expressed in our calculus as follows: 

QUERY C: A{ V{ true I b + B, a=b } I a +--A } 

The inner comprehension, which captures the existential 
quantification, checks if there is at least one b E B with 
a = b (it can also be written as V{ a=b ] b + B }). If there is 
at least one, the result of the inner comprehension is true, 
since all the true values are merged together using the dis- 
junction operator, V; otherwise it is false, which is the zero 
element of V. The outer comprehension captures the uni- 
versal quantification since it merges the results of the inner 
comprehension using the conjunction operation, A. If A is 
empty, it returns true, which is the zero element of A. 

The algebraic form of QUERY C after unnesting is shown 
in Figure l.C. During the outer-join, if there is no a with 
b=a, then a will be matched with a null value. In that case, 
the nest operator will convert the null value into a false value, 
which is the zero element of V. The reduction at the root 
tests whether all m’s are true. If there is at least one false 
m, then there is at least one a in A that has no equal in B. 

A more challenging example is the following double-nested 
OQL query: 
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Employees Courses 

Figure 1: The Algebraic Form of Some OODB Queries 

select distinct struct( E: e, 
M: count( select distinct c 

from c in echildren 
where for all d in e.manager.children: 

c.age > d.age ) ) 
from e in Employees 

which has the following translation in the monoid compre- 
hension calculus: 

QUERY D: 

U{ ( E=e, M=+{ 1 I c +- e.children, 
A{ c.age > d.age 

I d + e.manager.children } } ) 
I e +- Employees } 

The comprehension with the accumulator ‘+’ counts the 
children of the employee e because, for each child, it re- 
turns 1 and all these l’s are added together when merged 
by the accumulator ‘+‘. The algebraic form of QUERY D 
is shown in Figure l.D. Here, instead of an outer-join we 
are using an outer-unnesting: the =+I. 
duces a new range variable, c, whose va ue 1s the unnesting eTdreq 

operator intro- 

of the set e.children. If this set is empty, then c becomes 
null, i.e. the employee e is padded with a null value. Since 
we have a double-nested query, we need to use two nested 
unnest-nest pairs. The top nest operator groups the input 
stream by each employee e, generating the number of chil- 
dren of e. The second nest operator groups the input stream 
by each child c and, for each group, it evaluates the pred- 
icate c.age > d.age and extends the output stream with an 
attribute k bound to the conjunction of all the predicates 
(indicated by the A accumulator). Note that every opera- 
tor in our algebra can be assigned a predicate (such as the 
predicate k=true in the second nest operation) to restrict 
the input data. 

The following query finds the students who have taken 
all database courses [7]: 

select distinct s 
from s in Student 

where for all c in select c 
from c in Courses 

where c.title = “DB”: 
exists t in Transcript: (t.id=s.id and t.cno=c.cno) 

Its comprehension form uses a predicate that has the same 
pattern as that of A 2 B: 

QUERY E: 

U{ s I s +- Student, 
A{ V{ true I t + Transcript, t.id=s.id, t.cno=c.cno } 

I c + Courses, c.title = “DB” } } 

The algebraic form of this query is shown in Figure I.E. This 
query can be evaluated more efficiently if we use the asso- 
ciativity property of outer-joins. In that case, the resulting 
outer-joins would both be assigned equality predicates, thus 
making them more efficient. Optimizations like these justify 
query unnesting. 

1.2 The Unnesting Algorithm 

Figure 2 shows how our unnesting algorithm unnests QUERY 
E. Every comprehension is first translated into an algebraic 
form consisting of regular joins, selections, unnests, and re- 
ductions; the latter being the root of the algebraic form. 
We will see that this translation is straightforward. The 
outermost comprehension has one output (the result of the 
reduction) and no input streams. For example, the dashed 
box A in Figure 2 represents the outer comprehension in 
QUERY E. The shaded box on the reduction represents a 
nested query. The algebraic form of an inner comprehension 
(i.e. a comprehension inside another comprehension) has 
one input stream and one output value: the input stream is 
the same stream of tuples as that of the operation in which 
this form is embedded to and the output is the result of this 
form. For example, the dashed box B in Figure 2 represents 
the universally quantified comprehension (with accumulator 
A): the input of this box is the same input stream as that 
of the reduction in box A (namely the stream of employees) 
since box B is embedded in the predicate of the reduction. 
The output value of the box B, n, is used in the predicate of 
the reduction in the box A. Similarly, the existential quan- 
tification (with accumulator V) is translated into the box C. 

Our unnesting algorithm is very simple: for each box 
that corresponds to a nested query (i.e. Boxes B and C), 
it converts reductions into nests, joins into outer-joins, and 
unnests into outer-unnests. At the same time, it embeds 
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Figure 2: Unnesting QUERY E 

the resulting boxes at the points immediately before they 
are used. For example, box C will be embedded before the 
reduction in box C and the output value of box C will be 
used as the result of the innermost form. Similarly, box B 
will be embedded immediately before its output value is used 
in box A. 

There is a very simple explanation why this algorithm 
is correct (a formal proof is given in the extended version 
of this paper [II]): a nested query is represented as a box, 
say box C, that consumes the same input stream as that of 
the embedding operation and computes a value m which is 
used in the embedding query (box B). If we want to splice 
this box onto the stream of the embedding query we need 
to guarantee two things. First, box C should not block the 
input stream by removing tuples from the stream. This is 
achieved by converting joins into outer-joins and unnests 
into outer-unnests. Second, instead of returning one value, 
namely the value m of box C, we need to extend the stream 
with the new value, m. This can be done by converting 
the reduction of box C into a nest. At the same time, the 
nest operator will convert null values to zeros so that the 
stream that you get from the output of the spliced box C 
will be exactly the same as it was before the splice. There 
are some very important details that we omitted here but 
we will present later when we describe the unnesting algo- 
rithm in detail. The most important one is which nulls to 
convert to zeros each time: if we convert the null C’S (i.e. 

the courses) to false in the second nest operation (r:‘m) in 
the resulting unnested form in Figure 2, it will be too soon; 
this nest should convert null t’s to false and the first nest 
should convert null c’s to true. This is indicated by an extra 
parameter to the nest operator which is not shown here. 

The rest of this paper is organized as follows. Section 2 
summarizes our earlier work on the monoid comprehension 
calculus. A more formal treatment is presented elsewhere [13, 
la]. In addition, this section describes a simple normaliza- 
tion algorithm that unnests most simple forms of nesting 
that do not require outer-joins, outer-unnests, or grouping. 
Section 3 describes a version of the nested-relational algebra 
that supports aggregation, quantification, and the handling 
of null values (using outer-joins and outer-unnests). The se- 
mantics of these operations is given in terms of the monoid 
calculus. The real contribution of this paper is given in 

I7 t 21 : u(v) 

ul-e: (Al :tl,...,An :tn) 
CT t CA, : t; 

o t el : bool, 0 k es : t, 0 t- eg : t 
CT I- if q then ez else eg : t 

0 tl v t-e: t2 
0 t Xvtl.e : t1 -+t2 

atel: tl-+t2, 0 I- e2 : tl 
0 t el(e2) : t2 

c7t-e: t 
CT t u( e ( } : set(t) 

WI 

(73) 

(T3) 

(T4) 

(T5) 

P-5) 

(T7) 

PSI 

(T9) 

1 
Figure 3: Typing Rules of the Monoid Calculus 

Section 4. This section presents the transformation rules 
for unnesting OODB queries by translating terms in our 
monoid calculus into terms in the nested-relational algebra. 
Section 5 presents a simplification rule to improve the forms 
derived from our unnesting algorithm. Section 7 compares 
our approach to related work. Finally, Section 6 reports 
on an implementation of our unnesting algorithm and the 
experience gained from it. 
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2 Background: The Monoid Comprehen- 

sion Calculus 

This section summarizes our earlier work on the monoid cal- 
culus. A more formal treatment is presented elsewhere [13, 
121. 

The monoid calculus is based on the concept of monoids 
from abstract algebra. A monoid of type T is a pair (@, Z,), 
where @ is an associative function of type T x T + T (i.e. 
a binary function that takes two values T and returns a 
value ‘Z’), called the accumulator or the merge function of 
this monoid, and Ze of type T, called the zero element of 
the monoid, is the left and right identity of $. That is, 
the zero element satisfies Za @ 2 = x 8 Za = 2 for ev- 
ery 2. Since the accumulator function uniquely identifies 
a monoid, we will often use the accumulator name as the 
monoid name. In addition, we will denote the type, T, of a 
monoid $ by $T. Examples of monoids include (U, { }) for 
sets, (+, 0), (*, l), and (max, 0) for integers, and (V,false) 
and (A, true) for booleans. All but the set monoid are called 
primitive monoids because they construct values of a primi- 
tive type, such as integers. The set monoid is called a collec- 
tion monoid and requires the additional definition of a z&t 
function, which, along with U and { }, allows us to construct 
set values. For sets, the unit function is Xx. {x}, that is, it 
takes a value z as input and constructs the singleton set 
{z} as output. Consequently, any set can be constructed by 
merging singleton values. 

All the monoids used in this paper are commutative, i.e. 
they satisfy x $ y = y @ 2 for every x and y. In addition, 
some of them (U, A, V, and mar) are idempotent, i.e. they 
satisfy x $ x = x for every x. To make our analysis sim- 
pler, we will use only one collection monoid, namely the set 
monoid. There are other collection monoids that are not 
idempotent (such as the bag monoid) or they are neither 
commutative nor idempotent (such as the list monoid). We 
leave it as future work to extend our unnesting algorithm to 
capture these collection monoids (it is not obvious what the 
semantics of outer-join for lists and bags should be). 

A monoid comprehension over the monoid $ takes the 
form @ e ] T}. Expression e is called the head of the compre- 
hension. Each term rE in the term sequence r = ri, . . . , rn, 
for n 2 0, is called a qualifier, and is either a generator of 
the form v + e’, where v is a range variable and e’ is an 
expression (the generator domain) that constructs a set, or 
a filter p, where p is a predicate. We will use the shorthand 
{ e ] T } to denote the set comprehension u( e I T }. 

A monoid comprehension is defined by the following re- 
duction rules: 

fell - 

@IelI + 

Helfalse, f} * 

@e]true,r} ---$ 

Helv+-0, “1 - 

ce(elu+- {e’}, i} -+ 

@(elv-(e~Uez),‘i:} --t 

{el WI 

e for $ # U WI 

Z@ (D3) 

HeIT) (D4) 

ZfB Pw 

letv=e’in@eIF} VW 

(fBtelv+-el, Tl) 0’7) 
@ (@elv+ez, 1, T}) 

where Z = v @ e2 = A{ w # v ] w + ez } for idempotent 
$, Z = true otherwise. Rules (D3) and (D4) reduce a com- 
prehension in which the leftmost qualifier is a filter, while 

Rules (D5-D7) reduce a comprehension in which the leftmost 
qualifier is a generator. The let-statement in (D6) binds v 
to e’ and uses this binding in every free occurrence of v in 
& e I T}. The case for a non-idempotent $ (such as + or *) 
is necessary in Rule (D7) to avoid semantic inconsistencies, 
such as: 

1 =+(a]at{l}} =+(a]a+{l} U(l)} 
=(+(~lu-{1}})+(~~1~-{1}})=2 

Here + was treated as idempotent monoid, which led us into 
inconsistencies. 

The only purpose of the above rules is to give semantics 
to monoid comprehensions, not to suggest in any way how 
they are implemented. Monoid comprehensions can be ef- 
fectively translated into efficient physical algorithms, as we 
will show in this paper. 

Our calculus has additional primitive types, such as strings, 
and additional operations, such as tuple construction, tuple 
projection, function abstraction and application, if-then-else 
expression, etc. Furthermore, every type domain is extended 
with the null value, NULL. The only operations we support 
for nulls are creating them and testing whether a value is 
null. 

A complete formal definition of the calculus is presented 
elsewhere [13]. Here, though, we present the typing rules 
of some important terms in our calculus (Figure 3). The 
name v in Figure 3 indicates a variable name, names starting 
with A are attribute names, names starting with e represent 
terms in our calculus, and names starting with t represent 
types. The notation u l- e : t indicates that the term e 
is assigned the type t under the substitution u. If a type 
equation is a fraction, the numerator is the premise while 
the denominator is the consequence. The substitution list u 
binds variable names to types (g(v) returns the binding of 
v in u and u[t/v] extends u with the binding from v to t). 
The X-variable, v in Equation T6 is annotated by its type, 
tl. This is not necessary for type inference systems, since 
this type can be inferred. 

When restricted to sets, monoid comprehensions are equiv- 
alent to set monad comprehensions [2], which capture pre- 
cisely the nested relational algebra [13]. Most OQL expres- 
sions have a direct translation into the monoid calculus [13]. 
For example, the OQL query 

select distinct hotel .price 
from hotel in ( select h 

from c in Cities, h in c.hotels 
where c.name = “Arlington” ) 

where exists r in hotel.rooms: r.bed-num = 3 
and hotel.name in ( select t.name 

from s in States, t in s.attractions 
where s.name = “Texas” ); 

is translated into the following comprehension: 

{ hotel.price I hotel + { h I c + Cities, h + c.hotels, 
c.name=“Arlington” }, 

V{ r.bed-num=3 I r +- hotel.rooms }, 
V{ e=hotel.name 

I e + { t.name I s + States, t + s.attractions, 
s.name=“Texas” } } } 

We use the following convention to represent variable 
bindings in a comprehension: 
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Figure 4: The Normalization Algorithm 

where e[u/z] is the expression e with u substituted for all 
the free occurrences of z (i.e. e[u/x] is equivalent to let x = 
u ine). In addition, as a syntactic sugar, we allow irrefutable 
patterns in place of lambda variables, range variables, and 
variables in bindings. Patterns like these can be compiled 
away using standard pattern decomposition techniques [19]. 
For example, {z + y ] (z, (y, z)) + A, z = 3) is equivalent 
to { a.fst + a.snd.fst ] a + A, a.snd.snd = 3 }, where fst/snd 
retrieves the first/second element of a pair. Another exam- 
ple is X(x, (y, z)).z + y + Z, which is a function that takes 
three parameters and returns their sum. It is equivalent to 
Xa. a.fst + a.snd.fst + a.snd.snd. 

The monoid calculus can be put into a canonical form by 
an efficient rewrite algorithm, called the normalization cd- 
gorithm. The evaluation of these canonical forms generally 
produces fewer intermediate data structures than the initial 
unnormalized programs. Moreover, the normalization algo- 
rithm improves program performance in many cases (as we 
will prove below). It generalizes many optimization tech- 
niques already used in relational algebra, such as fusing two 
selections into one selection. 

Figure 4 gives the normalization rules. The soundness 
of the normalization rules can be easily proved using the 
definition of the monoid comprehension. Rule (Ni’) flattens 
a comprehension that contains a generator whose domain 
is another comprehension (it may require variable renaming 
to avoid name conflicts). Rule (N8) unnests an existential 
quantification. 

For example, the previous OQL query is normalized into: 

{ h.price l c + Cities, h + c.hotels, r + h.rooms, s + States, 
t - s.attractions, c.name=“Arlington” , 
r.bed-num=3, s.name=“Texas”, t.name=h.name } 

by applying Rule (N7) to unnest the two inner set compre- 
hensions and Rule (N8) to unnest the two existential quan- 
tifications. 

All generator domains can be normalized by the normal- 
ization algorithm into paths (i.e. sequences of projections 
of the form x.Al.Az . A,, for n 2 0, where z is a range 
variable or an extent, and A, are attributes). This can be 
proved by induction over the structure of the domain of a 

generator; the rules in Figure 4 normalize all possible forms 
of generator domains other than paths. 

Our normalization algorithm unnests all type N and J 
nested queries [16] (using Rules (N7) and (N8) respectively). 
The important question, though, is whether normalization 
always improves performance. Unfortunately, this is not 
always the case. Consider for example the term 

where E is a very costly query. This term is normalized into 

that is, it repeats the computation of E twice. In this case, 
the normalized form is worse than the original term. Cases 
like these occur frequently in lazy functional languages [19]. 
In those languages, function application is evaluated us- 
ing beta reduction (Rule (Nl)), which, if it is implemented 
naively as term substitution, it may repeat computations (if 
1) appears more than once in er). To avoid situations like 
these, the evaluators of these languages use graph reduction 
t,echniques [19] in which all occurrences of v in ei share the 
same term by pointing to the same memory address, thus 
forming an acyclic graph. When this term is reduced to a 
value, the term is replaced by this value in the graph, thus 
avoiding the need to compute this value twice. If we apply 
this technique to our normalization algorithm, the normal- 
ized form { (E, E) ] ‘u) + X } will not repeat the evaluation 
of E; instead it will use two pointers to the same term E. 

Even though the normalization algorithm unnests many 
forms of nested queries, there still some forms of queries that 
cannot be unnested that way. The following query contains 
three examples of such forms: 

{ ( E=e, M={ c l c + e.children, 
A{ c.age > d.age 

I d +-e.manager.children } } ) 
I e +- Employees, 

e.salary>max{ m.salary l m + Managers, 
e.age>m.age } } 

The inner set comprehension, which appears in the head of 
the outer set comprehension, cannot be unnested by the nor- 
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Rules (C5) through (C7) apply to inner comprehensions 
and are similar to Rules (C2) through (C4) with the only 
difference that reductions become nests, joins become left 
outer-joins, and unnests become outer-unnests. The nota- 
tion w\u indicates all the variables in w that do not appear in 
u. These are the attributes to group by (u are the attributes 
to convert into zeros when they are nulls). Rules (C8) 
and (C9) perform the actual unnesting. They do exactly 
what we have done in Figure 2 when we composed boxes: 
here the boxes are actually the results of the translation of 
the outer and inner comprehensions. Rule (C8) unnests a 
nested comprehension in the predicate p. It is applied as 
early as possible, that is, immediately when the generators 
S do not affect the inner comprehension (i.e. when the free 
variables of the inner comprehensions do not depend on the 
generator variables in Z). Rule (C9) unnests a nested com- 
prehension in the head of a comprehension. This unnesting 
is performed when all the generators of the outer compre- 
hension have been reduced. 

For example, QUERY D is compiled as follows: 

I[{ (E = e, M = +( 11 c+e.children, 
A{ c.age > d.age 

1 d+e.manager.children, true} }) 

( e + Employees, true }$i { ()} 

= [{ (E = e, M = +( 11 c+e.children, 
A{ cage > d.age 

1 d + e.manager.children, true } }) 

1 true }$’ Employees 

from (Cl), if we ignore the selection over Employees since it 

XW,Y = {(w,w)Iw+-x, w-Y,p(w,w)} 
O??(X) = {vl?J+X, P(V)) 

p;“““(x) = {(%W)I v+x, w+Path(v), PC% w) I 

AF’e(X) = C%e(~)I~+X,p(w)l 

x=&y = {(%W) I vtx, w+ifA{~p(v,w’)Iv#~uL~, w’+-Y} 

then {NULL} 

else { 20’ I w’ + Y, p(v, w’) } } 

,jWyYX) = {(%W)I 2, t-x, W tif A{ -p(2), W’) 1% # NULL, W’+pUth(W) } 

then {NULL} 

else { w’ 1 w’+path(v), p(w, w’) } } 

r = { (f(v), Cd e(w) I W+--x, g(W) # NULL, f(W) = f(W), P(W) 1) 1 w+-X 1 

Figure 5: The Semantics of the Algebraic Operators 

(01) 
(04 

(03) 

(04) 

(05) 

(06) 

(07) 

has a true predicate. 

= [{ (E = e, M = m) 1 true }]I!,,,, 
([+( 1 I c+-e.children, 

A{ c.age > d.age I d +-e.manager.children, true } }]z 
Employees) 

from (C9) to handle the inner + comprehension. 

= [{ (E = e, M = m) /true }][&,, 
(I[+( 1 I A{ c.age > d.age I d+e.manager.children, true} }]i)e,c) 

(+~P;$~~~‘” (Employees))) 

from (C7) to translate the e.children into an unnest. 

= [{ (E = e, M = m) I true }$i,,, 
m-t 1 I k )n;c,,c,,k, from (C8) 

([A{ cage > d.age I d+e.manager.children, true ]]i:;:; 

C=P:g$~::en (Employees)))) 

= I[{ (E = e, M = m) I true}]!!,,) 

(6~ 1 I k )n;ce,c,,k, from (CT) 

([A{ c.age > d.age I true }$T;tj),d) 

(=P :Ip::!;:6;lt:~:ger,chi1dren (+$;$~~~““(Employees))))) 

= I[{ (E = e, M = m) I true}$~,,) 

(I[+( 1 I k wce,c,,k, from (C5) 

(r 
h/X((e,c),d). c.age>d.age/X((e,c),d).(e,c) 
X((e,c),d).true/X((e,c),d).d 
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CT t- X : set(tl), CT I- Y : set(tn), CT I- p : tl x tz-+bool 
0 I- XDa,Y : set(t1 x t2) 

o t X : set(t), CT t p : t+bool 
0 t Op(X) : set(t) 

cr I- X : set(tl), atpath: tl+set t2, al-p: tl ~tz--+bool 
0 t fwy(X) : set(tl x tz) 

CT I-X : set(tl), CT k e : tl +@-, CJ t-p : tl +bool 

ot n;“(x) : $T 

ut-x: set(tl), ate: tl+$T, otf: tl-+tZ 

Ot-p: tl-+bool, ol-g: tl--tt3 

r 
@/elf 

ut p/g (x) : set(tl x @T) 

Figure 6: The Typing Rules of the Algebraic Operators 

malization algorithm because the computed set must be em- 
bedded in the result of every iteration of the outer set com- 
prehension. Similarly, the universal quantification (the A- 
comprehension) and the aggregation (the maz-comprehension) 
cannot. be unnested by the normalization algorithm. These 
cases (which are types A and JA nested queries [IS]) require 
the use of outer-joins and grouping and they will be covered 
in detail in the rest of this paper. 

3 The Nested Relational Algebra 

Before we describe the unnesting algorithm, we need to de- 
fine the nested-relational algebraic operators more formally. 
Figure 5 defines the algebraic operators in terms of the 
monoid calculus and Figure 6 gives the typing rules of these 
operators (The last two rules in Figure 6 are defined for a 
primitive monoid $; there are similar rules for a set monoid). 
We decided to use pairs of values instead of a stream of val- 
ues to pass values between operators. For example, in the 
stream-based approach, the join operator concatenates each 
pair of qualified tuples from the two input streams into a 
new tuple and makes a stream from these new tuples. In 
our formal definition, though, a join between X and Y (see 
Equation (01) in Figure 5) accepts any value w from X and 
any value w of Y and generates a set of all qualified pairs 
(w, w). (TV and w can be nested pairs, such as (z, (y,z)).) 
This approach gives a compositional way of defining oper- 
ators that does not depend on the structure of input. In- 
stead, in the stream-based view, the free variables of the 
join predicate depend on the structure of the input streams 
and do not have a valid meaning if they applied to different 
streams. Even though streams are convenient forms for ex- 
plaining examples (as we did in the introduction), they are 
not appropriate for giving semantics and proving theorems. 
Of course, in the actual implementation of the algebraic op- 
erators we can always use streams, as it is done for real 
physical algorithms. 

Equations (01) through (04) are straightforward. The 
outer-join in Equation (05) is a little bit different than the 
join in Equation (01): the domain of the second generator 
(the generator of w) is always non-empty; if Y is empty or 

there are no elements that can be joined with w (this is tested 
using the universal quantification), then the domain is the 
singleton value {NULL}, i.e. w becomes null; otherwise each 
qualified element w of Y is joined with w. The outer-unnest 
operation in Equation (06) works in the same way as the 
outer-join operator. 

In Equation (07), the nest operator uses the group-by 
function f: if two values w and w from a set X are equal 
under f (i.e. when f(w) = f(w)), their images under e 
(i.e. e(w) and e(w)) are grouped together in the same group. 
After a group is formed, it is reduced by the accumulator 
$ and a pair of the group-by value along with the result of 
the reduction of this group is returned. Function 9 indicates 
which nulls to convert into zeros (i.e. into Z,). For example, 

U/X(d,e).e/X(d,e).d 

rx(d,e).tr”e/x(d,e).e(X) 

= { (d’, { e ((d,e)+X, e # NULL, d’ = d }) I (d’,e’)+X} 

in Figure l.B, groups the input (which consists of pairs (d, e) 
of a department d and an employee e) by d and converts the 
null e’s into empty sets. The result of the nesting is a set of 
pairs, where each pair associates a department with a set of 
employees. 

4 The Query Unnesting Algorithm 

The query unnesting algorithm is given in Figure 7. We as- 
sume that all comprehensions in a query have been put into 
the canonical form @ e I t~ +--paths, . , w,, -path,, pred } 
before this algorithm is applied. That is, all generator do- 
mains have been reduced to paths and all predicates have 
been collected to the right of the comprehension into pred 
by anding them together (pred is set to true if no predi- 
cate exists). The translation of a monoid comprehension 
@ e I y} is accomplished by using I[@ e I T}nz E. The com- 
prehension He IT} is translated by compiling the quali- 
fiers in ?: from left to right using the term E as a seed that 
grows at each step. That is, the term E is the algebraic 
tree derived at this point of compilation. The variables in 
w are all the variables encountered so far during the trans- 
lation and u are the variables t,hat need to be converted to 
zeros during nesting if they are nulls. When u = () (i.e. 
when we have no variables in u), this indicates that we are 
compiling an outermost comprehension (not a nested one). 
Rules (Cl) through (C4) compile outermost comprehensions 
while Rules (C5) through (C7) compile inner comprehen- 
sions. Rules (C8) and (C9) do the actual unnesting (here u 
can be of any value, including (), and @ is not necessarily 
the same monoid as @). 

Rule (Cl) is the first step of the unnesting algorithm: 
the comprehension must be the outermost comprehension; 
thus, the first generator must be over an extent X. In that 
case, the seed becomes a selection over X. The notation 
p[w] specifies the part of the predicate p that refers to v 
exclusively. The rest of the predicate is denoted by p[~] and 
satisfies p[w] A p[~] = p. This is used for pushing predicates 
to the appropriate operators. Rule (C2) is the last rule 
to be performed after all generators have been compiled. 
Rule (C3) converts a generator over an extent into a join. 
Here we split the predicate p into three parts: into p[v] that 
refers to v exclusively, into p[(w, w)] that refers to both w 
and w, and p[(w, v)] for the rest of the predicate. Rule (C4) 
compiles generators with path domains into unnests. 
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(Cl) 

(C2) 

(C3) 

(C4) 

(C5) 

((36) 

cc71 

((33) 

cc91 

Figure 7: Translating and Unnesting Comprehensions (u # () in Rules C5-C7) 

= I{ (E = e, M = m) I true jni&, 

(r 
t/X((e,c),k).l/X((e,c),k) e 
X((e,c),k).klX((e,c),k).e from (C5) 

(r /\/X((e,c),d). c.age>d.age/X((e,c),d).(e,c) 
X((e,c),d).true/X((e,c),d).d 

(=P ~~~~~;,‘d~“,~~‘~chi1dren(~~~~~~~,~~~~e”(Employees))))) 

=A u/A(e,m).(E=e, M=m) 

X(e,m).true 

(r 

tlX((e,c),k).llX((~,~),~) e 

X((e,c),k).kIX((e,c,,k).e from (C2) 

(r 
/\/A((e,c),d). c.agr>d.age/X((e,c),d).(e,c) 
X((e,c),d).true/X((e,c),d).d 

(=P 
A(e,c). e.manager.chiidren(~,~~e~~~,~~~~~~(~mployees))))) 
X((e,c),d).true 

We can easily prove that the unnesting algorithm is com- 
plete: 

Theorem 1 The rules in Figure 7 unnest ull nested com- 
prehensions. 

Proof: After normalization, the only places where we can 
find nested queries are the comprehension predicate and the 
head of the comprehension. These cases are handled by 
Rules (C8) and (C9) respectively. Even though Rule (C8) 
has a precondition, it will be eventually applied to unnest 
any nested query in a predicate. (In the worst case, it will 
be applied when all generators of the outer comprehension 
have beed compiled by the other rules.) Cl 

The soundness of our unnesting algorithm is a conse- 
quence of the following theorem: 

Theorem 2 The rules in Figure 7 are meaning preserving. 
That is: 

The proof of this theorem is given in the extended version 
of this paper [ll]. Here we give an example of the validity of 
this theorem. If we apply the rules in Figure 7, QUERY B 
becomes: 

[{ (D = d, M = { e ] e +Employees, e.dno = d.dno }) 
] d + Department }${ { ()} 

=A 
;[;fi;)y=da M=m) (r~:~bS:ls’u::“:~,~~;~ (G)) 

where $ = Department sx],(,,,), e.dno=d.dnoEmplOyees. If 
we use the operator definitions in Figure 5 and normalize 
the resulting comprehensions, we get: 

={(D=d,M=m) 

~(d,m)+{(d,{e'~(d',e')+(~),e'#NULL,d=d'}) 

I (4 e) + (8) 11 
= {(D = d, M = { e’l (d’,e’)+(G), e’ # NULL, d = d’}) 

I (d,e)+-(G) 1 
= {(D=d, M={e’](d’,e’)-{(d,e)(d+Department, 

e-F(d)}, e’ #NULL, d = d’}) 
1 (d,e)-{ (d,e) ]d+Department, e+-F(d)}} 

where 

F(d) = if A{ e.dno # d.dno Id # NULL, e+Employees } 
then {NULL} 
else { e ] e-Employees, e.dno = d.dno } 
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~Ui<E=d.S=m> 

lm 

I 
U/<E=d,S=m> A 

$a e.dno = u.dno 

$g / CSdil~ 
e.dno 

/\ 

I 

0 e.age>30 

e 

0 e.age>30 CT u.age>30 Employees 
e ” 

Employees Employees 
A B 

Figure 8: Simplification of an Algebraic Form 

Therefore, after normalization we get: 

= { (D = d, M = { e’ I d’ -Department, e’ - F(d’), 
e’ # NULL, d = d’ }) 

I d +- Department, e +- F(d) } 
= { (D = d, M = {e’ 1 d’+Department, 

e’ + { e ( e +-Employees, e.dno = d.dno }, d = d’ }) 
I d + Department, e +-- F(d) } 

= { (D = d, M = { e I d’ +- Department, e + Employees, 
e.dno = d.dno, d = d’}) 

I d + Department } 

In the last term we removed the generator e + F(d) because 
for every Y # 0, we have {f(z) 1 z + X, y + Y, m} = 
{ f(z) 1 z + X, a}, since I’ does not contribute to the 
result. Finally, since d = d’, we can safely remove the gen- 
erator d’ + Department from the inner comprehension. The 
final form is: 

{ (D = d, A4 = ( e ] e +- Employees, e.dno = d.dno}) 
1 d + Department } 

which is the original comprehension. 

5 Simplifications 

There is a large class of nested queries that can be improved 
further after unnesting. Consider for example the following 
query that, for each department, it finds the average salary 
of all the employees in the department older than 30: 

select distinct e.dno, avg(e.salary) 
from Employees e 

where e.age>30 
group by e.dno 

Even though this query does not seem to be nested at a 
first glance, its translation to the monoid calculus is in fact 
nested: 

{ (E = e.dno, S = avg{ u.salary ( u + Employees, 
u.age > 30, e.dno = udno 1) 

J e +-Employees, e.age > 30 } 

Our unnesting algorithm generates the algebraic form in Fig- 
ure 8.A, but we would prefer to have the form in Figure 8.B, 

which is more efficient. This simplification can be easily ac- 
complished with the help of the following rule: 

r:(b)(g(a) aa.M=b.M q(b)) + r:‘kda)) 

where a/b are range variables in g(a)/g(b). 

6 Building the Optimizer 

We have already built a prototype OQL optimizer based on 
the unnesting algorithm described in this paper. It is de- 
scribed in detail in [lo]. Our OQL optimizer is expressed 
in a very powerful optimizer specification language, called 
OPTL, and is implemented in a flexible optimization frame- 
work, called OPTGEN, which extends our earlier work on 
optimizer generators [14]. 

OPTL is a language for specifying query optimizers that 
captures a large portion of the optimizer specification in- 
formation in a declarative manner. It extends C++ with 
a number of term manipulation constructs and with a rule 
language for specifying query transformations. OPTGEN 
is a C++ preprocessor that maps OPTL specification into 
executable code (C++ code). 

Our OQL optimizer is only 825 lines of OPTL code (the 
produced C-l-+ code is 4733 lines), from which 30 lines are 
for normalization of comprehensions, 34 lines for normal- 
ization of predicates (using DeMorgan’s laws), 88 lines for 
query unnesting using the algorithm described in this paper, 
42 lines for materialization of path expressions into joins [I], 
48 lines for various algebraic optimizations (including per- 
mutation of joins), and 126 lines for translating algebraic 
forms into physical plans. The rest of the optimizer code 
is C-l-+ support functions. Currently our OQL optimizer 
produces physical plans that are evaluated in memory, but 
we are planning to connect it to the SHORE object man- 
agement system [3]. 

The source code and the manual of OPTGEN, and the 
OQL optimizer are available at: 

http://www-cse.uta.edu/-fegaras/optimizer/ 

7 Related Work 

Monad comprehensions were first introduced by Wadler [23] 
as a generalization of list comprehensions. Monoid compre- 
hensions are related to monad comprehensions but they are 
considerably more expressive. In particular, monoid com- 
prehensions can mix inputs from different collection types 
and may return output of a different type. This is not possi- 
ble for monad comprehensions, since they restrict the inputs 
and the output of a comprehension to be of the same type. 
Monad comprehensions were first proposed as a convenient 
database language by Trinder [22, 211 who also presented 
many algebraic transformations over these forms as well 
as methods for converting comprehensions into joins. The 
monad comprehension syntax was also adopted by Buneman 
et al [2] as an alternative syntax to monoid homomorphisms. 

Our normalization algorithm is influenced by Wong’s 
work on normalization of monad comprehensions [24, 251. 
He presented some very powerful rules for flattening nested 
comprehensions into canonical comprehension forms whose 
generators are over simple paths. These canonical forms are 
equivalent to our canonical forms for monoid comprehen- 
sions. His work though does not address query unesting for 
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complex queries (in which the embedded query is part of 
the predicate or the comprehension head), which cannot be 
unnesi,ed without using outer-joins and grouping. 

Our query unnesting algorithm is influenced by the work 
of Cluet and Moerkotte [9, 81, which covered many cases 
of nesting in OODBs, including nested aggregate queries, 
and, more importantly, validated all the transformations. 
Our work proposes a rewriting system for complete unnest- 
ing, while their work considers algebraic equalities for some 
forms of unnesting. Another promising work on query unnest- 
ing that has the same goals as ours is that of Cherniack 
and Zdonik [5]. In contrast to our approach, they used an 
automatic theorem prover to prove the soundness of their 
unnest,ing rewrite rules. Th e use of a theorem prover is 
highly desirable for extensible systems, since it makes the 
query optimizer very flexible. In particular, with the help of 
a theorem prover, an optimizer does not require validation 
in a form of a formal proof each time a new algebraic oper- 
ator or a new rewrite rule is introduced. We are planning 
to experiment along this direction in the near future. 

The work of Lin and Ozsoyoglu [17] addresses nested 
queries in a different way. For each nested query, a method 
is created and the inner query is replaced by a call to this 
method. This is a nice approach if the goal is to translate a 
language that allows query nesting to a language or algebra 
that does not allow it. But of course this is not a solution to 
the query unnesting problem since it replaces this problem 
with a more difficult problem: namely, the optimization of 
queries with embedded method calls. 

8 Conclusion 

We have presented a new query unnesting algorithm that 
removes any form of nesting in a very expressive calculus 
that supports nested sets, aggregation, and universal and 
existential quantification. This algorithm is compositional, 
that is, the translation of an embedded query does not de- 
pend on the context in which it is embedded; instead, each 
query is translated independently, and all translations are 
composed to form the final unnested query. This prop- 
erty enabled us to prove the soundness and completeness of 
the algorithm. Our unnesting algorithm is efficient since it 
takes time linear to the size of the query. It is also very 
easy to implement and can be easily adapted to handle 
object-relational and relational queries by removing some 
functionality (namely the unnesting and outer-unnesting op- 
erators) and handling more syntactic sugar. Our prelimi- 
nary results suggest that various OODB optimization tech- 
niques improve performance considerably when combined 
with query unnesting. 

As a future work, we are planning to extend this algo- 
rithm to support lists, bags, and vectors. There is a funda- 
mental difficulty that prevents an easy solution: grouping 
alone is not capable of reconstructing the input stream after 
it is extended by outer-joins and outer-unnests because all 
these collection types are not idempotent and, therefore, it 
is not obvious how to extract the correct number of dupli- 
cates from the extended stream. Another goal is to quantify 
the performance improvement gained by query unnesting by 
testing various nested queries. These results would be highly 
sensitive to the other optimization techniques supported by 
the optimizer. 

Acknowledgements: The author is grateful to David 
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