
Query Unnesting in Object-Oriented Databases

Leonidas Fegaras

Department of Computer Science and Engineering
The University of Texas at Arlington

416 Yates Street, P.O. Box 19015
Arlington, TX 76019-19015

email: fegarasQcse.ula.edu

Abstract

There is already a sizable body of proposals on OODB query
optimization. One of the most challenging problems in this
area is query unnesting, where the embedded query can
take any form, including aggregation and universal quan-
tification. Although there is already a number of proposed
techniques for query unnesting, most of these techniques are
applicable to only few cases. We believe that the lack of a
general and simple solution to the query unnesting problem
is due to the lack of a uniform algebra that treats all opera-
tions (including aggregation and quantification) in the same
way.

This paper presents a new query unnesting algorithm
that generalizes many unnesting techniques proposed re-
cently in the literature. Our system is capable of removing
any form of query nesting using a very simple and efficient al-
gorithm. The simplicity of the system is due to the use of the
monoid comprehension calculus as an intermediate form for
OODB queries. The monoid comprehension calculus treats
operations over multiple collection types, aggregates, and
quantifiers in a similar way, resulting in a uniform way of
unnesting queries, regardless of their type of nesting.

1 Introduction

There are many recent proposals on OODB query optimiza-
tion that are focused on unnesting nested queries [9, 8, 6,
7, 201. Query nesting appears more often in OODB queries
than in relational queries, because OODB query languages
allow complex expressions at any point in a query. Cur-
rent OODB systems typically evaluate nested queries in a
nested-loop fashion, which does not leave many opportuni-
ties for optimization. Most unnesting techniques for OODB
queries are actually based on similar techniques for rela-
tional queries [16, 15, 181. For all but the trivial nested
queries, these techniques require the use of outer-joins, to
prevent loss of data, and grouping, to accumulate the data
and to remove the null values introduced by the outer-joins.

If considered in isolation, query unnesting itself does not
result in performance improvement. Instead, it makes pos-
sible other optimizations, which would not be possible oth-

permission to make digital or hard copies of all or part Of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first Page.

To copy otherwise, to republish, to post on servars or to

redistribute to lists. requires prior specific permission and/or 0 fee.

SIGMOD ‘98 Seattle, WA, USA
8 1998 ACM 0-89791.995-5/98/006...$5.00

erwise. More specifically, without unnesting, the only choice
of evaluating nested queries is a naive nested-loop method:
for each step of the outer query, all the steps of the inner
query need to be executed. Query unnesting promotes all
the operators of the inner query into the operators of the
outer query. This operator mixing allows other optimiza-
tion techniques to take place, such as the rearrangement of
operators to minimize cost and the free movement of selec-
tion predicates between inner and outer operators, which
enables operators to be more selective.

All early unnesting techniques were actually source-to-
source transformations over SQL code, mostly due to the
lack of a group-by operator in the relational algebra to ex-
press grouping. The absence of a formal theory in a form
of an algebra to express these transformations resulted in
a number of bugs (such as the infamous count bug [15])
that were eventually detected and corrected. Since OODB
queries are far more complex than relational queries, it is
more crucial to express the unnesting transformations in a
formal algebra that will allow us to prove the soundness and
completeness of these transformations. The first work with
that goal in mind was by Cluet and Moerkotte [9, 81, which
covered many cases of nesting, including nested aggregate
queries, and validated all the transformations. Their work
was extended by Claussen et al [7] to include universal quan-
tification.

Our work extends previous work in two ways. First, our
unnesting algorithm is not only sound, but it is also com-
plete. That is, our system is capable of removing any form
of nesting. Second, our unnesting algorithm is easier to un-
derstand and implement than earlier work, mostly due to
the use of the monoid comprehension calculus [13] as an
intermediate form for OODB queries. The monoid compre-
hension calculus treats operations over multiple collection
types, aggregates, and quantifiers in a similar way, resulting
in a uniform way of unnesting queries, regardless of their
type of nesting. In fact, many forms of nested queries can
be unnested by a simple normalization algorithm for monoid
comprehensions [12]. All other forms require the introduc-
tion of outer-joins and grouping. Our algorithm unnests
the queries that cannot be normalized by the normalization
algorithm using two rewrite rules only.

Queries in our framework are translated into monoid
comprehensions, which serve as an intermediate form, and
then are translated into a version of the nested relational al-
gebra that supports aggregation, quantification, outer-joins,
and outer-unnestings. Query unnesting is performed dur-
ing the translation of monoid comprehensions into algebraic

49

forms. We decided to use both a calculus and an algebra as
intermediate forms because the calculus closely resembles
current OODB languages and is easy to normalize, while
the algebra is lower-level and can be directly translated into
the execution algorithms supported by database systems.

Finally, we report on an implementation of our ideas
using a powerful optimizer specification framework, called
OPTGEN [lo]. Since the merit of query unnesting cannot
be judged in isolation from other optimizations, we com-
bined unnesting with other optimization techniques, such as
materialization of path expressions into joins [l], perform-
ing selections as early as possible, rearranging join orders,
choosing access paths, assigning evaluation algorithms to
operators, etc. Our preliminary results suggest that these
opi,imization techniques improve performance considerably
when combined with query unnesting.

1.1 Motivating Examples

All the examples given in this paper are expressed in ODMG
OQL [4]. Our unnesting algorithm, though, can be applied
to any OODB language that resembles OQL and can be
easily adapted to handle object-relational and relational lan-
guages.

As an example of how OODB queries are translated into
algebraic forms, consider the following OQL query:

select distinct struct(E: e.name, C: c.name)
from e in Employees, c in e.children

which is translated as follows in the monoid comprehension
calculus:

QIJERY A: U{ (E = e.name, C = c.name)
l e + Employees, c + exhildren }

This form constructs one tuple for every employee e and
for every child c of the employee e. All these tuples are
lifted to singleton sets and the sets are merged using U.

The operation U is called the comprehension accumulator
because it is used to accumulate the values in the head of the
comprehension (the tuples (E = e.name, C = c.name)).

Figure l.A presents the algebraic form of QUERY A. Al-
gebraic forms are displayed as trees in which the tree leaves
are sets of objects (class extents) and the output of the tree
root is the output of the algebraic form. The functional-
ity of an algebraic form can be better understood if we use
a stream-based interpretation in which a stream of tuples
flows from the leaves to the root of the tree. Under this
interpretation, the algebraic form in Figure l.A generates
a stream of tuples of type set((e: Employee)) from the ex-
tent Employees. Variable e ranges over employees (i.e. it is of
type Employee). The unnest operator, pFle,chi,drcn, accepts the
stream of tuples of type set((e: Employee)) and constructs
a stream of tuples of type set((e: Employee, c: Person)),
connectins each employee with one of his/her children. The

reduce operator,
dUi<E=e...,.,C=cna,.>,’

at the top of this
algebraic-form, is a generalization of the relational operator,
project: it evaluates the expression (E=e.name, C=c.name)
for every input element and constructs a set from these tu-
ples using U (i.e. the tuples are lifted to singleton sets and
the sets are merged toget,her using set union). The reduce
operator can also be used to compute aggregations (if we
use an aggregation function, such as +, as an accumulator
instead of U), and universal or existential quantifications (if
we use A or V instead of U).

As an example of how OODB queries are unnested in
our model, consider the following nested OQL query:

select distinct struct(D: d, E: (select distinct e
from e in Employees

where e.dno = d.dno))
from d in Departments

This query has a straightforward translation in the monoid
comprehension calculus:

QUERY B: U{ (D=d, E=U(e I e + Employees,
e.dno = d.dno })

l d +- Departments }

The nesting inherent in this query can be avoided by using
an outer-join combined with groupierie [18], as it is shown

in Figure 1.B. The nest operator, ri , combines the func-
tionality of the nested-relational operator, nest, with the
functionality of reduce. It groups the input by the range
variable d, constructing a set of all e’s that are associated
with the value of d. This set becomes the value of the range
variable m. That is, this nest operator reads a stream of
tuples of type set((d: Department, e: Employee)) and gen-
erates a stream of tuples of type:

set((d: Department, m: set((e: Employee))))

Like the reduce operator, the nest operator can perform ag-
gregation after grouping instead of constructing a set.

The join before the nesting in Figure l.B is a left outer-
join: if there are no employees or the predicate e.dno=d.dno
is false for all employees in a department d, then the result of
the join is d associated with a null value, i.e. the value of the
range variable e becomes null. The nest operator converts
this null value into the empty set (the zero element of U, if U

is handled as a monoid). That is, the outer-join introduces
nulls and the nest operator converts nulls into zeros.

Another interesting example is the expression A 2 B,
which is equivalent to Va E A : 3b E B : a = b. It can be
expressed in our calculus as follows:

QUERY C: A{ V{ true I b + B, a=b } I a +--A }

The inner comprehension, which captures the existential
quantification, checks if there is at least one b E B with
a = b (it can also be written as V{ a=b] b + B }). If there is
at least one, the result of the inner comprehension is true,
since all the true values are merged together using the dis-
junction operator, V; otherwise it is false, which is the zero
element of V. The outer comprehension captures the uni-
versal quantification since it merges the results of the inner
comprehension using the conjunction operation, A. If A is
empty, it returns true, which is the zero element of A.

The algebraic form of QUERY C after unnesting is shown
in Figure l.C. During the outer-join, if there is no a with
b=a, then a will be matched with a null value. In that case,
the nest operator will convert the null value into a false value,
which is the zero element of V. The reduction at the root
tests whether all m’s are true. If there is at least one false
m, then there is at least one a in A that has no equal in B.

A more challenging example is the following double-nested
OQL query:

50

Employees Courses

Figure 1: The Algebraic Form of Some OODB Queries

select distinct struct(E: e,
M: count(select distinct c

from c in echildren
where for all d in e.manager.children:

c.age > d.age))
from e in Employees

which has the following translation in the monoid compre-
hension calculus:

QUERY D:

U{ (E=e, M=+{ 1 I c +- e.children,
A{ c.age > d.age

I d + e.manager.children } })
I e +- Employees }

The comprehension with the accumulator ‘+’ counts the
children of the employee e because, for each child, it re-
turns 1 and all these l’s are added together when merged
by the accumulator ‘+‘. The algebraic form of QUERY D
is shown in Figure l.D. Here, instead of an outer-join we
are using an outer-unnesting: the =+I.
duces a new range variable, c, whose va ue 1s the unnesting eTdreq

operator intro-

of the set e.children. If this set is empty, then c becomes
null, i.e. the employee e is padded with a null value. Since
we have a double-nested query, we need to use two nested
unnest-nest pairs. The top nest operator groups the input
stream by each employee e, generating the number of chil-
dren of e. The second nest operator groups the input stream
by each child c and, for each group, it evaluates the pred-
icate c.age > d.age and extends the output stream with an
attribute k bound to the conjunction of all the predicates
(indicated by the A accumulator). Note that every opera-
tor in our algebra can be assigned a predicate (such as the
predicate k=true in the second nest operation) to restrict
the input data.

The following query finds the students who have taken
all database courses [7]:

select distinct s
from s in Student

where for all c in select c
from c in Courses

where c.title = “DB”:
exists t in Transcript: (t.id=s.id and t.cno=c.cno)

Its comprehension form uses a predicate that has the same
pattern as that of A 2 B:

QUERY E:

U{ s I s +- Student,
A{ V{ true I t + Transcript, t.id=s.id, t.cno=c.cno }

I c + Courses, c.title = “DB” } }

The algebraic form of this query is shown in Figure I.E. This
query can be evaluated more efficiently if we use the asso-
ciativity property of outer-joins. In that case, the resulting
outer-joins would both be assigned equality predicates, thus
making them more efficient. Optimizations like these justify
query unnesting.

1.2 The Unnesting Algorithm

Figure 2 shows how our unnesting algorithm unnests QUERY
E. Every comprehension is first translated into an algebraic
form consisting of regular joins, selections, unnests, and re-
ductions; the latter being the root of the algebraic form.
We will see that this translation is straightforward. The
outermost comprehension has one output (the result of the
reduction) and no input streams. For example, the dashed
box A in Figure 2 represents the outer comprehension in
QUERY E. The shaded box on the reduction represents a
nested query. The algebraic form of an inner comprehension
(i.e. a comprehension inside another comprehension) has
one input stream and one output value: the input stream is
the same stream of tuples as that of the operation in which
this form is embedded to and the output is the result of this
form. For example, the dashed box B in Figure 2 represents
the universally quantified comprehension (with accumulator
A): the input of this box is the same input stream as that
of the reduction in box A (namely the stream of employees)
since box B is embedded in the predicate of the reduction.
The output value of the box B, n, is used in the predicate of
the reduction in the box A. Similarly, the existential quan-
tification (with accumulator V) is translated into the box C.

Our unnesting algorithm is very simple: for each box
that corresponds to a nested query (i.e. Boxes B and C),
it converts reductions into nests, joins into outer-joins, and
unnests into outer-unnests. At the same time, it embeds

51

r

Figure 2: Unnesting QUERY E

the resulting boxes at the points immediately before they
are used. For example, box C will be embedded before the
reduction in box C and the output value of box C will be
used as the result of the innermost form. Similarly, box B
will be embedded immediately before its output value is used
in box A.

There is a very simple explanation why this algorithm
is correct (a formal proof is given in the extended version
of this paper [II]): a nested query is represented as a box,
say box C, that consumes the same input stream as that of
the embedding operation and computes a value m which is
used in the embedding query (box B). If we want to splice
this box onto the stream of the embedding query we need
to guarantee two things. First, box C should not block the
input stream by removing tuples from the stream. This is
achieved by converting joins into outer-joins and unnests
into outer-unnests. Second, instead of returning one value,
namely the value m of box C, we need to extend the stream
with the new value, m. This can be done by converting
the reduction of box C into a nest. At the same time, the
nest operator will convert null values to zeros so that the
stream that you get from the output of the spliced box C
will be exactly the same as it was before the splice. There
are some very important details that we omitted here but
we will present later when we describe the unnesting algo-
rithm in detail. The most important one is which nulls to
convert to zeros each time: if we convert the null C’S (i.e.

the courses) to false in the second nest operation (r:‘m) in
the resulting unnested form in Figure 2, it will be too soon;
this nest should convert null t’s to false and the first nest
should convert null c’s to true. This is indicated by an extra
parameter to the nest operator which is not shown here.

The rest of this paper is organized as follows. Section 2
summarizes our earlier work on the monoid comprehension
calculus. A more formal treatment is presented elsewhere [13,
la]. In addition, this section describes a simple normaliza-
tion algorithm that unnests most simple forms of nesting
that do not require outer-joins, outer-unnests, or grouping.
Section 3 describes a version of the nested-relational algebra
that supports aggregation, quantification, and the handling
of null values (using outer-joins and outer-unnests). The se-
mantics of these operations is given in terms of the monoid
calculus. The real contribution of this paper is given in

I7 t 21 : u(v)

ul-e: (Al :tl,...,An :tn)
CT t CA, : t;

o t el : bool, 0 k es : t, 0 t- eg : t
CT I- if q then ez else eg : t

0 tl v t-e: t2
0 t Xvtl.e : t1 -+t2

atel: tl-+t2, 0 I- e2 : tl
0 t el(e2) : t2

c7t-e: t
CT t u(e (} : set(t)

WI

(73)

(T3)

(T4)

(T5)

P-5)

(T7)

PSI

(T9)

1
Figure 3: Typing Rules of the Monoid Calculus

Section 4. This section presents the transformation rules
for unnesting OODB queries by translating terms in our
monoid calculus into terms in the nested-relational algebra.
Section 5 presents a simplification rule to improve the forms
derived from our unnesting algorithm. Section 7 compares
our approach to related work. Finally, Section 6 reports
on an implementation of our unnesting algorithm and the
experience gained from it.

52

2 Background: The Monoid Comprehen-

sion Calculus

This section summarizes our earlier work on the monoid cal-
culus. A more formal treatment is presented elsewhere [13,
121.

The monoid calculus is based on the concept of monoids
from abstract algebra. A monoid of type T is a pair (@, Z,),
where @ is an associative function of type T x T + T (i.e.
a binary function that takes two values T and returns a
value ‘Z’), called the accumulator or the merge function of
this monoid, and Ze of type T, called the zero element of
the monoid, is the left and right identity of $. That is,
the zero element satisfies Za @ 2 = x 8 Za = 2 for ev-
ery 2. Since the accumulator function uniquely identifies
a monoid, we will often use the accumulator name as the
monoid name. In addition, we will denote the type, T, of a
monoid $ by $T. Examples of monoids include (U, { }) for
sets, (+, 0), (*, l), and (max, 0) for integers, and (V,false)
and (A, true) for booleans. All but the set monoid are called
primitive monoids because they construct values of a primi-
tive type, such as integers. The set monoid is called a collec-
tion monoid and requires the additional definition of a z&t
function, which, along with U and { }, allows us to construct
set values. For sets, the unit function is Xx. {x}, that is, it
takes a value z as input and constructs the singleton set
{z} as output. Consequently, any set can be constructed by
merging singleton values.

All the monoids used in this paper are commutative, i.e.
they satisfy x $ y = y @ 2 for every x and y. In addition,
some of them (U, A, V, and mar) are idempotent, i.e. they
satisfy x $ x = x for every x. To make our analysis sim-
pler, we will use only one collection monoid, namely the set
monoid. There are other collection monoids that are not
idempotent (such as the bag monoid) or they are neither
commutative nor idempotent (such as the list monoid). We
leave it as future work to extend our unnesting algorithm to
capture these collection monoids (it is not obvious what the
semantics of outer-join for lists and bags should be).

A monoid comprehension over the monoid $ takes the
form @ e] T}. Expression e is called the head of the compre-
hension. Each term rE in the term sequence r = ri, . . . , rn,
for n 2 0, is called a qualifier, and is either a generator of
the form v + e’, where v is a range variable and e’ is an
expression (the generator domain) that constructs a set, or
a filter p, where p is a predicate. We will use the shorthand
{ e] T } to denote the set comprehension u(e I T }.

A monoid comprehension is defined by the following re-
duction rules:

fell -

@IelI +

Helfalse, f} *

@e]true,r} ---$

Helv+-0, “1 -

ce(elu+- {e’}, i} -+

@(elv-(e~Uez),‘i:} --t

{el WI

e for $ # U WI

Z@ (D3)

HeIT) (D4)

ZfB Pw

letv=e’in@eIF} VW

(fBtelv+-el, Tl) 0’7)
@ (@elv+ez, 1, T})

where Z = v @ e2 = A{ w # v] w + ez } for idempotent
$, Z = true otherwise. Rules (D3) and (D4) reduce a com-
prehension in which the leftmost qualifier is a filter, while

Rules (D5-D7) reduce a comprehension in which the leftmost
qualifier is a generator. The let-statement in (D6) binds v
to e’ and uses this binding in every free occurrence of v in
& e I T}. The case for a non-idempotent $ (such as + or *)
is necessary in Rule (D7) to avoid semantic inconsistencies,
such as:

1 =+(a]at{l}} =+(a]a+{l} U(l)}
=(+(~lu-{1}})+(~~1~-{1}})=2

Here + was treated as idempotent monoid, which led us into
inconsistencies.

The only purpose of the above rules is to give semantics
to monoid comprehensions, not to suggest in any way how
they are implemented. Monoid comprehensions can be ef-
fectively translated into efficient physical algorithms, as we
will show in this paper.

Our calculus has additional primitive types, such as strings,
and additional operations, such as tuple construction, tuple
projection, function abstraction and application, if-then-else
expression, etc. Furthermore, every type domain is extended
with the null value, NULL. The only operations we support
for nulls are creating them and testing whether a value is
null.

A complete formal definition of the calculus is presented
elsewhere [13]. Here, though, we present the typing rules
of some important terms in our calculus (Figure 3). The
name v in Figure 3 indicates a variable name, names starting
with A are attribute names, names starting with e represent
terms in our calculus, and names starting with t represent
types. The notation u l- e : t indicates that the term e
is assigned the type t under the substitution u. If a type
equation is a fraction, the numerator is the premise while
the denominator is the consequence. The substitution list u
binds variable names to types (g(v) returns the binding of
v in u and u[t/v] extends u with the binding from v to t).
The X-variable, v in Equation T6 is annotated by its type,
tl. This is not necessary for type inference systems, since
this type can be inferred.

When restricted to sets, monoid comprehensions are equiv-
alent to set monad comprehensions [2], which capture pre-
cisely the nested relational algebra [13]. Most OQL expres-
sions have a direct translation into the monoid calculus [13].
For example, the OQL query

select distinct hotel .price
from hotel in (select h

from c in Cities, h in c.hotels
where c.name = “Arlington”)

where exists r in hotel.rooms: r.bed-num = 3
and hotel.name in (select t.name

from s in States, t in s.attractions
where s.name = “Texas”);

is translated into the following comprehension:

{ hotel.price I hotel + { h I c + Cities, h + c.hotels,
c.name=“Arlington” },

V{ r.bed-num=3 I r +- hotel.rooms },
V{ e=hotel.name

I e + { t.name I s + States, t + s.attractions,
s.name=“Texas” } } }

We use the following convention to represent variable
bindings in a comprehension:

53

(Av.ei) ez --i el b2 /VI beta reduction W)

(A, = el,...,An =e,).A, --+ e, P’J)

@(cz\?~, ut(ifel thenezelsees), F} --i (frgel?, e1, 7J+e2,7)) $ (@eI?, Tel? u+e3, Fl) (N3)

&elT,~-{),~l - Ze (N4)

@eI~,t~+{e’},Z} ------t &(eIii,vEe’,~} (N5)

ci%el?, y- {e’Ir},S} --i @elij,r,vfe’,s} (N7)

@(elTj, V{pred(F}, T} -+ @(e Iv, 7, pred, S} for idempotent $ W8)

@~eIF}IF} --+ @$eIF,F} for $ # u G-1

Figure 4: The Normalization Algorithm

where e[u/z] is the expression e with u substituted for all
the free occurrences of z (i.e. e[u/x] is equivalent to let x =
u ine). In addition, as a syntactic sugar, we allow irrefutable
patterns in place of lambda variables, range variables, and
variables in bindings. Patterns like these can be compiled
away using standard pattern decomposition techniques [19].
For example, {z + y] (z, (y, z)) + A, z = 3) is equivalent
to { a.fst + a.snd.fst] a + A, a.snd.snd = 3 }, where fst/snd
retrieves the first/second element of a pair. Another exam-
ple is X(x, (y, z)).z + y + Z, which is a function that takes
three parameters and returns their sum. It is equivalent to
Xa. a.fst + a.snd.fst + a.snd.snd.

The monoid calculus can be put into a canonical form by
an efficient rewrite algorithm, called the normalization cd-
gorithm. The evaluation of these canonical forms generally
produces fewer intermediate data structures than the initial
unnormalized programs. Moreover, the normalization algo-
rithm improves program performance in many cases (as we
will prove below). It generalizes many optimization tech-
niques already used in relational algebra, such as fusing two
selections into one selection.

Figure 4 gives the normalization rules. The soundness
of the normalization rules can be easily proved using the
definition of the monoid comprehension. Rule (Ni’) flattens
a comprehension that contains a generator whose domain
is another comprehension (it may require variable renaming
to avoid name conflicts). Rule (N8) unnests an existential
quantification.

For example, the previous OQL query is normalized into:

{ h.price l c + Cities, h + c.hotels, r + h.rooms, s + States,
t - s.attractions, c.name=“Arlington” ,
r.bed-num=3, s.name=“Texas”, t.name=h.name }

by applying Rule (N7) to unnest the two inner set compre-
hensions and Rule (N8) to unnest the two existential quan-
tifications.

All generator domains can be normalized by the normal-
ization algorithm into paths (i.e. sequences of projections
of the form x.Al.Az . A,, for n 2 0, where z is a range
variable or an extent, and A, are attributes). This can be
proved by induction over the structure of the domain of a

generator; the rules in Figure 4 normalize all possible forms
of generator domains other than paths.

Our normalization algorithm unnests all type N and J
nested queries [16] (using Rules (N7) and (N8) respectively).
The important question, though, is whether normalization
always improves performance. Unfortunately, this is not
always the case. Consider for example the term

where E is a very costly query. This term is normalized into

that is, it repeats the computation of E twice. In this case,
the normalized form is worse than the original term. Cases
like these occur frequently in lazy functional languages [19].
In those languages, function application is evaluated us-
ing beta reduction (Rule (Nl)), which, if it is implemented
naively as term substitution, it may repeat computations (if
1) appears more than once in er). To avoid situations like
these, the evaluators of these languages use graph reduction
t,echniques [19] in which all occurrences of v in ei share the
same term by pointing to the same memory address, thus
forming an acyclic graph. When this term is reduced to a
value, the term is replaced by this value in the graph, thus
avoiding the need to compute this value twice. If we apply
this technique to our normalization algorithm, the normal-
ized form { (E, E)] ‘u) + X } will not repeat the evaluation
of E; instead it will use two pointers to the same term E.

Even though the normalization algorithm unnests many
forms of nested queries, there still some forms of queries that
cannot be unnested that way. The following query contains
three examples of such forms:

{ (E=e, M={ c l c + e.children,
A{ c.age > d.age

I d +-e.manager.children } })
I e +- Employees,

e.salary>max{ m.salary l m + Managers,
e.age>m.age } }

The inner set comprehension, which appears in the head of
the outer set comprehension, cannot be unnested by the nor-

54

Rules (C5) through (C7) apply to inner comprehensions
and are similar to Rules (C2) through (C4) with the only
difference that reductions become nests, joins become left
outer-joins, and unnests become outer-unnests. The nota-
tion w\u indicates all the variables in w that do not appear in
u. These are the attributes to group by (u are the attributes
to convert into zeros when they are nulls). Rules (C8)
and (C9) perform the actual unnesting. They do exactly
what we have done in Figure 2 when we composed boxes:
here the boxes are actually the results of the translation of
the outer and inner comprehensions. Rule (C8) unnests a
nested comprehension in the predicate p. It is applied as
early as possible, that is, immediately when the generators
S do not affect the inner comprehension (i.e. when the free
variables of the inner comprehensions do not depend on the
generator variables in Z). Rule (C9) unnests a nested com-
prehension in the head of a comprehension. This unnesting
is performed when all the generators of the outer compre-
hension have been reduced.

For example, QUERY D is compiled as follows:

I[{ (E = e, M = +(11 c+e.children,
A{ c.age > d.age

1 d+e.manager.children, true} })

(e + Employees, true }$i { ()}

= [{ (E = e, M = +(11 c+e.children,
A{ cage > d.age

1 d + e.manager.children, true } })

1 true }$’ Employees

from (Cl), if we ignore the selection over Employees since it

XW,Y = {(w,w)Iw+-x, w-Y,p(w,w)}
O??(X) = {vl?J+X, P(V))

p;“““(x) = {(%W)I v+x, w+Path(v), PC% w) I

AF’e(X) = C%e(~)I~+X,p(w)l

x=&y = {(%W) I vtx, w+ifA{~p(v,w’)Iv#~uL~, w’+-Y}

then {NULL}

else { 20’ I w’ + Y, p(v, w’) } }

,jWyYX) = {(%W)I 2, t-x, W tif A{ -p(2), W’) 1% # NULL, W’+pUth(W) }

then {NULL}

else { w’ 1 w’+path(v), p(w, w’) } }

r = { (f(v), Cd e(w) I W+--x, g(W) # NULL, f(W) = f(W), P(W) 1) 1 w+-X 1

Figure 5: The Semantics of the Algebraic Operators

(01)
(04

(03)

(04)

(05)

(06)

(07)

has a true predicate.

= [{ (E = e, M = m) 1 true }]I!,,,,
([+(1 I c+-e.children,

A{ c.age > d.age I d +-e.manager.children, true } }]z
Employees)

from (C9) to handle the inner + comprehension.

= [{ (E = e, M = m) /true }][&,,
(I[+(1 I A{ c.age > d.age I d+e.manager.children, true} }]i)e,c)

(+~P;$~~~‘” (Employees)))

from (C7) to translate the e.children into an unnest.

= [{ (E = e, M = m) I true }$i,,,
m-t 1 I k)n;c,,c,,k, from (C8)

([A{ cage > d.age I d+e.manager.children, true]]i:;:;

C=P:g$~::en (Employees))))

= I[{ (E = e, M = m) I true}]!!,,)

(6~ 1 I k)n;ce,c,,k, from (CT)

([A{ c.age > d.age I true }$T;tj),d)

(=P :Ip::!;:6;lt:~:ger,chi1dren (+$;$~~~““(Employees)))))

= I[{ (E = e, M = m) I true}$~,,)

(I[+(1 I k wce,c,,k, from (C5)

(r
h/X((e,c),d). c.age>d.age/X((e,c),d).(e,c)
X((e,c),d).true/X((e,c),d).d

56

CT t- X : set(tl), CT I- Y : set(tn), CT I- p : tl x tz-+bool
0 I- XDa,Y : set(t1 x t2)

o t X : set(t), CT t p : t+bool
0 t Op(X) : set(t)

cr I- X : set(tl), atpath: tl+set t2, al-p: tl ~tz--+bool
0 t fwy(X) : set(tl x tz)

CT I-X : set(tl), CT k e : tl +@-, CJ t-p : tl +bool

ot n;“(x) : $T

ut-x: set(tl), ate: tl+$T, otf: tl-+tZ

Ot-p: tl-+bool, ol-g: tl--tt3

r
@/elf

ut p/g (x) : set(tl x @T)

Figure 6: The Typing Rules of the Algebraic Operators

malization algorithm because the computed set must be em-
bedded in the result of every iteration of the outer set com-
prehension. Similarly, the universal quantification (the A-
comprehension) and the aggregation (the maz-comprehension)
cannot. be unnested by the normalization algorithm. These
cases (which are types A and JA nested queries [IS]) require
the use of outer-joins and grouping and they will be covered
in detail in the rest of this paper.

3 The Nested Relational Algebra

Before we describe the unnesting algorithm, we need to de-
fine the nested-relational algebraic operators more formally.
Figure 5 defines the algebraic operators in terms of the
monoid calculus and Figure 6 gives the typing rules of these
operators (The last two rules in Figure 6 are defined for a
primitive monoid $; there are similar rules for a set monoid).
We decided to use pairs of values instead of a stream of val-
ues to pass values between operators. For example, in the
stream-based approach, the join operator concatenates each
pair of qualified tuples from the two input streams into a
new tuple and makes a stream from these new tuples. In
our formal definition, though, a join between X and Y (see
Equation (01) in Figure 5) accepts any value w from X and
any value w of Y and generates a set of all qualified pairs
(w, w). (TV and w can be nested pairs, such as (z, (y,z)).)
This approach gives a compositional way of defining oper-
ators that does not depend on the structure of input. In-
stead, in the stream-based view, the free variables of the
join predicate depend on the structure of the input streams
and do not have a valid meaning if they applied to different
streams. Even though streams are convenient forms for ex-
plaining examples (as we did in the introduction), they are
not appropriate for giving semantics and proving theorems.
Of course, in the actual implementation of the algebraic op-
erators we can always use streams, as it is done for real
physical algorithms.

Equations (01) through (04) are straightforward. The
outer-join in Equation (05) is a little bit different than the
join in Equation (01): the domain of the second generator
(the generator of w) is always non-empty; if Y is empty or

there are no elements that can be joined with w (this is tested
using the universal quantification), then the domain is the
singleton value {NULL}, i.e. w becomes null; otherwise each
qualified element w of Y is joined with w. The outer-unnest
operation in Equation (06) works in the same way as the
outer-join operator.

In Equation (07), the nest operator uses the group-by
function f: if two values w and w from a set X are equal
under f (i.e. when f(w) = f(w)), their images under e
(i.e. e(w) and e(w)) are grouped together in the same group.
After a group is formed, it is reduced by the accumulator
$ and a pair of the group-by value along with the result of
the reduction of this group is returned. Function 9 indicates
which nulls to convert into zeros (i.e. into Z,). For example,

U/X(d,e).e/X(d,e).d

rx(d,e).tr”e/x(d,e).e(X)

= { (d’, { e ((d,e)+X, e # NULL, d’ = d }) I (d’,e’)+X}

in Figure l.B, groups the input (which consists of pairs (d, e)
of a department d and an employee e) by d and converts the
null e’s into empty sets. The result of the nesting is a set of
pairs, where each pair associates a department with a set of
employees.

4 The Query Unnesting Algorithm

The query unnesting algorithm is given in Figure 7. We as-
sume that all comprehensions in a query have been put into
the canonical form @ e I t~ +--paths, . , w,, -path,, pred }
before this algorithm is applied. That is, all generator do-
mains have been reduced to paths and all predicates have
been collected to the right of the comprehension into pred
by anding them together (pred is set to true if no predi-
cate exists). The translation of a monoid comprehension
@ e I y} is accomplished by using I[@ e I T}nz E. The com-
prehension He IT} is translated by compiling the quali-
fiers in ?: from left to right using the term E as a seed that
grows at each step. That is, the term E is the algebraic
tree derived at this point of compilation. The variables in
w are all the variables encountered so far during the trans-
lation and u are the variables t,hat need to be converted to
zeros during nesting if they are nulls. When u = () (i.e.
when we have no variables in u), this indicates that we are
compiling an outermost comprehension (not a nested one).
Rules (Cl) through (C4) compile outermost comprehensions
while Rules (C5) through (C7) compile inner comprehen-
sions. Rules (C8) and (C9) do the actual unnesting (here u
can be of any value, including (), and @ is not necessarily
the same monoid as @).

Rule (Cl) is the first step of the unnesting algorithm:
the comprehension must be the outermost comprehension;
thus, the first generator must be over an extent X. In that
case, the seed becomes a selection over X. The notation
p[w] specifies the part of the predicate p that refers to v
exclusively. The rest of the predicate is denoted by p[~] and
satisfies p[w] A p[~] = p. This is used for pushing predicates
to the appropriate operators. Rule (C2) is the last rule
to be performed after all generators have been compiled.
Rule (C3) converts a generator over an extent into a join.
Here we split the predicate p into three parts: into p[v] that
refers to v exclusively, into p[(w, w)] that refers to both w
and w, and p[(w, v)] for the rest of the predicate. Rule (C4)
compiles generators with path domains into unnests.

55

(Cl)

(C2)

(C3)

(C4)

(C5)

((36)

cc71

((33)

cc91

Figure 7: Translating and Unnesting Comprehensions (u # () in Rules C5-C7)

= I{ (E = e, M = m) I true jni&,

(r
t/X((e,c),k).l/X((e,c),k) e
X((e,c),k).klX((e,c),k).e from (C5)

(r /\/X((e,c),d). c.age>d.age/X((e,c),d).(e,c)
X((e,c),d).true/X((e,c),d).d

(=P ~~~~~;,‘d~“,~~‘~chi1dren(~~~~~~~,~~~~e”(Employees)))))

=A u/A(e,m).(E=e, M=m)

X(e,m).true

(r

tlX((e,c),k).llX((~,~),~) e

X((e,c),k).kIX((e,c,,k).e from (C2)

(r
/\/A((e,c),d). c.agr>d.age/X((e,c),d).(e,c)
X((e,c),d).true/X((e,c),d).d

(=P
A(e,c). e.manager.chiidren(~,~~e~~~,~~~~~~(~mployees)))))
X((e,c),d).true

We can easily prove that the unnesting algorithm is com-
plete:

Theorem 1 The rules in Figure 7 unnest ull nested com-
prehensions.

Proof: After normalization, the only places where we can
find nested queries are the comprehension predicate and the
head of the comprehension. These cases are handled by
Rules (C8) and (C9) respectively. Even though Rule (C8)
has a precondition, it will be eventually applied to unnest
any nested query in a predicate. (In the worst case, it will
be applied when all generators of the outer comprehension
have beed compiled by the other rules.) Cl

The soundness of our unnesting algorithm is a conse-
quence of the following theorem:

Theorem 2 The rules in Figure 7 are meaning preserving.
That is:

The proof of this theorem is given in the extended version
of this paper [ll]. Here we give an example of the validity of
this theorem. If we apply the rules in Figure 7, QUERY B
becomes:

[{ (D = d, M = { e] e +Employees, e.dno = d.dno })
] d + Department }${ { ()}

=A
;[;fi;)y=da M=m) (r~:~bS:ls’u::“:~,~~;~ (G))

where $ = Department sx],(,,,), e.dno=d.dnoEmplOyees. If
we use the operator definitions in Figure 5 and normalize
the resulting comprehensions, we get:

={(D=d,M=m)

~(d,m)+{(d,{e'~(d',e')+(~),e'#NULL,d=d'})

I (4 e) + (8) 11
= {(D = d, M = { e’l (d’,e’)+(G), e’ # NULL, d = d’})

I (d,e)+-(G) 1
= {(D=d, M={e’](d’,e’)-{(d,e)(d+Department,

e-F(d)}, e’ #NULL, d = d’})
1 (d,e)-{ (d,e)]d+Department, e+-F(d)}}

where

F(d) = if A{ e.dno # d.dno Id # NULL, e+Employees }
then {NULL}
else { e] e-Employees, e.dno = d.dno }

57

~Ui<E=d.S=m>

lm

I
U/<E=d,S=m> A

$a e.dno = u.dno

$g / CSdil~
e.dno

/\

I

0 e.age>30

e

0 e.age>30 CT u.age>30 Employees
e ”

Employees Employees
A B

Figure 8: Simplification of an Algebraic Form

Therefore, after normalization we get:

= { (D = d, M = { e’ I d’ -Department, e’ - F(d’),
e’ # NULL, d = d’ })

I d +- Department, e +- F(d) }
= { (D = d, M = {e’ 1 d’+Department,

e’ + { e (e +-Employees, e.dno = d.dno }, d = d’ })
I d + Department, e +-- F(d) }

= { (D = d, M = { e I d’ +- Department, e + Employees,
e.dno = d.dno, d = d’})

I d + Department }

In the last term we removed the generator e + F(d) because
for every Y # 0, we have {f(z) 1 z + X, y + Y, m} =
{ f(z) 1 z + X, a}, since I’ does not contribute to the
result. Finally, since d = d’, we can safely remove the gen-
erator d’ + Department from the inner comprehension. The
final form is:

{ (D = d, A4 = (e] e +- Employees, e.dno = d.dno})
1 d + Department }

which is the original comprehension.

5 Simplifications

There is a large class of nested queries that can be improved
further after unnesting. Consider for example the following
query that, for each department, it finds the average salary
of all the employees in the department older than 30:

select distinct e.dno, avg(e.salary)
from Employees e

where e.age>30
group by e.dno

Even though this query does not seem to be nested at a
first glance, its translation to the monoid calculus is in fact
nested:

{ (E = e.dno, S = avg{ u.salary (u + Employees,
u.age > 30, e.dno = udno 1)

J e +-Employees, e.age > 30 }

Our unnesting algorithm generates the algebraic form in Fig-
ure 8.A, but we would prefer to have the form in Figure 8.B,

which is more efficient. This simplification can be easily ac-
complished with the help of the following rule:

r:(b)(g(a) aa.M=b.M q(b)) + r:‘kda))

where a/b are range variables in g(a)/g(b).

6 Building the Optimizer

We have already built a prototype OQL optimizer based on
the unnesting algorithm described in this paper. It is de-
scribed in detail in [lo]. Our OQL optimizer is expressed
in a very powerful optimizer specification language, called
OPTL, and is implemented in a flexible optimization frame-
work, called OPTGEN, which extends our earlier work on
optimizer generators [14].

OPTL is a language for specifying query optimizers that
captures a large portion of the optimizer specification in-
formation in a declarative manner. It extends C++ with
a number of term manipulation constructs and with a rule
language for specifying query transformations. OPTGEN
is a C++ preprocessor that maps OPTL specification into
executable code (C++ code).

Our OQL optimizer is only 825 lines of OPTL code (the
produced C-l-+ code is 4733 lines), from which 30 lines are
for normalization of comprehensions, 34 lines for normal-
ization of predicates (using DeMorgan’s laws), 88 lines for
query unnesting using the algorithm described in this paper,
42 lines for materialization of path expressions into joins [I],
48 lines for various algebraic optimizations (including per-
mutation of joins), and 126 lines for translating algebraic
forms into physical plans. The rest of the optimizer code
is C-l-+ support functions. Currently our OQL optimizer
produces physical plans that are evaluated in memory, but
we are planning to connect it to the SHORE object man-
agement system [3].

The source code and the manual of OPTGEN, and the
OQL optimizer are available at:

http://www-cse.uta.edu/-fegaras/optimizer/

7 Related Work

Monad comprehensions were first introduced by Wadler [23]
as a generalization of list comprehensions. Monoid compre-
hensions are related to monad comprehensions but they are
considerably more expressive. In particular, monoid com-
prehensions can mix inputs from different collection types
and may return output of a different type. This is not possi-
ble for monad comprehensions, since they restrict the inputs
and the output of a comprehension to be of the same type.
Monad comprehensions were first proposed as a convenient
database language by Trinder [22, 211 who also presented
many algebraic transformations over these forms as well
as methods for converting comprehensions into joins. The
monad comprehension syntax was also adopted by Buneman
et al [2] as an alternative syntax to monoid homomorphisms.

Our normalization algorithm is influenced by Wong’s
work on normalization of monad comprehensions [24, 251.
He presented some very powerful rules for flattening nested
comprehensions into canonical comprehension forms whose
generators are over simple paths. These canonical forms are
equivalent to our canonical forms for monoid comprehen-
sions. His work though does not address query unesting for

58

complex queries (in which the embedded query is part of
the predicate or the comprehension head), which cannot be
unnesi,ed without using outer-joins and grouping.

Our query unnesting algorithm is influenced by the work
of Cluet and Moerkotte [9, 81, which covered many cases
of nesting in OODBs, including nested aggregate queries,
and, more importantly, validated all the transformations.
Our work proposes a rewriting system for complete unnest-
ing, while their work considers algebraic equalities for some
forms of unnesting. Another promising work on query unnest-
ing that has the same goals as ours is that of Cherniack
and Zdonik [5]. In contrast to our approach, they used an
automatic theorem prover to prove the soundness of their
unnest,ing rewrite rules. Th e use of a theorem prover is
highly desirable for extensible systems, since it makes the
query optimizer very flexible. In particular, with the help of
a theorem prover, an optimizer does not require validation
in a form of a formal proof each time a new algebraic oper-
ator or a new rewrite rule is introduced. We are planning
to experiment along this direction in the near future.

The work of Lin and Ozsoyoglu [17] addresses nested
queries in a different way. For each nested query, a method
is created and the inner query is replaced by a call to this
method. This is a nice approach if the goal is to translate a
language that allows query nesting to a language or algebra
that does not allow it. But of course this is not a solution to
the query unnesting problem since it replaces this problem
with a more difficult problem: namely, the optimization of
queries with embedded method calls.

8 Conclusion

We have presented a new query unnesting algorithm that
removes any form of nesting in a very expressive calculus
that supports nested sets, aggregation, and universal and
existential quantification. This algorithm is compositional,
that is, the translation of an embedded query does not de-
pend on the context in which it is embedded; instead, each
query is translated independently, and all translations are
composed to form the final unnested query. This prop-
erty enabled us to prove the soundness and completeness of
the algorithm. Our unnesting algorithm is efficient since it
takes time linear to the size of the query. It is also very
easy to implement and can be easily adapted to handle
object-relational and relational queries by removing some
functionality (namely the unnesting and outer-unnesting op-
erators) and handling more syntactic sugar. Our prelimi-
nary results suggest that various OODB optimization tech-
niques improve performance considerably when combined
with query unnesting.

As a future work, we are planning to extend this algo-
rithm to support lists, bags, and vectors. There is a funda-
mental difficulty that prevents an easy solution: grouping
alone is not capable of reconstructing the input stream after
it is extended by outer-joins and outer-unnests because all
these collection types are not idempotent and, therefore, it
is not obvious how to extract the correct number of dupli-
cates from the extended stream. Another goal is to quantify
the performance improvement gained by query unnesting by
testing various nested queries. These results would be highly
sensitive to the other optimization techniques supported by
the optimizer.

Acknowledgements: The author is grateful to David
Levine for helpful comments on the paper. This work is
supported in part by the National Science Foundation under
grant IRI-9509955.

References

El1

[21

[31

[41

c51

PI

PI

PI

[91

[IO1

[III

[I21

J. Blakeley, W. McKenna, and G. Graefe. Experiences
Building the Open OODB Query Optimizer. Proceed-
ings of the ACM-SIGMOD International Conference on
Management of Data, Washington, D.C., pp 287-296,
May 1993.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and
L. Wong. Comprehension Syntax. SIGMOD Record,
23(1):87-96, March 1994.

M. Carey, D. Dewitt, M. Franklin, N. Hall,
M. McAuliffe, J. Naughton, D. Schuh, M. Solomon,
C. Tan, 0. Tsatalos, S. White, and M. Zwilling. Shoring
Up Persistent Applications. In Proceedings of the 1994
ACM SIGMOD International Conference on Manage-
ment of Data, Minneapolis, Minnesota, pp 383-394,
May 1994.

R. Cattell. The Object Database Standard: ODMG-93.
Morgan Kaufmann, 1994.

M. Cherniack and S. Zdonik. Changing the Rules:
Transformations for Rule-Based Optimizers. ACM
SIGMOD International Conference on Management of
Data, Seattle, Washington, June 1998.

M. Cherniack, S. Zdonik, J. Lee, and K. Kim. Compos-
ing Rules the COKO-KOLA Way. Brown University,
March 1997.

J. Claussen, A. Kemper, G. Moerkotte, and K. Peith-
ner. Optimizing Queries with Universal Quantification
in Object-Oriented and Object-Relational Databases.
In Proceedings of the 23th VLDB Conference, Athens,
Greece, pp 286-295, September 1997.

S. Cluet and G. Moerkotte. Efficient Evaluation of Ag-
gregates on Bulk Types. Technical report, Aachen Uni-
versity of Technology, October 1995. Technical Report
95-05.

S. Cluet and G. Moerkotte. Nested Queries in Object
Bases. In Fifth International Workshop on Database
Programming Languages, Gubbio, Italy, September
1995.

L. Fegaras. An Experimental Optimizer for OQL. Uni-
versity of Texas at Arlington Technical Report TR-
CSE-97-007. Available at, http: //awn-cse .uta. edu/
Nf egaras/oqlopt .ps .gz, May 1997.

L. Fegaras. Query Unnesting in Object-Oriented
Databases (extended version). Available at
http://www-cse.uta.edu/wfegaras/sigmod98.ps,
January 1998.

L. Fegaras and D. Maier. An Algebraic Framework
for Physical OODB Design. In Fifth International
Workshop on Database Programming Languages, Gub-
bio, Italy, September 1995.

59

[13] L. Fegaras and D. Maier. Towards an Effective Calculus
for Object Query Languages. ACM SIGMOD Interna-
tional Conference on Management of Data, San Jose,
California, pp 47-58, May 1995.

[14] L. Fegaras, D. Maier, and T. Sheard. Specifying Rule-
based Query Optimizers in a Reflective Framework. De-
ductive and Object-Oriented Databases, Phoenix, Ari-
zona, pp 146-168, December 1993. Springer-Verlag,
LNCS 461.

[15] R. Ganski and H. Wong. Optimization of Nested
SQL Queries Revisited. In Proceedings of the ACM-
SIGMOD International Conference on Management of
Data, San Francisco, California, pp 23-33, May 1987.

[16] W. Kim. On Optimizing an SQL-like Nested Query.
ACM Transactions on Database Systems, 7(3):443-469,
September 1982.

[17] J. Lin and M. Ozsoyoglu. Processing OODB Queries by
O-Algebra. In International Conference on Information
and Knowledge Management (CIKM), Rockville, Mary-
land, November 1996.

[18] M. Muralikrishna. Improved Unnesting Algorithms for
Join Aggregate SQL Queries. In Proc. Int’l. Conf.
on Very Large Data Bases, page 91, Vancouver, BC,
Canada, August 1992.

[19] S. L. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice-Hall, Inc., 1987.

[29] H. Steenhagen, P. Apers, and H. Blanken. Optimiza-
tion of Nested Queries in a Complex Object Model.
In M. Jarke, J. Bubenko, and K. Jeffery, editors, Ad-
vances in Database Technology - EDBT ‘94, pp 337-
350. Springer-Verlag, 1994. LNCS 779.

[21] P. Trinder. Comprehensions: A Query Notation for DB-
PLs. In Proceedings of the Third International Work-
shop on Database Programming Languages: Bulk Types
and Persistent Data, Nafplion, Greece, pp 55-68. Mor-
gan Kaufmann Publishers, Inc., August 1991.

[22] P. Trinder and P. Wadler. Improving List Compre-
hension Database Queries. In in Proceedings of TEN-
CON’89, Bombay, India, pp 186-192, November 1989.

[23] P. Wadler. Comprehending Monads. Proceedings of
the ACM Symposium on Lisp and Functional Program-
ming, Nice, France, pp 61-78, June 1990.

[24] L. Wong. Normal Forms and Conservative Proper-
ties for Query Languages over Collection Types. Pro-
ceedings of the 12th ACM Symposium on Principles of
Database Systems, Washington, DC, pp 26-36, May
1993.

[25] L. Wong. Querying Nested Collections. PhD thesis,
Univerity of Pennsylvania, March 1994. Also appeared
as a Univerity of Pennsylvania technical report IRCS
Report 94-09.

60

