Self-Organized Control of Knowledge Generation in
Pervasive Computing Systems

Gabriella Castelli
DISMI
University of Modena and
Reggio Emilia
42100 Reggio Emilia, Italy

gabriella.castelli@unimore.it

ABSTRACT

Pervasive computing devices (e.g., sensor networks, localization
devices, cameras, etc.) are increasingly present in every aspect of
our lives. These devices are able to generate enormous amounts of
data, from which knowledge about situations and facts occurring
in the world can be inferred; inference can also be done by com-
bining data items and generating new (higher-level) ones. Such
data and knowledge is of extreme importance for to context-aware
and mobile services. However, we are left with the problem that the
possibly huge amount of data and knowledge generated can be very
hard to be analyzed and made usable in real-time. The core of the
problem in today’s pervasive environments lies between the ability
to extract meaningful (useful) knowledge from the data while mak-
ing sure the total amount of data does not become overwhelming to
the system. This paper focus on this trade-off using (without loss
of generality) the W4 model for contextual data as a case study.
Starting from the basic mechanism by which the W4 model au-
tonomously generate new knowledge, the paper shows how this can
generate knowledge overflow, and propose a method to select—in
a self-organizing way—what kinds of knowledge should be gener-
ated based on their importance; hence preventing knowledge over-
flow. Experimental results are reported to support our arguments
and proposals.

Categories and Subject Descriptors

J.9 [Mobile Applications]: Pervasive Computing; 1.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multiagent Sys-
tems

Keywords

Ronaldo Menezes
Computer Sciences
Florida Tech
Melbourne, Florida, USA

rmenezes@cs.fit.edu

Pervasive Computing, Self-Organization, Context-Awareness, Knowl-

edge Engineering

1. INTRODUCTION

Pervasive computing is here to stay [10]. We already have smart
phones, on-board computers in vehicles, computer-based appliances

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’09 March 8-12, 2009, Honolulu, Hawaii, USA

Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

1202

Franco Zambonelli
DISMI
University of Modena and
Reggio Emilia
42100 Reggio Emilia, ltaly

franco.zambonelli@unimore.it

and localization devices being pervasive to every aspect of our
lives. Very soon, sensor networks, RFID tags, cameras with in-
telligent vision system will complete the picture, and will make it
possible to deliver a wide variety of innovative digital services re-
lated to our everyday activities. In particular, all such devices will
be able to produce diverse information related to fact and events oc-
curring in the physical and social worlds [6], which we can directly
exploit to better understand and interact with the world, as well
as be exploited for the development of location-based and context-
aware mobile services.

Of course, the more pervasive computing devices are made in
our environment, the larger the amount of data that will be gen-
erated and made available about fact and events occurring in the
world. For such data to be used in real-time by users and services,
it must be expressive and easy to be managed (a well-known issue
in pervasive computing [5]), and its amount must controlled so that
it does not become overwhelming (too much information implies
no information).

Raw data generated by pervasive computing devices is often hard
to be used. The standard approach is then to enriched it by relating
and combining data items with each other so as to generate higher-
level, more expressive and easy to be managed, knowledge that,
in turn, is also represented in some standard and processable way
[4]. As a trivial example, if a GPS device can generate information
about your absolute location on earth, only by relating this data
with the data of some mapping tool and by representing the results
in, e.g., some standard format, you can understand in a meaningful
way where you are.

At the same time, it is clear that a large amount of data that will
be generated by increasingly dense pervasive computing devices
can make it hard for services and users to extract the needed in-
formation in real time. The possibility of generating higher-level
knowledge from raw data, although it can possibly facilitate access
and understanding of data, does not necessarily solve the prob-
lem of having to deal with unmanageable amounts of informa-
tion. Rather, it can be the case that the continuous generation of
higher-level knowledge from raw data even exacerbates the prob-
lem; very large amount of higher-level knowledge pieces can com-
plicate knowledge extraction and be of no use to anyone.

In this context, the contributions of this paper are to unfold the
above issues and to explore a self-organized solution for adaptively
controlling the generation of knowledge from raw data in order to
limit the amount of existing knowledge (i.e., to avoid knowledge
overflow). The need for a self-organizing approach to knowledge
generation [2, 7, 9] is clearly required by the inherent decentralized
nature of pervasive computing, which asks for a data management
process that is adaptive and based on local information. In our ap-

proach, specifically, biologically-inspired self-organization is used
to adaptively drive the process of knowledge generation based on
the queries taking place in the system, i.e., the more some knowl-
edge is queried, the more the generation of similar knowledge items
is reinforced. The result, which we discuss and validate with the
help of simulation, is that the number of new knowledge generated
can be effectively controlled without any a priori information and
without undermining the possibility for services and users to access
the needed knowledge.

The remainder of this paper is organized as follows. Section 2
introduces a scenario that is used as a running example throughout
the paper. Section 3 presents the W4 system, a simple and efficient
framework for the representation and management of pervasive in-
formation, which we use to test our approach in a concrete setting.
Section 4 provides details the knowledge overflow issue as well as
the self-organizing approach to knowledge generation that we pro-
pose. We end this paper in Section 5 with a discussion of our sim-
ulation results, followed by the proposed future work, in Section
6.

2. RUNNING EXAMPLE

University campuses are excellent test-bed scenarios to large-
scale pervasive systems. They are densely populated by individ-
uals carrying a variety of pervasive devices (i.e. mobile phones,
PDAs, etc.). Moreover, existing network and security infrastruc-
tures facilitate people to be always connected and able to get addi-
tional information about what is happening in their surroundings.
Such information can be stored and made available for the use of
context-aware services.

Consider the scenario in which Patricia, a university student, has
a Wi-Fi enabled PDA that collects information about about herself,
share it with other users on campus, and can also access other users’
information. Please note that campus infrastructures themselves
can collect data about Patricia and make it available, e.g. when
Patricia use his/her badge to get into the library the system gets the
information about her location.

Monday morning Patricia is walking on a campus park. While
in the park, her position is continuously updated by her PDA’s GPS
receiver. When she enters the Computer Science lab for her classes,
her position can be inferred both by the Wi-Fi signal triangulation,
the building sensor network, and a RFID tagging system (depend-
ing on her/his PDA equipment). Moreover, if tools are available to
analyze this information and extract higher-level knowledge, one
could combine it with the university’s class schedule coming from
Internet sites to infer what class(es) she is attending. Or, by com-
bining this information with information related to other students,
it may be possible to infer that, e.g., some social activity is taking
place sometime somewhere.

Concerning the usage of such data and knowledge, imagine that
Patricia does not see her friend Tom in class. Then, she can find
where he is by interacting with the pervasive system. The PDA
then, by querying the system, can discover that Tom is in his room
and, moreover, by inferring from a combination of other data items,
the system can also suggests that he overslept. After class, Patricia
can perform contextual queries to know which friends are near the
Computer Science building and join them for lunch.

In general, the user exploits classical contextual services and
takes advantages of the knowledge management and generation
features in the system to retrieve the desired information. In fact,
the system itself can continuously analyze data coming from perva-
sive devices in the attempt to infer and extract new knowledge, and
inject it again in the system. In this way, when Patricia access the
system it is more likely that she finds the information she wants.

1203

Just thinking to the tens of thousand students that a medium cam-
pus may have, and understanding that data is also coming form
pervasive sensor networks densely distributed in the campus, it is
quite clear that the overall system may lead to the creation of an
overwhelming amount of data and inferred knowledge (indeed, the
more data available the more the knowledge that can be inferred
from it), even when this inference is not useful or never requested
by anyone. Therefore, while tools for knowledge generation from
raw data are necessary to make the system more useful (we discuss
these in Section 3), tools for handling the problem of knowledge
overflow are needed too (which we present in Section 4).

3. W4 SYSTEM

In this paper we use the W4 System to illustrate our self-organizing
approach for knowledge management in pervasive computing. The
W4 system is a simple and suitable model for contextual data, en-
abling flexible general-purpose management of contextual knowl-
edge by pervasive services. However, the proposed approach in this
paper is a general one, can can be easily applied to other models of
contextual data.

In the W4 model, every piece of contextual knowledge is rep-
resented as a simple, yet expressive, four-field tuple (Who, What,
Where, When): someone or something (Who) does/did some activ-
ity (What) in a certain place (Where) at a specific time (When). A
W4 tuple represents the elementary information of a fact that oc-
curs in the world (which we also call a piece data or knowledge
atom).

Despite its simplicity, the model may handle information com-
ing from sources as diverse as embedded devices, cameras, users,
or Web 2.0 sites, and can account for adaptation to context and
incomplete information (i.e., some of the four fields being unspeci-
fied). W4 tuples can be stored in suitable shared data spaces, what-
ever distributed and implemented. Users and services, located any-
where, can retrieve W4 tuples via a simple API, based on Linda-
like pattern-matching query mechanisms [1]. In addition, the sim-
ple W4 structure supports general distributed algorithms for data
aggregation and manipulation. This makes it possible to link W4
tuples with each other, to generate (higher-level) W4 tuples, and to
build multiple application-specific views of data.

Indeed, we have implemented a prototype of an infrastructure
for pervasive services (integrating sensor networks, RFID tags, and
a friendly map-based interface), and a number of exemplary ser-
vices, fully relying on the W4 model. W4 tuples can be stored in a
set of distributed W4 tuple spaces, which we have implemented by
customizing the LighTS system [3]. We have now also integrated
features for enabling self-organized knowledge generation (as de-
scribed in the following sections). More details about the services
and the implemented infrastructure can be found in [4, 5].

3.1 Data Representation

Each of the four fields (Who, What, Where, When) of the W4
data model describes a different aspect of a contextual fact.

e The Who field associates a subject to a fact, and may repre-
sent a human (e.g., a username), an animal, or an inanimate
part of the context acting as a data source (e.g., the ID of an
RFID tag). The Who field is represented by a type:value pair,
in the form of a string, with an associated namespace that de-
fines the type of the entity that is represented. E.g., student:
Patricia.

o The What field describes the activity performed by the sub-
ject. This information can either come directly from the

data source (e.g., a sensor is reading a temperature value),
or be inferred from other context parameters (e.g., an ac-
celerometer on a PDA can reveal that the user is running),
or it can be explicitly supplied by the user. This field is rep-
resented as a string containing a predicate:complement state-
ment. For example, valid entries for the What field are: at-
tending:Computer Foundations class, read:temperature=23.

The Where field associates a location to the fact. In our
model the location may be a physical point represented by
its coordinates (longitude, latitude), a geographic region (de-
scribed as a bounding box), or it can also be a logical place.
In addition, context-dependent spatial expressions like here
or within:300m can be used for context-aware querying.

The When field associates a time or a time range to a fact.

This may be an exact time/time range (e.g., 2008/ 07/19:09.00
am—2008/07/19:10.00 am) or context-dependent expressions

(e.g., now, yesterday, Tuesday). The field is also important

for context-dependent querying.

The way it structures and organizes information makes the W4
data model general enough to represent data coming from many
heterogeneous sources, but also simple enough to promote easy
data management and processing (although we are perfectly aware
that it cannot capture each and every aspect of context, as freshness
of data, reliability, access control, etc).

3.2 Data Generation and Data Access

In the W4 model, we rely on the reasonable assumption that soft-
ware drivers (or, more generally, software agents) are associated
with data sources, and are in charge of creating W4 tuples and in-
serting them in data spaces. In the end, any data source must be
somehow associated with some software agent/driver to gather and
store data items, W4 agents have the additional goal of collecting
all the necessary information to produce a W4 tuple which is as
accurate and complete as possible. This occurs by sensing and in-
ferring information from all the devices and sources available (e.g.,
RFID tags, GPS devices, Web services), and by combining them
into a W4 tuple.

Since all knowledge atoms are stored in the form of W4 tuples
in a shared data space (or in multiple data spaces), we took inspi-
ration from tuple-space approaches [1] to define the following API
to access W4 tuples:

void inject (KnowledgeAtom a);
KnowledgeAtom[] read(KnowledgeAtom a);

The inject operation is equivalent to a tuple space out operation:
an agent accesses the shared data space to store a W4 tuple. The
read operation is used to retrieve tuples from the data space via
querying. A query is in turn represented as a W4 tuple with some
unspecified or only partly specified values (i.e., a template tuple).
Upon invocation, the read operation triggers a pattern-matching
procedure between the template and the W4 tuples that already
populate the data space. In the W4 system the pattern-matching
operation works differently from the traditional tuple-space model
since it exploits diverse mechanisms for the various W4 fields and
it also enforce context-aware queries.

3.3 W4 Knowledge Networks

Although pattern-matching techniques proves rather flexible to
retrieve context information, the key idea is to exploit the W4 struc-
ture to perform some semantic data organization, aggregation and

1204

pruning in order to extract meaningful knowledge from existing
data. In this way the tuple space acts as a sort of live layer” turn-
ing raw data atoms into expressive knowledge atoms representing
a situation from a higher-level perspective.

In particular, new information could be produced by navigating
the space of W4 tuples, linking together existing tuples (to cre-
ate something we may call knowledge networks), and consequently
combine and aggregating existing tuples into W4 tuples. Such new
knowledge could also arise from the temporal analysis of the histor-
ical context (e.g., the location where a person spends 8 hours every
day could be his workplace) or from a wide analysis of the state the
whole W4 repository (e.g., If nobody go to work on 2007/12/25, it
could be an holiday).

The W4 knowledge networks approach is based on the consid-
eration that a relationship between knowledge atoms can be de-
tected by a relationship (a pattern-matching) between the informa-
tion contained in the atoms fields. In particular, for the W4 model,
we can identify two types of pattern matching correlations between
knowledge atoms:

Same value — same field : We can link together W4 tuples be-
longing to the same user, about the same place, activity or
time (or, more in general, those W4 tuples in which the val-
ues in the same field match according to some pattern-matching
function). Matching two or more same value — same field re-
lationships, we can render complex concepts related to groups
of W4 tuples, e.g. All students (same subject) who are at-
tending a class (same activity) at the same room (same loca-
tion).

Same value — different field : We can link atoms in which the
same information appears in different fields. This kind of
pattern matching can be used for augmenting the expressive
level of the information contained in the W4 tuples. For ex-
ample, a knowledge atom having When: 18/09/2008 can be
linked with another atom like Who: Fall Class Begin , When:
18/09/2008 to add semantic information to that date.

Exploiting those correlations makes it possible to find all rela-
tionships between one particular W4 tuple with all other tuples in
the data space which may then be used as the basis for more elab-
orated inference and reasoning, even for eventually creating new
W4 tuples. In fact, the links between W4 tuples usually enables the
building of higher-level, more expressive tuples. For example, sup-
pose that Patricia’s PDA, at a certain time, creates the following tu-
ple: (student:Patricia,—,room:Computer Science Lab,01/09/2008
10:05 am), where — means an empty field. Algorithms in the
knowledge network continuously analyze the network and find a
correlation with an atom stating that a Computer Foundation class
takes place in the Computer Science Lab at 01/09/2008 from 10:00-
12:00 am (class: Computer Foundation,—,room: Computer Science
Lab,01/09/2008 10:00-12:00 am). A new tuple carrying higher
level logical information may be created, stating that Patricia was
attending the Computer Foundation class: (student:Patricia, at-

tending: Computer Foundation,room: Computer Science Lab,01/09/2008

10:05 am).

4. SELF-ORGANIZED CONTROL OF
KNOWLEDGE GENERATION

The introduced W4 model and its knowledge networks approach
can produce an overwhelming amount of inferred data by continu-
ously generating new W4 tuples that can be difficult to be managed
and may never be requested by services that access the framework.

Of course, the same problem can affect any other data management
system having the goal of managing pervasive data and knowledge.
In order to make the W4 system (or any other system with similar
goals) more realistic and efficient, the knowledge inference must
be controlled so as to lead to the generation of tuples that are likely
to be useful in the system.

In this section we first show that the knowledge overflow can
be a problem, and then we introduce a self-organizing approach to
control the knowledge generation. The argumentation is supported
by some experiments performed by simulating the generation of
W4 tuples in the W4 LighTS infrastructure already described at the
beginning of Section 3.

4.1 The Knowledge Overflow Problem

The W4 system and most of the other systems assume a naive
approach to knowledge inference. In essence, it constantly gener-
ates knowledge from current atoms (raw data) independently of the
knowledge being required at a particular point in time. Whenever
a W4 tuples are linked together, the system tries to generate a new
tuple expressing the higher-level concept derived from the merging
of the tuples. The result could be an overflow of tuples inferred by
the system which are not guaranteed to be needed in the future. In
fact, with this approach, while useful tuples are indeed generated,
they are only part of the entire of corpus of tuples being generated;
the system generates useful and “useless” knowledge. In the worst
case scenario, the knowledge inference process produces a number
of tuples as specified by equation 1, which indicates that the num-
ber of atoms (tuples) at time ¢+ 1 is the accumulation of the number
of atoms in the previous step ¢ plus the number of new tuples that
can be inferred (knowledge inference) .

N(a)i+1 = N(a): + AN(a) (1)

where

AN(U,) — N(a)t X (;V(a)t - 1) (2)

Obviously, the equation 2 assumes that all current atoms can be

combined among themselves; it accounts for all pairs of tuples be-

ing considered in the generation of a new tuple (inferred knowl-
edge), which may not be always possible.

(%]

]

o

2

(]

(72}

w

g

E -
© ~‘.---
§ (@) » ®

g 0) e © ©

a @ O) (0] .. @) v

Figure 1: This figure depicts the worst-case scenario of knowl-
edge generation. At every time iteration, all tuples participate
in the process of knowledge inference. The result is an expo-
nential growth on the number of tuples.

Figure 1 shows tuples being generated as part of a naive infer-
ence mechanism as implement in W4 currently. As one can see the
number of tuples in the system grows very rapidly. ' This redun-

"Note that for clarity, not all arrows are shown in the transition
from the second to the third step.

dant generation not only is unnecessary but, if not corrected, can
cause the W4 system to loose efficiency because it has to deal with
a very large number of tuples.

The alternative to this, as proposed in Section 4.2 is to have a
mechanism that uses self-organization to drive the inference of tu-
ples. In essence one can assume that at every time step, not all
tuples are used in the inference process. Which means that that the
AN (a) in Equation 1 is changed to consider only some of the tu-
ples in the space rather than all of them. The number of tuples used
in each time iteration ¢ does not have to be fixed and may depend
on W4 system factors.

3 TUPLES
2 USED
O
@)

4 TUPLES
3 USED

7 TUPLES

Figure 2: This depicts a case where just some of the tuples
participate in the knowledge inference at every step. The con-
trolled self-organization achieves this by having a probabilistic
knowledge inference based on the queries that exist in the sys-
tem (as described in Section 4.2.

In Figure 2 we see the effect of having just a few tuples being
used in the generation of new knowledge. In the first step, out of 4
tuples, 2 were used to generate knowledge, and in the second step
we considered 3 tuples out of the 5 that were present in the system.
The obvious outcome is that significantly less tuples are present in
the end (step 3). Note that we are not considering the quality of
the information generated. Some quality is achieved based on the
self-organized mechanism that can consider the type of knowledge
that is needed in the system but for now we want to concentrate
on a mechanism to avoid the unnecessary generation of too many
tuples.

We have run some experiments in W4 to demonstrate that what
we describe above does indeed happen in practice. We have simu-
lated what happens in a standard day at the Engineering Campus of
UNIMORE (Reggio Emilia site). The Engineering campus is sup-
posed to be tagged with a number of RFID tags, each tag containing
a W4 tuple describing a point of interest or a location at different
levels of granularity such as offices, class rooms, etc. People in the
campus (students, professors, staff) are supposed to carry a PDA
equipped with a short-range RFID tag reader, a GPS and a WI-FI
connection, as the system described in [4]. The PDA is in charge
of periodically (in the simulation every 5 minutes) creating a W4
tuple describing the status of each user. The W4 tuple is then sent
to a W4 remote tuple space. W4 tuples come also from agents that
analyze the faculty websites and create tuples with class schedules,
buildings information, departmental events such as meetings and
so on. In the experiments the W4 knowledge network continuously
scans the tuple space to retrieve tuples that:

e are in the campus area (based on GPS coordinates in the
where field)

e are in the campus area (based on a logic description in the
where field)

1205

e are in a building (based on a logic description in the where
field)

o refer to attending a class (based on the where and when fields)

e happens in a day of the week (based on the when field)

The engineering campus we simulated is made up of 3 buildings,
with 10 classrooms, 8 laboratories, 20 offices. The average number
of classes in one day is 15 for 125 students and 20 professors.

We have simulated a campus environment by keeping track of
the tuple space size at the end of each W4 knowledge networks it-
eration. Figure 3 shows the cumulative value for the tuple space.
During the first iterations the number of tuples increase quickly,
then it continues to increase (as new tuples are continuously in-
jected and the knowledge networks act on those tuples) but at lower
rate.

Figure 3: The knowledge overflow effect on the W4 system:
cumulative values

Figure 4 shows the rate of generation of tuples for the same data
depicted in Figure 3. It is clearly visible that the generation of
tuples is growing fast in the beginning, and then it adjusts to a con-
stant trend. It has to be noted that the knowledge overflow effect
is clearly visible even in a small-scale scenario as the campus we
simulated. In a bigger campus, i.e. a campus with more students
and more infrastructures, it should be even more prominent.

Figure 4: The knowledge overflow effect on the W4 System: the
generation rate

4.2 A Self-Organizing Approach to Control-
ling Overflow

The simple example described in Section 4.1 shows that, if no
action is taken to curtail the generation of knowledge, pervasive

1206

systems are likely to become impractical since the amount of data

present at any given point can be overwhelming at least for real-

time exploitation of such data by pervasive context-aware services—
it is clear that big data centers can perfectly manage such amounts

of data in an off-line fashion. This problem is even more pertinent if

we assume that pervasive environments are made of many devices

with limited computational power. Therefore one has to control the

influx of data from knowledge generation as well as improve the

visibility of data that is required in the system.

The question then is how to control data generation and visibility
in pervasive systems. Given the sheer scale of such environments,
it is impossible to have a centralized process in charge of mak-
ing decisions about what should and should not be generated. The
proposed approach introduced in this paper is to let the system self-
organize in response to knowledge requests being made. In other
words, the knowledge generation process of W4 should be driven
by system activity and by user needs for certain types of knowl-
edge.

When one talks about self-organization it has to identify the par-
ticular metaphor that is being used. There are many metaphors
inspired by a diverse set of biological and physical phenomena
[7]. In our case, we have adopted an approach based on ant for-
aging. As described in [7] this approach uses a marker-based ap-
proach where individuals stochastically explore possibilities and
self-organize their activities of searching for food.

In particular, we maintain markers about the need for tuples based
on queries. The system then stochastically decides to generate
knowledge based on these markers. In essence this means that the
self-organized process in the system will tend to infer knowledge
that are needed in the system (based on current queries). Obvi-
ously, as in most self-organized approaches a second force needs
to drive the self-organized behavior. The queries act as positive
feedback that is used to drive knowledge generation of a particular
format, but the markers used to drive the generation need to have
a time-to-live otherwise a burst of queries of a certain format can
forever drive the system in that direction. Accordingly, the markers
are updated using a known rule proposed in ant-colony systems, as
described in Equation 3, which states that the amount of a marker
for a given query format M (qf) is decreased by a rate p and in-
creased by an amount AM (¢ f) accumulated in the last iteration of
the system.

M(qf)e+1 = pM(qf)e + (1 — p)AM (qf) 3)

Our self-organized approach to tuple generation with overflow
control uses all the markers for all query types to decide which type
of knowledge is currently needed in the system. This decision is
stochastically and proportional to the amount of a particular marker
in relation to all the markers in the system.

S. EXPERIMENTAL RESULTS

To evaluate the improvement introduced by our self-organized
approach, we performed simulations based on the scenario intro-
duced in Section 4.1. We used a query generator submitting non-
destructive queries to the system every 250 milliseconds. For the
sake of implementation we considered markers of the following
kind:
<student:id,

’

’

>

where the marker is identified by the value of who field. To
analyze the performance and the reactiveness of our approach, we
considered two non-overlapping pools of tuples: poolA and poolB

(both are made up of three tuples). The query generator works
accordingly the following pattern:

e phase 1: 90% of queries are about students in the poolA,
while the other 10% are uniformly distributed among stu-
dents that are not in poolA.

e phase 2 (transition phase): 60% of queries are about students
in the poolB, 30% of queries about students in the poolA,
10% of queries uniformly distributed among students that are
not in poolB.

e phase 3: 90% of queries are about students in the poolB,
while the other 10% are uniformly distributed among stu-
dents that are not in poolB.

The W4 tuple space engine has been modified to keep track of
the most relevant markers. This has been done introducing a system
hash table that keeps the number of queries for each queried marker,
and modifying the read operations to update the hash table every
time a query is submitted to the system. Every time that a tuple is
inferred by the system, the thread that is in charge of managing that
new tuple will inject the new tuple in the system. Inferred tuples
relating to highly queried markers are likely to be generated and
inferred tuples relating to low queried markers are not likely to be
actual generated. To better evaluate the improvement introduced
by the self-organizing generation of new knowledge we considered
the particular case in which the W4 knowledge networks scans the
tuple space to retrieve tuples to meet one single relationship. We
chosen the relationship referring to individuals attending a class.
The figure that follow from here are all relative to this particular
case.

Figure 5: Cumulative number of tuples in the tuple space when
the W4 knowledge network scans the systems to meet a single
relationship.

Figure 5 shows the cumulative value for the tuple space and com-
pares the value with the the upper bound (i.e. inferred tuples are
always injected in the system, depicted in Figure 3) and with the
lower bound (i.e. inferred tuples are never injected in the system).
Figure 5 clearly shows that the amount of inferred tuples is way
lower than the upper bound and it actually approximates the lower
bound.

Figure 6 shows the number of tuples generated and injected by
each iteration. The graph shows that after the initial peak the num-
ber of tuples grows based on the query pattern. In particular it is
clear that the number of tuples grows a little at the first iterations of
each query phase when there is not a highly preferred marker and
all markers have a low generation rate.

The previous graphs show the situation regarding to the whole
tuple space. We also analyzed the trend of tuples in poolA regard-
ing to tuples in poolB.

1207

Figure 6: Number of tuples generated and injected in the itera-
tion time when the W4 knowledge network scan the systems to
meet a single relationship.

Figure 7: Number of tuples generated and injected in the iter-
ation time. tuples in the poolA Vs tuples in the poolB. The yel-
low lines indicate the beginning of a new queries’ phase: 90%
of queries are about students in the poolA, the second phase is
a transition phase and in the third phase 90% of queries are
about students in the poolB. When the system has memory, its
response is slow.

Figure 7 shows the number of tuples generated and injected in
the iteration time for tuples in poolA and tuples in poolB. In those
simulations the system has memory, i.e. the value p in 3 is zero.
The yellow lines indicate the beginning of a new query phase, as
explained at the beginning of this section. The number of tuples
in poolA is greater in both the first and the second phases, while
in the third phase the number of tuples in poolB increase quickly.
This system has a slow response as we would like the number of
tuples in poolB increasing since phase 2.

Figure 8 considers a p value equal to 0.4, that means that the
systems forget the 40% of what happened in the past at each it-
eration. It clearly shows that while the line for poolA is more or
less on a constant trend, the line for poolB increases during the
second phase; this approach provides a quicker response, which
means that the system is able to generate meaningful knowledge
more efficiently.

The previous figures show the situation about the particular case
of one single relationship taken into account by the W4 knowledge
network. Figure 9 shows the cumulative values for the tuple space
when the W4 knowledge network scan the tuple space to retrieve
tuples to meet all relationships described in Section 3.3. The fig-
ure is here to confirm that the observation of the gain of the self-
organized approach is true to the general case also.

6. CONCLUSIONS AND FUTURE WORK

Figure 8: Number of tuples generated and injected in the iter-
ation time. The p parameter improves the system’s speed.

Figure 9: Cumulative number of tuples in the tuple space, when
the W4 knowledge networks consider all the relationships in-
troduced in 3.3.

In this paper we discussed the knowledge management issues
that may affect pervasive computing systems, in which high-level
information is combined and inferred from raw data, thus possibly
leading to knowledge overflow. We have proposed a self-organized
approach to control the knowledge generation process and provided
some promising evaluation results for a specific pervasive frame-
work based on the W4 contextual data model. In particular, we
have shown that a self-organization approach have proven to sig-
nificantly reduce the number of tuples (i.e., exactly those not very
useful) that are being generated as part of the knowledge inference
process. We have also argued that the need for a self-organized
approach spawns from the fact that the scale of pervasive applica-
tions does not allow for centralized entities to be able to make good
decisions.

However, in our system, the number of tuples present in the sys-
tem is still non-decreasing except for tuples that are removed as
part of explicit destructive queries. For long-running systems, this
can represent a problem. Accordingly, we plan to experiment with
a concept of knowledge tuple fading, as introduced in [8], to W4.
There, tuples would decrease in importance and hence be less likely
to be considered in the knowledge inference process. The more a
tuple is required in the system, the more visible it is, which means
that tuples that are not being used become less visible (they fade).
We are currently working on the implementation of this concept in
W4 and we are confident this will improve the systems ability to in-
fer knowledge that is required by processes in a true self-organized
fashion.

Acknowledgments

Work partially supported by the integrated project CASCADAS
(IST-027807), funded under the FET Program of the European Com-
mission.

7. REFERENCES

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends.
Computer, 19(8-9):26-34, 1986.

[2] O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro,

F. Ducatelle, L. M. Gambardella, N. Ganguly, M. Jelasity,

R. Montemanni, A. Montresor, and T. Urnes. Design patterns
from biology for distributed computing. ACM Trans. Auton.
Adapt. Syst., 1(1):26-66, 2006.

[3] D. Balzarotti, P. Costa, and G. P. Picco. The lights tuple

space framework and its customization for context-aware

applications. International Journal on Web Intelligence and

Agent Systems, 50(1-2):36-50, 2007.

G. Castelli, M. Mamei, and F. Zambonelli. Engineering

contextual knowledge for autonomic pervasive services.

International Journal of Information and Software

Technology, 52(8-9):443-460, 2008.

G. Castelli, A. Rosi, M. Mamei, and F. Zambonelli. A simple

model and infrastructure for context-aware browsing of the

world. Pervasive Computing and Communications, 2007.,

pages 229-238, 19-23 March 2007.

R. Jain. Eventweb: Developing a human-centered computing

system. Computer, 41(2):42-50, 2008.

[7] M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli.
Case studies for self-organization in computer science.
Journal of Systems Architecture, 52(8-9):443-460, 2006.

[8] R. Menezes and A. Wood. The fading concept in tuple-space

systems. In Proceedings of the 2006 ACM Symposium on

Applied Computing, pages 440-444, Dijon, France, 2006.

ACM, ACM Press.

H. V. D. Parunak. ’go to the ant’: Engineering principles

from natural agent systems. Annals of Operations Research,

75:69-101, 1997.

[10] M. Weiser. Some computer science issues in ubiquitous

computing. Communications of the ACM, 36(7):75-84, 1993.

[4

—

(5

—

[6

—_

[9

—

1208

