
An Agent-Based Hyper-Heuristic Approach to
Combinatorial Optimization Problems

Richard Malek

Department of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic

malekric@fel.cvut.cz

Abstract. This paper introduces a framework based on multi-agent sys-
tem for solving problems of combinatorial optimization. The framework
allows running various meta-heuristic algorithms simultaneously. By the
collaboration of various meta-heuristics, we can achieve better results in
more classes of problems. Our hyper-heuristic approach is defined as a
high-level search in algorithm space implemented within agents.
Key words: combinatorial optimization, meta-heuristic algorithm, hy-
brid approach, hyper-heuristic, multi-agent system

1 Introduction

A lot of practical problems (circuit board design, production planning and
scheduling, vehicle routing) can be reduced to problems of combinatorial op-
timization.

Combinatorial optimization is a process of finding one or more best (op-
timal) solutions in a well defined discrete problem space. Each possible solution
has an associated cost. The goal is to find the solution (a configuration, a com-
bination of values) with the lowest cost [1].

Classical combinatorial problems are: Traveling Salesman Problem (TSP),
Boolean Satisfiability Problem (SAT) or Job Shop Scheduling Problem (JSSP)
[2].

Unfortunately, most practical optimization problems are too complex (NP-
complete or harder) and the only way how to get at least approximately optimal
solutions is the use of probabilistic algorithms. Meta-heuristic algorithms are an
important member of the group of probabilistic algorithms.

Meta-heuristic is a high-level strategy for solving optimization problem
that guides other heuristics in a search for feasible solutions. Best known meta-
heuristics are: Genetic Algorithms (GA), Ant Colony Optimization (ACO), Par-
ticle Swarm Optimization (PSO), Simulated Annealing (SA), Tabu Search (TS)
and many others [1] [3].

In this paper, every time we mention an algorithm we mean meta-heuristic
algorithm.

According to the No-Free-Lunch theorem [4] there is no superior meta-
heuristic feasible for all optimization problems or even for all instances within



one class of problems. Recent developments in search methodologies towards
more generally applicable techniques has been termed hyper-heuristics [5].

Hyper-heuristics are “heuristics to choose heuristics” [5]. They operate
at higher level of abstraction than meta-heuristics and use particular (meta-
)heuristics as building blocks of the optimization process. The majority of current
hyper-heuristic approaches attempt to intelligently combine or select between
previously proposed simpler heuristics, where it is not clear which one will be
most effective for the problem instance at hand. Hyper-heuristics explore a search
space of heuristics instead of a search space of solutions as meta-heuristics do
[6].

1.1 Our Approach

Our hyper-heuristic approach for solving problems of combinatorial optimiza-
tion is provided as a repository of (partially) problem specific meta-heuristics
(often referred to as ‘low-level’ meta-heuristics) and ‘high-level’ logic for their
collaboration–implemented in agents within the multi-agent system (see Fig.
1(a)).

A particular problem is solved by various meta-heuristic algorithms alto-
gether (see Fig. 1(b)). We use meta-heuristics implemented within the SEAGE
[7] project.

(a) The structure view on our
agent-based approach.

(b) Various meta-heuristics solving
a problem simultaneously.

Fig. 1.

1.2 Related Work

MAGMA [8][9] is a MultiAGent Meta-heuristics Architecture conceived as a con-
ceptual and practical framework for meta-heuristic algorithms. Authors revisit
meta-heuristics in a multi-agent perspective and define agents of a different level



of abstraction. Level-0 agents provide feasible solutions for upper levels; Level-1
agents deal with solution improvements and provide local search; Level-2 agents
have global view of the search space, or, at least, their task is to guide the
search towards promising regions; Level-3 is introduced to describe higher level
strategies like cooperative search and any other combination of meta-heuristics.

In [10], authors propose an agent-based multi-level search framework for the
asynchronous cooperation of hyper-heuristics. This framework contains a popu-
lation of different hyper-heuristic agents and a coordinator agent. Each hyper-
heuristic agent operates on the same set of low level heuristics, while the coor-
dinator agent operates on top of all the hyper-heuristic agents. Starting from
the same initial solution, each hyper-heuristic agent performs a search over the
space generated by the low level heuristics. The hyper-heuristic agents coop-
erate asynchronously through the coordinator agent by exchanging their elite
solutions. The coordinator agent maintains a pool of elite solutions and man-
ages the communication between the hyper-heuristics agents.

2 Approach Background

2.1 Different Meta-Heuristics, Different Points of View

Different meta-heuristics have different inner representations of the problem they
solve and objective functions (functions assigning the quality to a candidate
solution) as well. Thus, different meta-heuristics differ in models of the solution
space they seek through and have their own points of view on the problem.
Watching the problem from different points of view could be, as we believe, the
main advantage of the hyper-heuristic approach.

The use of different algorithms with their inherently different interfaces re-
quires some kind of abstraction.

2.2 Abstraction of Meta-Heuristic Algorithm

In this section we will describe the interface all meta-heuristics can be handled
through. This interface unifies an access to all meta-heuristics. We apprehend
the meta-heuristic algorithm as a black box defined by its inputs and outputs.
Each algorithm has to be initiated and its parameters have to be set as well.
Then it takes candidate solutions on input, modifies them in a particular way,
and puts the solutions on output. See Figure 2(a).

The inner representation of the candidate solution is the first thing we have
to deal with during the algorithm unifying process. Such a representation is
algorithm-specific. Dealing with various meta-heuristics, their different solution
representations have to be mutually transformed. However, each problem can
be described by algorithm-independent information. When we use a term from
genetics, a solution of a given problem can be described by its phenotype [11][12].
It is a general description of the solution–the form that can be transformed into
any other algorithm-specific representations.



(a) An abstraction of meta-heuristic algo-
rithm.

(b) Algorithm converts solution
from/into phenotype and genotype
representation.

Fig. 2.

Thus, according to our abstraction, an algorithm takes the candidate solu-
tions in phenotype representation on its input. It converts the solution into its
inner representation–genotype. After processing, the solution is converted back
to the phenotype representation and put on the output. See Figure 2(b). This
evolves chaining of any algorithms that can do the phenotype/genotype map-
ping.

2.3 Population of Meta-Heuristic Algorithms

Once we have unified a view on different meta-heuristic algorithms we are able
to use them all in process of searching for an optimal solution. Then we have
two options how to run the algorithms. In a sequence or simultaneously. In both
cases we have to select a feasible subset of all available algorithms and in case
of sequencing even a proper algorithm order.

2.4 Population of Candidate Solutions

In our concept, the results of work of particular meta-heuristics are shared
through a global population of candidate solutions. We denote the place, where
the population is located, as a solution pool. The candidate solutions are loaded
from and stored in the solution pool. Each meta-heuristic takes one or more
solutions from and after it finishes, puts them back into solution pool. Simply,
candidate solutions are improved by many different meta-heuristics and popula-
tion of candidate solutions is being evolved.



3 Agent Approach Description

3.1 The Use of Multi-Agent System

Recently, multi-agent systems (MAS) have been used for solving a wide scale of
artificial intelligence problems. For our purposes, the use of multi-agent system
is very feasible as well. By using A-Globe [13] multi-agent system framework,
we gained a lot of functionality for free (agent skeletons, message passing, agent
addressing, conversation protocols, etc.).

According to our concept (presented in previous section), the system can be
immediately decomposed into blocks such as particular meta-heuristics, (global)
solution pool and others. Each block is handled by its agent. There are following
agent types in our system: a problem agent, a solution pool agent, an algorithm
agent and an adviser agent.

Problem agent is the entry point of our system. It can receive a request for
the optimization task either from the user or from an agent of other system. The
current implementation of the agent reads problem data from a configuration
file. The agent initializes all other agents by sending the init message. It can
receive two types of messages:

– request messages for initial solutions (the agent can generate initial solution
since it has information about the problem)

– inform message when new best solution is found by the algorithm agent.

The agent also measures the overall optimization time and after timeout it sends
done message to all agents and they finalize their work.

SolutionPool agent manages the population of candidate solutions and pro-
vides solutions to all algorithm agents. First, it asks problem agent for an initial
population, then it receives messages from algorithm agents with requests either
for loading or storing solutions. It can initialize itself after receiving init message
as well.

Algorithm agent disposes of a particular meta-heuristic algorithm. It is re-
sponsible for:

– obtaining the algorithm parameter settings from the adviser agent
– asking the solution pool agent for candidate solution(s)
– running the meta-heuristic algorithm with received parameters and solu-

tion(s)
– sending the best solution found to the problem agent after the meta-heuristic

algorithm is finished
– sending the solutions back to the solution pool agent
– sending a report on previous algorithm’s run to the adviser agent

These actions are performed until done message is received from the problem
agent.



Adviser agent agent provides parameter settings for the meta-heuristic algo-
rithms and receives reports on algorithms’ runs. All algorithm agents of the same
class (operating with the same algorithm) have one corresponding Adviser agent
associated. So, if there are five Algorithm agents–three with Genetic Algorithm,
one with Tabu Search and one with Simulated Annealing algorithm, there are
three Adviser agents–one for each algorithm class.

3.2 Agent Messaging

Figure 3 shows a system configuration with six agents. Arrows represent the
agent communication (will be describe in next section).

Fig. 3. Agents solving a problem. A configuration example.

Figure 4 shows a typical sequence of agent conversations.

1. The problem agent reads a configuration file with the information about
agents it has to create and initializes them.

2. The solution pool agent asks the problem agent for the initial population
and it sends the generated population of candidates solution back.

3. Once the algorithm agent is initialized (anytime), it asks the adviser agent
for meta-heuristic parameters.

4. According to the obtained parameters, the algorithm agent asks the solution
pool agent for solutions to work with and runs its meta-heuristic algorithm.

5. After finishing, the algorithm agent sends the best solution to the problem
agent

6. The algorithm agent sends solutions back to the solution pool agent.
7. The algorithm agent also sends a search report to the adviser agent and it

continues by the step 3.
8. After timeout the problem agent sends done message to all agents



Fig. 4. A typical sequence of agent conversations. Actions in frames 3-7 are performed
repeatedly.



4 Hyper-Heuristic Approach

4.1 Searching a Space of Meta-Heuristics

Hyper-heuristic approaches operate on a search space of heuristics rather than
directly on a search space of solutions to the underlying problem–which is the
case with most meta-heuristics implementations. The motivation behind hyper-
heuristics is to raise the level of generality at which search methodologies operate
[6].

In our approach we consider three kinds of algorithm spaces: the algorithm
subsets space, the algorithm invocation sequence space and the space of algo-
rithm settings.

Algorithm Subsets Space An important (very well known) observation which
guides much hyper-heuristic research is that different heuristics have different
strengths and weaknesses. A key idea is to use such a subset of all available meta-
heuristics that are the most feasible for solving a given optimization problem.
Beside of the reason of algorithm feasibility, limited resources are another reason
why to deal with selecting of proper algorithm subsets.

At the first stage of our research algorithm subsets are selected by hand but
it will change in the future–the process of selecting will be automatized. Our
idea is that algorithm agents compete with each other and only a given number
of them can do their work. Metrics for algorithm comparison is based on on
meta-data collected during algorithms’ work.

Algorithm Invocation Sequence Space In section 2.3 we mentioned run-
ning meta-heuristic algorithms in a sequence. Then the space of all sequences is
formed by all possible orders of algorithm invocations. The sequence could be
longer than just the number of available algorithms which makes the sequencing
even harder.

By using the multi-agent system, which is strictly parallel environment, we
avoid the problem of sequencing. The sequence of particular algorithm applica-
tions inherently emerges by running all algorithms simultaneously.

Algorithm Settings Space It is commonly known that performance of meta-
heuristic algorithms is strongly dependent on proper settings of their parameters.
The settings of particular algorithms are often problem-dependent and only reli-
able way how to obtain parameter values is by performing experiments. To do it
by hand is ineffective and uncomfortable and our intention is, again, to automate
it. We will introduce this concept in details.

4.2 Automated Parameter Settings

Policy First of all, we added an object called Policy to each algorithm which is
responsible for parameter settings. The term Policy has been adopted from the



reinforcement learning branch [14] and it has similar meaning as well. It intro-
duces a feedback to the algorithm. The Policy object takes report on previous
algorithm’s run on input and provide a set of new parameter values on output.
See Figure 5(b). In case of the first algorithm’s run there is no previous run and
any report, default parameter values are set.

(a) Algorithm abstraction model. (b) Algorithm abstraction model with
a parameter policy.

Fig. 5.

Static vs. Dynamic Parameters Once we have introduced the Policy object
we may distinguish two types of parameter settings:

– static: parameter values given by the Policy object are the same for all the
time the algorithm is running.

– dynamic: parameter values given by the Policy object are dependent on the
report on the previous algorithm’s run. See Figure 5(b).

The main motivation for introducing the Policy object is providing dynamic
parameter settings. This should improve algorithms’ performance.

Policy Types

Dummy Policy is the simplest policy. It just provides always the same param-
eter values it was configured for. It can be consider as a provider of static
parameters.

Random Policy is a dummy policy as well and it provides random parameter
values. It is the simplest provider of dynamic parameters.

Rule-based Policy contains pre-generated IF-THEN rules that produces de-
sired parameter values.

Neural Network Policy contains pre-generated neural network that produces
desired parameter values.

See the right part of Figure 6.



Policy Builders For static parameter policies Dummy policy builders have
been designed. They simply creates dummy or random policies. It is obvious that
dynamic parameter policies have to be properly initialized to provide meaningful
values. Or even better they should evolve themselves in time with the increasing
number of algorithms’ runs.

Our approach involves evolution-based (smart) strategies for preparing par-
ticular policies. We called the strategies as policy builders. See left part of the
Fig. 6.

Fig. 6. Policy and policy builder hierarchy. The UML notation is used.

Evolution-based policy builders operate with a genetic algorithm and evolve
a population of subjects that are represented as particular policies of following
types:

Policy Builder with Parameter Values Evolution Subjects evolving by this
builder represent directly parameter values.

Policy Builder with Grammatical Evolution This builder holds a gram-
mar for generating IF-THEN rules. Subjects evolving by this builder then
contain numbers of grammar rules to be applied to create particular rules.

Policy Builder with Neural Network Evolution Subjects evolving by this
builder represent configuration and settings of neural networks.

Figure 6 shows how particular policies are created by particular policy builders
(tiny dashed arrows).

Figure 7 shows integration policies and policy builders into agents. Algorithm
agent uses parameter policy and Adviser agent contains a policy builder and a
report evaluator.



Fig. 7. A detailed view into Adviser and Algorithm agents.

Description of Evolution in Adviser In general, an evolution in Adviser
agents is done as follows: There is an instance of Genetic Algorithm with an
initial population. Operators of crossover and mutation are defined. When an
Algorithm agent asks for an advise, a subject from population is selected, trans-
formed into a Policy and send back to the Algorithm agent. Once the Algorithm
agent finishes its job it creates a report and send it back to the Adviser agent
(see Fig. 8). The report is evaluated by a Report evaluator (see Fig. 7) and an
objective value (Policy fitness) is assigned to the subject.

After evaluating of all subjects in the population another evolution step is
performed (application of genetic operators).

Fig. 8. A typical conversation between Algorithm and Adviser agents.



4.3 Meta-Data

Meta-data are information collected during algorithms’ run. They contains a lot
of run-time and statistical information and help to describe how an algorithm
behaved during its run.

Here we provide some meta-data items we collect during each algorithm run-
time:

– Algorithm-specific parameter values

• The number of solutions
• The number of iterations
• ...

– New best ever solution records

• Current iteration number
• Current time
• Solution’s objective value
• Solution value

– Run-time statistics

• The number of new solutions found
• The best of initial solutions’ objective value
• The best ever solution’s objective value
• The last improving iteration number
• ...

Meta-data are contained in reports all algorithm agents provide. As men-
tioned above reports are evaluated and it enable to evolve new algorithm pa-
rameters.

5 Conclusions and Future Work

In this paper we have presented our concept for solving the problems of combina-
torial optimization by employing various meta-heuristic algorithms. Being aware
of No Free Lunch theorem, our concept is based on combination of particular
meta-heuristics to achieve better results on wider scale of problems.

An approach of collaboration of different meta-heuristic algorithms through
a multi-agent system has been introduced. To be such a implementation possible
to realize, an abstraction of the meta-heuristic algorithm has been defined.

We found an architecture based on multi-agent system paradigm feasible for
our purposes. Algorithm agents and the solution pool agent are the base of our
concept of algorithm collaboration whereas the adviser agent is the base of our
hyper-heuristic approach.

The core of our hyper-heuristic approach is in searching algorithms’ param-
eter space and evolving parameter policies for dynamic parameter settings. We
have presented several types of policies and principles of their evolution as well.
Implementation and experiments are main subjects of future work.



References

1. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome,
BA11 6TT, United Kingdom (2008)

2. Skiena, S.S.: The Algorithm Design Manual. Springer-Verlag (1998)
3. Yagiura, M., Ibaraki, T.: On metaheuristic algorithms for combinatorial opti-

mization problems. Transactions of the Institute of Electronics, Information and
Communication Engineers J83-D-1(1) 3–25

4. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1 (1997) 67–82

5. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology (2003)

6. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Woodward, J.R., Burke, E.K.,
Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E.: Exploring hyper-heuristic method-
ologies with genetic programming (2009)

7. Malek, R.: Seage – searching agents. http://www.seage.org
8. Roli, A., Milano, M.: Metaheuristics: a multiagent perspective. Technical report,

University of Bologna (Italy (2001)
9. Roli, A., Milano, M.: Magma: A multiagent architecture for metaheuristics. IEEE

Trans. on Systems, Man and Cybernetics - Part B 34 (2002) 2004
10. Ouelhadj, D., Petrovic, S., Ozcan, E.: A multi-level search framework for asyn-

chronous cooperation of multiple hyper-heuristics. In: GECCO ’09: Proceedings of
the 11th annual conference companion on Genetic and evolutionary computation
conference, New York, NY, USA, ACM (2009) 2193–2196

11. Fogel, D.B.: Phenotypes, genotypes, and operators in evolutionary computation.
(1995) 193–198

12. Back, T., Fogel, D.B., Michalewicz, Z., eds.: Handbook of Evolutionary Computa-
tion. IOP Publishing Ltd., Bristol, UK, UK (1997)

13. Sislak, D., Rehak, M., Pechoucek, M.: A-globe: Multi-agent platform with advanced
simulation and visualization support. Web Intelligence, IEEE / WIC / ACM
International Conference (2005) 805–806

14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press (March 1998)


